blob: 30a863d5f473b5e06c4609dc00fce5018fd11b9b [file] [log] [blame]
Dan Handley610e7e12018-03-01 18:44:00 +00001Trusted Firmware-A Porting Guide
2================================
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
4
5.. section-numbering::
6 :suffix: .
7
8.. contents::
9
10--------------
11
12Introduction
13------------
14
Dan Handley610e7e12018-03-01 18:44:00 +000015Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +010016mandatory and optional modifications for both the cold and warm boot paths.
17Modifications consist of:
18
19- Implementing a platform-specific function or variable,
20- Setting up the execution context in a certain way, or
21- Defining certain constants (for example #defines).
22
23The platform-specific functions and variables are declared in
24`include/plat/common/platform.h`_. The firmware provides a default implementation
25of variables and functions to fulfill the optional requirements. These
26implementations are all weakly defined; they are provided to ease the porting
27effort. Each platform port can override them with its own implementation if the
28default implementation is inadequate.
29
Dan Handley610e7e12018-03-01 18:44:00 +000030Platform ports that want to be aligned with standard Arm platforms (for example
Douglas Raillardd7c21b72017-06-28 15:23:03 +010031FVP and Juno) may also use `include/plat/arm/common/plat\_arm.h`_ and the
32corresponding source files in ``plat/arm/common/``. These provide standard
33implementations for some of the required platform porting functions. However,
34using these functions requires the platform port to implement additional
Dan Handley610e7e12018-03-01 18:44:00 +000035Arm standard platform porting functions. These additional functions are not
Douglas Raillardd7c21b72017-06-28 15:23:03 +010036documented here.
37
38Some modifications are common to all Boot Loader (BL) stages. Section 2
39discusses these in detail. The subsequent sections discuss the remaining
40modifications for each BL stage in detail.
41
Dan Handley610e7e12018-03-01 18:44:00 +000042This document should be read in conjunction with the TF-A `User Guide`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010043
Soby Mathew02bdbb92018-09-26 11:17:23 +010044Please refer to the `Platform compatibility policy`_ for the policy regarding
45compatibility and deprecation of these porting interfaces.
46
Douglas Raillardd7c21b72017-06-28 15:23:03 +010047Common modifications
48--------------------
49
50This section covers the modifications that should be made by the platform for
51each BL stage to correctly port the firmware stack. They are categorized as
52either mandatory or optional.
53
54Common mandatory modifications
55------------------------------
56
57A platform port must enable the Memory Management Unit (MMU) as well as the
58instruction and data caches for each BL stage. Setting up the translation
59tables is the responsibility of the platform port because memory maps differ
60across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010061provided to help in this setup.
62
63Note that although this library supports non-identity mappings, this is intended
64only for re-mapping peripheral physical addresses and allows platforms with high
65I/O addresses to reduce their virtual address space. All other addresses
66corresponding to code and data must currently use an identity mapping.
67
Dan Handley610e7e12018-03-01 18:44:00 +000068Also, the only translation granule size supported in TF-A is 4KB, as various
69parts of the code assume that is the case. It is not possible to switch to
7016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010071
Dan Handley610e7e12018-03-01 18:44:00 +000072In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010073platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
74an identity mapping for all addresses.
75
76If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
77block of identity mapped secure memory with Device-nGnRE attributes aligned to
78page boundary (4K) for each BL stage. All sections which allocate coherent
79memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
80section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
81possible for the firmware to place variables in it using the following C code
82directive:
83
84::
85
86 __section("bakery_lock")
87
88Or alternatively the following assembler code directive:
89
90::
91
92 .section bakery_lock
93
94The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
95used to allocate any data structures that are accessed both when a CPU is
96executing with its MMU and caches enabled, and when it's running with its MMU
97and caches disabled. Examples are given below.
98
99The following variables, functions and constants must be defined by the platform
100for the firmware to work correctly.
101
102File : platform\_def.h [mandatory]
103~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
104
105Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +0000106include path with the following constants defined. This will require updating
107the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100108
109Platform ports may optionally use the file `include/plat/common/common\_def.h`_,
110which provides typical values for some of the constants below. These values are
111likely to be suitable for all platform ports.
112
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100113- **#define : PLATFORM\_LINKER\_FORMAT**
114
115 Defines the linker format used by the platform, for example
116 ``elf64-littleaarch64``.
117
118- **#define : PLATFORM\_LINKER\_ARCH**
119
120 Defines the processor architecture for the linker by the platform, for
121 example ``aarch64``.
122
123- **#define : PLATFORM\_STACK\_SIZE**
124
125 Defines the normal stack memory available to each CPU. This constant is used
126 by `plat/common/aarch64/platform\_mp\_stack.S`_ and
127 `plat/common/aarch64/platform\_up\_stack.S`_.
128
129- **define : CACHE\_WRITEBACK\_GRANULE**
130
131 Defines the size in bits of the largest cache line across all the cache
132 levels in the platform.
133
134- **#define : FIRMWARE\_WELCOME\_STR**
135
136 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
137 function.
138
139- **#define : PLATFORM\_CORE\_COUNT**
140
141 Defines the total number of CPUs implemented by the platform across all
142 clusters in the system.
143
144- **#define : PLAT\_NUM\_PWR\_DOMAINS**
145
146 Defines the total number of nodes in the power domain topology
147 tree at all the power domain levels used by the platform.
148 This macro is used by the PSCI implementation to allocate
149 data structures to represent power domain topology.
150
151- **#define : PLAT\_MAX\_PWR\_LVL**
152
153 Defines the maximum power domain level that the power management operations
154 should apply to. More often, but not always, the power domain level
155 corresponds to affinity level. This macro allows the PSCI implementation
156 to know the highest power domain level that it should consider for power
157 management operations in the system that the platform implements. For
158 example, the Base AEM FVP implements two clusters with a configurable
159 number of CPUs and it reports the maximum power domain level as 1.
160
161- **#define : PLAT\_MAX\_OFF\_STATE**
162
163 Defines the local power state corresponding to the deepest power down
164 possible at every power domain level in the platform. The local power
165 states for each level may be sparsely allocated between 0 and this value
166 with 0 being reserved for the RUN state. The PSCI implementation uses this
167 value to initialize the local power states of the power domain nodes and
168 to specify the requested power state for a PSCI\_CPU\_OFF call.
169
170- **#define : PLAT\_MAX\_RET\_STATE**
171
172 Defines the local power state corresponding to the deepest retention state
173 possible at every power domain level in the platform. This macro should be
174 a value less than PLAT\_MAX\_OFF\_STATE and greater than 0. It is used by the
175 PSCI implementation to distinguish between retention and power down local
176 power states within PSCI\_CPU\_SUSPEND call.
177
178- **#define : PLAT\_MAX\_PWR\_LVL\_STATES**
179
180 Defines the maximum number of local power states per power domain level
181 that the platform supports. The default value of this macro is 2 since
182 most platforms just support a maximum of two local power states at each
183 power domain level (power-down and retention). If the platform needs to
184 account for more local power states, then it must redefine this macro.
185
186 Currently, this macro is used by the Generic PSCI implementation to size
187 the array used for PSCI\_STAT\_COUNT/RESIDENCY accounting.
188
189- **#define : BL1\_RO\_BASE**
190
191 Defines the base address in secure ROM where BL1 originally lives. Must be
192 aligned on a page-size boundary.
193
194- **#define : BL1\_RO\_LIMIT**
195
196 Defines the maximum address in secure ROM that BL1's actual content (i.e.
197 excluding any data section allocated at runtime) can occupy.
198
199- **#define : BL1\_RW\_BASE**
200
201 Defines the base address in secure RAM where BL1's read-write data will live
202 at runtime. Must be aligned on a page-size boundary.
203
204- **#define : BL1\_RW\_LIMIT**
205
206 Defines the maximum address in secure RAM that BL1's read-write data can
207 occupy at runtime.
208
209- **#define : BL2\_BASE**
210
211 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000212 Must be aligned on a page-size boundary. This constant is not applicable
213 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100214
215- **#define : BL2\_LIMIT**
216
217 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000218 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
219
220- **#define : BL2\_RO\_BASE**
221
222 Defines the base address in secure XIP memory where BL2 RO section originally
223 lives. Must be aligned on a page-size boundary. This constant is only needed
224 when BL2_IN_XIP_MEM is set to '1'.
225
226- **#define : BL2\_RO\_LIMIT**
227
228 Defines the maximum address in secure XIP memory that BL2's actual content
229 (i.e. excluding any data section allocated at runtime) can occupy. This
230 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
231
232- **#define : BL2\_RW\_BASE**
233
234 Defines the base address in secure RAM where BL2's read-write data will live
235 at runtime. Must be aligned on a page-size boundary. This constant is only
236 needed when BL2_IN_XIP_MEM is set to '1'.
237
238- **#define : BL2\_RW\_LIMIT**
239
240 Defines the maximum address in secure RAM that BL2's read-write data can
241 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
242 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100243
244- **#define : BL31\_BASE**
245
246 Defines the base address in secure RAM where BL2 loads the BL31 binary
247 image. Must be aligned on a page-size boundary.
248
249- **#define : BL31\_LIMIT**
250
251 Defines the maximum address in secure RAM that the BL31 image can occupy.
252
253For every image, the platform must define individual identifiers that will be
254used by BL1 or BL2 to load the corresponding image into memory from non-volatile
255storage. For the sake of performance, integer numbers will be used as
256identifiers. The platform will use those identifiers to return the relevant
257information about the image to be loaded (file handler, load address,
258authentication information, etc.). The following image identifiers are
259mandatory:
260
261- **#define : BL2\_IMAGE\_ID**
262
263 BL2 image identifier, used by BL1 to load BL2.
264
265- **#define : BL31\_IMAGE\_ID**
266
267 BL31 image identifier, used by BL2 to load BL31.
268
269- **#define : BL33\_IMAGE\_ID**
270
271 BL33 image identifier, used by BL2 to load BL33.
272
273If Trusted Board Boot is enabled, the following certificate identifiers must
274also be defined:
275
276- **#define : TRUSTED\_BOOT\_FW\_CERT\_ID**
277
278 BL2 content certificate identifier, used by BL1 to load the BL2 content
279 certificate.
280
281- **#define : TRUSTED\_KEY\_CERT\_ID**
282
283 Trusted key certificate identifier, used by BL2 to load the trusted key
284 certificate.
285
286- **#define : SOC\_FW\_KEY\_CERT\_ID**
287
288 BL31 key certificate identifier, used by BL2 to load the BL31 key
289 certificate.
290
291- **#define : SOC\_FW\_CONTENT\_CERT\_ID**
292
293 BL31 content certificate identifier, used by BL2 to load the BL31 content
294 certificate.
295
296- **#define : NON\_TRUSTED\_FW\_KEY\_CERT\_ID**
297
298 BL33 key certificate identifier, used by BL2 to load the BL33 key
299 certificate.
300
301- **#define : NON\_TRUSTED\_FW\_CONTENT\_CERT\_ID**
302
303 BL33 content certificate identifier, used by BL2 to load the BL33 content
304 certificate.
305
306- **#define : FWU\_CERT\_ID**
307
308 Firmware Update (FWU) certificate identifier, used by NS\_BL1U to load the
309 FWU content certificate.
310
311- **#define : PLAT\_CRYPTOCELL\_BASE**
312
Dan Handley610e7e12018-03-01 18:44:00 +0000313 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100314 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000315 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100316 set.
317
318If the AP Firmware Updater Configuration image, BL2U is used, the following
319must also be defined:
320
321- **#define : BL2U\_BASE**
322
323 Defines the base address in secure memory where BL1 copies the BL2U binary
324 image. Must be aligned on a page-size boundary.
325
326- **#define : BL2U\_LIMIT**
327
328 Defines the maximum address in secure memory that the BL2U image can occupy.
329
330- **#define : BL2U\_IMAGE\_ID**
331
332 BL2U image identifier, used by BL1 to fetch an image descriptor
333 corresponding to BL2U.
334
335If the SCP Firmware Update Configuration Image, SCP\_BL2U is used, the following
336must also be defined:
337
338- **#define : SCP\_BL2U\_IMAGE\_ID**
339
340 SCP\_BL2U image identifier, used by BL1 to fetch an image descriptor
341 corresponding to SCP\_BL2U.
Dan Handley610e7e12018-03-01 18:44:00 +0000342 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100343
344If the Non-Secure Firmware Updater ROM, NS\_BL1U is used, the following must
345also be defined:
346
347- **#define : NS\_BL1U\_BASE**
348
349 Defines the base address in non-secure ROM where NS\_BL1U executes.
350 Must be aligned on a page-size boundary.
Dan Handley610e7e12018-03-01 18:44:00 +0000351 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100352
353- **#define : NS\_BL1U\_IMAGE\_ID**
354
355 NS\_BL1U image identifier, used by BL1 to fetch an image descriptor
356 corresponding to NS\_BL1U.
357
358If the Non-Secure Firmware Updater, NS\_BL2U is used, the following must also
359be defined:
360
361- **#define : NS\_BL2U\_BASE**
362
363 Defines the base address in non-secure memory where NS\_BL2U executes.
364 Must be aligned on a page-size boundary.
Dan Handley610e7e12018-03-01 18:44:00 +0000365 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100366
367- **#define : NS\_BL2U\_IMAGE\_ID**
368
369 NS\_BL2U image identifier, used by BL1 to fetch an image descriptor
370 corresponding to NS\_BL2U.
371
372For the the Firmware update capability of TRUSTED BOARD BOOT, the following
373macros may also be defined:
374
375- **#define : PLAT\_FWU\_MAX\_SIMULTANEOUS\_IMAGES**
376
377 Total number of images that can be loaded simultaneously. If the platform
378 doesn't specify any value, it defaults to 10.
379
380If a SCP\_BL2 image is supported by the platform, the following constants must
381also be defined:
382
383- **#define : SCP\_BL2\_IMAGE\_ID**
384
385 SCP\_BL2 image identifier, used by BL2 to load SCP\_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000386 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387
388- **#define : SCP\_FW\_KEY\_CERT\_ID**
389
390 SCP\_BL2 key certificate identifier, used by BL2 to load the SCP\_BL2 key
391 certificate (mandatory when Trusted Board Boot is enabled).
392
393- **#define : SCP\_FW\_CONTENT\_CERT\_ID**
394
395 SCP\_BL2 content certificate identifier, used by BL2 to load the SCP\_BL2
396 content certificate (mandatory when Trusted Board Boot is enabled).
397
398If a BL32 image is supported by the platform, the following constants must
399also be defined:
400
401- **#define : BL32\_IMAGE\_ID**
402
403 BL32 image identifier, used by BL2 to load BL32.
404
405- **#define : TRUSTED\_OS\_FW\_KEY\_CERT\_ID**
406
407 BL32 key certificate identifier, used by BL2 to load the BL32 key
408 certificate (mandatory when Trusted Board Boot is enabled).
409
410- **#define : TRUSTED\_OS\_FW\_CONTENT\_CERT\_ID**
411
412 BL32 content certificate identifier, used by BL2 to load the BL32 content
413 certificate (mandatory when Trusted Board Boot is enabled).
414
415- **#define : BL32\_BASE**
416
417 Defines the base address in secure memory where BL2 loads the BL32 binary
418 image. Must be aligned on a page-size boundary.
419
420- **#define : BL32\_LIMIT**
421
422 Defines the maximum address that the BL32 image can occupy.
423
424If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
425platform, the following constants must also be defined:
426
427- **#define : TSP\_SEC\_MEM\_BASE**
428
429 Defines the base address of the secure memory used by the TSP image on the
430 platform. This must be at the same address or below ``BL32_BASE``.
431
432- **#define : TSP\_SEC\_MEM\_SIZE**
433
434 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000435 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
436 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
437 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100438
439- **#define : TSP\_IRQ\_SEC\_PHY\_TIMER**
440
441 Defines the ID of the secure physical generic timer interrupt used by the
442 TSP's interrupt handling code.
443
444If the platform port uses the translation table library code, the following
445constants must also be defined:
446
447- **#define : PLAT\_XLAT\_TABLES\_DYNAMIC**
448
449 Optional flag that can be set per-image to enable the dynamic allocation of
450 regions even when the MMU is enabled. If not defined, only static
451 functionality will be available, if defined and set to 1 it will also
452 include the dynamic functionality.
453
454- **#define : MAX\_XLAT\_TABLES**
455
456 Defines the maximum number of translation tables that are allocated by the
457 translation table library code. To minimize the amount of runtime memory
458 used, choose the smallest value needed to map the required virtual addresses
459 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
460 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
461 as well.
462
463- **#define : MAX\_MMAP\_REGIONS**
464
465 Defines the maximum number of regions that are allocated by the translation
466 table library code. A region consists of physical base address, virtual base
467 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
468 defined in the ``mmap_region_t`` structure. The platform defines the regions
469 that should be mapped. Then, the translation table library will create the
470 corresponding tables and descriptors at runtime. To minimize the amount of
471 runtime memory used, choose the smallest value needed to register the
472 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
473 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
474 the dynamic regions as well.
475
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100476- **#define : PLAT\_VIRT\_ADDR\_SPACE\_SIZE**
477
478 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000479 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100480
481- **#define : PLAT\_PHY\_ADDR\_SPACE\_SIZE**
482
483 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000484 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100485
486If the platform port uses the IO storage framework, the following constants
487must also be defined:
488
489- **#define : MAX\_IO\_DEVICES**
490
491 Defines the maximum number of registered IO devices. Attempting to register
492 more devices than this value using ``io_register_device()`` will fail with
493 -ENOMEM.
494
495- **#define : MAX\_IO\_HANDLES**
496
497 Defines the maximum number of open IO handles. Attempting to open more IO
498 entities than this value using ``io_open()`` will fail with -ENOMEM.
499
500- **#define : MAX\_IO\_BLOCK\_DEVICES**
501
502 Defines the maximum number of registered IO block devices. Attempting to
503 register more devices this value using ``io_dev_open()`` will fail
504 with -ENOMEM. MAX\_IO\_BLOCK\_DEVICES should be less than MAX\_IO\_DEVICES.
505 With this macro, multiple block devices could be supported at the same
506 time.
507
508If the platform needs to allocate data within the per-cpu data framework in
509BL31, it should define the following macro. Currently this is only required if
510the platform decides not to use the coherent memory section by undefining the
511``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
512required memory within the the per-cpu data to minimize wastage.
513
514- **#define : PLAT\_PCPU\_DATA\_SIZE**
515
516 Defines the memory (in bytes) to be reserved within the per-cpu data
517 structure for use by the platform layer.
518
519The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000520memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100521
522- **#define : BL31\_PROGBITS\_LIMIT**
523
524 Defines the maximum address in secure RAM that the BL31's progbits sections
525 can occupy.
526
527- **#define : TSP\_PROGBITS\_LIMIT**
528
529 Defines the maximum address that the TSP's progbits sections can occupy.
530
531If the platform port uses the PL061 GPIO driver, the following constant may
532optionally be defined:
533
534- **PLAT\_PL061\_MAX\_GPIOS**
535 Maximum number of GPIOs required by the platform. This allows control how
536 much memory is allocated for PL061 GPIO controllers. The default value is
537
538 #. $(eval $(call add\_define,PLAT\_PL061\_MAX\_GPIOS))
539
540If the platform port uses the partition driver, the following constant may
541optionally be defined:
542
543- **PLAT\_PARTITION\_MAX\_ENTRIES**
544 Maximum number of partition entries required by the platform. This allows
545 control how much memory is allocated for partition entries. The default
546 value is 128.
547 `For example, define the build flag in platform.mk`_:
548 PLAT\_PARTITION\_MAX\_ENTRIES := 12
549 $(eval $(call add\_define,PLAT\_PARTITION\_MAX\_ENTRIES))
550
551The following constant is optional. It should be defined to override the default
552behaviour of the ``assert()`` function (for example, to save memory).
553
554- **PLAT\_LOG\_LEVEL\_ASSERT**
555 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
556 ``assert()`` prints the name of the file, the line number and the asserted
557 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
558 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
559 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
560 defined, it defaults to ``LOG_LEVEL``.
561
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000562If the platform port uses the Activity Monitor Unit, the following constants
563may be defined:
564
565- **PLAT\_AMU\_GROUP1\_COUNTERS\_MASK**
566 This mask reflects the set of group counters that should be enabled. The
567 maximum number of group 1 counters supported by AMUv1 is 16 so the mask
568 can be at most 0xffff. If the platform does not define this mask, no group 1
569 counters are enabled. If the platform defines this mask, the following
570 constant needs to also be defined.
571
572- **PLAT\_AMU\_GROUP1\_NR\_COUNTERS**
573 This value is used to allocate an array to save and restore the counters
574 specified by ``PLAT_AMU_GROUP1_COUNTERS_MASK`` on CPU suspend.
575 This value should be equal to the highest bit position set in the
576 mask, plus 1. The maximum number of group 1 counters in AMUv1 is 16.
577
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100578File : plat\_macros.S [mandatory]
579~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
580
581Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000582the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100583found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
584
585- **Macro : plat\_crash\_print\_regs**
586
587 This macro allows the crash reporting routine to print relevant platform
588 registers in case of an unhandled exception in BL31. This aids in debugging
589 and this macro can be defined to be empty in case register reporting is not
590 desired.
591
592 For instance, GIC or interconnect registers may be helpful for
593 troubleshooting.
594
595Handling Reset
596--------------
597
598BL1 by default implements the reset vector where execution starts from a cold
599or warm boot. BL31 can be optionally set as a reset vector using the
600``RESET_TO_BL31`` make variable.
601
602For each CPU, the reset vector code is responsible for the following tasks:
603
604#. Distinguishing between a cold boot and a warm boot.
605
606#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
607 the CPU is placed in a platform-specific state until the primary CPU
608 performs the necessary steps to remove it from this state.
609
610#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
611 specific address in the BL31 image in the same processor mode as it was
612 when released from reset.
613
614The following functions need to be implemented by the platform port to enable
615reset vector code to perform the above tasks.
616
617Function : plat\_get\_my\_entrypoint() [mandatory when PROGRAMMABLE\_RESET\_ADDRESS == 0]
618~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
619
620::
621
622 Argument : void
623 Return : uintptr_t
624
625This function is called with the MMU and caches disabled
626(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
627distinguishing between a warm and cold reset for the current CPU using
628platform-specific means. If it's a warm reset, then it returns the warm
629reset entrypoint point provided to ``plat_setup_psci_ops()`` during
630BL31 initialization. If it's a cold reset then this function must return zero.
631
632This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000633Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100634not assume that callee saved registers are preserved across a call to this
635function.
636
637This function fulfills requirement 1 and 3 listed above.
638
639Note that for platforms that support programming the reset address, it is
640expected that a CPU will start executing code directly at the right address,
641both on a cold and warm reset. In this case, there is no need to identify the
642type of reset nor to query the warm reset entrypoint. Therefore, implementing
643this function is not required on such platforms.
644
645Function : plat\_secondary\_cold\_boot\_setup() [mandatory when COLD\_BOOT\_SINGLE\_CPU == 0]
646~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
647
648::
649
650 Argument : void
651
652This function is called with the MMU and data caches disabled. It is responsible
653for placing the executing secondary CPU in a platform-specific state until the
654primary CPU performs the necessary actions to bring it out of that state and
655allow entry into the OS. This function must not return.
656
Dan Handley610e7e12018-03-01 18:44:00 +0000657In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100658itself off. The primary CPU is responsible for powering up the secondary CPUs
659when normal world software requires them. When booting an EL3 payload instead,
660they stay powered on and are put in a holding pen until their mailbox gets
661populated.
662
663This function fulfills requirement 2 above.
664
665Note that for platforms that can't release secondary CPUs out of reset, only the
666primary CPU will execute the cold boot code. Therefore, implementing this
667function is not required on such platforms.
668
669Function : plat\_is\_my\_cpu\_primary() [mandatory when COLD\_BOOT\_SINGLE\_CPU == 0]
670~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
671
672::
673
674 Argument : void
675 Return : unsigned int
676
677This function identifies whether the current CPU is the primary CPU or a
678secondary CPU. A return value of zero indicates that the CPU is not the
679primary CPU, while a non-zero return value indicates that the CPU is the
680primary CPU.
681
682Note that for platforms that can't release secondary CPUs out of reset, only the
683primary CPU will execute the cold boot code. Therefore, there is no need to
684distinguish between primary and secondary CPUs and implementing this function is
685not required.
686
687Function : platform\_mem\_init() [mandatory]
688~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
689
690::
691
692 Argument : void
693 Return : void
694
695This function is called before any access to data is made by the firmware, in
696order to carry out any essential memory initialization.
697
698Function: plat\_get\_rotpk\_info()
699~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
700
701::
702
703 Argument : void *, void **, unsigned int *, unsigned int *
704 Return : int
705
706This function is mandatory when Trusted Board Boot is enabled. It returns a
707pointer to the ROTPK stored in the platform (or a hash of it) and its length.
708The ROTPK must be encoded in DER format according to the following ASN.1
709structure:
710
711::
712
713 AlgorithmIdentifier ::= SEQUENCE {
714 algorithm OBJECT IDENTIFIER,
715 parameters ANY DEFINED BY algorithm OPTIONAL
716 }
717
718 SubjectPublicKeyInfo ::= SEQUENCE {
719 algorithm AlgorithmIdentifier,
720 subjectPublicKey BIT STRING
721 }
722
723In case the function returns a hash of the key:
724
725::
726
727 DigestInfo ::= SEQUENCE {
728 digestAlgorithm AlgorithmIdentifier,
729 digest OCTET STRING
730 }
731
732The function returns 0 on success. Any other value is treated as error by the
733Trusted Board Boot. The function also reports extra information related
734to the ROTPK in the flags parameter:
735
736::
737
738 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
739 hash.
740 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
741 verification while the platform ROTPK is not deployed.
742 When this flag is set, the function does not need to
743 return a platform ROTPK, and the authentication
744 framework uses the ROTPK in the certificate without
745 verifying it against the platform value. This flag
746 must not be used in a deployed production environment.
747
748Function: plat\_get\_nv\_ctr()
749~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
750
751::
752
753 Argument : void *, unsigned int *
754 Return : int
755
756This function is mandatory when Trusted Board Boot is enabled. It returns the
757non-volatile counter value stored in the platform in the second argument. The
758cookie in the first argument may be used to select the counter in case the
759platform provides more than one (for example, on platforms that use the default
760TBBR CoT, the cookie will correspond to the OID values defined in
761TRUSTED\_FW\_NVCOUNTER\_OID or NON\_TRUSTED\_FW\_NVCOUNTER\_OID).
762
763The function returns 0 on success. Any other value means the counter value could
764not be retrieved from the platform.
765
766Function: plat\_set\_nv\_ctr()
767~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
768
769::
770
771 Argument : void *, unsigned int
772 Return : int
773
774This function is mandatory when Trusted Board Boot is enabled. It sets a new
775counter value in the platform. The cookie in the first argument may be used to
776select the counter (as explained in plat\_get\_nv\_ctr()). The second argument is
777the updated counter value to be written to the NV counter.
778
779The function returns 0 on success. Any other value means the counter value could
780not be updated.
781
782Function: plat\_set\_nv\_ctr2()
783~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
784
785::
786
787 Argument : void *, const auth_img_desc_t *, unsigned int
788 Return : int
789
790This function is optional when Trusted Board Boot is enabled. If this
791interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
792first argument passed is a cookie and is typically used to
793differentiate between a Non Trusted NV Counter and a Trusted NV
794Counter. The second argument is a pointer to an authentication image
795descriptor and may be used to decide if the counter is allowed to be
796updated or not. The third argument is the updated counter value to
797be written to the NV counter.
798
799The function returns 0 on success. Any other value means the counter value
800either could not be updated or the authentication image descriptor indicates
801that it is not allowed to be updated.
802
803Common mandatory function modifications
804---------------------------------------
805
806The following functions are mandatory functions which need to be implemented
807by the platform port.
808
809Function : plat\_my\_core\_pos()
810~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
811
812::
813
814 Argument : void
815 Return : unsigned int
816
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000817This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100818CPU-specific linear index into blocks of memory (for example while allocating
819per-CPU stacks). This function will be invoked very early in the
820initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000821implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100822runtime environment. This function can clobber x0 - x8 and must preserve
823x9 - x29.
824
825This function plays a crucial role in the power domain topology framework in
826PSCI and details of this can be found in `Power Domain Topology Design`_.
827
828Function : plat\_core\_pos\_by\_mpidr()
829~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
830
831::
832
833 Argument : u_register_t
834 Return : int
835
836This function validates the ``MPIDR`` of a CPU and converts it to an index,
837which can be used as a CPU-specific linear index into blocks of memory. In
838case the ``MPIDR`` is invalid, this function returns -1. This function will only
839be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000840utilize the C runtime environment. For further details about how TF-A
841represents the power domain topology and how this relates to the linear CPU
842index, please refer `Power Domain Topology Design`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100843
844Common optional modifications
845-----------------------------
846
847The following are helper functions implemented by the firmware that perform
848common platform-specific tasks. A platform may choose to override these
849definitions.
850
851Function : plat\_set\_my\_stack()
852~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
853
854::
855
856 Argument : void
857 Return : void
858
859This function sets the current stack pointer to the normal memory stack that
860has been allocated for the current CPU. For BL images that only require a
861stack for the primary CPU, the UP version of the function is used. The size
862of the stack allocated to each CPU is specified by the platform defined
863constant ``PLATFORM_STACK_SIZE``.
864
865Common implementations of this function for the UP and MP BL images are
866provided in `plat/common/aarch64/platform\_up\_stack.S`_ and
867`plat/common/aarch64/platform\_mp\_stack.S`_
868
869Function : plat\_get\_my\_stack()
870~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
871
872::
873
874 Argument : void
875 Return : uintptr_t
876
877This function returns the base address of the normal memory stack that
878has been allocated for the current CPU. For BL images that only require a
879stack for the primary CPU, the UP version of the function is used. The size
880of the stack allocated to each CPU is specified by the platform defined
881constant ``PLATFORM_STACK_SIZE``.
882
883Common implementations of this function for the UP and MP BL images are
884provided in `plat/common/aarch64/platform\_up\_stack.S`_ and
885`plat/common/aarch64/platform\_mp\_stack.S`_
886
887Function : plat\_report\_exception()
888~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
889
890::
891
892 Argument : unsigned int
893 Return : void
894
895A platform may need to report various information about its status when an
896exception is taken, for example the current exception level, the CPU security
897state (secure/non-secure), the exception type, and so on. This function is
898called in the following circumstances:
899
900- In BL1, whenever an exception is taken.
901- In BL2, whenever an exception is taken.
902
903The default implementation doesn't do anything, to avoid making assumptions
904about the way the platform displays its status information.
905
906For AArch64, this function receives the exception type as its argument.
907Possible values for exceptions types are listed in the
908`include/common/bl\_common.h`_ header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +0000909related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100910
911For AArch32, this function receives the exception mode as its argument.
912Possible values for exception modes are listed in the
913`include/lib/aarch32/arch.h`_ header file.
914
915Function : plat\_reset\_handler()
916~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
917
918::
919
920 Argument : void
921 Return : void
922
923A platform may need to do additional initialization after reset. This function
924allows the platform to do the platform specific intializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000925specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100926preserve the values of callee saved registers x19 to x29.
927
928The default implementation doesn't do anything. If a platform needs to override
929the default implementation, refer to the `Firmware Design`_ for general
930guidelines.
931
932Function : plat\_disable\_acp()
933~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
934
935::
936
937 Argument : void
938 Return : void
939
John Tsichritzis6dda9762018-07-23 09:18:04 +0100940This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100941present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +0100942doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100943it has restrictions for stack usage and it can use the registers x0 - x17 as
944scratch registers. It should preserve the value in x18 register as it is used
945by the caller to store the return address.
946
947Function : plat\_error\_handler()
948~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
949
950::
951
952 Argument : int
953 Return : void
954
955This API is called when the generic code encounters an error situation from
956which it cannot continue. It allows the platform to perform error reporting or
957recovery actions (for example, reset the system). This function must not return.
958
959The parameter indicates the type of error using standard codes from ``errno.h``.
960Possible errors reported by the generic code are:
961
962- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
963 Board Boot is enabled)
964- ``-ENOENT``: the requested image or certificate could not be found or an IO
965 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +0000966- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
967 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100968
969The default implementation simply spins.
970
971Function : plat\_panic\_handler()
972~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
973
974::
975
976 Argument : void
977 Return : void
978
979This API is called when the generic code encounters an unexpected error
980situation from which it cannot recover. This function must not return,
981and must be implemented in assembly because it may be called before the C
982environment is initialized.
983
984Note: The address from where it was called is stored in x30 (Link Register).
985The default implementation simply spins.
986
987Function : plat\_get\_bl\_image\_load\_info()
988~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
989
990::
991
992 Argument : void
993 Return : bl_load_info_t *
994
995This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +0100996populated to load. This function is invoked in BL2 to load the
997BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100998
999Function : plat\_get\_next\_bl\_params()
1000~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1001
1002::
1003
1004 Argument : void
1005 Return : bl_params_t *
1006
1007This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001008kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001009function is invoked in BL2 to pass this information to the next BL
1010image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001011
1012Function : plat\_get\_stack\_protector\_canary()
1013~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1014
1015::
1016
1017 Argument : void
1018 Return : u_register_t
1019
1020This function returns a random value that is used to initialize the canary used
1021when the stack protector is enabled with ENABLE\_STACK\_PROTECTOR. A predictable
1022value will weaken the protection as the attacker could easily write the right
1023value as part of the attack most of the time. Therefore, it should return a
1024true random number.
1025
1026Note: For the protection to be effective, the global data need to be placed at
1027a lower address than the stack bases. Failure to do so would allow an attacker
1028to overwrite the canary as part of the stack buffer overflow attack.
1029
1030Function : plat\_flush\_next\_bl\_params()
1031~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1032
1033::
1034
1035 Argument : void
1036 Return : void
1037
1038This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001039next image. This function is invoked in BL2 to flush this information
1040to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001041
Soby Mathewaaf15f52017-09-04 11:49:29 +01001042Function : plat\_log\_get\_prefix()
John Tsichritzis30f89642018-06-07 16:31:34 +01001043~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001044
1045::
1046
1047 Argument : unsigned int
1048 Return : const char *
1049
1050This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001051prepended to all the log output from TF-A. The `log_level` (argument) will
1052correspond to one of the standard log levels defined in debug.h. The platform
1053can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001054the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001055increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001056
John Tsichritzis30f89642018-06-07 16:31:34 +01001057Function : plat\_get\_mbedtls\_heap()
1058~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1059
1060::
1061
1062 Arguments : void **heap_addr, size_t *heap_size
John Tsichritzisc34341a2018-07-30 13:41:52 +01001063 Return : int
John Tsichritzis30f89642018-06-07 16:31:34 +01001064
1065This function is invoked during Mbed TLS library initialisation to get
1066a heap, by means of a starting address and a size. This heap will then be used
John Tsichritzisc34341a2018-07-30 13:41:52 +01001067internally by the Mbed TLS library. The heap is requested from the current BL
1068stage, i.e. the current BL image inside which Mbed TLS is used.
John Tsichritzis30f89642018-06-07 16:31:34 +01001069
John Tsichritzisc34341a2018-07-30 13:41:52 +01001070In the default implementation a heap is statically allocated inside every image
1071(i.e. every BL stage) that utilises Mbed TLS. So, in this case, the function
1072simply returns the address and size of this "pre-allocated" heap. However, by
1073overriding the default implementation, platforms have the potential to optimise
1074memory usage. For example, on some Arm platforms, the Mbed TLS heap is shared
1075between BL1 and BL2 stages and, thus, the necessary space is not reserved
1076twice.
John Tsichritzis30f89642018-06-07 16:31:34 +01001077
John Tsichritzisc34341a2018-07-30 13:41:52 +01001078On success the function should return 0 and a negative error code otherwise.
John Tsichritzis30f89642018-06-07 16:31:34 +01001079
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001080Modifications specific to a Boot Loader stage
1081---------------------------------------------
1082
1083Boot Loader Stage 1 (BL1)
1084-------------------------
1085
1086BL1 implements the reset vector where execution starts from after a cold or
1087warm boot. For each CPU, BL1 is responsible for the following tasks:
1088
1089#. Handling the reset as described in section 2.2
1090
1091#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1092 only this CPU executes the remaining BL1 code, including loading and passing
1093 control to the BL2 stage.
1094
1095#. Identifying and starting the Firmware Update process (if required).
1096
1097#. Loading the BL2 image from non-volatile storage into secure memory at the
1098 address specified by the platform defined constant ``BL2_BASE``.
1099
1100#. Populating a ``meminfo`` structure with the following information in memory,
1101 accessible by BL2 immediately upon entry.
1102
1103 ::
1104
1105 meminfo.total_base = Base address of secure RAM visible to BL2
1106 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001107
Soby Mathew97b1bff2018-09-27 16:46:41 +01001108 By default, BL1 places this ``meminfo`` structure at the end of secure
1109 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001110
Soby Mathewb1bf0442018-02-16 14:52:52 +00001111 It is possible for the platform to decide where it wants to place the
1112 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1113 BL2 by overriding the weak default implementation of
1114 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001115
1116The following functions need to be implemented by the platform port to enable
1117BL1 to perform the above tasks.
1118
1119Function : bl1\_early\_platform\_setup() [mandatory]
1120~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1121
1122::
1123
1124 Argument : void
1125 Return : void
1126
1127This function executes with the MMU and data caches disabled. It is only called
1128by the primary CPU.
1129
Dan Handley610e7e12018-03-01 18:44:00 +00001130On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001131
1132- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1133
1134- Initializes a UART (PL011 console), which enables access to the ``printf``
1135 family of functions in BL1.
1136
1137- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1138 the CCI slave interface corresponding to the cluster that includes the
1139 primary CPU.
1140
1141Function : bl1\_plat\_arch\_setup() [mandatory]
1142~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1143
1144::
1145
1146 Argument : void
1147 Return : void
1148
1149This function performs any platform-specific and architectural setup that the
1150platform requires. Platform-specific setup might include configuration of
1151memory controllers and the interconnect.
1152
Dan Handley610e7e12018-03-01 18:44:00 +00001153In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001154
1155This function helps fulfill requirement 2 above.
1156
1157Function : bl1\_platform\_setup() [mandatory]
1158~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1159
1160::
1161
1162 Argument : void
1163 Return : void
1164
1165This function executes with the MMU and data caches enabled. It is responsible
1166for performing any remaining platform-specific setup that can occur after the
1167MMU and data cache have been enabled.
1168
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001169if support for multiple boot sources is required, it initializes the boot
1170sequence used by plat\_try\_next\_boot\_source().
1171
Dan Handley610e7e12018-03-01 18:44:00 +00001172In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001173layer used to load the next bootloader image.
1174
1175This function helps fulfill requirement 4 above.
1176
1177Function : bl1\_plat\_sec\_mem\_layout() [mandatory]
1178~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1179
1180::
1181
1182 Argument : void
1183 Return : meminfo *
1184
1185This function should only be called on the cold boot path. It executes with the
1186MMU and data caches enabled. The pointer returned by this function must point to
1187a ``meminfo`` structure containing the extents and availability of secure RAM for
1188the BL1 stage.
1189
1190::
1191
1192 meminfo.total_base = Base address of secure RAM visible to BL1
1193 meminfo.total_size = Size of secure RAM visible to BL1
1194 meminfo.free_base = Base address of secure RAM available for allocation
1195 to BL1
1196 meminfo.free_size = Size of secure RAM available for allocation to BL1
1197
1198This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1199populates a similar structure to tell BL2 the extents of memory available for
1200its own use.
1201
1202This function helps fulfill requirements 4 and 5 above.
1203
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001204Function : bl1\_plat\_prepare\_exit() [optional]
1205~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1206
1207::
1208
1209 Argument : entry_point_info_t *
1210 Return : void
1211
1212This function is called prior to exiting BL1 in response to the
1213``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1214platform specific clean up or bookkeeping operations before transferring
1215control to the next image. It receives the address of the ``entry_point_info_t``
1216structure passed from BL2. This function runs with MMU disabled.
1217
1218Function : bl1\_plat\_set\_ep\_info() [optional]
1219~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1220
1221::
1222
1223 Argument : unsigned int image_id, entry_point_info_t *ep_info
1224 Return : void
1225
1226This function allows platforms to override ``ep_info`` for the given ``image_id``.
1227
1228The default implementation just returns.
1229
1230Function : bl1\_plat\_get\_next\_image\_id() [optional]
1231~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1232
1233::
1234
1235 Argument : void
1236 Return : unsigned int
1237
1238This and the following function must be overridden to enable the FWU feature.
1239
1240BL1 calls this function after platform setup to identify the next image to be
1241loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1242with the normal boot sequence, which loads and executes BL2. If the platform
1243returns a different image id, BL1 assumes that Firmware Update is required.
1244
Dan Handley610e7e12018-03-01 18:44:00 +00001245The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001246platforms override this function to detect if firmware update is required, and
1247if so, return the first image in the firmware update process.
1248
1249Function : bl1\_plat\_get\_image\_desc() [optional]
1250~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1251
1252::
1253
1254 Argument : unsigned int image_id
1255 Return : image_desc_t *
1256
1257BL1 calls this function to get the image descriptor information ``image_desc_t``
1258for the provided ``image_id`` from the platform.
1259
Dan Handley610e7e12018-03-01 18:44:00 +00001260The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001261standard platforms return an image descriptor corresponding to BL2 or one of
1262the firmware update images defined in the Trusted Board Boot Requirements
1263specification.
1264
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001265Function : bl1\_plat\_handle\_pre\_image\_load() [optional]
1266~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1267
1268::
1269
Soby Mathew2f38ce32018-02-08 17:45:12 +00001270 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001271 Return : int
1272
1273This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001274corresponding to ``image_id``. This function is invoked in BL1, both in cold
1275boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001276
1277Function : bl1\_plat\_handle\_post\_image\_load() [optional]
1278~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1279
1280::
1281
Soby Mathew2f38ce32018-02-08 17:45:12 +00001282 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001283 Return : int
1284
1285This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001286corresponding to ``image_id``. This function is invoked in BL1, both in cold
1287boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001288
Soby Mathewb1bf0442018-02-16 14:52:52 +00001289The default weak implementation of this function calculates the amount of
1290Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1291structure at the beginning of this free memory and populates it. The address
1292of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1293information to BL2.
1294
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001295Function : bl1\_plat\_fwu\_done() [optional]
1296~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1297
1298::
1299
1300 Argument : unsigned int image_id, uintptr_t image_src,
1301 unsigned int image_size
1302 Return : void
1303
1304BL1 calls this function when the FWU process is complete. It must not return.
1305The platform may override this function to take platform specific action, for
1306example to initiate the normal boot flow.
1307
1308The default implementation spins forever.
1309
1310Function : bl1\_plat\_mem\_check() [mandatory]
1311~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1312
1313::
1314
1315 Argument : uintptr_t mem_base, unsigned int mem_size,
1316 unsigned int flags
1317 Return : int
1318
1319BL1 calls this function while handling FWU related SMCs, more specifically when
1320copying or authenticating an image. Its responsibility is to ensure that the
1321region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1322that this memory corresponds to either a secure or non-secure memory region as
1323indicated by the security state of the ``flags`` argument.
1324
1325This function can safely assume that the value resulting from the addition of
1326``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1327overflow.
1328
1329This function must return 0 on success, a non-null error code otherwise.
1330
1331The default implementation of this function asserts therefore platforms must
1332override it when using the FWU feature.
1333
1334Boot Loader Stage 2 (BL2)
1335-------------------------
1336
1337The BL2 stage is executed only by the primary CPU, which is determined in BL1
1338using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001339``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1340``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1341non-volatile storage to secure/non-secure RAM. After all the images are loaded
1342then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1343images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001344
1345The following functions must be implemented by the platform port to enable BL2
1346to perform the above tasks.
1347
Soby Mathew97b1bff2018-09-27 16:46:41 +01001348Function : bl2\_early\_platform\_setup2() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001349~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1350
1351::
1352
Soby Mathew97b1bff2018-09-27 16:46:41 +01001353 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001354 Return : void
1355
1356This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001357by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1358are platform specific.
1359
1360On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001361
Soby Mathew97b1bff2018-09-27 16:46:41 +01001362 arg0 - Points to load address of HW_CONFIG if present
1363
1364 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1365 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001366
Dan Handley610e7e12018-03-01 18:44:00 +00001367On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001368
1369- Initializes a UART (PL011 console), which enables access to the ``printf``
1370 family of functions in BL2.
1371
1372- Initializes the storage abstraction layer used to load further bootloader
1373 images. It is necessary to do this early on platforms with a SCP\_BL2 image,
1374 since the later ``bl2_platform_setup`` must be done after SCP\_BL2 is loaded.
1375
1376Function : bl2\_plat\_arch\_setup() [mandatory]
1377~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1378
1379::
1380
1381 Argument : void
1382 Return : void
1383
1384This function executes with the MMU and data caches disabled. It is only called
1385by the primary CPU.
1386
1387The purpose of this function is to perform any architectural initialization
1388that varies across platforms.
1389
Dan Handley610e7e12018-03-01 18:44:00 +00001390On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001391
1392Function : bl2\_platform\_setup() [mandatory]
1393~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1394
1395::
1396
1397 Argument : void
1398 Return : void
1399
1400This function may execute with the MMU and data caches enabled if the platform
1401port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1402called by the primary CPU.
1403
1404The purpose of this function is to perform any platform initialization
1405specific to BL2.
1406
Dan Handley610e7e12018-03-01 18:44:00 +00001407In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001408configuration of the TrustZone controller to allow non-secure masters access
1409to most of DRAM. Part of DRAM is reserved for secure world use.
1410
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001411Function : bl2\_plat\_handle\_pre\_image\_load() [optional]
1412~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001413
1414::
1415
1416 Argument : unsigned int
1417 Return : int
1418
1419This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001420for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001421loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001422
1423Function : bl2\_plat\_handle\_post\_image\_load() [optional]
1424~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1425
1426::
1427
1428 Argument : unsigned int
1429 Return : int
1430
1431This function can be used by the platforms to update/use image information
1432for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001433loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001434
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001435Function : bl2\_plat\_preload\_setup [optional]
1436~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1437
1438::
John Tsichritzisee10e792018-06-06 09:38:10 +01001439
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001440 Argument : void
1441 Return : void
1442
1443This optional function performs any BL2 platform initialization
1444required before image loading, that is not done later in
1445bl2\_platform\_setup(). Specifically, if support for multiple
1446boot sources is required, it initializes the boot sequence used by
1447plat\_try\_next\_boot\_source().
1448
1449Function : plat\_try\_next\_boot\_source() [optional]
1450~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1451
1452::
John Tsichritzisee10e792018-06-06 09:38:10 +01001453
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001454 Argument : void
1455 Return : int
1456
1457This optional function passes to the next boot source in the redundancy
1458sequence.
1459
1460This function moves the current boot redundancy source to the next
1461element in the boot sequence. If there are no more boot sources then it
1462must return 0, otherwise it must return 1. The default implementation
1463of this always returns 0.
1464
Roberto Vargasb1584272017-11-20 13:36:10 +00001465Boot Loader Stage 2 (BL2) at EL3
1466--------------------------------
1467
Dan Handley610e7e12018-03-01 18:44:00 +00001468When the platform has a non-TF-A Boot ROM it is desirable to jump
1469directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Roberto Vargasb1584272017-11-20 13:36:10 +00001470execute at EL3 instead of executing at EL1. Refer to the `Firmware
1471Design`_ for more information.
1472
1473All mandatory functions of BL2 must be implemented, except the functions
1474bl2\_early\_platform\_setup and bl2\_el3\_plat\_arch\_setup, because
1475their work is done now by bl2\_el3\_early\_platform\_setup and
1476bl2\_el3\_plat\_arch\_setup. These functions should generally implement
1477the bl1\_plat\_xxx() and bl2\_plat\_xxx() functionality combined.
1478
1479
1480Function : bl2\_el3\_early\_platform\_setup() [mandatory]
1481~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1482
1483::
John Tsichritzisee10e792018-06-06 09:38:10 +01001484
Roberto Vargasb1584272017-11-20 13:36:10 +00001485 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1486 Return : void
1487
1488This function executes with the MMU and data caches disabled. It is only called
1489by the primary CPU. This function receives four parameters which can be used
1490by the platform to pass any needed information from the Boot ROM to BL2.
1491
Dan Handley610e7e12018-03-01 18:44:00 +00001492On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001493
1494- Initializes a UART (PL011 console), which enables access to the ``printf``
1495 family of functions in BL2.
1496
1497- Initializes the storage abstraction layer used to load further bootloader
1498 images. It is necessary to do this early on platforms with a SCP\_BL2 image,
1499 since the later ``bl2_platform_setup`` must be done after SCP\_BL2 is loaded.
1500
1501- Initializes the private variables that define the memory layout used.
1502
1503Function : bl2\_el3\_plat\_arch\_setup() [mandatory]
1504~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1505
1506::
John Tsichritzisee10e792018-06-06 09:38:10 +01001507
Roberto Vargasb1584272017-11-20 13:36:10 +00001508 Argument : void
1509 Return : void
1510
1511This function executes with the MMU and data caches disabled. It is only called
1512by the primary CPU.
1513
1514The purpose of this function is to perform any architectural initialization
1515that varies across platforms.
1516
Dan Handley610e7e12018-03-01 18:44:00 +00001517On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001518
1519Function : bl2\_el3\_plat\_prepare\_exit() [optional]
1520~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1521
1522::
John Tsichritzisee10e792018-06-06 09:38:10 +01001523
Roberto Vargasb1584272017-11-20 13:36:10 +00001524 Argument : void
1525 Return : void
1526
1527This function is called prior to exiting BL2 and run the next image.
1528It should be used to perform platform specific clean up or bookkeeping
1529operations before transferring control to the next image. This function
1530runs with MMU disabled.
1531
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001532FWU Boot Loader Stage 2 (BL2U)
1533------------------------------
1534
1535The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1536process and is executed only by the primary CPU. BL1 passes control to BL2U at
1537``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1538
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001539#. (Optional) Transferring the optional SCP\_BL2U binary image from AP secure
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001540 memory to SCP RAM. BL2U uses the SCP\_BL2U ``image_info`` passed by BL1.
1541 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP\_BL2U
1542 should be copied from. Subsequent handling of the SCP\_BL2U image is
1543 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1544 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1545
1546#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001547 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001548 normal world can access DDR memory.
1549
1550The following functions must be implemented by the platform port to enable
1551BL2U to perform the tasks mentioned above.
1552
1553Function : bl2u\_early\_platform\_setup() [mandatory]
1554~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1555
1556::
1557
1558 Argument : meminfo *mem_info, void *plat_info
1559 Return : void
1560
1561This function executes with the MMU and data caches disabled. It is only
1562called by the primary CPU. The arguments to this function is the address
1563of the ``meminfo`` structure and platform specific info provided by BL1.
1564
1565The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1566private storage as the original memory may be subsequently overwritten by BL2U.
1567
Dan Handley610e7e12018-03-01 18:44:00 +00001568On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001569to extract SCP\_BL2U image information, which is then copied into a private
1570variable.
1571
1572Function : bl2u\_plat\_arch\_setup() [mandatory]
1573~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1574
1575::
1576
1577 Argument : void
1578 Return : void
1579
1580This function executes with the MMU and data caches disabled. It is only
1581called by the primary CPU.
1582
1583The purpose of this function is to perform any architectural initialization
1584that varies across platforms, for example enabling the MMU (since the memory
1585map differs across platforms).
1586
1587Function : bl2u\_platform\_setup() [mandatory]
1588~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1589
1590::
1591
1592 Argument : void
1593 Return : void
1594
1595This function may execute with the MMU and data caches enabled if the platform
1596port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1597called by the primary CPU.
1598
1599The purpose of this function is to perform any platform initialization
1600specific to BL2U.
1601
Dan Handley610e7e12018-03-01 18:44:00 +00001602In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001603configuration of the TrustZone controller to allow non-secure masters access
1604to most of DRAM. Part of DRAM is reserved for secure world use.
1605
1606Function : bl2u\_plat\_handle\_scp\_bl2u() [optional]
1607~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1608
1609::
1610
1611 Argument : void
1612 Return : int
1613
1614This function is used to perform any platform-specific actions required to
1615handle the SCP firmware. Typically it transfers the image into SCP memory using
1616a platform-specific protocol and waits until SCP executes it and signals to the
1617Application Processor (AP) for BL2U execution to continue.
1618
1619This function returns 0 on success, a negative error code otherwise.
1620This function is included if SCP\_BL2U\_BASE is defined.
1621
1622Boot Loader Stage 3-1 (BL31)
1623----------------------------
1624
1625During cold boot, the BL31 stage is executed only by the primary CPU. This is
1626determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1627control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1628CPUs. BL31 executes at EL3 and is responsible for:
1629
1630#. Re-initializing all architectural and platform state. Although BL1 performs
1631 some of this initialization, BL31 remains resident in EL3 and must ensure
1632 that EL3 architectural and platform state is completely initialized. It
1633 should make no assumptions about the system state when it receives control.
1634
1635#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001636 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1637 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001638
1639#. Providing runtime firmware services. Currently, BL31 only implements a
1640 subset of the Power State Coordination Interface (PSCI) API as a runtime
1641 service. See Section 3.3 below for details of porting the PSCI
1642 implementation.
1643
1644#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001645 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001646 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001647 executed and run the corresponding image. On ARM platforms, BL31 uses the
1648 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001649
1650If BL31 is a reset vector, It also needs to handle the reset as specified in
1651section 2.2 before the tasks described above.
1652
1653The following functions must be implemented by the platform port to enable BL31
1654to perform the above tasks.
1655
Soby Mathew97b1bff2018-09-27 16:46:41 +01001656Function : bl31\_early\_platform\_setup2() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001657~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1658
1659::
1660
Soby Mathew97b1bff2018-09-27 16:46:41 +01001661 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001662 Return : void
1663
1664This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001665by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1666platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001667
Soby Mathew97b1bff2018-09-27 16:46:41 +01001668In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001669
Soby Mathew97b1bff2018-09-27 16:46:41 +01001670 arg0 - The pointer to the head of `bl_params_t` list
1671 which is list of executable images following BL31,
1672
1673 arg1 - Points to load address of SOC_FW_CONFIG if present
1674
1675 arg2 - Points to load address of HW_CONFIG if present
1676
1677 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1678 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001679
Soby Mathew97b1bff2018-09-27 16:46:41 +01001680The function runs through the `bl_param_t` list and extracts the entry point
1681information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001682
1683- Initialize a UART (PL011 console), which enables access to the ``printf``
1684 family of functions in BL31.
1685
1686- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1687 CCI slave interface corresponding to the cluster that includes the primary
1688 CPU.
1689
1690Function : bl31\_plat\_arch\_setup() [mandatory]
1691~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1692
1693::
1694
1695 Argument : void
1696 Return : void
1697
1698This function executes with the MMU and data caches disabled. It is only called
1699by the primary CPU.
1700
1701The purpose of this function is to perform any architectural initialization
1702that varies across platforms.
1703
Dan Handley610e7e12018-03-01 18:44:00 +00001704On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001705
1706Function : bl31\_platform\_setup() [mandatory]
1707~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1708
1709::
1710
1711 Argument : void
1712 Return : void
1713
1714This function may execute with the MMU and data caches enabled if the platform
1715port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1716called by the primary CPU.
1717
1718The purpose of this function is to complete platform initialization so that both
1719BL31 runtime services and normal world software can function correctly.
1720
Dan Handley610e7e12018-03-01 18:44:00 +00001721On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001722
1723- Initialize the generic interrupt controller.
1724
1725 Depending on the GIC driver selected by the platform, the appropriate GICv2
1726 or GICv3 initialization will be done, which mainly consists of:
1727
1728 - Enable secure interrupts in the GIC CPU interface.
1729 - Disable the legacy interrupt bypass mechanism.
1730 - Configure the priority mask register to allow interrupts of all priorities
1731 to be signaled to the CPU interface.
1732 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1733 - Target all secure SPIs to CPU0.
1734 - Enable these secure interrupts in the GIC distributor.
1735 - Configure all other interrupts as non-secure.
1736 - Enable signaling of secure interrupts in the GIC distributor.
1737
1738- Enable system-level implementation of the generic timer counter through the
1739 memory mapped interface.
1740
1741- Grant access to the system counter timer module
1742
1743- Initialize the power controller device.
1744
1745 In particular, initialise the locks that prevent concurrent accesses to the
1746 power controller device.
1747
1748Function : bl31\_plat\_runtime\_setup() [optional]
1749~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1750
1751::
1752
1753 Argument : void
1754 Return : void
1755
1756The purpose of this function is allow the platform to perform any BL31 runtime
1757setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001758implementation of this function will invoke ``console_switch_state()`` to switch
1759console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001760
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001761Function : bl31\_plat\_get\_next\_image\_ep\_info() [mandatory]
1762~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001763
1764::
1765
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001766 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001767 Return : entry_point_info *
1768
1769This function may execute with the MMU and data caches enabled if the platform
1770port does the necessary initializations in ``bl31_plat_arch_setup()``.
1771
1772This function is called by ``bl31_main()`` to retrieve information provided by
1773BL2 for the next image in the security state specified by the argument. BL31
1774uses this information to pass control to that image in the specified security
1775state. This function must return a pointer to the ``entry_point_info`` structure
1776(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1777should return NULL otherwise.
1778
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001779Function : bl31_plat_enable_mmu [optional]
1780~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1781
1782::
1783
1784 Argument : uint32_t
1785 Return : void
1786
1787This function enables the MMU. The boot code calls this function with MMU and
1788caches disabled. This function should program necessary registers to enable
1789translation, and upon return, the MMU on the calling PE must be enabled.
1790
1791The function must honor flags passed in the first argument. These flags are
1792defined by the translation library, and can be found in the file
1793``include/lib/xlat_tables/xlat_mmu_helpers.h``.
1794
1795On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001796is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001797
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001798Function : plat\_get\_syscnt\_freq2() [mandatory]
1799~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1800
1801::
1802
1803 Argument : void
1804 Return : unsigned int
1805
1806This function is used by the architecture setup code to retrieve the counter
1807frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00001808``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001809of the system counter, which is retrieved from the first entry in the frequency
1810modes table.
1811
1812#define : PLAT\_PERCPU\_BAKERY\_LOCK\_SIZE [optional]
1813~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1814
1815When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
1816bytes) aligned to the cache line boundary that should be allocated per-cpu to
1817accommodate all the bakery locks.
1818
1819If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
1820calculates the size of the ``bakery_lock`` input section, aligns it to the
1821nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
1822and stores the result in a linker symbol. This constant prevents a platform
1823from relying on the linker and provide a more efficient mechanism for
1824accessing per-cpu bakery lock information.
1825
1826If this constant is defined and its value is not equal to the value
1827calculated by the linker then a link time assertion is raised. A compile time
1828assertion is raised if the value of the constant is not aligned to the cache
1829line boundary.
1830
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001831SDEI porting requirements
1832~~~~~~~~~~~~~~~~~~~~~~~~~
1833
1834The SDEI dispatcher requires the platform to provide the following macros
1835and functions, of which some are optional, and some others mandatory.
1836
1837Macros
1838......
1839
1840Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
1841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1842
1843This macro must be defined to the EL3 exception priority level associated with
1844Normal SDEI events on the platform. This must have a higher value (therefore of
1845lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
1846
1847Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
1848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1849
1850This macro must be defined to the EL3 exception priority level associated with
1851Critical SDEI events on the platform. This must have a lower value (therefore of
1852higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
1853
Jeenu Viswambharan7af48132018-01-16 09:29:30 +00001854**Note**: SDEI exception priorities must be the lowest among Secure priorities.
1855Among the SDEI exceptions, Critical SDEI priority must be higher than Normal
1856SDEI priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001857
1858Functions
1859.........
1860
1861Function: int plat_sdei_validate_entry_point(uintptr_t ep) [optional]
1862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1863
1864::
1865
1866 Argument: uintptr_t
1867 Return: int
1868
1869This function validates the address of client entry points provided for both
1870event registration and *Complete and Resume* SDEI calls. The function takes one
1871argument, which is the address of the handler the SDEI client requested to
1872register. The function must return ``0`` for successful validation, or ``-1``
1873upon failure.
1874
Dan Handley610e7e12018-03-01 18:44:00 +00001875The default implementation always returns ``0``. On Arm platforms, this function
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001876is implemented to translate the entry point to physical address, and further to
1877ensure that the address is located in Non-secure DRAM.
1878
1879Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
1880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1881
1882::
1883
1884 Argument: uint64_t
1885 Argument: unsigned int
1886 Return: void
1887
1888SDEI specification requires that a PE comes out of reset with the events masked.
1889The client therefore is expected to call ``PE_UNMASK`` to unmask SDEI events on
1890the PE. No SDEI events can be dispatched until such time.
1891
1892Should a PE receive an interrupt that was bound to an SDEI event while the
1893events are masked on the PE, the dispatcher implementation invokes the function
1894``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
1895interrupt and the interrupt ID are passed as parameters.
1896
1897The default implementation only prints out a warning message.
1898
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001899Power State Coordination Interface (in BL31)
1900--------------------------------------------
1901
Dan Handley610e7e12018-03-01 18:44:00 +00001902The TF-A implementation of the PSCI API is based around the concept of a
1903*power domain*. A *power domain* is a CPU or a logical group of CPUs which
1904share some state on which power management operations can be performed as
1905specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
1906a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
1907*power domains* are arranged in a hierarchical tree structure and each
1908*power domain* can be identified in a system by the cpu index of any CPU that
1909is part of that domain and a *power domain level*. A processing element (for
1910example, a CPU) is at level 0. If the *power domain* node above a CPU is a
1911logical grouping of CPUs that share some state, then level 1 is that group of
1912CPUs (for example, a cluster), and level 2 is a group of clusters (for
1913example, the system). More details on the power domain topology and its
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001914organization can be found in `Power Domain Topology Design`_.
1915
1916BL31's platform initialization code exports a pointer to the platform-specific
1917power management operations required for the PSCI implementation to function
1918correctly. This information is populated in the ``plat_psci_ops`` structure. The
1919PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
1920power management operations on the power domains. For example, the target
1921CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
1922handler (if present) is called for the CPU power domain.
1923
1924The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
1925describe composite power states specific to a platform. The PSCI implementation
1926defines a generic representation of the power-state parameter viz which is an
1927array of local power states where each index corresponds to a power domain
1928level. Each entry contains the local power state the power domain at that power
1929level could enter. It depends on the ``validate_power_state()`` handler to
1930convert the power-state parameter (possibly encoding a composite power state)
1931passed in a PSCI ``CPU_SUSPEND`` call to this representation.
1932
1933The following functions form part of platform port of PSCI functionality.
1934
1935Function : plat\_psci\_stat\_accounting\_start() [optional]
1936~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1937
1938::
1939
1940 Argument : const psci_power_state_t *
1941 Return : void
1942
1943This is an optional hook that platforms can implement for residency statistics
1944accounting before entering a low power state. The ``pwr_domain_state`` field of
1945``state_info`` (first argument) can be inspected if stat accounting is done
1946differently at CPU level versus higher levels. As an example, if the element at
1947index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
1948state, special hardware logic may be programmed in order to keep track of the
1949residency statistics. For higher levels (array indices > 0), the residency
1950statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
1951default implementation will use PMF to capture timestamps.
1952
1953Function : plat\_psci\_stat\_accounting\_stop() [optional]
1954~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1955
1956::
1957
1958 Argument : const psci_power_state_t *
1959 Return : void
1960
1961This is an optional hook that platforms can implement for residency statistics
1962accounting after exiting from a low power state. The ``pwr_domain_state`` field
1963of ``state_info`` (first argument) can be inspected if stat accounting is done
1964differently at CPU level versus higher levels. As an example, if the element at
1965index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
1966state, special hardware logic may be programmed in order to keep track of the
1967residency statistics. For higher levels (array indices > 0), the residency
1968statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
1969default implementation will use PMF to capture timestamps.
1970
1971Function : plat\_psci\_stat\_get\_residency() [optional]
1972~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1973
1974::
1975
1976 Argument : unsigned int, const psci_power_state_t *, int
1977 Return : u_register_t
1978
1979This is an optional interface that is is invoked after resuming from a low power
1980state and provides the time spent resident in that low power state by the power
1981domain at a particular power domain level. When a CPU wakes up from suspend,
1982all its parent power domain levels are also woken up. The generic PSCI code
1983invokes this function for each parent power domain that is resumed and it
1984identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
1985argument) describes the low power state that the power domain has resumed from.
1986The current CPU is the first CPU in the power domain to resume from the low
1987power state and the ``last_cpu_idx`` (third parameter) is the index of the last
1988CPU in the power domain to suspend and may be needed to calculate the residency
1989for that power domain.
1990
1991Function : plat\_get\_target\_pwr\_state() [optional]
1992~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1993
1994::
1995
1996 Argument : unsigned int, const plat_local_state_t *, unsigned int
1997 Return : plat_local_state_t
1998
1999The PSCI generic code uses this function to let the platform participate in
2000state coordination during a power management operation. The function is passed
2001a pointer to an array of platform specific local power state ``states`` (second
2002argument) which contains the requested power state for each CPU at a particular
2003power domain level ``lvl`` (first argument) within the power domain. The function
2004is expected to traverse this array of upto ``ncpus`` (third argument) and return
2005a coordinated target power state by the comparing all the requested power
2006states. The target power state should not be deeper than any of the requested
2007power states.
2008
2009A weak definition of this API is provided by default wherein it assumes
2010that the platform assigns a local state value in order of increasing depth
2011of the power state i.e. for two power states X & Y, if X < Y
2012then X represents a shallower power state than Y. As a result, the
2013coordinated target local power state for a power domain will be the minimum
2014of the requested local power state values.
2015
2016Function : plat\_get\_power\_domain\_tree\_desc() [mandatory]
2017~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2018
2019::
2020
2021 Argument : void
2022 Return : const unsigned char *
2023
2024This function returns a pointer to the byte array containing the power domain
2025topology tree description. The format and method to construct this array are
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002026described in `Power Domain Topology Design`_. The BL31 PSCI initialization code
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002027requires this array to be described by the platform, either statically or
2028dynamically, to initialize the power domain topology tree. In case the array
2029is populated dynamically, then plat\_core\_pos\_by\_mpidr() and
2030plat\_my\_core\_pos() should also be implemented suitably so that the topology
2031tree description matches the CPU indices returned by these APIs. These APIs
2032together form the platform interface for the PSCI topology framework.
2033
2034Function : plat\_setup\_psci\_ops() [mandatory]
Douglas Raillard0929f092017-08-02 14:44:42 +01002035~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002036
2037::
2038
2039 Argument : uintptr_t, const plat_psci_ops **
2040 Return : int
2041
2042This function may execute with the MMU and data caches enabled if the platform
2043port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2044called by the primary CPU.
2045
2046This function is called by PSCI initialization code. Its purpose is to let
2047the platform layer know about the warm boot entrypoint through the
2048``sec_entrypoint`` (first argument) and to export handler routines for
2049platform-specific psci power management actions by populating the passed
2050pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2051
2052A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002053the Arm FVP specific implementation of these handlers in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002054`plat/arm/board/fvp/fvp\_pm.c`_ as an example. For each PSCI function that the
2055platform wants to support, the associated operation or operations in this
2056structure must be provided and implemented (Refer section 4 of
Dan Handley610e7e12018-03-01 18:44:00 +00002057`Firmware Design`_ for the PSCI API supported in TF-A). To disable a PSCI
2058function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002059structure instead of providing an empty implementation.
2060
2061plat\_psci\_ops.cpu\_standby()
Douglas Raillard0929f092017-08-02 14:44:42 +01002062..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002063
2064Perform the platform-specific actions to enter the standby state for a cpu
2065indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002066wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002067For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2068the suspend state type specified in the ``power-state`` parameter should be
2069STANDBY and the target power domain level specified should be the CPU. The
2070handler should put the CPU into a low power retention state (usually by
2071issuing a wfi instruction) and ensure that it can be woken up from that
2072state by a normal interrupt. The generic code expects the handler to succeed.
2073
2074plat\_psci\_ops.pwr\_domain\_on()
Douglas Raillard0929f092017-08-02 14:44:42 +01002075.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002076
2077Perform the platform specific actions to power on a CPU, specified
2078by the ``MPIDR`` (first argument). The generic code expects the platform to
2079return PSCI\_E\_SUCCESS on success or PSCI\_E\_INTERN\_FAIL for any failure.
2080
2081plat\_psci\_ops.pwr\_domain\_off()
Douglas Raillard0929f092017-08-02 14:44:42 +01002082..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002083
2084Perform the platform specific actions to prepare to power off the calling CPU
2085and its higher parent power domain levels as indicated by the ``target_state``
2086(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2087
2088The ``target_state`` encodes the platform coordinated target local power states
2089for the CPU power domain and its parent power domain levels. The handler
2090needs to perform power management operation corresponding to the local state
2091at each power level.
2092
2093For this handler, the local power state for the CPU power domain will be a
2094power down state where as it could be either power down, retention or run state
2095for the higher power domain levels depending on the result of state
2096coordination. The generic code expects the handler to succeed.
2097
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002098plat\_psci\_ops.pwr\_domain\_suspend\_pwrdown\_early() [optional]
Douglas Raillard0929f092017-08-02 14:44:42 +01002099.................................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002100
2101This optional function may be used as a performance optimization to replace
2102or complement pwr_domain_suspend() on some platforms. Its calling semantics
2103are identical to pwr_domain_suspend(), except the PSCI implementation only
2104calls this function when suspending to a power down state, and it guarantees
2105that data caches are enabled.
2106
2107When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2108before calling pwr_domain_suspend(). If the target_state corresponds to a
2109power down state and it is safe to perform some or all of the platform
2110specific actions in that function with data caches enabled, it may be more
2111efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2112= 1, data caches remain enabled throughout, and so there is no advantage to
2113moving platform specific actions to this function.
2114
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002115plat\_psci\_ops.pwr\_domain\_suspend()
Douglas Raillard0929f092017-08-02 14:44:42 +01002116......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002117
2118Perform the platform specific actions to prepare to suspend the calling
2119CPU and its higher parent power domain levels as indicated by the
2120``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2121API implementation.
2122
2123The ``target_state`` has a similar meaning as described in
2124the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2125target local power states for the CPU power domain and its parent
2126power domain levels. The handler needs to perform power management operation
2127corresponding to the local state at each power level. The generic code
2128expects the handler to succeed.
2129
Douglas Raillarda84996b2017-08-02 16:57:32 +01002130The difference between turning a power domain off versus suspending it is that
2131in the former case, the power domain is expected to re-initialize its state
2132when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2133case, the power domain is expected to save enough state so that it can resume
2134execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002135``pwr_domain_suspend_finish()``).
2136
Douglas Raillarda84996b2017-08-02 16:57:32 +01002137When suspending a core, the platform can also choose to power off the GICv3
2138Redistributor and ITS through an implementation-defined sequence. To achieve
2139this safely, the ITS context must be saved first. The architectural part is
2140implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2141sequence is implementation defined and it is therefore the responsibility of
2142the platform code to implement the necessary sequence. Then the GIC
2143Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2144Powering off the Redistributor requires the implementation to support it and it
2145is the responsibility of the platform code to execute the right implementation
2146defined sequence.
2147
2148When a system suspend is requested, the platform can also make use of the
2149``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2150it has saved the context of the Redistributors and ITS of all the cores in the
2151system. The context of the Distributor can be large and may require it to be
2152allocated in a special area if it cannot fit in the platform's global static
2153data, for example in DRAM. The Distributor can then be powered down using an
2154implementation-defined sequence.
2155
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002156plat\_psci\_ops.pwr\_domain\_pwr\_down\_wfi()
Douglas Raillard0929f092017-08-02 14:44:42 +01002157.............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002158
2159This is an optional function and, if implemented, is expected to perform
2160platform specific actions including the ``wfi`` invocation which allows the
2161CPU to powerdown. Since this function is invoked outside the PSCI locks,
2162the actions performed in this hook must be local to the CPU or the platform
2163must ensure that races between multiple CPUs cannot occur.
2164
2165The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2166operation and it encodes the platform coordinated target local power states for
2167the CPU power domain and its parent power domain levels. This function must
2168not return back to the caller.
2169
2170If this function is not implemented by the platform, PSCI generic
2171implementation invokes ``psci_power_down_wfi()`` for power down.
2172
2173plat\_psci\_ops.pwr\_domain\_on\_finish()
Douglas Raillard0929f092017-08-02 14:44:42 +01002174.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002175
2176This function is called by the PSCI implementation after the calling CPU is
2177powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2178It performs the platform-specific setup required to initialize enough state for
2179this CPU to enter the normal world and also provide secure runtime firmware
2180services.
2181
2182The ``target_state`` (first argument) is the prior state of the power domains
2183immediately before the CPU was turned on. It indicates which power domains
2184above the CPU might require initialization due to having previously been in
2185low power states. The generic code expects the handler to succeed.
2186
2187plat\_psci\_ops.pwr\_domain\_suspend\_finish()
Douglas Raillard0929f092017-08-02 14:44:42 +01002188..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002189
2190This function is called by the PSCI implementation after the calling CPU is
2191powered on and released from reset in response to an asynchronous wakeup
2192event, for example a timer interrupt that was programmed by the CPU during the
2193``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2194setup required to restore the saved state for this CPU to resume execution
2195in the normal world and also provide secure runtime firmware services.
2196
2197The ``target_state`` (first argument) has a similar meaning as described in
2198the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2199to succeed.
2200
Douglas Raillarda84996b2017-08-02 16:57:32 +01002201If the Distributor, Redistributors or ITS have been powered off as part of a
2202suspend, their context must be restored in this function in the reverse order
2203to how they were saved during suspend sequence.
2204
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002205plat\_psci\_ops.system\_off()
Douglas Raillard0929f092017-08-02 14:44:42 +01002206.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002207
2208This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2209call. It performs the platform-specific system poweroff sequence after
2210notifying the Secure Payload Dispatcher.
2211
2212plat\_psci\_ops.system\_reset()
Douglas Raillard0929f092017-08-02 14:44:42 +01002213...............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002214
2215This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2216call. It performs the platform-specific system reset sequence after
2217notifying the Secure Payload Dispatcher.
2218
2219plat\_psci\_ops.validate\_power\_state()
Douglas Raillard0929f092017-08-02 14:44:42 +01002220........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002221
2222This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2223call to validate the ``power_state`` parameter of the PSCI API and if valid,
2224populate it in ``req_state`` (second argument) array as power domain level
2225specific local states. If the ``power_state`` is invalid, the platform must
2226return PSCI\_E\_INVALID\_PARAMS as error, which is propagated back to the
2227normal world PSCI client.
2228
2229plat\_psci\_ops.validate\_ns\_entrypoint()
Douglas Raillard0929f092017-08-02 14:44:42 +01002230..........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002231
2232This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2233``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2234parameter passed by the normal world. If the ``entry_point`` is invalid,
2235the platform must return PSCI\_E\_INVALID\_ADDRESS as error, which is
2236propagated back to the normal world PSCI client.
2237
2238plat\_psci\_ops.get\_sys\_suspend\_power\_state()
Douglas Raillard0929f092017-08-02 14:44:42 +01002239.................................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002240
2241This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2242call to get the ``req_state`` parameter from platform which encodes the power
2243domain level specific local states to suspend to system affinity level. The
2244``req_state`` will be utilized to do the PSCI state coordination and
2245``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2246enter system suspend.
2247
2248plat\_psci\_ops.get\_pwr\_lvl\_state\_idx()
Douglas Raillard0929f092017-08-02 14:44:42 +01002249...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002250
2251This is an optional function and, if implemented, is invoked by the PSCI
2252implementation to convert the ``local_state`` (first argument) at a specified
2253``pwr_lvl`` (second argument) to an index between 0 and
2254``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2255supports more than two local power states at each power domain level, that is
2256``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2257local power states.
2258
2259plat\_psci\_ops.translate\_power\_state\_by\_mpidr()
Douglas Raillard0929f092017-08-02 14:44:42 +01002260....................................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002261
2262This is an optional function and, if implemented, verifies the ``power_state``
2263(second argument) parameter of the PSCI API corresponding to a target power
2264domain. The target power domain is identified by using both ``MPIDR`` (first
2265argument) and the power domain level encoded in ``power_state``. The power domain
2266level specific local states are to be extracted from ``power_state`` and be
2267populated in the ``output_state`` (third argument) array. The functionality
2268is similar to the ``validate_power_state`` function described above and is
2269envisaged to be used in case the validity of ``power_state`` depend on the
2270targeted power domain. If the ``power_state`` is invalid for the targeted power
2271domain, the platform must return PSCI\_E\_INVALID\_PARAMS as error. If this
2272function is not implemented, then the generic implementation relies on
2273``validate_power_state`` function to translate the ``power_state``.
2274
2275This function can also be used in case the platform wants to support local
2276power state encoding for ``power_state`` parameter of PSCI\_STAT\_COUNT/RESIDENCY
2277APIs as described in Section 5.18 of `PSCI`_.
2278
2279plat\_psci\_ops.get\_node\_hw\_state()
Douglas Raillard0929f092017-08-02 14:44:42 +01002280......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002281
2282This is an optional function. If implemented this function is intended to return
2283the power state of a node (identified by the first parameter, the ``MPIDR``) in
2284the power domain topology (identified by the second parameter, ``power_level``),
2285as retrieved from a power controller or equivalent component on the platform.
2286Upon successful completion, the implementation must map and return the final
2287status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2288must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2289appropriate.
2290
2291Implementations are not expected to handle ``power_levels`` greater than
2292``PLAT_MAX_PWR_LVL``.
2293
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002294plat\_psci\_ops.system\_reset2()
2295................................
2296
2297This is an optional function. If implemented this function is
2298called during the ``SYSTEM_RESET2`` call to perform a reset
2299based on the first parameter ``reset_type`` as specified in
2300`PSCI`_. The parameter ``cookie`` can be used to pass additional
2301reset information. If the ``reset_type`` is not supported, the
2302function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2303resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2304and vendor reset can return other PSCI error codes as defined
2305in `PSCI`_. On success this function will not return.
2306
2307plat\_psci\_ops.write\_mem\_protect()
2308....................................
2309
2310This is an optional function. If implemented it enables or disables the
2311``MEM_PROTECT`` functionality based on the value of ``val``.
2312A non-zero value enables ``MEM_PROTECT`` and a value of zero
2313disables it. Upon encountering failures it must return a negative value
2314and on success it must return 0.
2315
2316plat\_psci\_ops.read\_mem\_protect()
2317.....................................
2318
2319This is an optional function. If implemented it returns the current
2320state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2321failures it must return a negative value and on success it must
2322return 0.
2323
2324plat\_psci\_ops.mem\_protect\_chk()
2325...................................
2326
2327This is an optional function. If implemented it checks if a memory
2328region defined by a base address ``base`` and with a size of ``length``
2329bytes is protected by ``MEM_PROTECT``. If the region is protected
2330then it must return 0, otherwise it must return a negative number.
2331
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002332Interrupt Management framework (in BL31)
2333----------------------------------------
2334
2335BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2336generated in either security state and targeted to EL1 or EL2 in the non-secure
2337state or EL3/S-EL1 in the secure state. The design of this framework is
2338described in the `IMF Design Guide`_
2339
2340A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002341text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002342platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002343present in the platform. Arm standard platform layer supports both
2344`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2345and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2346FVP can be configured to use either GICv2 or GICv3 depending on the build flag
2347``FVP_USE_GIC_DRIVER`` (See FVP platform specific build options in
2348`User Guide`_ for more details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002349
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002350See also: `Interrupt Controller Abstraction APIs`__.
2351
2352.. __: platform-interrupt-controller-API.rst
2353
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002354Function : plat\_interrupt\_type\_to\_line() [mandatory]
2355~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2356
2357::
2358
2359 Argument : uint32_t, uint32_t
2360 Return : uint32_t
2361
Dan Handley610e7e12018-03-01 18:44:00 +00002362The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002363interrupt line. The specific line that is signaled depends on how the interrupt
2364controller (IC) reports different interrupt types from an execution context in
2365either security state. The IMF uses this API to determine which interrupt line
2366the platform IC uses to signal each type of interrupt supported by the framework
2367from a given security state. This API must be invoked at EL3.
2368
2369The first parameter will be one of the ``INTR_TYPE_*`` values (see
2370`IMF Design Guide`_) indicating the target type of the interrupt, the second parameter is the
2371security state of the originating execution context. The return result is the
2372bit position in the ``SCR_EL3`` register of the respective interrupt trap: IRQ=1,
2373FIQ=2.
2374
Dan Handley610e7e12018-03-01 18:44:00 +00002375In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002376configured as FIQs and Non-secure interrupts as IRQs from either security
2377state.
2378
Dan Handley610e7e12018-03-01 18:44:00 +00002379In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002380configured depends on the security state of the execution context when the
2381interrupt is signalled and are as follows:
2382
2383- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2384 NS-EL0/1/2 context.
2385- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2386 in the NS-EL0/1/2 context.
2387- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2388 context.
2389
2390Function : plat\_ic\_get\_pending\_interrupt\_type() [mandatory]
2391~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2392
2393::
2394
2395 Argument : void
2396 Return : uint32_t
2397
2398This API returns the type of the highest priority pending interrupt at the
2399platform IC. The IMF uses the interrupt type to retrieve the corresponding
2400handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2401pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2402``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2403
Dan Handley610e7e12018-03-01 18:44:00 +00002404In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002405Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2406the pending interrupt. The type of interrupt depends upon the id value as
2407follows.
2408
2409#. id < 1022 is reported as a S-EL1 interrupt
2410#. id = 1022 is reported as a Non-secure interrupt.
2411#. id = 1023 is reported as an invalid interrupt type.
2412
Dan Handley610e7e12018-03-01 18:44:00 +00002413In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002414``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2415is read to determine the id of the pending interrupt. The type of interrupt
2416depends upon the id value as follows.
2417
2418#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2419#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2420#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2421#. All other interrupt id's are reported as EL3 interrupt.
2422
2423Function : plat\_ic\_get\_pending\_interrupt\_id() [mandatory]
2424~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2425
2426::
2427
2428 Argument : void
2429 Return : uint32_t
2430
2431This API returns the id of the highest priority pending interrupt at the
2432platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2433pending.
2434
Dan Handley610e7e12018-03-01 18:44:00 +00002435In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002436Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2437pending interrupt. The id that is returned by API depends upon the value of
2438the id read from the interrupt controller as follows.
2439
2440#. id < 1022. id is returned as is.
2441#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2442 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2443 This id is returned by the API.
2444#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2445
Dan Handley610e7e12018-03-01 18:44:00 +00002446In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002447EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2448group 0 Register*, is read to determine the id of the pending interrupt. The id
2449that is returned by API depends upon the value of the id read from the
2450interrupt controller as follows.
2451
2452#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2453#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2454 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2455 Register* is read to determine the id of the group 1 interrupt. This id
2456 is returned by the API as long as it is a valid interrupt id
2457#. If the id is any of the special interrupt identifiers,
2458 ``INTR_ID_UNAVAILABLE`` is returned.
2459
2460When the API invoked from S-EL1 for GICv3 systems, the id read from system
2461register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
2462Register*, is returned if is not equal to GIC\_SPURIOUS\_INTERRUPT (1023) else
2463``INTR_ID_UNAVAILABLE`` is returned.
2464
2465Function : plat\_ic\_acknowledge\_interrupt() [mandatory]
2466~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2467
2468::
2469
2470 Argument : void
2471 Return : uint32_t
2472
2473This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002474the highest pending interrupt has begun. It should return the raw, unmodified
2475value obtained from the interrupt controller when acknowledging an interrupt.
2476The actual interrupt number shall be extracted from this raw value using the API
2477`plat_ic_get_interrupt_id()`__.
2478
2479.. __: platform-interrupt-controller-API.rst#function-unsigned-int-plat-ic-get-interrupt-id-unsigned-int-raw-optional
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002480
Dan Handley610e7e12018-03-01 18:44:00 +00002481This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002482Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2483priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002484It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002485
Dan Handley610e7e12018-03-01 18:44:00 +00002486In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002487from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2488Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2489reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2490group 1*. The read changes the state of the highest pending interrupt from
2491pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002492unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002493
2494The TSP uses this API to start processing of the secure physical timer
2495interrupt.
2496
2497Function : plat\_ic\_end\_of\_interrupt() [mandatory]
2498~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2499
2500::
2501
2502 Argument : uint32_t
2503 Return : void
2504
2505This API is used by the CPU to indicate to the platform IC that processing of
2506the interrupt corresponding to the id (passed as the parameter) has
2507finished. The id should be the same as the id returned by the
2508``plat_ic_acknowledge_interrupt()`` API.
2509
Dan Handley610e7e12018-03-01 18:44:00 +00002510Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002511(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2512system register in case of GICv3 depending on where the API is invoked from,
2513EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2514controller.
2515
2516The TSP uses this API to finish processing of the secure physical timer
2517interrupt.
2518
2519Function : plat\_ic\_get\_interrupt\_type() [mandatory]
2520~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2521
2522::
2523
2524 Argument : uint32_t
2525 Return : uint32_t
2526
2527This API returns the type of the interrupt id passed as the parameter.
2528``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2529interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2530returned depending upon how the interrupt has been configured by the platform
2531IC. This API must be invoked at EL3.
2532
Dan Handley610e7e12018-03-01 18:44:00 +00002533Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002534and Non-secure interrupts as Group1 interrupts. It reads the group value
2535corresponding to the interrupt id from the relevant *Interrupt Group Register*
2536(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2537
Dan Handley610e7e12018-03-01 18:44:00 +00002538In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002539Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2540(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2541as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2542
2543Crash Reporting mechanism (in BL31)
2544-----------------------------------
2545
2546BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002547of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002548on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002549``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2550
2551The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2552implementation of all of them. Platforms may include this file to their
2553makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002554output to be routed over the normal console infrastructure and get printed on
2555consoles configured to output in crash state. ``console_set_scope()`` can be
2556used to control whether a console is used for crash output.
Julius Werner1338c9c2018-11-19 14:25:55 -08002557NOTE: Platforms are responsible for making sure that they only mark consoles for
2558use in the crash scope that are able to support this, i.e. that are written in
2559assembly and conform with the register clobber rules for putc() (x0-x2, x16-x17)
2560and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002561
Julius Werneraae9bb12017-09-18 16:49:48 -07002562In some cases (such as debugging very early crashes that happen before the
2563normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002564more explicitly. These platforms may instead provide custom implementations for
2565these. They are executed outside of a C environment and without a stack. Many
2566console drivers provide functions named ``console_xxx_core_init/putc/flush``
2567that are designed to be used by these functions. See Arm platforms (like juno)
2568for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002569
2570Function : plat\_crash\_console\_init [mandatory]
2571~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002572
2573::
2574
2575 Argument : void
2576 Return : int
2577
2578This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002579console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002580initialization and returns 1 on success.
2581
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002582Function : plat\_crash\_console\_putc [mandatory]
2583~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002584
2585::
2586
2587 Argument : int
2588 Return : int
2589
2590This API is used by the crash reporting mechanism to print a character on the
2591designated crash console. It must only use general purpose registers x1 and
2592x2 to do its work. The parameter and the return value are in general purpose
2593register x0.
2594
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002595Function : plat\_crash\_console\_flush [mandatory]
2596~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002597
2598::
2599
2600 Argument : void
2601 Return : int
2602
2603This API is used by the crash reporting mechanism to force write of all buffered
2604data on the designated crash console. It should only use general purpose
Julius Werneraae9bb12017-09-18 16:49:48 -07002605registers x0 through x5 to do its work. The return value is 0 on successful
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002606completion; otherwise the return value is -1.
2607
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002608External Abort handling and RAS Support
2609---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002610
2611Function : plat_ea_handler
2612~~~~~~~~~~~~~~~~~~~~~~~~~~
2613
2614::
2615
2616 Argument : int
2617 Argument : uint64_t
2618 Argument : void *
2619 Argument : void *
2620 Argument : uint64_t
2621 Return : void
2622
2623This function is invoked by the RAS framework for the platform to handle an
2624External Abort received at EL3. The intention of the function is to attempt to
2625resolve the cause of External Abort and return; if that's not possible, to
2626initiate orderly shutdown of the system.
2627
2628The first parameter (``int ea_reason``) indicates the reason for External Abort.
2629Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2630
2631The second parameter (``uint64_t syndrome``) is the respective syndrome
2632presented to EL3 after having received the External Abort. Depending on the
2633nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2634can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2635
2636The third parameter (``void *cookie``) is unused for now. The fourth parameter
2637(``void *handle``) is a pointer to the preempted context. The fifth parameter
2638(``uint64_t flags``) indicates the preempted security state. These parameters
2639are received from the top-level exception handler.
2640
2641If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2642function iterates through RAS handlers registered by the platform. If any of the
2643RAS handlers resolve the External Abort, no further action is taken.
2644
2645If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2646could resolve the External Abort, the default implementation prints an error
2647message, and panics.
2648
2649Function : plat_handle_uncontainable_ea
2650~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2651
2652::
2653
2654 Argument : int
2655 Argument : uint64_t
2656 Return : void
2657
2658This function is invoked by the RAS framework when an External Abort of
2659Uncontainable type is received at EL3. Due to the critical nature of
2660Uncontainable errors, the intention of this function is to initiate orderly
2661shutdown of the system, and is not expected to return.
2662
2663This function must be implemented in assembly.
2664
2665The first and second parameters are the same as that of ``plat_ea_handler``.
2666
2667The default implementation of this function calls
2668``report_unhandled_exception``.
2669
2670Function : plat_handle_double_fault
2671~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2672
2673::
2674
2675 Argument : int
2676 Argument : uint64_t
2677 Return : void
2678
2679This function is invoked by the RAS framework when another External Abort is
2680received at EL3 while one is already being handled. I.e., a call to
2681``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2682this function is to initiate orderly shutdown of the system, and is not expected
2683recover or return.
2684
2685This function must be implemented in assembly.
2686
2687The first and second parameters are the same as that of ``plat_ea_handler``.
2688
2689The default implementation of this function calls
2690``report_unhandled_exception``.
2691
2692Function : plat_handle_el3_ea
2693~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2694
2695::
2696
2697 Return : void
2698
2699This function is invoked when an External Abort is received while executing in
2700EL3. Due to its critical nature, the intention of this function is to initiate
2701orderly shutdown of the system, and is not expected recover or return.
2702
2703This function must be implemented in assembly.
2704
2705The default implementation of this function calls
2706``report_unhandled_exception``.
2707
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002708Build flags
2709-----------
2710
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002711There are some build flags which can be defined by the platform to control
2712inclusion or exclusion of certain BL stages from the FIP image. These flags
2713need to be defined in the platform makefile which will get included by the
2714build system.
2715
2716- **NEED\_BL33**
2717 By default, this flag is defined ``yes`` by the build system and ``BL33``
2718 build option should be supplied as a build option. The platform has the
2719 option of excluding the BL33 image in the ``fip`` image by defining this flag
2720 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
2721 are used, this flag will be set to ``no`` automatically.
2722
2723C Library
2724---------
2725
2726To avoid subtle toolchain behavioral dependencies, the header files provided
2727by the compiler are not used. The software is built with the ``-nostdinc`` flag
2728to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00002729required headers are included in the TF-A source tree. The library only
2730contains those C library definitions required by the local implementation. If
2731more functionality is required, the needed library functions will need to be
2732added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002733
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002734Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
2735been written specifically for TF-A. Fome implementation files have been obtained
2736from `FreeBSD`_, others have been written specifically for TF-A as well. The
2737files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002738
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002739SCC can be found in `http://www.simple-cc.org/`_. A copy of the `FreeBSD`_
2740sources can be obtained from `http://github.com/freebsd/freebsd`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002741
2742Storage abstraction layer
2743-------------------------
2744
2745In order to improve platform independence and portability an storage abstraction
2746layer is used to load data from non-volatile platform storage.
2747
2748Each platform should register devices and their drivers via the Storage layer.
2749These drivers then need to be initialized by bootloader phases as
2750required in their respective ``blx_platform_setup()`` functions. Currently
2751storage access is only required by BL1 and BL2 phases. The ``load_image()``
2752function uses the storage layer to access non-volatile platform storage.
2753
Dan Handley610e7e12018-03-01 18:44:00 +00002754It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002755development platforms the Firmware Image Package (FIP) driver is provided as
2756the default means to load data from storage (see the "Firmware Image Package"
2757section in the `User Guide`_). The storage layer is described in the header file
2758``include/drivers/io/io_storage.h``. The implementation of the common library
2759is in ``drivers/io/io_storage.c`` and the driver files are located in
2760``drivers/io/``.
2761
2762Each IO driver must provide ``io_dev_*`` structures, as described in
2763``drivers/io/io_driver.h``. These are returned via a mandatory registration
2764function that is called on platform initialization. The semi-hosting driver
2765implementation in ``io_semihosting.c`` can be used as an example.
2766
2767The Storage layer provides mechanisms to initialize storage devices before
2768IO operations are called. The basic operations supported by the layer
2769include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
2770Drivers do not have to implement all operations, but each platform must
2771provide at least one driver for a device capable of supporting generic
2772operations such as loading a bootloader image.
2773
2774The current implementation only allows for known images to be loaded by the
2775firmware. These images are specified by using their identifiers, as defined in
2776[include/plat/common/platform\_def.h] (or a separate header file included from
2777there). The platform layer (``plat_get_image_source()``) then returns a reference
2778to a device and a driver-specific ``spec`` which will be understood by the driver
2779to allow access to the image data.
2780
2781The layer is designed in such a way that is it possible to chain drivers with
2782other drivers. For example, file-system drivers may be implemented on top of
2783physical block devices, both represented by IO devices with corresponding
2784drivers. In such a case, the file-system "binding" with the block device may
2785be deferred until the file-system device is initialised.
2786
2787The abstraction currently depends on structures being statically allocated
2788by the drivers and callers, as the system does not yet provide a means of
2789dynamically allocating memory. This may also have the affect of limiting the
2790amount of open resources per driver.
2791
2792--------------
2793
Dan Handley610e7e12018-03-01 18:44:00 +00002794*Copyright (c) 2013-2018, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002795
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002796.. _include/plat/common/platform.h: ../include/plat/common/platform.h
2797.. _include/plat/arm/common/plat\_arm.h: ../include/plat/arm/common/plat_arm.h%5D
2798.. _User Guide: user-guide.rst
2799.. _include/plat/common/common\_def.h: ../include/plat/common/common_def.h
2800.. _include/plat/arm/common/arm\_def.h: ../include/plat/arm/common/arm_def.h
2801.. _plat/common/aarch64/platform\_mp\_stack.S: ../plat/common/aarch64/platform_mp_stack.S
2802.. _plat/common/aarch64/platform\_up\_stack.S: ../plat/common/aarch64/platform_up_stack.S
2803.. _For example, define the build flag in platform.mk: PLAT_PL061_MAX_GPIOS%20:=%20160
2804.. _Power Domain Topology Design: psci-pd-tree.rst
2805.. _include/common/bl\_common.h: ../include/common/bl_common.h
2806.. _include/lib/aarch32/arch.h: ../include/lib/aarch32/arch.h
2807.. _Firmware Design: firmware-design.rst
2808.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
2809.. _plat/arm/board/fvp/fvp\_pm.c: ../plat/arm/board/fvp/fvp_pm.c
Soby Mathewf1e6c492018-10-02 14:01:03 +01002810.. _Platform compatibility policy: ./platform-compatibility-policy.rst
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002811.. _IMF Design Guide: interrupt-framework-design.rst
Dan Handley610e7e12018-03-01 18:44:00 +00002812.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002813.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
2814.. _FreeBSD: http://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002815.. _SCC: http://www.simple-cc.org/