blob: a7600ec51d86e49e2d5b06e39ed4d74e2a569f5d [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
Sandrine Bailleux7a53a912023-02-08 13:55:51 +010017implementation of variables and functions to fulfill the optional requirements
18in order to ease the porting effort. Each platform port can use them as is or
19provide their own implementation if the default implementation is inadequate.
20
21 .. note::
22
23 TF-A historically provided default implementations of platform interfaces
24 as *weak* functions. This practice is now discouraged and new platform
25 interfaces as they get introduced in the code base should be *strongly*
26 defined. We intend to convert existing weak functions over time. Until
27 then, you will find references to *weak* functions in this document.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010028
Sandrine Bailleux2cea7942023-04-04 16:36:08 +020029Please review the :ref:`Threat Model` documents as part of the porting
30effort. Some platform interfaces play a key role in mitigating against some of
31the threats. Failing to fulfill these expectations could undermine the security
32guarantees offered by TF-A. These platform responsibilities are highlighted in
33the threat assessment section, under the "`Mitigations implemented?`" box for
34each threat.
35
Douglas Raillardd7c21b72017-06-28 15:23:03 +010036Some modifications are common to all Boot Loader (BL) stages. Section 2
37discusses these in detail. The subsequent sections discuss the remaining
38modifications for each BL stage in detail.
39
Sandrine Bailleuxdad35612022-11-08 13:36:42 +010040Please refer to the :ref:`Platform Ports Policy` for the policy regarding
41compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010042
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000043Only Arm development platforms (such as FVP and Juno) may use the
44functions/definitions in ``include/plat/arm/common/`` and the corresponding
45source files in ``plat/arm/common/``. This is done so that there are no
46dependencies between platforms maintained by different people/companies. If you
47want to use any of the functionality present in ``plat/arm`` files, please
Sandrine Bailleux8a1c0d62023-02-08 14:01:18 +010048propose a patch that moves the code to ``plat/common`` so that it can be
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000049discussed.
50
Douglas Raillardd7c21b72017-06-28 15:23:03 +010051Common modifications
52--------------------
53
54This section covers the modifications that should be made by the platform for
55each BL stage to correctly port the firmware stack. They are categorized as
56either mandatory or optional.
57
58Common mandatory modifications
59------------------------------
60
61A platform port must enable the Memory Management Unit (MMU) as well as the
62instruction and data caches for each BL stage. Setting up the translation
63tables is the responsibility of the platform port because memory maps differ
Sandrine Bailleux6d981f72023-02-08 14:02:45 +010064across platforms. A memory translation library (see ``lib/xlat_tables_v2/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010065provided to help in this setup.
66
67Note that although this library supports non-identity mappings, this is intended
68only for re-mapping peripheral physical addresses and allows platforms with high
69I/O addresses to reduce their virtual address space. All other addresses
70corresponding to code and data must currently use an identity mapping.
71
Dan Handley610e7e12018-03-01 18:44:00 +000072Also, the only translation granule size supported in TF-A is 4KB, as various
73parts of the code assume that is the case. It is not possible to switch to
7416 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010075
Dan Handley610e7e12018-03-01 18:44:00 +000076In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010077platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
78an identity mapping for all addresses.
79
80If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
81block of identity mapped secure memory with Device-nGnRE attributes aligned to
82page boundary (4K) for each BL stage. All sections which allocate coherent
Chris Kay33bfc5e2023-02-14 11:30:04 +000083memory are grouped under ``.coherent_ram``. For ex: Bakery locks are placed in a
84section identified by name ``.bakery_lock`` inside ``.coherent_ram`` so that its
Douglas Raillardd7c21b72017-06-28 15:23:03 +010085possible for the firmware to place variables in it using the following C code
86directive:
87
88::
89
Chris Kay33bfc5e2023-02-14 11:30:04 +000090 __section(".bakery_lock")
Douglas Raillardd7c21b72017-06-28 15:23:03 +010091
92Or alternatively the following assembler code directive:
93
94::
95
Chris Kay33bfc5e2023-02-14 11:30:04 +000096 .section .bakery_lock
Douglas Raillardd7c21b72017-06-28 15:23:03 +010097
Chris Kay33bfc5e2023-02-14 11:30:04 +000098The ``.coherent_ram`` section is a sum of all sections like ``.bakery_lock`` which are
Douglas Raillardd7c21b72017-06-28 15:23:03 +010099used to allocate any data structures that are accessed both when a CPU is
100executing with its MMU and caches enabled, and when it's running with its MMU
101and caches disabled. Examples are given below.
102
103The following variables, functions and constants must be defined by the platform
104for the firmware to work correctly.
105
Javier Almansa Sobrino37bf69c2022-04-07 18:26:49 +0100106.. _platform_def_mandatory:
107
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100108File : platform_def.h [mandatory]
109~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100110
111Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +0000112include path with the following constants defined. This will require updating
113the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100114
Paul Beesleyf8640672019-04-12 14:19:42 +0100115Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100116which provides typical values for some of the constants below. These values are
117likely to be suitable for all platform ports.
118
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100119- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
121 Defines the linker format used by the platform, for example
122 ``elf64-littleaarch64``.
123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100124- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100125
126 Defines the processor architecture for the linker by the platform, for
127 example ``aarch64``.
128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100129- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100130
131 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100132 by ``plat/common/aarch64/platform_mp_stack.S`` and
133 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100134
David Horstmann051fd6d2020-11-12 15:19:04 +0000135- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100136
Max Yufa0b4e82022-09-08 23:21:21 +0000137 Defines the size in bytes of the largest cache line across all the cache
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100138 levels in the platform.
139
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100140- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100141
142 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
143 function.
144
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100145- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100146
147 Defines the total number of CPUs implemented by the platform across all
148 clusters in the system.
149
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100150- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100151
152 Defines the total number of nodes in the power domain topology
153 tree at all the power domain levels used by the platform.
154 This macro is used by the PSCI implementation to allocate
155 data structures to represent power domain topology.
156
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100157- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100158
159 Defines the maximum power domain level that the power management operations
160 should apply to. More often, but not always, the power domain level
161 corresponds to affinity level. This macro allows the PSCI implementation
162 to know the highest power domain level that it should consider for power
163 management operations in the system that the platform implements. For
164 example, the Base AEM FVP implements two clusters with a configurable
165 number of CPUs and it reports the maximum power domain level as 1.
166
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100167- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100168
169 Defines the local power state corresponding to the deepest power down
170 possible at every power domain level in the platform. The local power
171 states for each level may be sparsely allocated between 0 and this value
172 with 0 being reserved for the RUN state. The PSCI implementation uses this
173 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100174 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100175
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100176- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100177
178 Defines the local power state corresponding to the deepest retention state
179 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100180 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100181 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100182 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100184- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100185
186 Defines the maximum number of local power states per power domain level
187 that the platform supports. The default value of this macro is 2 since
188 most platforms just support a maximum of two local power states at each
189 power domain level (power-down and retention). If the platform needs to
190 account for more local power states, then it must redefine this macro.
191
192 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100193 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100194
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100195- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100196
197 Defines the base address in secure ROM where BL1 originally lives. Must be
198 aligned on a page-size boundary.
199
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100200- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100201
202 Defines the maximum address in secure ROM that BL1's actual content (i.e.
203 excluding any data section allocated at runtime) can occupy.
204
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100205- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
207 Defines the base address in secure RAM where BL1's read-write data will live
208 at runtime. Must be aligned on a page-size boundary.
209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100210- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100211
212 Defines the maximum address in secure RAM that BL1's read-write data can
213 occupy at runtime.
214
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100215- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100216
217 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000218 Must be aligned on a page-size boundary. This constant is not applicable
219 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100220
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100221- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100222
223 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000224 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
225
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100226- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000227
228 Defines the base address in secure XIP memory where BL2 RO section originally
229 lives. Must be aligned on a page-size boundary. This constant is only needed
230 when BL2_IN_XIP_MEM is set to '1'.
231
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100232- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000233
234 Defines the maximum address in secure XIP memory that BL2's actual content
235 (i.e. excluding any data section allocated at runtime) can occupy. This
236 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
237
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100238- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000239
240 Defines the base address in secure RAM where BL2's read-write data will live
241 at runtime. Must be aligned on a page-size boundary. This constant is only
242 needed when BL2_IN_XIP_MEM is set to '1'.
243
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100244- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000245
246 Defines the maximum address in secure RAM that BL2's read-write data can
247 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
248 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100249
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100250- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100251
252 Defines the base address in secure RAM where BL2 loads the BL31 binary
253 image. Must be aligned on a page-size boundary.
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 Defines the maximum address in secure RAM that the BL31 image can occupy.
258
Tamas Bana7bf68d2024-02-21 13:55:31 +0100259- **#define : PLAT_RSE_COMMS_PAYLOAD_MAX_SIZE**
Tamas Ban1d3354e2022-09-16 14:09:30 +0200260
Tamas Bana7bf68d2024-02-21 13:55:31 +0100261 Defines the maximum message size between AP and RSE. Need to define if
262 platform supports RSE.
Tamas Ban1d3354e2022-09-16 14:09:30 +0200263
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100264For every image, the platform must define individual identifiers that will be
265used by BL1 or BL2 to load the corresponding image into memory from non-volatile
266storage. For the sake of performance, integer numbers will be used as
267identifiers. The platform will use those identifiers to return the relevant
268information about the image to be loaded (file handler, load address,
269authentication information, etc.). The following image identifiers are
270mandatory:
271
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100272- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100273
274 BL2 image identifier, used by BL1 to load BL2.
275
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100276- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100277
278 BL31 image identifier, used by BL2 to load BL31.
279
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100280- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100281
282 BL33 image identifier, used by BL2 to load BL33.
283
284If Trusted Board Boot is enabled, the following certificate identifiers must
285also be defined:
286
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100287- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100288
289 BL2 content certificate identifier, used by BL1 to load the BL2 content
290 certificate.
291
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100292- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100293
294 Trusted key certificate identifier, used by BL2 to load the trusted key
295 certificate.
296
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100297- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100298
299 BL31 key certificate identifier, used by BL2 to load the BL31 key
300 certificate.
301
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100302- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100303
304 BL31 content certificate identifier, used by BL2 to load the BL31 content
305 certificate.
306
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100307- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100308
309 BL33 key certificate identifier, used by BL2 to load the BL33 key
310 certificate.
311
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100312- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100313
314 BL33 content certificate identifier, used by BL2 to load the BL33 content
315 certificate.
316
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100317- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100318
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100319 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100320 FWU content certificate.
321
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100322If the AP Firmware Updater Configuration image, BL2U is used, the following
323must also be defined:
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326
327 Defines the base address in secure memory where BL1 copies the BL2U binary
328 image. Must be aligned on a page-size boundary.
329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100331
332 Defines the maximum address in secure memory that the BL2U image can occupy.
333
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100334- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
336 BL2U image identifier, used by BL1 to fetch an image descriptor
337 corresponding to BL2U.
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340must also be defined:
341
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100342- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100343
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100344 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
345 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000346
347 .. note::
348 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100349
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100350If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351also be defined:
352
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100353- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000357
358 .. note::
359 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100360
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100361- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
364 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100365
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100366If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367be defined:
368
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100369- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000373
374 .. note::
375 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100376
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100377- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
380 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100381
382For the the Firmware update capability of TRUSTED BOARD BOOT, the following
383macros may also be defined:
384
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100385- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100386
387 Total number of images that can be loaded simultaneously. If the platform
388 doesn't specify any value, it defaults to 10.
389
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100390If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100391also be defined:
392
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100393- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100394
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100395 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000396 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100397
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100398- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100399
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100400 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100401 certificate (mandatory when Trusted Board Boot is enabled).
402
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100403- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100404
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100405 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100406 content certificate (mandatory when Trusted Board Boot is enabled).
407
408If a BL32 image is supported by the platform, the following constants must
409also be defined:
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 BL32 image identifier, used by BL2 to load BL32.
414
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100415- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100416
417 BL32 key certificate identifier, used by BL2 to load the BL32 key
418 certificate (mandatory when Trusted Board Boot is enabled).
419
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100420- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100421
422 BL32 content certificate identifier, used by BL2 to load the BL32 content
423 certificate (mandatory when Trusted Board Boot is enabled).
424
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100425- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100426
427 Defines the base address in secure memory where BL2 loads the BL32 binary
428 image. Must be aligned on a page-size boundary.
429
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100430- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100431
432 Defines the maximum address that the BL32 image can occupy.
433
434If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
435platform, the following constants must also be defined:
436
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100437- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100438
439 Defines the base address of the secure memory used by the TSP image on the
440 platform. This must be at the same address or below ``BL32_BASE``.
441
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100442- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100443
444 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000445 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
446 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
447 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100448
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100449- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100450
451 Defines the ID of the secure physical generic timer interrupt used by the
452 TSP's interrupt handling code.
453
454If the platform port uses the translation table library code, the following
455constants must also be defined:
456
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100457- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100458
459 Optional flag that can be set per-image to enable the dynamic allocation of
460 regions even when the MMU is enabled. If not defined, only static
461 functionality will be available, if defined and set to 1 it will also
462 include the dynamic functionality.
463
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100464- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100465
466 Defines the maximum number of translation tables that are allocated by the
467 translation table library code. To minimize the amount of runtime memory
468 used, choose the smallest value needed to map the required virtual addresses
469 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
470 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
471 as well.
472
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100473- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100474
475 Defines the maximum number of regions that are allocated by the translation
476 table library code. A region consists of physical base address, virtual base
477 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
478 defined in the ``mmap_region_t`` structure. The platform defines the regions
479 that should be mapped. Then, the translation table library will create the
480 corresponding tables and descriptors at runtime. To minimize the amount of
481 runtime memory used, choose the smallest value needed to register the
482 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
483 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
484 the dynamic regions as well.
485
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100486- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100487
488 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000489 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000494 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100495
496If the platform port uses the IO storage framework, the following constants
497must also be defined:
498
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100499- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100500
501 Defines the maximum number of registered IO devices. Attempting to register
502 more devices than this value using ``io_register_device()`` will fail with
503 -ENOMEM.
504
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100505- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100506
507 Defines the maximum number of open IO handles. Attempting to open more IO
508 entities than this value using ``io_open()`` will fail with -ENOMEM.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the maximum number of registered IO block devices. Attempting to
513 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100514 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100515 With this macro, multiple block devices could be supported at the same
516 time.
517
518If the platform needs to allocate data within the per-cpu data framework in
519BL31, it should define the following macro. Currently this is only required if
520the platform decides not to use the coherent memory section by undefining the
521``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
522required memory within the the per-cpu data to minimize wastage.
523
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100524- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100525
526 Defines the memory (in bytes) to be reserved within the per-cpu data
527 structure for use by the platform layer.
528
529The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000530memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100532- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100533
534 Defines the maximum address in secure RAM that the BL31's progbits sections
535 can occupy.
536
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100537- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100538
539 Defines the maximum address that the TSP's progbits sections can occupy.
540
Wing Li2c556f32022-09-14 13:18:17 -0700541If the platform supports OS-initiated mode, i.e. the build option
542``PSCI_OS_INIT_MODE`` is enabled, and if the platform's maximum power domain
543level for PSCI_CPU_SUSPEND differs from ``PLAT_MAX_PWR_LVL``, the following
544constant must be defined.
545
546- **#define : PLAT_MAX_CPU_SUSPEND_PWR_LVL**
547
548 Defines the maximum power domain level that PSCI_CPU_SUSPEND should apply to.
549
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100550If the platform port uses the PL061 GPIO driver, the following constant may
551optionally be defined:
552
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100553- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554 Maximum number of GPIOs required by the platform. This allows control how
555 much memory is allocated for PL061 GPIO controllers. The default value is
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558
559If the platform port uses the partition driver, the following constant may
560optionally be defined:
561
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100562- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100563 Maximum number of partition entries required by the platform. This allows
564 control how much memory is allocated for partition entries. The default
565 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100566 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100567 PLAT_PARTITION_MAX_ENTRIES := 12
568 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100569
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800570- **PLAT_PARTITION_BLOCK_SIZE**
571 The size of partition block. It could be either 512 bytes or 4096 bytes.
572 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000573 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800574 PLAT_PARTITION_BLOCK_SIZE := 4096
575 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
576
Rob Hughes7a354bd2023-02-20 12:03:52 +0000577If the platform port uses the Arm® Ethos™-N NPU driver, the following
578configuration must be performed:
579
580- The NPU SiP service handler must be hooked up. This consists of both the
581 initial setup (``ethosn_smc_setup``) and the handler itself
582 (``ethosn_smc_handler``)
583
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100584If the platform port uses the Arm® Ethos™-N NPU driver with TZMP1 support
Rob Hughes7a354bd2023-02-20 12:03:52 +0000585enabled, the following constants and configuration must also be defined:
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100586
Rajasekaran Kalidoss46359002023-05-09 12:28:07 +0200587- **ETHOSN_NPU_PROT_FW_NSAID**
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100588
589 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use to
590 access the protected memory that contains the NPU's firmware.
591
Rajasekaran Kalidoss46359002023-05-09 12:28:07 +0200592- **ETHOSN_NPU_PROT_DATA_RW_NSAID**
Mikael Olsson80b61f52023-03-14 18:29:06 +0100593
594 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
595 read/write access to the protected memory that contains inference data.
596
Rajasekaran Kalidoss46359002023-05-09 12:28:07 +0200597- **ETHOSN_NPU_PROT_DATA_RO_NSAID**
Mikael Olsson80b61f52023-03-14 18:29:06 +0100598
599 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
600 read-only access to the protected memory that contains inference data.
601
Rajasekaran Kalidoss46359002023-05-09 12:28:07 +0200602- **ETHOSN_NPU_NS_RW_DATA_NSAID**
Mikael Olsson80b61f52023-03-14 18:29:06 +0100603
604 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
605 read/write access to the non-protected memory.
606
Rajasekaran Kalidoss46359002023-05-09 12:28:07 +0200607- **ETHOSN_NPU_NS_RO_DATA_NSAID**
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100608
Mikael Olsson80b61f52023-03-14 18:29:06 +0100609 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
610 read-only access to the non-protected memory.
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100611
Rajasekaran Kalidoss46359002023-05-09 12:28:07 +0200612- **ETHOSN_NPU_FW_IMAGE_BASE** and **ETHOSN_NPU_FW_IMAGE_LIMIT**
Rob Hughes9a2177a2023-01-17 16:10:26 +0000613
Rob Hughes7a354bd2023-02-20 12:03:52 +0000614 Defines the physical address range that the NPU's firmware will be loaded
615 into and executed from.
616
617- Configure the platforms TrustZone Controller (TZC) with appropriate regions
618 of protected memory. At minimum this must include a region for the NPU's
619 firmware code and a region for protected inference data, and these must be
620 accessible using the NSAIDs defined above.
621
622- Include the NPU firmware and certificates in the FIP.
623
624- Provide FCONF entries to configure the image source for the NPU firmware
625 and certificates.
Rob Hughes9a2177a2023-01-17 16:10:26 +0000626
627- Add MMU mappings such that:
628
629 - BL2 can write the NPU firmware into the region defined by
Rajasekaran Kalidoss46359002023-05-09 12:28:07 +0200630 ``ETHOSN_NPU_FW_IMAGE_BASE`` and ``ETHOSN_NPU_FW_IMAGE_LIMIT``
Rob Hughes9a2177a2023-01-17 16:10:26 +0000631 - BL31 (SiP service) can read the NPU firmware from the same region
632
Rajasekaran Kalidoss46359002023-05-09 12:28:07 +0200633- Add the firmware image ID ``ETHOSN_NPU_FW_IMAGE_ID`` to the list of images
Rob Hughes7a354bd2023-02-20 12:03:52 +0000634 loaded by BL2.
Rob Hughes9a2177a2023-01-17 16:10:26 +0000635
636Please see the reference implementation code for the Juno platform as an example.
637
638
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100639The following constant is optional. It should be defined to override the default
640behaviour of the ``assert()`` function (for example, to save memory).
641
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100642- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100643 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
644 ``assert()`` prints the name of the file, the line number and the asserted
645 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
646 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
647 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
648 defined, it defaults to ``LOG_LEVEL``.
649
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100650If the platform port uses the DRTM feature, the following constants must be
651defined:
652
653- **#define : PLAT_DRTM_EVENT_LOG_MAX_SIZE**
654
655 Maximum Event Log size used by the platform. Platform can decide the maximum
656 size of the Event Log buffer, depending upon the highest hash algorithm
657 chosen and the number of components selected to measure during the DRTM
658 execution flow.
659
660- **#define : PLAT_DRTM_MMAP_ENTRIES**
661
662 Number of the MMAP entries used by the DRTM implementation to calculate the
663 size of address map region of the platform.
664
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100665File : plat_macros.S [mandatory]
666~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100667
668Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000669the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100670found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
671
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100672- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100673
674 This macro allows the crash reporting routine to print relevant platform
675 registers in case of an unhandled exception in BL31. This aids in debugging
676 and this macro can be defined to be empty in case register reporting is not
677 desired.
678
679 For instance, GIC or interconnect registers may be helpful for
680 troubleshooting.
681
682Handling Reset
683--------------
684
685BL1 by default implements the reset vector where execution starts from a cold
686or warm boot. BL31 can be optionally set as a reset vector using the
687``RESET_TO_BL31`` make variable.
688
689For each CPU, the reset vector code is responsible for the following tasks:
690
691#. Distinguishing between a cold boot and a warm boot.
692
693#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
694 the CPU is placed in a platform-specific state until the primary CPU
695 performs the necessary steps to remove it from this state.
696
697#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
698 specific address in the BL31 image in the same processor mode as it was
699 when released from reset.
700
701The following functions need to be implemented by the platform port to enable
702reset vector code to perform the above tasks.
703
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100704Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
705~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100706
707::
708
709 Argument : void
710 Return : uintptr_t
711
712This function is called with the MMU and caches disabled
713(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
714distinguishing between a warm and cold reset for the current CPU using
715platform-specific means. If it's a warm reset, then it returns the warm
716reset entrypoint point provided to ``plat_setup_psci_ops()`` during
717BL31 initialization. If it's a cold reset then this function must return zero.
718
719This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000720Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100721not assume that callee saved registers are preserved across a call to this
722function.
723
724This function fulfills requirement 1 and 3 listed above.
725
726Note that for platforms that support programming the reset address, it is
727expected that a CPU will start executing code directly at the right address,
728both on a cold and warm reset. In this case, there is no need to identify the
729type of reset nor to query the warm reset entrypoint. Therefore, implementing
730this function is not required on such platforms.
731
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100732Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
733~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100734
735::
736
737 Argument : void
738
739This function is called with the MMU and data caches disabled. It is responsible
740for placing the executing secondary CPU in a platform-specific state until the
741primary CPU performs the necessary actions to bring it out of that state and
742allow entry into the OS. This function must not return.
743
Dan Handley610e7e12018-03-01 18:44:00 +0000744In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100745itself off. The primary CPU is responsible for powering up the secondary CPUs
746when normal world software requires them. When booting an EL3 payload instead,
747they stay powered on and are put in a holding pen until their mailbox gets
748populated.
749
750This function fulfills requirement 2 above.
751
752Note that for platforms that can't release secondary CPUs out of reset, only the
753primary CPU will execute the cold boot code. Therefore, implementing this
754function is not required on such platforms.
755
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100756Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
757~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100758
759::
760
761 Argument : void
762 Return : unsigned int
763
764This function identifies whether the current CPU is the primary CPU or a
765secondary CPU. A return value of zero indicates that the CPU is not the
766primary CPU, while a non-zero return value indicates that the CPU is the
767primary CPU.
768
769Note that for platforms that can't release secondary CPUs out of reset, only the
770primary CPU will execute the cold boot code. Therefore, there is no need to
771distinguish between primary and secondary CPUs and implementing this function is
772not required.
773
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100774Function : platform_mem_init() [mandatory]
775~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100776
777::
778
779 Argument : void
780 Return : void
781
782This function is called before any access to data is made by the firmware, in
783order to carry out any essential memory initialization.
784
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100785Function: plat_get_rotpk_info()
786~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100787
788::
789
790 Argument : void *, void **, unsigned int *, unsigned int *
791 Return : int
792
793This function is mandatory when Trusted Board Boot is enabled. It returns a
794pointer to the ROTPK stored in the platform (or a hash of it) and its length.
795The ROTPK must be encoded in DER format according to the following ASN.1
796structure:
797
798::
799
800 AlgorithmIdentifier ::= SEQUENCE {
801 algorithm OBJECT IDENTIFIER,
802 parameters ANY DEFINED BY algorithm OPTIONAL
803 }
804
805 SubjectPublicKeyInfo ::= SEQUENCE {
806 algorithm AlgorithmIdentifier,
807 subjectPublicKey BIT STRING
808 }
809
810In case the function returns a hash of the key:
811
812::
813
814 DigestInfo ::= SEQUENCE {
815 digestAlgorithm AlgorithmIdentifier,
816 digest OCTET STRING
817 }
818
819The function returns 0 on success. Any other value is treated as error by the
820Trusted Board Boot. The function also reports extra information related
821to the ROTPK in the flags parameter:
822
823::
824
825 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
826 hash.
827 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
828 verification while the platform ROTPK is not deployed.
829 When this flag is set, the function does not need to
830 return a platform ROTPK, and the authentication
831 framework uses the ROTPK in the certificate without
832 verifying it against the platform value. This flag
833 must not be used in a deployed production environment.
834
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100835Function: plat_get_nv_ctr()
836~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100837
838::
839
840 Argument : void *, unsigned int *
841 Return : int
842
843This function is mandatory when Trusted Board Boot is enabled. It returns the
844non-volatile counter value stored in the platform in the second argument. The
845cookie in the first argument may be used to select the counter in case the
846platform provides more than one (for example, on platforms that use the default
847TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100848TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100849
850The function returns 0 on success. Any other value means the counter value could
851not be retrieved from the platform.
852
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100853Function: plat_set_nv_ctr()
854~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100855
856::
857
858 Argument : void *, unsigned int
859 Return : int
860
861This function is mandatory when Trusted Board Boot is enabled. It sets a new
862counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100863select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100864the updated counter value to be written to the NV counter.
865
866The function returns 0 on success. Any other value means the counter value could
867not be updated.
868
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100869Function: plat_set_nv_ctr2()
870~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100871
872::
873
874 Argument : void *, const auth_img_desc_t *, unsigned int
875 Return : int
876
877This function is optional when Trusted Board Boot is enabled. If this
878interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
879first argument passed is a cookie and is typically used to
880differentiate between a Non Trusted NV Counter and a Trusted NV
881Counter. The second argument is a pointer to an authentication image
882descriptor and may be used to decide if the counter is allowed to be
883updated or not. The third argument is the updated counter value to
884be written to the NV counter.
885
886The function returns 0 on success. Any other value means the counter value
887either could not be updated or the authentication image descriptor indicates
888that it is not allowed to be updated.
889
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100890Dynamic Root of Trust for Measurement support (in BL31)
891-------------------------------------------------------
892
893The functions mentioned in this section are mandatory, when platform enables
894DRTM_SUPPORT build flag.
895
896Function : plat_get_addr_mmap()
897~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
898
899::
900
901 Argument : void
902 Return : const mmap_region_t *
903
904This function is used to return the address of the platform *address-map* table,
905which describes the regions of normal memory, memory mapped I/O
906and non-volatile memory.
907
908Function : plat_has_non_host_platforms()
909~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
910
911::
912
913 Argument : void
914 Return : bool
915
916This function returns *true* if the platform has any trusted devices capable of
917DMA, otherwise returns *false*.
918
919Function : plat_has_unmanaged_dma_peripherals()
920~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
921
922::
923
924 Argument : void
925 Return : bool
926
927This function returns *true* if platform uses peripherals whose DMA is not
928managed by an SMMU, otherwise returns *false*.
929
930Note -
931If the platform has peripherals that are not managed by the SMMU, then the
932platform should investigate such peripherals to determine whether they can
933be trusted, and such peripherals should be moved under "Non-host platforms"
934if they can be trusted.
935
936Function : plat_get_total_num_smmus()
937~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
938
939::
940
941 Argument : void
942 Return : unsigned int
943
944This function returns the total number of SMMUs in the platform.
945
946Function : plat_enumerate_smmus()
947~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
948::
949
950
951 Argument : void
952 Return : const uintptr_t *, size_t
953
954This function returns an array of SMMU addresses and the actual number of SMMUs
955reported by the platform.
956
957Function : plat_drtm_get_dma_prot_features()
958~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
959
960::
961
962 Argument : void
963 Return : const plat_drtm_dma_prot_features_t*
964
965This function returns the address of plat_drtm_dma_prot_features_t structure
966containing the maximum number of protected regions and bitmap with the types
967of DMA protection supported by the platform.
968For more details see section 3.3 Table 6 of `DRTM`_ specification.
969
970Function : plat_drtm_dma_prot_get_max_table_bytes()
971~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
972
973::
974
975 Argument : void
976 Return : uint64_t
977
978This function returns the maximum size of DMA protected regions table in
979bytes.
980
981Function : plat_drtm_get_tpm_features()
982~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
983
984::
985
986 Argument : void
987 Return : const plat_drtm_tpm_features_t*
988
989This function returns the address of *plat_drtm_tpm_features_t* structure
990containing PCR usage schema, TPM-based hash, and firmware hash algorithm
991supported by the platform.
992
993Function : plat_drtm_get_min_size_normal_world_dce()
994~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
995
996::
997
998 Argument : void
999 Return : uint64_t
1000
1001This function returns the size normal-world DCE of the platform.
1002
1003Function : plat_drtm_get_imp_def_dlme_region_size()
1004~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1005
1006::
1007
1008 Argument : void
1009 Return : uint64_t
1010
1011This function returns the size of implementation defined DLME region
1012of the platform.
1013
1014Function : plat_drtm_get_tcb_hash_table_size()
1015~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1016
1017::
1018
1019 Argument : void
1020 Return : uint64_t
1021
1022This function returns the size of TCB hash table of the platform.
1023
1024Function : plat_drtm_get_tcb_hash_features()
1025~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1026
1027::
1028
1029 Argument : void
1030 Return : uint64_t
1031
1032This function returns the Maximum number of TCB hashes recorded by the
1033platform.
1034For more details see section 3.3 Table 6 of `DRTM`_ specification.
1035
1036Function : plat_drtm_validate_ns_region()
1037~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1038
1039::
1040
1041 Argument : uintptr_t, uintptr_t
1042 Return : int
1043
1044This function validates that given region is within the Non-Secure region
1045of DRAM. This function takes a region start address and size an input
1046arguments, and returns 0 on success and -1 on failure.
1047
1048Function : plat_set_drtm_error()
1049~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1050
1051::
1052
1053 Argument : uint64_t
1054 Return : int
1055
1056This function writes a 64 bit error code received as input into
1057non-volatile storage and returns 0 on success and -1 on failure.
1058
1059Function : plat_get_drtm_error()
1060~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1061
1062::
1063
1064 Argument : uint64_t*
1065 Return : int
1066
1067This function reads a 64 bit error code from the non-volatile storage
1068into the received address, and returns 0 on success and -1 on failure.
1069
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001070Common mandatory function modifications
1071---------------------------------------
1072
1073The following functions are mandatory functions which need to be implemented
1074by the platform port.
1075
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001076Function : plat_my_core_pos()
1077~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001078
1079::
1080
1081 Argument : void
1082 Return : unsigned int
1083
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001084This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001085CPU-specific linear index into blocks of memory (for example while allocating
1086per-CPU stacks). This function will be invoked very early in the
1087initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001088implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001089runtime environment. This function can clobber x0 - x8 and must preserve
1090x9 - x29.
1091
1092This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +01001093PSCI and details of this can be found in
1094:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001095
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001096Function : plat_core_pos_by_mpidr()
1097~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001098
1099::
1100
1101 Argument : u_register_t
1102 Return : int
1103
1104This function validates the ``MPIDR`` of a CPU and converts it to an index,
1105which can be used as a CPU-specific linear index into blocks of memory. In
1106case the ``MPIDR`` is invalid, this function returns -1. This function will only
1107be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +00001108utilize the C runtime environment. For further details about how TF-A
1109represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +01001110index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001111
Ambroise Vincentd207f562019-04-10 12:50:27 +01001112Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
1113~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1114
1115::
1116
1117 Arguments : void **heap_addr, size_t *heap_size
1118 Return : int
1119
1120This function is invoked during Mbed TLS library initialisation to get a heap,
1121by means of a starting address and a size. This heap will then be used
1122internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
1123must be able to provide a heap to it.
1124
1125A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
1126which a heap is statically reserved during compile time inside every image
1127(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
1128the function simply returns the address and size of this "pre-allocated" heap.
1129For a platform to use this default implementation, only a call to the helper
1130from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
1131
1132However, by writting their own implementation, platforms have the potential to
1133optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
1134shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
1135twice.
1136
1137On success the function should return 0 and a negative error code otherwise.
1138
Sumit Gargc0c369c2019-11-15 18:47:53 +05301139Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
1140~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1141
1142::
1143
1144 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
1145 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
1146 size_t img_id_len
1147 Return : int
1148
1149This function provides a symmetric key (either SSK or BSSK depending on
1150fw_enc_status) which is invoked during runtime decryption of encrypted
1151firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
1152implementation for testing purposes which must be overridden by the platform
1153trying to implement a real world firmware encryption use-case.
1154
1155It also allows the platform to pass symmetric key identifier rather than
1156actual symmetric key which is useful in cases where the crypto backend provides
1157secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
1158flag must be set in ``flags``.
1159
1160In addition to above a platform may also choose to provide an image specific
1161symmetric key/identifier using img_id.
1162
1163On success the function should return 0 and a negative error code otherwise.
1164
Manish Pandey34a305e2021-10-21 21:53:49 +01001165Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
Sumit Gargc0c369c2019-11-15 18:47:53 +05301166
Manish V Badarkheda87af12021-06-20 21:14:46 +01001167Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
1168~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1169
1170::
1171
Sughosh Ganuf40154f2021-11-17 17:08:10 +05301172 Argument : const struct fwu_metadata *metadata
Manish V Badarkheda87af12021-06-20 21:14:46 +01001173 Return : void
1174
1175This function is mandatory when PSA_FWU_SUPPORT is enabled.
1176It provides a means to retrieve image specification (offset in
1177non-volatile storage and length) of active/updated images using the passed
1178FWU metadata, and update I/O policies of active/updated images using retrieved
1179image specification information.
1180Further I/O layer operations such as I/O open, I/O read, etc. on these
1181images rely on this function call.
1182
1183In Arm platforms, this function is used to set an I/O policy of the FIP image,
1184container of all active/updated secure and non-secure images.
1185
1186Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
1187~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1188
1189::
1190
1191 Argument : unsigned int image_id, uintptr_t *dev_handle,
1192 uintptr_t *image_spec
1193 Return : int
1194
1195This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
1196responsible for setting up the platform I/O policy of the requested metadata
1197image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
1198be used to load this image from the platform's non-volatile storage.
1199
1200FWU metadata can not be always stored as a raw image in non-volatile storage
1201to define its image specification (offset in non-volatile storage and length)
1202statically in I/O policy.
1203For example, the FWU metadata image is stored as a partition inside the GUID
1204partition table image. Its specification is defined in the partition table
1205that needs to be parsed dynamically.
1206This function provides a means to retrieve such dynamic information to set
1207the I/O policy of the FWU metadata image.
1208Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
1209image relies on this function call.
1210
1211It returns '0' on success, otherwise a negative error value on error.
1212Alongside, returns device handle and image specification from the I/O policy
1213of the requested FWU metadata image.
1214
Sughosh Ganu4e336a62021-12-01 15:53:32 +05301215Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]
1216~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1217
1218::
1219
1220 Argument : void
1221 Return : uint32_t
1222
1223This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the
1224means to retrieve the boot index value from the platform. The boot index is the
1225bank from which the platform has booted the firmware images.
1226
1227By default, the platform will read the metadata structure and try to boot from
1228the active bank. If the platform fails to boot from the active bank due to
1229reasons like an Authentication failure, or on crossing a set number of watchdog
1230resets while booting from the active bank, the platform can then switch to boot
1231from a different bank. This function then returns the bank that the platform
1232should boot its images from.
1233
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001234Common optional modifications
1235-----------------------------
1236
1237The following are helper functions implemented by the firmware that perform
1238common platform-specific tasks. A platform may choose to override these
1239definitions.
1240
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001241Function : plat_set_my_stack()
1242~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001243
1244::
1245
1246 Argument : void
1247 Return : void
1248
1249This function sets the current stack pointer to the normal memory stack that
1250has been allocated for the current CPU. For BL images that only require a
1251stack for the primary CPU, the UP version of the function is used. The size
1252of the stack allocated to each CPU is specified by the platform defined
1253constant ``PLATFORM_STACK_SIZE``.
1254
1255Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001256provided in ``plat/common/aarch64/platform_up_stack.S`` and
1257``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001259Function : plat_get_my_stack()
1260~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001261
1262::
1263
1264 Argument : void
1265 Return : uintptr_t
1266
1267This function returns the base address of the normal memory stack that
1268has been allocated for the current CPU. For BL images that only require a
1269stack for the primary CPU, the UP version of the function is used. The size
1270of the stack allocated to each CPU is specified by the platform defined
1271constant ``PLATFORM_STACK_SIZE``.
1272
1273Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001274provided in ``plat/common/aarch64/platform_up_stack.S`` and
1275``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001276
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001277Function : plat_report_exception()
1278~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001279
1280::
1281
1282 Argument : unsigned int
1283 Return : void
1284
1285A platform may need to report various information about its status when an
1286exception is taken, for example the current exception level, the CPU security
1287state (secure/non-secure), the exception type, and so on. This function is
1288called in the following circumstances:
1289
1290- In BL1, whenever an exception is taken.
1291- In BL2, whenever an exception is taken.
1292
1293The default implementation doesn't do anything, to avoid making assumptions
1294about the way the platform displays its status information.
1295
1296For AArch64, this function receives the exception type as its argument.
1297Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001298``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001299related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001300
1301For AArch32, this function receives the exception mode as its argument.
1302Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001303``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001304
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001305Function : plat_reset_handler()
1306~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001307
1308::
1309
1310 Argument : void
1311 Return : void
1312
1313A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001314allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001315specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001316preserve the values of callee saved registers x19 to x29.
1317
1318The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001319the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001320guidelines.
1321
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001322Function : plat_disable_acp()
1323~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001324
1325::
1326
1327 Argument : void
1328 Return : void
1329
John Tsichritzis6dda9762018-07-23 09:18:04 +01001330This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001331present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001332doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001333it has restrictions for stack usage and it can use the registers x0 - x17 as
1334scratch registers. It should preserve the value in x18 register as it is used
1335by the caller to store the return address.
1336
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001337Function : plat_error_handler()
1338~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001339
1340::
1341
1342 Argument : int
1343 Return : void
1344
1345This API is called when the generic code encounters an error situation from
1346which it cannot continue. It allows the platform to perform error reporting or
1347recovery actions (for example, reset the system). This function must not return.
1348
1349The parameter indicates the type of error using standard codes from ``errno.h``.
1350Possible errors reported by the generic code are:
1351
1352- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1353 Board Boot is enabled)
1354- ``-ENOENT``: the requested image or certificate could not be found or an IO
1355 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001356- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1357 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001358
1359The default implementation simply spins.
1360
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001361Function : plat_panic_handler()
1362~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001363
1364::
1365
1366 Argument : void
1367 Return : void
1368
1369This API is called when the generic code encounters an unexpected error
1370situation from which it cannot recover. This function must not return,
1371and must be implemented in assembly because it may be called before the C
1372environment is initialized.
1373
Paul Beesleyba3ed402019-03-13 16:20:44 +00001374.. note::
1375 The address from where it was called is stored in x30 (Link Register).
1376 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001377
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01001378Function : plat_system_reset()
1379~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1380
1381::
1382
1383 Argument : void
1384 Return : void
1385
1386This function is used by the platform to resets the system. It can be used
1387in any specific use-case where system needs to be resetted. For example,
1388in case of DRTM implementation this function reset the system after
1389writing the DRTM error code in the non-volatile storage. This function
1390never returns. Failure in reset results in panic.
1391
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001392Function : plat_get_bl_image_load_info()
1393~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001394
1395::
1396
1397 Argument : void
1398 Return : bl_load_info_t *
1399
1400This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001401populated to load. This function is invoked in BL2 to load the
1402BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001403
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001404Function : plat_get_next_bl_params()
1405~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001406
1407::
1408
1409 Argument : void
1410 Return : bl_params_t *
1411
1412This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001413kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001414function is invoked in BL2 to pass this information to the next BL
1415image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001416
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001417Function : plat_get_stack_protector_canary()
1418~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001419
1420::
1421
1422 Argument : void
1423 Return : u_register_t
1424
1425This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001426when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001427value will weaken the protection as the attacker could easily write the right
1428value as part of the attack most of the time. Therefore, it should return a
1429true random number.
1430
Paul Beesleyba3ed402019-03-13 16:20:44 +00001431.. warning::
1432 For the protection to be effective, the global data need to be placed at
1433 a lower address than the stack bases. Failure to do so would allow an
1434 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001435
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001436Function : plat_flush_next_bl_params()
1437~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001438
1439::
1440
1441 Argument : void
1442 Return : void
1443
1444This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001445next image. This function is invoked in BL2 to flush this information
1446to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001447
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001448Function : plat_log_get_prefix()
1449~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001450
1451::
1452
1453 Argument : unsigned int
1454 Return : const char *
1455
1456This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001457prepended to all the log output from TF-A. The `log_level` (argument) will
1458correspond to one of the standard log levels defined in debug.h. The platform
1459can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001460the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001461increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001462
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001463Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001464~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001465
1466::
1467
1468 Argument : void
1469 Return : int32_t
1470
1471This function returns soc version which mainly consist of below fields
1472
1473::
1474
1475 soc_version[30:24] = JEP-106 continuation code for the SiP
1476 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001477 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001478
1479Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001480~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001481
1482::
1483
1484 Argument : void
1485 Return : int32_t
1486
1487This function returns soc revision in below format
1488
1489::
1490
1491 soc_revision[0:30] = SOC revision of specific SOC
1492
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001493Function : plat_is_smccc_feature_available()
1494~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1495
1496::
1497
1498 Argument : u_register_t
1499 Return : int32_t
1500
1501This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1502the SMCCC function specified in the argument; otherwise returns
1503SMC_ARCH_CALL_NOT_SUPPORTED.
1504
Okash Khawaja037b56e2022-11-04 12:38:01 +00001505Function : plat_can_cmo()
1506~~~~~~~~~~~~~~~~~~~~~~~~~
1507
1508::
1509
1510 Argument : void
1511 Return : uint64_t
1512
1513When CONDITIONAL_CMO flag is enabled:
1514
1515- This function indicates whether cache management operations should be
1516 performed. It returns 0 if CMOs should be skipped and non-zero
1517 otherwise.
Okash Khawaja94532202022-11-14 12:50:30 +00001518- The function must not clobber x1, x2 and x3. It's also not safe to rely on
1519 stack. Otherwise obey AAPCS.
Okash Khawaja037b56e2022-11-04 12:38:01 +00001520
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001521Modifications specific to a Boot Loader stage
1522---------------------------------------------
1523
1524Boot Loader Stage 1 (BL1)
1525-------------------------
1526
1527BL1 implements the reset vector where execution starts from after a cold or
1528warm boot. For each CPU, BL1 is responsible for the following tasks:
1529
1530#. Handling the reset as described in section 2.2
1531
1532#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1533 only this CPU executes the remaining BL1 code, including loading and passing
1534 control to the BL2 stage.
1535
1536#. Identifying and starting the Firmware Update process (if required).
1537
1538#. Loading the BL2 image from non-volatile storage into secure memory at the
1539 address specified by the platform defined constant ``BL2_BASE``.
1540
1541#. Populating a ``meminfo`` structure with the following information in memory,
1542 accessible by BL2 immediately upon entry.
1543
1544 ::
1545
1546 meminfo.total_base = Base address of secure RAM visible to BL2
1547 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001548
Soby Mathew97b1bff2018-09-27 16:46:41 +01001549 By default, BL1 places this ``meminfo`` structure at the end of secure
1550 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001551
Soby Mathewb1bf0442018-02-16 14:52:52 +00001552 It is possible for the platform to decide where it wants to place the
1553 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1554 BL2 by overriding the weak default implementation of
1555 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001556
1557The following functions need to be implemented by the platform port to enable
1558BL1 to perform the above tasks.
1559
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001560Function : bl1_early_platform_setup() [mandatory]
1561~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001562
1563::
1564
1565 Argument : void
1566 Return : void
1567
1568This function executes with the MMU and data caches disabled. It is only called
1569by the primary CPU.
1570
Dan Handley610e7e12018-03-01 18:44:00 +00001571On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001572
1573- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1574
1575- Initializes a UART (PL011 console), which enables access to the ``printf``
1576 family of functions in BL1.
1577
1578- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1579 the CCI slave interface corresponding to the cluster that includes the
1580 primary CPU.
1581
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001582Function : bl1_plat_arch_setup() [mandatory]
1583~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001584
1585::
1586
1587 Argument : void
1588 Return : void
1589
1590This function performs any platform-specific and architectural setup that the
1591platform requires. Platform-specific setup might include configuration of
1592memory controllers and the interconnect.
1593
Dan Handley610e7e12018-03-01 18:44:00 +00001594In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001595
1596This function helps fulfill requirement 2 above.
1597
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001598Function : bl1_platform_setup() [mandatory]
1599~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001600
1601::
1602
1603 Argument : void
1604 Return : void
1605
1606This function executes with the MMU and data caches enabled. It is responsible
1607for performing any remaining platform-specific setup that can occur after the
1608MMU and data cache have been enabled.
1609
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001610if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001611sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001612
Dan Handley610e7e12018-03-01 18:44:00 +00001613In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001614layer used to load the next bootloader image.
1615
1616This function helps fulfill requirement 4 above.
1617
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001618Function : bl1_plat_sec_mem_layout() [mandatory]
1619~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001620
1621::
1622
1623 Argument : void
1624 Return : meminfo *
1625
1626This function should only be called on the cold boot path. It executes with the
1627MMU and data caches enabled. The pointer returned by this function must point to
1628a ``meminfo`` structure containing the extents and availability of secure RAM for
1629the BL1 stage.
1630
1631::
1632
1633 meminfo.total_base = Base address of secure RAM visible to BL1
1634 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001635
1636This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1637populates a similar structure to tell BL2 the extents of memory available for
1638its own use.
1639
1640This function helps fulfill requirements 4 and 5 above.
1641
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001642Function : bl1_plat_prepare_exit() [optional]
1643~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001644
1645::
1646
1647 Argument : entry_point_info_t *
1648 Return : void
1649
1650This function is called prior to exiting BL1 in response to the
1651``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1652platform specific clean up or bookkeeping operations before transferring
1653control to the next image. It receives the address of the ``entry_point_info_t``
1654structure passed from BL2. This function runs with MMU disabled.
1655
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001656Function : bl1_plat_set_ep_info() [optional]
1657~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001658
1659::
1660
1661 Argument : unsigned int image_id, entry_point_info_t *ep_info
1662 Return : void
1663
1664This function allows platforms to override ``ep_info`` for the given ``image_id``.
1665
1666The default implementation just returns.
1667
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001668Function : bl1_plat_get_next_image_id() [optional]
1669~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001670
1671::
1672
1673 Argument : void
1674 Return : unsigned int
1675
1676This and the following function must be overridden to enable the FWU feature.
1677
1678BL1 calls this function after platform setup to identify the next image to be
1679loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1680with the normal boot sequence, which loads and executes BL2. If the platform
1681returns a different image id, BL1 assumes that Firmware Update is required.
1682
Dan Handley610e7e12018-03-01 18:44:00 +00001683The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001684platforms override this function to detect if firmware update is required, and
1685if so, return the first image in the firmware update process.
1686
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001687Function : bl1_plat_get_image_desc() [optional]
1688~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001689
1690::
1691
1692 Argument : unsigned int image_id
1693 Return : image_desc_t *
1694
1695BL1 calls this function to get the image descriptor information ``image_desc_t``
1696for the provided ``image_id`` from the platform.
1697
Dan Handley610e7e12018-03-01 18:44:00 +00001698The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001699standard platforms return an image descriptor corresponding to BL2 or one of
1700the firmware update images defined in the Trusted Board Boot Requirements
1701specification.
1702
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001703Function : bl1_plat_handle_pre_image_load() [optional]
1704~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001705
1706::
1707
Soby Mathew2f38ce32018-02-08 17:45:12 +00001708 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001709 Return : int
1710
1711This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001712corresponding to ``image_id``. This function is invoked in BL1, both in cold
1713boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001714
Harrison Mutaifaf3ac32024-01-04 16:18:47 +00001715Function : bl1_plat_calc_bl2_layout() [optional]
1716~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1717
1718::
1719
1720 Argument : const meminfo_t *bl1_mem_layout, meminfo_t *bl2_mem_layout
1721 Return : void
1722
1723This utility function calculates the memory layout of BL2, representing it in a
1724`meminfo_t` structure. The default implementation derives this layout from the
1725positioning of BL1’s RW data at the top of the memory layout.
1726
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001727Function : bl1_plat_handle_post_image_load() [optional]
1728~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001729
1730::
1731
Soby Mathew2f38ce32018-02-08 17:45:12 +00001732 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001733 Return : int
1734
1735This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001736corresponding to ``image_id``. This function is invoked in BL1, both in cold
1737boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001738
Soby Mathewb1bf0442018-02-16 14:52:52 +00001739The default weak implementation of this function calculates the amount of
1740Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1741structure at the beginning of this free memory and populates it. The address
1742of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1743information to BL2.
1744
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001745Function : bl1_plat_fwu_done() [optional]
1746~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001747
1748::
1749
1750 Argument : unsigned int image_id, uintptr_t image_src,
1751 unsigned int image_size
1752 Return : void
1753
1754BL1 calls this function when the FWU process is complete. It must not return.
1755The platform may override this function to take platform specific action, for
1756example to initiate the normal boot flow.
1757
1758The default implementation spins forever.
1759
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001760Function : bl1_plat_mem_check() [mandatory]
1761~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001762
1763::
1764
1765 Argument : uintptr_t mem_base, unsigned int mem_size,
1766 unsigned int flags
1767 Return : int
1768
1769BL1 calls this function while handling FWU related SMCs, more specifically when
1770copying or authenticating an image. Its responsibility is to ensure that the
1771region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1772that this memory corresponds to either a secure or non-secure memory region as
1773indicated by the security state of the ``flags`` argument.
1774
1775This function can safely assume that the value resulting from the addition of
1776``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1777overflow.
1778
1779This function must return 0 on success, a non-null error code otherwise.
1780
1781The default implementation of this function asserts therefore platforms must
1782override it when using the FWU feature.
1783
1784Boot Loader Stage 2 (BL2)
1785-------------------------
1786
1787The BL2 stage is executed only by the primary CPU, which is determined in BL1
1788using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001789``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1790``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1791non-volatile storage to secure/non-secure RAM. After all the images are loaded
1792then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1793images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001794
1795The following functions must be implemented by the platform port to enable BL2
1796to perform the above tasks.
1797
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001798Function : bl2_early_platform_setup2() [mandatory]
1799~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001800
1801::
1802
Soby Mathew97b1bff2018-09-27 16:46:41 +01001803 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001804 Return : void
1805
1806This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001807by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1808are platform specific.
1809
1810On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001811
Manish V Badarkhe81414512020-06-24 15:58:38 +01001812 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001813
1814 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1815 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001816
Dan Handley610e7e12018-03-01 18:44:00 +00001817On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001818
1819- Initializes a UART (PL011 console), which enables access to the ``printf``
1820 family of functions in BL2.
1821
1822- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001823 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1824 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001825
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001826Function : bl2_plat_arch_setup() [mandatory]
1827~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001828
1829::
1830
1831 Argument : void
1832 Return : void
1833
1834This function executes with the MMU and data caches disabled. It is only called
1835by the primary CPU.
1836
1837The purpose of this function is to perform any architectural initialization
1838that varies across platforms.
1839
Dan Handley610e7e12018-03-01 18:44:00 +00001840On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001841
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001842Function : bl2_platform_setup() [mandatory]
1843~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001844
1845::
1846
1847 Argument : void
1848 Return : void
1849
1850This function may execute with the MMU and data caches enabled if the platform
1851port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1852called by the primary CPU.
1853
1854The purpose of this function is to perform any platform initialization
1855specific to BL2.
1856
Dan Handley610e7e12018-03-01 18:44:00 +00001857In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001858configuration of the TrustZone controller to allow non-secure masters access
1859to most of DRAM. Part of DRAM is reserved for secure world use.
1860
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001861Function : bl2_plat_handle_pre_image_load() [optional]
1862~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001863
1864::
1865
1866 Argument : unsigned int
1867 Return : int
1868
1869This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001870for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001871loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001872
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001873Function : bl2_plat_handle_post_image_load() [optional]
1874~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001875
1876::
1877
1878 Argument : unsigned int
1879 Return : int
1880
1881This function can be used by the platforms to update/use image information
1882for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001883loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001884
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001885Function : bl2_plat_preload_setup [optional]
1886~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001887
1888::
John Tsichritzisee10e792018-06-06 09:38:10 +01001889
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001890 Argument : void
1891 Return : void
1892
1893This optional function performs any BL2 platform initialization
1894required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001895bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001896boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001897plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001898
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001899Function : plat_try_next_boot_source() [optional]
1900~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001901
1902::
John Tsichritzisee10e792018-06-06 09:38:10 +01001903
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001904 Argument : void
1905 Return : int
1906
1907This optional function passes to the next boot source in the redundancy
1908sequence.
1909
1910This function moves the current boot redundancy source to the next
1911element in the boot sequence. If there are no more boot sources then it
1912must return 0, otherwise it must return 1. The default implementation
1913of this always returns 0.
1914
Roberto Vargasb1584272017-11-20 13:36:10 +00001915Boot Loader Stage 2 (BL2) at EL3
1916--------------------------------
1917
Dan Handley610e7e12018-03-01 18:44:00 +00001918When the platform has a non-TF-A Boot ROM it is desirable to jump
1919directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001920execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1921document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001922
1923All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001924bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1925their work is done now by bl2_el3_early_platform_setup and
1926bl2_el3_plat_arch_setup. These functions should generally implement
1927the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001928
1929
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001930Function : bl2_el3_early_platform_setup() [mandatory]
1931~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001932
1933::
John Tsichritzisee10e792018-06-06 09:38:10 +01001934
Roberto Vargasb1584272017-11-20 13:36:10 +00001935 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1936 Return : void
1937
1938This function executes with the MMU and data caches disabled. It is only called
1939by the primary CPU. This function receives four parameters which can be used
1940by the platform to pass any needed information from the Boot ROM to BL2.
1941
Dan Handley610e7e12018-03-01 18:44:00 +00001942On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001943
1944- Initializes a UART (PL011 console), which enables access to the ``printf``
1945 family of functions in BL2.
1946
1947- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001948 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1949 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001950
1951- Initializes the private variables that define the memory layout used.
1952
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001953Function : bl2_el3_plat_arch_setup() [mandatory]
1954~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001955
1956::
John Tsichritzisee10e792018-06-06 09:38:10 +01001957
Roberto Vargasb1584272017-11-20 13:36:10 +00001958 Argument : void
1959 Return : void
1960
1961This function executes with the MMU and data caches disabled. It is only called
1962by the primary CPU.
1963
1964The purpose of this function is to perform any architectural initialization
1965that varies across platforms.
1966
Dan Handley610e7e12018-03-01 18:44:00 +00001967On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001968
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001969Function : bl2_el3_plat_prepare_exit() [optional]
1970~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001971
1972::
John Tsichritzisee10e792018-06-06 09:38:10 +01001973
Roberto Vargasb1584272017-11-20 13:36:10 +00001974 Argument : void
1975 Return : void
1976
1977This function is called prior to exiting BL2 and run the next image.
1978It should be used to perform platform specific clean up or bookkeeping
1979operations before transferring control to the next image. This function
1980runs with MMU disabled.
1981
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001982FWU Boot Loader Stage 2 (BL2U)
1983------------------------------
1984
1985The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1986process and is executed only by the primary CPU. BL1 passes control to BL2U at
1987``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1988
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001989#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1990 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1991 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1992 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001993 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1994 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1995
1996#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001997 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001998 normal world can access DDR memory.
1999
2000The following functions must be implemented by the platform port to enable
2001BL2U to perform the tasks mentioned above.
2002
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002003Function : bl2u_early_platform_setup() [mandatory]
2004~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002005
2006::
2007
2008 Argument : meminfo *mem_info, void *plat_info
2009 Return : void
2010
2011This function executes with the MMU and data caches disabled. It is only
2012called by the primary CPU. The arguments to this function is the address
2013of the ``meminfo`` structure and platform specific info provided by BL1.
2014
2015The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
2016private storage as the original memory may be subsequently overwritten by BL2U.
2017
Dan Handley610e7e12018-03-01 18:44:00 +00002018On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002019to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002020variable.
2021
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002022Function : bl2u_plat_arch_setup() [mandatory]
2023~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002024
2025::
2026
2027 Argument : void
2028 Return : void
2029
2030This function executes with the MMU and data caches disabled. It is only
2031called by the primary CPU.
2032
2033The purpose of this function is to perform any architectural initialization
2034that varies across platforms, for example enabling the MMU (since the memory
2035map differs across platforms).
2036
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002037Function : bl2u_platform_setup() [mandatory]
2038~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002039
2040::
2041
2042 Argument : void
2043 Return : void
2044
2045This function may execute with the MMU and data caches enabled if the platform
2046port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
2047called by the primary CPU.
2048
2049The purpose of this function is to perform any platform initialization
2050specific to BL2U.
2051
Dan Handley610e7e12018-03-01 18:44:00 +00002052In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002053configuration of the TrustZone controller to allow non-secure masters access
2054to most of DRAM. Part of DRAM is reserved for secure world use.
2055
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002056Function : bl2u_plat_handle_scp_bl2u() [optional]
2057~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002058
2059::
2060
2061 Argument : void
2062 Return : int
2063
2064This function is used to perform any platform-specific actions required to
2065handle the SCP firmware. Typically it transfers the image into SCP memory using
2066a platform-specific protocol and waits until SCP executes it and signals to the
2067Application Processor (AP) for BL2U execution to continue.
2068
2069This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002070This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002071
2072Boot Loader Stage 3-1 (BL31)
2073----------------------------
2074
2075During cold boot, the BL31 stage is executed only by the primary CPU. This is
2076determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
2077control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
2078CPUs. BL31 executes at EL3 and is responsible for:
2079
2080#. Re-initializing all architectural and platform state. Although BL1 performs
2081 some of this initialization, BL31 remains resident in EL3 and must ensure
2082 that EL3 architectural and platform state is completely initialized. It
2083 should make no assumptions about the system state when it receives control.
2084
2085#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01002086 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
2087 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002088
2089#. Providing runtime firmware services. Currently, BL31 only implements a
2090 subset of the Power State Coordination Interface (PSCI) API as a runtime
Boyan Karatotev907d38b2022-11-22 12:01:09 +00002091 service. See :ref:`psci_in_bl31` below for details of porting the PSCI
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002092 implementation.
2093
2094#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002095 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002096 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01002097 executed and run the corresponding image. On ARM platforms, BL31 uses the
2098 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002099
2100If BL31 is a reset vector, It also needs to handle the reset as specified in
2101section 2.2 before the tasks described above.
2102
2103The following functions must be implemented by the platform port to enable BL31
2104to perform the above tasks.
2105
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002106Function : bl31_early_platform_setup2() [mandatory]
2107~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002108
2109::
2110
Soby Mathew97b1bff2018-09-27 16:46:41 +01002111 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002112 Return : void
2113
2114This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01002115by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
2116platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002117
Soby Mathew97b1bff2018-09-27 16:46:41 +01002118In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002119
Soby Mathew97b1bff2018-09-27 16:46:41 +01002120 arg0 - The pointer to the head of `bl_params_t` list
2121 which is list of executable images following BL31,
2122
2123 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01002124 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01002125
Mikael Olsson0232da22021-02-12 17:30:16 +01002126 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01002127 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01002128
2129 arg2 - Points to load address of HW_CONFIG if present
2130
2131 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
2132 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002133
Soby Mathew97b1bff2018-09-27 16:46:41 +01002134The function runs through the `bl_param_t` list and extracts the entry point
2135information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002136
2137- Initialize a UART (PL011 console), which enables access to the ``printf``
2138 family of functions in BL31.
2139
2140- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
2141 CCI slave interface corresponding to the cluster that includes the primary
2142 CPU.
2143
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002144Function : bl31_plat_arch_setup() [mandatory]
2145~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002146
2147::
2148
2149 Argument : void
2150 Return : void
2151
2152This function executes with the MMU and data caches disabled. It is only called
2153by the primary CPU.
2154
2155The purpose of this function is to perform any architectural initialization
2156that varies across platforms.
2157
Dan Handley610e7e12018-03-01 18:44:00 +00002158On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002160Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002161~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2162
2163::
2164
2165 Argument : void
2166 Return : void
2167
2168This function may execute with the MMU and data caches enabled if the platform
2169port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
2170called by the primary CPU.
2171
2172The purpose of this function is to complete platform initialization so that both
2173BL31 runtime services and normal world software can function correctly.
2174
Dan Handley610e7e12018-03-01 18:44:00 +00002175On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002176
2177- Initialize the generic interrupt controller.
2178
2179 Depending on the GIC driver selected by the platform, the appropriate GICv2
2180 or GICv3 initialization will be done, which mainly consists of:
2181
2182 - Enable secure interrupts in the GIC CPU interface.
2183 - Disable the legacy interrupt bypass mechanism.
2184 - Configure the priority mask register to allow interrupts of all priorities
2185 to be signaled to the CPU interface.
2186 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
2187 - Target all secure SPIs to CPU0.
2188 - Enable these secure interrupts in the GIC distributor.
2189 - Configure all other interrupts as non-secure.
2190 - Enable signaling of secure interrupts in the GIC distributor.
2191
2192- Enable system-level implementation of the generic timer counter through the
2193 memory mapped interface.
2194
2195- Grant access to the system counter timer module
2196
2197- Initialize the power controller device.
2198
2199 In particular, initialise the locks that prevent concurrent accesses to the
2200 power controller device.
2201
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002202Function : bl31_plat_runtime_setup() [optional]
2203~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002204
2205::
2206
2207 Argument : void
2208 Return : void
2209
2210The purpose of this function is allow the platform to perform any BL31 runtime
2211setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07002212implementation of this function will invoke ``console_switch_state()`` to switch
2213console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002214
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002215Function : bl31_plat_get_next_image_ep_info() [mandatory]
2216~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002217
2218::
2219
Sandrine Bailleux842117d2018-05-14 14:25:47 +02002220 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002221 Return : entry_point_info *
2222
2223This function may execute with the MMU and data caches enabled if the platform
2224port does the necessary initializations in ``bl31_plat_arch_setup()``.
2225
2226This function is called by ``bl31_main()`` to retrieve information provided by
2227BL2 for the next image in the security state specified by the argument. BL31
2228uses this information to pass control to that image in the specified security
2229state. This function must return a pointer to the ``entry_point_info`` structure
2230(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
2231should return NULL otherwise.
2232
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002233Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
Soby Mathew294e1cf2022-03-22 16:19:39 +00002234~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2235
2236::
2237
2238 Argument : uintptr_t, size_t *, uintptr_t, size_t
2239 Return : int
2240
2241This function returns the Platform attestation token.
2242
2243The parameters of the function are:
2244
2245 arg0 - A pointer to the buffer where the Platform token should be copied by
2246 this function. The buffer must be big enough to hold the Platform
2247 token.
2248
2249 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2250 function returns the platform token length in this parameter.
2251
2252 arg2 - A pointer to the buffer where the challenge object is stored.
2253
2254 arg3 - The length of the challenge object in bytes. Possible values are 32,
2255 48 and 64.
2256
2257The function returns 0 on success, -EINVAL on failure.
2258
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002259Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
2260~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewf05d93a2022-03-22 16:21:19 +00002261
2262::
2263
2264 Argument : uintptr_t, size_t *, unsigned int
2265 Return : int
2266
2267This function returns the delegated realm attestation key which will be used to
2268sign Realm attestation token. The API currently only supports P-384 ECC curve
2269key.
2270
2271The parameters of the function are:
2272
2273 arg0 - A pointer to the buffer where the attestation key should be copied
2274 by this function. The buffer must be big enough to hold the
2275 attestation key.
2276
2277 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2278 function returns the attestation key length in this parameter.
2279
2280 arg2 - The type of the elliptic curve to which the requested attestation key
2281 belongs.
2282
2283The function returns 0 on success, -EINVAL on failure.
2284
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002285Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
2286~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2287
2288::
2289
2290 Argument : uintptr_t *
2291 Return : size_t
2292
2293This function returns the size of the shared area between EL3 and RMM (or 0 on
2294failure). A pointer to the shared area (or a NULL pointer on failure) is stored
2295in the pointer passed as argument.
2296
Javier Almansa Sobrino4165e842022-04-25 17:18:15 +01002297Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
2298~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2299
2300::
2301
2302 Arguments : rmm_manifest_t *manifest
2303 Return : int
2304
2305When ENABLE_RME is enabled, this function populates a boot manifest for the
2306RMM image and stores it in the area specified by manifest.
2307
2308When ENABLE_RME is disabled, this function is not used.
2309
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002310Function : bl31_plat_enable_mmu [optional]
2311~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2312
2313::
2314
2315 Argument : uint32_t
2316 Return : void
2317
2318This function enables the MMU. The boot code calls this function with MMU and
2319caches disabled. This function should program necessary registers to enable
2320translation, and upon return, the MMU on the calling PE must be enabled.
2321
2322The function must honor flags passed in the first argument. These flags are
2323defined by the translation library, and can be found in the file
2324``include/lib/xlat_tables/xlat_mmu_helpers.h``.
2325
2326On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002327is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002328
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002329Function : plat_init_apkey [optional]
2330~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002331
2332::
2333
2334 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002335 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002336
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002337This function returns the 128-bit value which can be used to program ARMv8.3
2338pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002339
2340The value should be obtained from a reliable source of randomness.
2341
2342This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002343Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002344
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002345Function : plat_get_syscnt_freq2() [mandatory]
2346~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002347
2348::
2349
2350 Argument : void
2351 Return : unsigned int
2352
2353This function is used by the architecture setup code to retrieve the counter
2354frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00002355``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002356of the system counter, which is retrieved from the first entry in the frequency
2357modes table.
2358
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002359#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2360~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002361
2362When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2363bytes) aligned to the cache line boundary that should be allocated per-cpu to
2364accommodate all the bakery locks.
2365
2366If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
Chris Kay33bfc5e2023-02-14 11:30:04 +00002367calculates the size of the ``.bakery_lock`` input section, aligns it to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002368nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2369and stores the result in a linker symbol. This constant prevents a platform
2370from relying on the linker and provide a more efficient mechanism for
2371accessing per-cpu bakery lock information.
2372
2373If this constant is defined and its value is not equal to the value
2374calculated by the linker then a link time assertion is raised. A compile time
2375assertion is raised if the value of the constant is not aligned to the cache
2376line boundary.
2377
Paul Beesleyf8640672019-04-12 14:19:42 +01002378.. _porting_guide_sdei_requirements:
2379
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002380SDEI porting requirements
2381~~~~~~~~~~~~~~~~~~~~~~~~~
2382
Paul Beesley606d8072019-03-13 13:58:02 +00002383The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002384and functions, of which some are optional, and some others mandatory.
2385
2386Macros
2387......
2388
2389Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2391
2392This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002393Normal |SDEI| events on the platform. This must have a higher value
2394(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002395
2396Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2398
2399This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002400Critical |SDEI| events on the platform. This must have a lower value
2401(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002402
Paul Beesley606d8072019-03-13 13:58:02 +00002403**Note**: |SDEI| exception priorities must be the lowest among Secure
2404priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2405be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002406
2407Functions
2408.........
2409
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002410Function: int plat_sdei_validate_entry_point() [optional]
2411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002412
2413::
2414
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002415 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002416 Return: int
2417
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002418This function validates the entry point address of the event handler provided by
2419the client for both event registration and *Complete and Resume* |SDEI| calls.
2420The function ensures that the address is valid in the client translation regime.
2421
2422The second argument is the exception level that the client is executing in. It
2423can be Non-Secure EL1 or Non-Secure EL2.
2424
2425The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002426
Dan Handley610e7e12018-03-01 18:44:00 +00002427The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002428translates the entry point address within the client translation regime and
2429further ensures that the resulting physical address is located in Non-secure
2430DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002431
2432Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2434
2435::
2436
2437 Argument: uint64_t
2438 Argument: unsigned int
2439 Return: void
2440
Paul Beesley606d8072019-03-13 13:58:02 +00002441|SDEI| specification requires that a PE comes out of reset with the events
2442masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2443|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2444time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002445
Paul Beesley606d8072019-03-13 13:58:02 +00002446Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002447events are masked on the PE, the dispatcher implementation invokes the function
2448``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2449interrupt and the interrupt ID are passed as parameters.
2450
2451The default implementation only prints out a warning message.
2452
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002453.. _porting_guide_trng_requirements:
2454
2455TRNG porting requirements
2456~~~~~~~~~~~~~~~~~~~~~~~~~
2457
2458The |TRNG| backend requires the platform to provide the following values
2459and mandatory functions.
2460
2461Values
2462......
2463
2464value: uuid_t plat_trng_uuid [mandatory]
2465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2466
2467This value must be defined to the UUID of the TRNG backend that is specific to
Jayanth Dodderi Chidanand7c7faff2022-10-11 17:16:07 +01002468the hardware after ``plat_entropy_setup`` function is called. This value must
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002469conform to the SMCCC calling convention; The most significant 32 bits of the
2470UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2471w0 indicates failure to get a TRNG source.
2472
2473Functions
2474.........
2475
2476Function: void plat_entropy_setup(void) [mandatory]
2477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2478
2479::
2480
2481 Argument: none
2482 Return: none
2483
2484This function is expected to do platform-specific initialization of any TRNG
2485hardware. This may include generating a UUID from a hardware-specific seed.
2486
2487Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2489
2490::
2491
2492 Argument: uint64_t *
2493 Return: bool
2494 Out : when the return value is true, the entropy has been written into the
2495 storage pointed to
2496
2497This function writes entropy into storage provided by the caller. If no entropy
2498is available, it must return false and the storage must not be written.
2499
Boyan Karatotev907d38b2022-11-22 12:01:09 +00002500.. _psci_in_bl31:
2501
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002502Power State Coordination Interface (in BL31)
2503--------------------------------------------
2504
Dan Handley610e7e12018-03-01 18:44:00 +00002505The TF-A implementation of the PSCI API is based around the concept of a
2506*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2507share some state on which power management operations can be performed as
2508specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2509a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2510*power domains* are arranged in a hierarchical tree structure and each
2511*power domain* can be identified in a system by the cpu index of any CPU that
2512is part of that domain and a *power domain level*. A processing element (for
2513example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2514logical grouping of CPUs that share some state, then level 1 is that group of
2515CPUs (for example, a cluster), and level 2 is a group of clusters (for
2516example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002517organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002518
2519BL31's platform initialization code exports a pointer to the platform-specific
2520power management operations required for the PSCI implementation to function
2521correctly. This information is populated in the ``plat_psci_ops`` structure. The
2522PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2523power management operations on the power domains. For example, the target
2524CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2525handler (if present) is called for the CPU power domain.
2526
2527The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2528describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002529defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002530array of local power states where each index corresponds to a power domain
2531level. Each entry contains the local power state the power domain at that power
2532level could enter. It depends on the ``validate_power_state()`` handler to
2533convert the power-state parameter (possibly encoding a composite power state)
2534passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2535
2536The following functions form part of platform port of PSCI functionality.
2537
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002538Function : plat_psci_stat_accounting_start() [optional]
2539~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002540
2541::
2542
2543 Argument : const psci_power_state_t *
2544 Return : void
2545
2546This is an optional hook that platforms can implement for residency statistics
2547accounting before entering a low power state. The ``pwr_domain_state`` field of
2548``state_info`` (first argument) can be inspected if stat accounting is done
2549differently at CPU level versus higher levels. As an example, if the element at
2550index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2551state, special hardware logic may be programmed in order to keep track of the
2552residency statistics. For higher levels (array indices > 0), the residency
2553statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2554default implementation will use PMF to capture timestamps.
2555
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002556Function : plat_psci_stat_accounting_stop() [optional]
2557~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002558
2559::
2560
2561 Argument : const psci_power_state_t *
2562 Return : void
2563
2564This is an optional hook that platforms can implement for residency statistics
2565accounting after exiting from a low power state. The ``pwr_domain_state`` field
2566of ``state_info`` (first argument) can be inspected if stat accounting is done
2567differently at CPU level versus higher levels. As an example, if the element at
2568index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2569state, special hardware logic may be programmed in order to keep track of the
2570residency statistics. For higher levels (array indices > 0), the residency
2571statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2572default implementation will use PMF to capture timestamps.
2573
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002574Function : plat_psci_stat_get_residency() [optional]
2575~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002576
2577::
2578
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002579 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002580 Return : u_register_t
2581
2582This is an optional interface that is is invoked after resuming from a low power
2583state and provides the time spent resident in that low power state by the power
2584domain at a particular power domain level. When a CPU wakes up from suspend,
2585all its parent power domain levels are also woken up. The generic PSCI code
2586invokes this function for each parent power domain that is resumed and it
2587identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2588argument) describes the low power state that the power domain has resumed from.
2589The current CPU is the first CPU in the power domain to resume from the low
2590power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2591CPU in the power domain to suspend and may be needed to calculate the residency
2592for that power domain.
2593
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002594Function : plat_get_target_pwr_state() [optional]
2595~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002596
2597::
2598
2599 Argument : unsigned int, const plat_local_state_t *, unsigned int
2600 Return : plat_local_state_t
2601
2602The PSCI generic code uses this function to let the platform participate in
2603state coordination during a power management operation. The function is passed
2604a pointer to an array of platform specific local power state ``states`` (second
2605argument) which contains the requested power state for each CPU at a particular
2606power domain level ``lvl`` (first argument) within the power domain. The function
2607is expected to traverse this array of upto ``ncpus`` (third argument) and return
2608a coordinated target power state by the comparing all the requested power
2609states. The target power state should not be deeper than any of the requested
2610power states.
2611
2612A weak definition of this API is provided by default wherein it assumes
2613that the platform assigns a local state value in order of increasing depth
2614of the power state i.e. for two power states X & Y, if X < Y
2615then X represents a shallower power state than Y. As a result, the
2616coordinated target local power state for a power domain will be the minimum
2617of the requested local power state values.
2618
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002619Function : plat_get_power_domain_tree_desc() [mandatory]
2620~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002621
2622::
2623
2624 Argument : void
2625 Return : const unsigned char *
2626
2627This function returns a pointer to the byte array containing the power domain
2628topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002629described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2630initialization code requires this array to be described by the platform, either
2631statically or dynamically, to initialize the power domain topology tree. In case
2632the array is populated dynamically, then plat_core_pos_by_mpidr() and
2633plat_my_core_pos() should also be implemented suitably so that the topology tree
2634description matches the CPU indices returned by these APIs. These APIs together
2635form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002636
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002637Function : plat_setup_psci_ops() [mandatory]
2638~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002639
2640::
2641
2642 Argument : uintptr_t, const plat_psci_ops **
2643 Return : int
2644
2645This function may execute with the MMU and data caches enabled if the platform
2646port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2647called by the primary CPU.
2648
2649This function is called by PSCI initialization code. Its purpose is to let
2650the platform layer know about the warm boot entrypoint through the
2651``sec_entrypoint`` (first argument) and to export handler routines for
2652platform-specific psci power management actions by populating the passed
2653pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2654
2655A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002656the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002657``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002658platform wants to support, the associated operation or operations in this
2659structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002660:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002661function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002662structure instead of providing an empty implementation.
2663
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002664plat_psci_ops.cpu_standby()
2665...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002666
2667Perform the platform-specific actions to enter the standby state for a cpu
2668indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002669wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002670For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2671the suspend state type specified in the ``power-state`` parameter should be
2672STANDBY and the target power domain level specified should be the CPU. The
2673handler should put the CPU into a low power retention state (usually by
2674issuing a wfi instruction) and ensure that it can be woken up from that
2675state by a normal interrupt. The generic code expects the handler to succeed.
2676
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002677plat_psci_ops.pwr_domain_on()
2678.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002679
2680Perform the platform specific actions to power on a CPU, specified
2681by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002682return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002683
Varun Wadekar77dd4f12023-04-25 14:03:27 +01002684plat_psci_ops.pwr_domain_off_early() [optional]
2685...............................................
2686
2687This optional function performs the platform specific actions to check if
2688powering off the calling CPU and its higher parent power domain levels as
2689indicated by the ``target_state`` (first argument) is possible or allowed.
2690
2691The ``target_state`` encodes the platform coordinated target local power states
2692for the CPU power domain and its parent power domain levels.
2693
2694For this handler, the local power state for the CPU power domain will be a
2695power down state where as it could be either power down, retention or run state
2696for the higher power domain levels depending on the result of state
2697coordination. The generic code expects PSCI_E_DENIED return code if the
2698platform thinks that CPU_OFF should not proceed on the calling CPU.
2699
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002700plat_psci_ops.pwr_domain_off()
2701..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002702
2703Perform the platform specific actions to prepare to power off the calling CPU
2704and its higher parent power domain levels as indicated by the ``target_state``
2705(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2706
2707The ``target_state`` encodes the platform coordinated target local power states
2708for the CPU power domain and its parent power domain levels. The handler
2709needs to perform power management operation corresponding to the local state
2710at each power level.
2711
2712For this handler, the local power state for the CPU power domain will be a
2713power down state where as it could be either power down, retention or run state
2714for the higher power domain levels depending on the result of state
2715coordination. The generic code expects the handler to succeed.
2716
Wing Lic0dc6392023-05-04 08:31:19 -07002717plat_psci_ops.pwr_domain_validate_suspend() [optional]
2718......................................................
2719
2720This is an optional function that is only compiled into the build if the build
2721option ``PSCI_OS_INIT_MODE`` is enabled.
2722
2723If implemented, this function allows the platform to perform platform specific
2724validations based on hardware states. The generic code expects this function to
2725return PSCI_E_SUCCESS on success, or either PSCI_E_DENIED or
2726PSCI_E_INVALID_PARAMS as appropriate for any invalid requests.
2727
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002728plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2729...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002730
2731This optional function may be used as a performance optimization to replace
2732or complement pwr_domain_suspend() on some platforms. Its calling semantics
2733are identical to pwr_domain_suspend(), except the PSCI implementation only
2734calls this function when suspending to a power down state, and it guarantees
2735that data caches are enabled.
2736
2737When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2738before calling pwr_domain_suspend(). If the target_state corresponds to a
2739power down state and it is safe to perform some or all of the platform
2740specific actions in that function with data caches enabled, it may be more
2741efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2742= 1, data caches remain enabled throughout, and so there is no advantage to
2743moving platform specific actions to this function.
2744
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002745plat_psci_ops.pwr_domain_suspend()
2746..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002747
2748Perform the platform specific actions to prepare to suspend the calling
2749CPU and its higher parent power domain levels as indicated by the
2750``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2751API implementation.
2752
2753The ``target_state`` has a similar meaning as described in
2754the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2755target local power states for the CPU power domain and its parent
2756power domain levels. The handler needs to perform power management operation
2757corresponding to the local state at each power level. The generic code
2758expects the handler to succeed.
2759
Douglas Raillarda84996b2017-08-02 16:57:32 +01002760The difference between turning a power domain off versus suspending it is that
2761in the former case, the power domain is expected to re-initialize its state
2762when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2763case, the power domain is expected to save enough state so that it can resume
2764execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002765``pwr_domain_suspend_finish()``).
2766
Douglas Raillarda84996b2017-08-02 16:57:32 +01002767When suspending a core, the platform can also choose to power off the GICv3
2768Redistributor and ITS through an implementation-defined sequence. To achieve
2769this safely, the ITS context must be saved first. The architectural part is
2770implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2771sequence is implementation defined and it is therefore the responsibility of
2772the platform code to implement the necessary sequence. Then the GIC
2773Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2774Powering off the Redistributor requires the implementation to support it and it
2775is the responsibility of the platform code to execute the right implementation
2776defined sequence.
2777
2778When a system suspend is requested, the platform can also make use of the
2779``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2780it has saved the context of the Redistributors and ITS of all the cores in the
2781system. The context of the Distributor can be large and may require it to be
2782allocated in a special area if it cannot fit in the platform's global static
2783data, for example in DRAM. The Distributor can then be powered down using an
2784implementation-defined sequence.
2785
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002786plat_psci_ops.pwr_domain_pwr_down_wfi()
2787.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002788
2789This is an optional function and, if implemented, is expected to perform
2790platform specific actions including the ``wfi`` invocation which allows the
2791CPU to powerdown. Since this function is invoked outside the PSCI locks,
2792the actions performed in this hook must be local to the CPU or the platform
2793must ensure that races between multiple CPUs cannot occur.
2794
2795The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2796operation and it encodes the platform coordinated target local power states for
2797the CPU power domain and its parent power domain levels. This function must
Boyan Karatotev43771f32022-10-05 13:41:56 +01002798not return back to the caller (by calling wfi in an infinite loop to ensure
2799some CPUs power down mitigations work properly).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002800
2801If this function is not implemented by the platform, PSCI generic
2802implementation invokes ``psci_power_down_wfi()`` for power down.
2803
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002804plat_psci_ops.pwr_domain_on_finish()
2805....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002806
2807This function is called by the PSCI implementation after the calling CPU is
2808powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2809It performs the platform-specific setup required to initialize enough state for
2810this CPU to enter the normal world and also provide secure runtime firmware
2811services.
2812
2813The ``target_state`` (first argument) is the prior state of the power domains
2814immediately before the CPU was turned on. It indicates which power domains
2815above the CPU might require initialization due to having previously been in
2816low power states. The generic code expects the handler to succeed.
2817
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002818plat_psci_ops.pwr_domain_on_finish_late() [optional]
2819...........................................................
2820
2821This optional function is called by the PSCI implementation after the calling
2822CPU is fully powered on with respective data caches enabled. The calling CPU and
2823the associated cluster are guaranteed to be participating in coherency. This
2824function gives the flexibility to perform any platform-specific actions safely,
2825such as initialization or modification of shared data structures, without the
2826overhead of explicit cache maintainace operations.
2827
2828The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2829operation. The generic code expects the handler to succeed.
2830
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002831plat_psci_ops.pwr_domain_suspend_finish()
2832.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002833
2834This function is called by the PSCI implementation after the calling CPU is
2835powered on and released from reset in response to an asynchronous wakeup
2836event, for example a timer interrupt that was programmed by the CPU during the
2837``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2838setup required to restore the saved state for this CPU to resume execution
2839in the normal world and also provide secure runtime firmware services.
2840
2841The ``target_state`` (first argument) has a similar meaning as described in
2842the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2843to succeed.
2844
Douglas Raillarda84996b2017-08-02 16:57:32 +01002845If the Distributor, Redistributors or ITS have been powered off as part of a
2846suspend, their context must be restored in this function in the reverse order
2847to how they were saved during suspend sequence.
2848
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002849plat_psci_ops.system_off()
2850..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002851
2852This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2853call. It performs the platform-specific system poweroff sequence after
2854notifying the Secure Payload Dispatcher.
2855
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002856plat_psci_ops.system_reset()
2857............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002858
2859This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2860call. It performs the platform-specific system reset sequence after
2861notifying the Secure Payload Dispatcher.
2862
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002863plat_psci_ops.validate_power_state()
2864....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002865
2866This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2867call to validate the ``power_state`` parameter of the PSCI API and if valid,
2868populate it in ``req_state`` (second argument) array as power domain level
2869specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002870return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002871normal world PSCI client.
2872
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002873plat_psci_ops.validate_ns_entrypoint()
2874......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002875
2876This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2877``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2878parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002879the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002880propagated back to the normal world PSCI client.
2881
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002882plat_psci_ops.get_sys_suspend_power_state()
2883...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002884
2885This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2886call to get the ``req_state`` parameter from platform which encodes the power
2887domain level specific local states to suspend to system affinity level. The
2888``req_state`` will be utilized to do the PSCI state coordination and
2889``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2890enter system suspend.
2891
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002892plat_psci_ops.get_pwr_lvl_state_idx()
2893.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002894
2895This is an optional function and, if implemented, is invoked by the PSCI
2896implementation to convert the ``local_state`` (first argument) at a specified
2897``pwr_lvl`` (second argument) to an index between 0 and
2898``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2899supports more than two local power states at each power domain level, that is
2900``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2901local power states.
2902
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002903plat_psci_ops.translate_power_state_by_mpidr()
2904..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002905
2906This is an optional function and, if implemented, verifies the ``power_state``
2907(second argument) parameter of the PSCI API corresponding to a target power
2908domain. The target power domain is identified by using both ``MPIDR`` (first
2909argument) and the power domain level encoded in ``power_state``. The power domain
2910level specific local states are to be extracted from ``power_state`` and be
2911populated in the ``output_state`` (third argument) array. The functionality
2912is similar to the ``validate_power_state`` function described above and is
2913envisaged to be used in case the validity of ``power_state`` depend on the
2914targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002915domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002916function is not implemented, then the generic implementation relies on
2917``validate_power_state`` function to translate the ``power_state``.
2918
2919This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002920power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002921APIs as described in Section 5.18 of `PSCI`_.
2922
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002923plat_psci_ops.get_node_hw_state()
2924.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002925
2926This is an optional function. If implemented this function is intended to return
2927the power state of a node (identified by the first parameter, the ``MPIDR``) in
2928the power domain topology (identified by the second parameter, ``power_level``),
2929as retrieved from a power controller or equivalent component on the platform.
2930Upon successful completion, the implementation must map and return the final
2931status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2932must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2933appropriate.
2934
2935Implementations are not expected to handle ``power_levels`` greater than
2936``PLAT_MAX_PWR_LVL``.
2937
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002938plat_psci_ops.system_reset2()
2939.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002940
2941This is an optional function. If implemented this function is
2942called during the ``SYSTEM_RESET2`` call to perform a reset
2943based on the first parameter ``reset_type`` as specified in
2944`PSCI`_. The parameter ``cookie`` can be used to pass additional
2945reset information. If the ``reset_type`` is not supported, the
2946function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2947resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2948and vendor reset can return other PSCI error codes as defined
2949in `PSCI`_. On success this function will not return.
2950
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002951plat_psci_ops.write_mem_protect()
2952.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002953
2954This is an optional function. If implemented it enables or disables the
2955``MEM_PROTECT`` functionality based on the value of ``val``.
2956A non-zero value enables ``MEM_PROTECT`` and a value of zero
2957disables it. Upon encountering failures it must return a negative value
2958and on success it must return 0.
2959
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002960plat_psci_ops.read_mem_protect()
2961................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002962
2963This is an optional function. If implemented it returns the current
2964state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2965failures it must return a negative value and on success it must
2966return 0.
2967
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002968plat_psci_ops.mem_protect_chk()
2969...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002970
2971This is an optional function. If implemented it checks if a memory
2972region defined by a base address ``base`` and with a size of ``length``
2973bytes is protected by ``MEM_PROTECT``. If the region is protected
2974then it must return 0, otherwise it must return a negative number.
2975
Paul Beesleyf8640672019-04-12 14:19:42 +01002976.. _porting_guide_imf_in_bl31:
2977
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002978Interrupt Management framework (in BL31)
2979----------------------------------------
2980
2981BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2982generated in either security state and targeted to EL1 or EL2 in the non-secure
2983state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002984described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002985
2986A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002987text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002988platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002989present in the platform. Arm standard platform layer supports both
2990`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2991and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2992FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002993``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2994details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002995
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002996See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002997
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002998Function : plat_interrupt_type_to_line() [mandatory]
2999~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003000
3001::
3002
3003 Argument : uint32_t, uint32_t
3004 Return : uint32_t
3005
Dan Handley610e7e12018-03-01 18:44:00 +00003006The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003007interrupt line. The specific line that is signaled depends on how the interrupt
3008controller (IC) reports different interrupt types from an execution context in
3009either security state. The IMF uses this API to determine which interrupt line
3010the platform IC uses to signal each type of interrupt supported by the framework
3011from a given security state. This API must be invoked at EL3.
3012
3013The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01003014:ref:`Interrupt Management Framework`) indicating the target type of the
3015interrupt, the second parameter is the security state of the originating
3016execution context. The return result is the bit position in the ``SCR_EL3``
3017register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003018
Dan Handley610e7e12018-03-01 18:44:00 +00003019In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003020configured as FIQs and Non-secure interrupts as IRQs from either security
3021state.
3022
Dan Handley610e7e12018-03-01 18:44:00 +00003023In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003024configured depends on the security state of the execution context when the
3025interrupt is signalled and are as follows:
3026
3027- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
3028 NS-EL0/1/2 context.
3029- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
3030 in the NS-EL0/1/2 context.
3031- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
3032 context.
3033
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003034Function : plat_ic_get_pending_interrupt_type() [mandatory]
3035~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003036
3037::
3038
3039 Argument : void
3040 Return : uint32_t
3041
3042This API returns the type of the highest priority pending interrupt at the
3043platform IC. The IMF uses the interrupt type to retrieve the corresponding
3044handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
3045pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
3046``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
3047
Dan Handley610e7e12018-03-01 18:44:00 +00003048In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003049Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
3050the pending interrupt. The type of interrupt depends upon the id value as
3051follows.
3052
3053#. id < 1022 is reported as a S-EL1 interrupt
3054#. id = 1022 is reported as a Non-secure interrupt.
3055#. id = 1023 is reported as an invalid interrupt type.
3056
Dan Handley610e7e12018-03-01 18:44:00 +00003057In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003058``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
3059is read to determine the id of the pending interrupt. The type of interrupt
3060depends upon the id value as follows.
3061
3062#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
3063#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
3064#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
3065#. All other interrupt id's are reported as EL3 interrupt.
3066
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003067Function : plat_ic_get_pending_interrupt_id() [mandatory]
3068~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003069
3070::
3071
3072 Argument : void
3073 Return : uint32_t
3074
3075This API returns the id of the highest priority pending interrupt at the
3076platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
3077pending.
3078
Dan Handley610e7e12018-03-01 18:44:00 +00003079In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003080Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
3081pending interrupt. The id that is returned by API depends upon the value of
3082the id read from the interrupt controller as follows.
3083
3084#. id < 1022. id is returned as is.
3085#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
3086 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
3087 This id is returned by the API.
3088#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
3089
Dan Handley610e7e12018-03-01 18:44:00 +00003090In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003091EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
3092group 0 Register*, is read to determine the id of the pending interrupt. The id
3093that is returned by API depends upon the value of the id read from the
3094interrupt controller as follows.
3095
3096#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
3097#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
3098 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
3099 Register* is read to determine the id of the group 1 interrupt. This id
3100 is returned by the API as long as it is a valid interrupt id
3101#. If the id is any of the special interrupt identifiers,
3102 ``INTR_ID_UNAVAILABLE`` is returned.
3103
3104When the API invoked from S-EL1 for GICv3 systems, the id read from system
3105register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003106Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003107``INTR_ID_UNAVAILABLE`` is returned.
3108
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003109Function : plat_ic_acknowledge_interrupt() [mandatory]
3110~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003111
3112::
3113
3114 Argument : void
3115 Return : uint32_t
3116
3117This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003118the highest pending interrupt has begun. It should return the raw, unmodified
3119value obtained from the interrupt controller when acknowledging an interrupt.
3120The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05003121`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003122
Dan Handley610e7e12018-03-01 18:44:00 +00003123This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003124Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
3125priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003126It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003127
Dan Handley610e7e12018-03-01 18:44:00 +00003128In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003129from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
3130Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
3131reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
3132group 1*. The read changes the state of the highest pending interrupt from
3133pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003134unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003135
3136The TSP uses this API to start processing of the secure physical timer
3137interrupt.
3138
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003139Function : plat_ic_end_of_interrupt() [mandatory]
3140~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003141
3142::
3143
3144 Argument : uint32_t
3145 Return : void
3146
3147This API is used by the CPU to indicate to the platform IC that processing of
3148the interrupt corresponding to the id (passed as the parameter) has
3149finished. The id should be the same as the id returned by the
3150``plat_ic_acknowledge_interrupt()`` API.
3151
Dan Handley610e7e12018-03-01 18:44:00 +00003152Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003153(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
3154system register in case of GICv3 depending on where the API is invoked from,
3155EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
3156controller.
3157
3158The TSP uses this API to finish processing of the secure physical timer
3159interrupt.
3160
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003161Function : plat_ic_get_interrupt_type() [mandatory]
3162~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003163
3164::
3165
3166 Argument : uint32_t
3167 Return : uint32_t
3168
3169This API returns the type of the interrupt id passed as the parameter.
3170``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
3171interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
3172returned depending upon how the interrupt has been configured by the platform
3173IC. This API must be invoked at EL3.
3174
Dan Handley610e7e12018-03-01 18:44:00 +00003175Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003176and Non-secure interrupts as Group1 interrupts. It reads the group value
3177corresponding to the interrupt id from the relevant *Interrupt Group Register*
3178(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
3179
Dan Handley610e7e12018-03-01 18:44:00 +00003180In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003181Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
3182(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
3183as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
3184
Manish Pandey3161fa52022-11-02 16:30:09 +00003185Common helper functions
3186-----------------------
Govindraj Rajab6709b02023-02-21 17:43:55 +00003187Function : elx_panic()
3188~~~~~~~~~~~~~~~~~~~~~~
Manish Pandey3161fa52022-11-02 16:30:09 +00003189
Govindraj Rajab6709b02023-02-21 17:43:55 +00003190::
3191
3192 Argument : void
3193 Return : void
3194
3195This API is called from assembly files when reporting a critical failure
3196that has occured in lower EL and is been trapped in EL3. This call
3197**must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003198
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003199Function : el3_panic()
3200~~~~~~~~~~~~~~~~~~~~~~
Manish Pandey3161fa52022-11-02 16:30:09 +00003201
3202::
3203
3204 Argument : void
3205 Return : void
3206
3207This API is called from assembly files when encountering a critical failure that
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003208cannot be recovered from. This function assumes that it is invoked from a C
3209runtime environment i.e. valid stack exists. This call **must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003210
3211Function : panic()
3212~~~~~~~~~~~~~~~~~~
3213
3214::
3215
3216 Argument : void
3217 Return : void
3218
3219This API called from C files when encountering a critical failure that cannot
3220be recovered from. This function in turn prints backtrace (if enabled) and calls
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003221el3_panic(). This call **must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003222
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003223Crash Reporting mechanism (in BL31)
3224-----------------------------------
3225
3226BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003227of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00003228on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003229``plat_crash_console_putc`` and ``plat_crash_console_flush``.
3230
3231The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
3232implementation of all of them. Platforms may include this file to their
3233makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003234output to be routed over the normal console infrastructure and get printed on
3235consoles configured to output in crash state. ``console_set_scope()`` can be
3236used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00003237
3238.. note::
3239 Platforms are responsible for making sure that they only mark consoles for
3240 use in the crash scope that are able to support this, i.e. that are written
3241 in assembly and conform with the register clobber rules for putc()
3242 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003243
Julius Werneraae9bb12017-09-18 16:49:48 -07003244In some cases (such as debugging very early crashes that happen before the
3245normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08003246more explicitly. These platforms may instead provide custom implementations for
3247these. They are executed outside of a C environment and without a stack. Many
3248console drivers provide functions named ``console_xxx_core_init/putc/flush``
3249that are designed to be used by these functions. See Arm platforms (like juno)
3250for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003251
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003252Function : plat_crash_console_init [mandatory]
3253~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003254
3255::
3256
3257 Argument : void
3258 Return : int
3259
3260This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003261console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003262initialization and returns 1 on success.
3263
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003264Function : plat_crash_console_putc [mandatory]
3265~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003266
3267::
3268
3269 Argument : int
3270 Return : int
3271
3272This API is used by the crash reporting mechanism to print a character on the
3273designated crash console. It must only use general purpose registers x1 and
3274x2 to do its work. The parameter and the return value are in general purpose
3275register x0.
3276
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003277Function : plat_crash_console_flush [mandatory]
3278~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003279
3280::
3281
3282 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003283 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003284
3285This API is used by the crash reporting mechanism to force write of all buffered
3286data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003287registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003288
Yann Gautier5ae29c02024-01-16 19:39:31 +01003289Function : plat_setup_early_console [optional]
3290~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3291
3292::
3293
3294 Argument : void
3295 Return : void
3296
3297This API is used to setup the early console, it is required only if the flag
3298``EARLY_CONSOLE`` is enabled.
3299
Manish Pandey9c9f38a2020-06-30 00:46:08 +01003300.. _External Abort handling and RAS Support:
3301
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01003302External Abort handling and RAS Support
3303---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01003304
3305Function : plat_ea_handler
3306~~~~~~~~~~~~~~~~~~~~~~~~~~
3307
3308::
3309
3310 Argument : int
3311 Argument : uint64_t
3312 Argument : void *
3313 Argument : void *
3314 Argument : uint64_t
3315 Return : void
3316
Manish Pandeyf90a73c2023-10-10 15:42:19 +01003317This function is invoked by the runtime exception handling framework for the
3318platform to handle an External Abort received at EL3. The intention of the
3319function is to attempt to resolve the cause of External Abort and return;
3320if that's not possible then an orderly shutdown of the system is initiated.
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01003321
3322The first parameter (``int ea_reason``) indicates the reason for External Abort.
3323Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
3324
3325The second parameter (``uint64_t syndrome``) is the respective syndrome
3326presented to EL3 after having received the External Abort. Depending on the
3327nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
3328can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
3329
3330The third parameter (``void *cookie``) is unused for now. The fourth parameter
3331(``void *handle``) is a pointer to the preempted context. The fifth parameter
3332(``uint64_t flags``) indicates the preempted security state. These parameters
3333are received from the top-level exception handler.
3334
Manish Pandeyf90a73c2023-10-10 15:42:19 +01003335This function must be implemented if a platform expects Firmware First handling
3336of External Aborts.
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01003337
3338Function : plat_handle_uncontainable_ea
3339~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3340
3341::
3342
3343 Argument : int
3344 Argument : uint64_t
3345 Return : void
3346
3347This function is invoked by the RAS framework when an External Abort of
3348Uncontainable type is received at EL3. Due to the critical nature of
3349Uncontainable errors, the intention of this function is to initiate orderly
3350shutdown of the system, and is not expected to return.
3351
3352This function must be implemented in assembly.
3353
3354The first and second parameters are the same as that of ``plat_ea_handler``.
3355
3356The default implementation of this function calls
3357``report_unhandled_exception``.
3358
3359Function : plat_handle_double_fault
3360~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3361
3362::
3363
3364 Argument : int
3365 Argument : uint64_t
3366 Return : void
3367
3368This function is invoked by the RAS framework when another External Abort is
3369received at EL3 while one is already being handled. I.e., a call to
3370``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
3371this function is to initiate orderly shutdown of the system, and is not expected
3372recover or return.
3373
3374This function must be implemented in assembly.
3375
3376The first and second parameters are the same as that of ``plat_ea_handler``.
3377
3378The default implementation of this function calls
3379``report_unhandled_exception``.
3380
3381Function : plat_handle_el3_ea
3382~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3383
3384::
3385
3386 Return : void
3387
3388This function is invoked when an External Abort is received while executing in
3389EL3. Due to its critical nature, the intention of this function is to initiate
3390orderly shutdown of the system, and is not expected recover or return.
3391
3392This function must be implemented in assembly.
3393
3394The default implementation of this function calls
3395``report_unhandled_exception``.
3396
Andre Przywarabdc76f12022-11-21 17:07:25 +00003397Function : plat_handle_rng_trap
3398~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3399
3400::
3401
3402 Argument : uint64_t
3403 Argument : cpu_context_t *
3404 Return : int
3405
3406This function is invoked by BL31's exception handler when there is a synchronous
3407system register trap caused by access to the RNDR or RNDRRS registers. It allows
3408platforms implementing ``FEAT_RNG_TRAP`` and enabling ``ENABLE_FEAT_RNG_TRAP`` to
3409emulate those system registers by returing back some entropy to the lower EL.
3410
3411The first parameter (``uint64_t esr_el3``) contains the content of the ESR_EL3
3412syndrome register, which encodes the instruction that was trapped. The interesting
3413information in there is the target register (``get_sysreg_iss_rt()``).
3414
3415The second parameter (``cpu_context_t *ctx``) represents the CPU state in the
3416lower exception level, at the time when the execution of the ``mrs`` instruction
3417was trapped. Its content can be changed, to put the entropy into the target
3418register.
3419
3420The return value indicates how to proceed:
3421
3422- When returning ``TRAP_RET_UNHANDLED`` (-1), the machine will panic.
3423- When returning ``TRAP_RET_REPEAT`` (0), the exception handler will return
3424 to the same instruction, so its execution will be repeated.
3425- When returning ``TRAP_RET_CONTINUE`` (1), the exception handler will return
3426 to the next instruction.
3427
3428This function needs to be implemented by a platform if it enables FEAT_RNG_TRAP.
3429
Varun Wadekar0a46eb12023-04-13 21:06:18 +01003430Function : plat_handle_impdef_trap
3431~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3432
3433::
3434
3435 Argument : uint64_t
3436 Argument : cpu_context_t *
3437 Return : int
3438
3439This function is invoked by BL31's exception handler when there is a synchronous
3440system register trap caused by access to the implementation defined registers.
3441It allows platforms enabling ``IMPDEF_SYSREG_TRAP`` to emulate those system
3442registers choosing to program bits of their choice.
3443
3444The first parameter (``uint64_t esr_el3``) contains the content of the ESR_EL3
3445syndrome register, which encodes the instruction that was trapped.
3446
3447The second parameter (``cpu_context_t *ctx``) represents the CPU state in the
3448lower exception level, at the time when the execution of the ``mrs`` instruction
3449was trapped.
3450
3451The return value indicates how to proceed:
3452
3453- When returning ``TRAP_RET_UNHANDLED`` (-1), the machine will panic.
3454- When returning ``TRAP_RET_REPEAT`` (0), the exception handler will return
3455 to the same instruction, so its execution will be repeated.
3456- When returning ``TRAP_RET_CONTINUE`` (1), the exception handler will return
3457 to the next instruction.
3458
3459This function needs to be implemented by a platform if it enables
3460IMPDEF_SYSREG_TRAP.
3461
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003462Build flags
3463-----------
3464
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003465There are some build flags which can be defined by the platform to control
3466inclusion or exclusion of certain BL stages from the FIP image. These flags
3467need to be defined in the platform makefile which will get included by the
3468build system.
3469
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003470- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003471 By default, this flag is defined ``yes`` by the build system and ``BL33``
3472 build option should be supplied as a build option. The platform has the
3473 option of excluding the BL33 image in the ``fip`` image by defining this flag
3474 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3475 are used, this flag will be set to ``no`` automatically.
3476
Govindraj Raja0386e312023-08-17 10:41:48 -05003477- **ARM_ARCH_MAJOR and ARM_ARCH_MINOR**
3478 By default, ARM_ARCH_MAJOR.ARM_ARCH_MINOR is set to 8.0 in ``defaults.mk``,
3479 if the platform makefile/build defines or uses the correct ARM_ARCH_MAJOR and
3480 ARM_ARCH_MINOR then mandatory Architectural features available for that Arch
3481 version will be enabled by default and any optional Arch feature supported by
3482 the Architecture and available in TF-A can be enabled from platform specific
3483 makefile. Look up to ``arch_features.mk`` for details pertaining to mandatory
3484 and optional Arch specific features.
3485
Paul Beesley07f0a312019-05-16 13:33:18 +01003486Platform include paths
3487----------------------
3488
3489Platforms are allowed to add more include paths to be passed to the compiler.
3490The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3491particular for the file ``platform_def.h``.
3492
3493Example:
3494
3495.. code:: c
3496
3497 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3498
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003499C Library
3500---------
3501
3502To avoid subtle toolchain behavioral dependencies, the header files provided
3503by the compiler are not used. The software is built with the ``-nostdinc`` flag
3504to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00003505required headers are included in the TF-A source tree. The library only
3506contains those C library definitions required by the local implementation. If
3507more functionality is required, the needed library functions will need to be
3508added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003509
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003510Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00003511been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003512from `FreeBSD`_, others have been written specifically for TF-A as well. The
3513files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003514
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01003515SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3516can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003517
3518Storage abstraction layer
3519-------------------------
3520
Louis Mayencourtb5469002019-07-15 13:56:03 +01003521In order to improve platform independence and portability a storage abstraction
3522layer is used to load data from non-volatile platform storage. Currently
3523storage access is only required by BL1 and BL2 phases and performed inside the
3524``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003525
Sandrine Bailleuxf17ddaa2023-02-08 14:07:29 +01003526.. uml:: resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003527
Dan Handley610e7e12018-03-01 18:44:00 +00003528It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003529development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003530the default means to load data from storage (see :ref:`firmware_design_fip`).
3531The storage layer is described in the header file
3532``include/drivers/io/io_storage.h``. The implementation of the common library is
3533in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003534``drivers/io/``.
3535
Sandrine Bailleuxf17ddaa2023-02-08 14:07:29 +01003536.. uml:: resources/diagrams/plantuml/io_arm_class_diagram.puml
Louis Mayencourtb5469002019-07-15 13:56:03 +01003537
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003538Each IO driver must provide ``io_dev_*`` structures, as described in
3539``drivers/io/io_driver.h``. These are returned via a mandatory registration
3540function that is called on platform initialization. The semi-hosting driver
3541implementation in ``io_semihosting.c`` can be used as an example.
3542
Louis Mayencourtb5469002019-07-15 13:56:03 +01003543Each platform should register devices and their drivers via the storage
3544abstraction layer. These drivers then need to be initialized by bootloader
3545phases as required in their respective ``blx_platform_setup()`` functions.
3546
Sandrine Bailleuxf17ddaa2023-02-08 14:07:29 +01003547.. uml:: resources/diagrams/plantuml/io_dev_registration.puml
Louis Mayencourtb5469002019-07-15 13:56:03 +01003548
3549The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3550initialize storage devices before IO operations are called.
3551
Sandrine Bailleuxf17ddaa2023-02-08 14:07:29 +01003552.. uml:: resources/diagrams/plantuml/io_dev_init_and_check.puml
Louis Mayencourtb5469002019-07-15 13:56:03 +01003553
3554The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003555include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3556Drivers do not have to implement all operations, but each platform must
3557provide at least one driver for a device capable of supporting generic
3558operations such as loading a bootloader image.
3559
3560The current implementation only allows for known images to be loaded by the
3561firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003562``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003563there). The platform layer (``plat_get_image_source()``) then returns a reference
3564to a device and a driver-specific ``spec`` which will be understood by the driver
3565to allow access to the image data.
3566
3567The layer is designed in such a way that is it possible to chain drivers with
3568other drivers. For example, file-system drivers may be implemented on top of
3569physical block devices, both represented by IO devices with corresponding
3570drivers. In such a case, the file-system "binding" with the block device may
3571be deferred until the file-system device is initialised.
3572
3573The abstraction currently depends on structures being statically allocated
3574by the drivers and callers, as the system does not yet provide a means of
3575dynamically allocating memory. This may also have the affect of limiting the
3576amount of open resources per driver.
3577
Manish V Badarkhe93a61be2023-06-15 10:34:05 +01003578Measured Boot Platform Interface
3579--------------------------------
3580
3581Enabling the MEASURED_BOOT flag adds extra platform requirements. Please refer
3582to :ref:`Measured Boot Design` for more details.
3583
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003584--------------
3585
Yann Gautier5ae29c02024-01-16 19:39:31 +01003586*Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003587
Manish V Badarkhe9d24e9b2023-06-15 09:14:33 +01003588.. _PSCI: https://developer.arm.com/documentation/den0022/latest/
Dan Handley610e7e12018-03-01 18:44:00 +00003589.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003590.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003591.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003592.. _SCC: http://www.simple-cc.org/
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01003593.. _DRTM: https://developer.arm.com/documentation/den0113/a