blob: 17fd546624af4ca21e4a99a6e26b9860d9249aa2 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Paul Beesleyf8640672019-04-12 14:19:42 +010026Please refer to the :ref:`Platform Compatibility Policy` for the policy
27regarding compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010028
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillardd7c21b72017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley610e7e12018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010061
Dan Handley610e7e12018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010092File : platform_def.h [mandatory]
93~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010094
95Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000096include path with the following constants defined. This will require updating
97the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010098
Paul Beesleyf8640672019-04-12 14:19:42 +010099Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100which provides typical values for some of the constants below. These values are
101likely to be suitable for all platform ports.
102
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100103- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100104
105 Defines the linker format used by the platform, for example
106 ``elf64-littleaarch64``.
107
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100108- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100109
110 Defines the processor architecture for the linker by the platform, for
111 example ``aarch64``.
112
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100113- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100114
115 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100116 by ``plat/common/aarch64/platform_mp_stack.S`` and
117 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100119- **define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
121 Defines the size in bits of the largest cache line across all the cache
122 levels in the platform.
123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100124- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100125
126 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
127 function.
128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100129- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100130
131 Defines the total number of CPUs implemented by the platform across all
132 clusters in the system.
133
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100134- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100135
136 Defines the total number of nodes in the power domain topology
137 tree at all the power domain levels used by the platform.
138 This macro is used by the PSCI implementation to allocate
139 data structures to represent power domain topology.
140
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100141- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100142
143 Defines the maximum power domain level that the power management operations
144 should apply to. More often, but not always, the power domain level
145 corresponds to affinity level. This macro allows the PSCI implementation
146 to know the highest power domain level that it should consider for power
147 management operations in the system that the platform implements. For
148 example, the Base AEM FVP implements two clusters with a configurable
149 number of CPUs and it reports the maximum power domain level as 1.
150
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100151- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100152
153 Defines the local power state corresponding to the deepest power down
154 possible at every power domain level in the platform. The local power
155 states for each level may be sparsely allocated between 0 and this value
156 with 0 being reserved for the RUN state. The PSCI implementation uses this
157 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100158 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 Defines the local power state corresponding to the deepest retention state
163 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100164 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100165 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
170 Defines the maximum number of local power states per power domain level
171 that the platform supports. The default value of this macro is 2 since
172 most platforms just support a maximum of two local power states at each
173 power domain level (power-down and retention). If the platform needs to
174 account for more local power states, then it must redefine this macro.
175
176 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100177 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100178
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
181 Defines the base address in secure ROM where BL1 originally lives. Must be
182 aligned on a page-size boundary.
183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100184- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100185
186 Defines the maximum address in secure ROM that BL1's actual content (i.e.
187 excluding any data section allocated at runtime) can occupy.
188
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100189- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100190
191 Defines the base address in secure RAM where BL1's read-write data will live
192 at runtime. Must be aligned on a page-size boundary.
193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100194- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100195
196 Defines the maximum address in secure RAM that BL1's read-write data can
197 occupy at runtime.
198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100199- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100200
201 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000202 Must be aligned on a page-size boundary. This constant is not applicable
203 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100205- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
207 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000208 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100210- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000211
212 Defines the base address in secure XIP memory where BL2 RO section originally
213 lives. Must be aligned on a page-size boundary. This constant is only needed
214 when BL2_IN_XIP_MEM is set to '1'.
215
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100216- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000217
218 Defines the maximum address in secure XIP memory that BL2's actual content
219 (i.e. excluding any data section allocated at runtime) can occupy. This
220 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
221
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100222- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000223
224 Defines the base address in secure RAM where BL2's read-write data will live
225 at runtime. Must be aligned on a page-size boundary. This constant is only
226 needed when BL2_IN_XIP_MEM is set to '1'.
227
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100228- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000229
230 Defines the maximum address in secure RAM that BL2's read-write data can
231 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
232 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100233
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100234- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
236 Defines the base address in secure RAM where BL2 loads the BL31 binary
237 image. Must be aligned on a page-size boundary.
238
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100239- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100240
241 Defines the maximum address in secure RAM that the BL31 image can occupy.
242
243For every image, the platform must define individual identifiers that will be
244used by BL1 or BL2 to load the corresponding image into memory from non-volatile
245storage. For the sake of performance, integer numbers will be used as
246identifiers. The platform will use those identifiers to return the relevant
247information about the image to be loaded (file handler, load address,
248authentication information, etc.). The following image identifiers are
249mandatory:
250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100251- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100252
253 BL2 image identifier, used by BL1 to load BL2.
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 BL31 image identifier, used by BL2 to load BL31.
258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100259- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
261 BL33 image identifier, used by BL2 to load BL33.
262
263If Trusted Board Boot is enabled, the following certificate identifiers must
264also be defined:
265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100266- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100267
268 BL2 content certificate identifier, used by BL1 to load the BL2 content
269 certificate.
270
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100271- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100272
273 Trusted key certificate identifier, used by BL2 to load the trusted key
274 certificate.
275
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100276- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100277
278 BL31 key certificate identifier, used by BL2 to load the BL31 key
279 certificate.
280
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100281- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100282
283 BL31 content certificate identifier, used by BL2 to load the BL31 content
284 certificate.
285
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100286- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100287
288 BL33 key certificate identifier, used by BL2 to load the BL33 key
289 certificate.
290
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100291- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100292
293 BL33 content certificate identifier, used by BL2 to load the BL33 content
294 certificate.
295
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100296- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299 FWU content certificate.
300
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100301- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100302
Dan Handley610e7e12018-03-01 18:44:00 +0000303 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000305 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 set.
307
308If the AP Firmware Updater Configuration image, BL2U is used, the following
309must also be defined:
310
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100311- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100312
313 Defines the base address in secure memory where BL1 copies the BL2U binary
314 image. Must be aligned on a page-size boundary.
315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100316- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100317
318 Defines the maximum address in secure memory that the BL2U image can occupy.
319
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100320- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100321
322 BL2U image identifier, used by BL1 to fetch an image descriptor
323 corresponding to BL2U.
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326must also be defined:
327
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100328- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
331 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000332
333 .. note::
334 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100336If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337also be defined:
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000343
344 .. note::
345 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100347- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
350 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100352If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353be defined:
354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000359
360 .. note::
361 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100365 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
366 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367
368For the the Firmware update capability of TRUSTED BOARD BOOT, the following
369macros may also be defined:
370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372
373 Total number of images that can be loaded simultaneously. If the platform
374 doesn't specify any value, it defaults to 10.
375
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100376If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100377also be defined:
378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100381 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000382 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100384- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387 certificate (mandatory when Trusted Board Boot is enabled).
388
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100389- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100391 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392 content certificate (mandatory when Trusted Board Boot is enabled).
393
394If a BL32 image is supported by the platform, the following constants must
395also be defined:
396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100397- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100398
399 BL32 image identifier, used by BL2 to load BL32.
400
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100401- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100402
403 BL32 key certificate identifier, used by BL2 to load the BL32 key
404 certificate (mandatory when Trusted Board Boot is enabled).
405
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100406- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100407
408 BL32 content certificate identifier, used by BL2 to load the BL32 content
409 certificate (mandatory when Trusted Board Boot is enabled).
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 Defines the base address in secure memory where BL2 loads the BL32 binary
414 image. Must be aligned on a page-size boundary.
415
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100416- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100417
418 Defines the maximum address that the BL32 image can occupy.
419
420If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
421platform, the following constants must also be defined:
422
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100423- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100424
425 Defines the base address of the secure memory used by the TSP image on the
426 platform. This must be at the same address or below ``BL32_BASE``.
427
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100428- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100429
430 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000431 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
432 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
433 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100434
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100435- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100436
437 Defines the ID of the secure physical generic timer interrupt used by the
438 TSP's interrupt handling code.
439
440If the platform port uses the translation table library code, the following
441constants must also be defined:
442
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100443- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100444
445 Optional flag that can be set per-image to enable the dynamic allocation of
446 regions even when the MMU is enabled. If not defined, only static
447 functionality will be available, if defined and set to 1 it will also
448 include the dynamic functionality.
449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100450- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100451
452 Defines the maximum number of translation tables that are allocated by the
453 translation table library code. To minimize the amount of runtime memory
454 used, choose the smallest value needed to map the required virtual addresses
455 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
456 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
457 as well.
458
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100459- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100460
461 Defines the maximum number of regions that are allocated by the translation
462 table library code. A region consists of physical base address, virtual base
463 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
464 defined in the ``mmap_region_t`` structure. The platform defines the regions
465 that should be mapped. Then, the translation table library will create the
466 corresponding tables and descriptors at runtime. To minimize the amount of
467 runtime memory used, choose the smallest value needed to register the
468 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
469 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
470 the dynamic regions as well.
471
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100472- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100473
474 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000475 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100476
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100477- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100478
479 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000480 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100481
482If the platform port uses the IO storage framework, the following constants
483must also be defined:
484
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100485- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100486
487 Defines the maximum number of registered IO devices. Attempting to register
488 more devices than this value using ``io_register_device()`` will fail with
489 -ENOMEM.
490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the maximum number of open IO handles. Attempting to open more IO
494 entities than this value using ``io_open()`` will fail with -ENOMEM.
495
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100496- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100497
498 Defines the maximum number of registered IO block devices. Attempting to
499 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100500 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100501 With this macro, multiple block devices could be supported at the same
502 time.
503
504If the platform needs to allocate data within the per-cpu data framework in
505BL31, it should define the following macro. Currently this is only required if
506the platform decides not to use the coherent memory section by undefining the
507``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
508required memory within the the per-cpu data to minimize wastage.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the memory (in bytes) to be reserved within the per-cpu data
513 structure for use by the platform layer.
514
515The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000516memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100517
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100518- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100519
520 Defines the maximum address in secure RAM that the BL31's progbits sections
521 can occupy.
522
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100523- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100524
525 Defines the maximum address that the TSP's progbits sections can occupy.
526
527If the platform port uses the PL061 GPIO driver, the following constant may
528optionally be defined:
529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100530- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531 Maximum number of GPIOs required by the platform. This allows control how
532 much memory is allocated for PL061 GPIO controllers. The default value is
533
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100534 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100535
536If the platform port uses the partition driver, the following constant may
537optionally be defined:
538
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100539- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100540 Maximum number of partition entries required by the platform. This allows
541 control how much memory is allocated for partition entries. The default
542 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100543 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100544 PLAT_PARTITION_MAX_ENTRIES := 12
545 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100546
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800547- **PLAT_PARTITION_BLOCK_SIZE**
548 The size of partition block. It could be either 512 bytes or 4096 bytes.
549 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000550 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800551 PLAT_PARTITION_BLOCK_SIZE := 4096
552 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
553
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554The following constant is optional. It should be defined to override the default
555behaviour of the ``assert()`` function (for example, to save memory).
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
559 ``assert()`` prints the name of the file, the line number and the asserted
560 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
561 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
562 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
563 defined, it defaults to ``LOG_LEVEL``.
564
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000565If the platform port uses the Activity Monitor Unit, the following constants
566may be defined:
567
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100568- **PLAT_AMU_GROUP1_COUNTERS_MASK**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000569 This mask reflects the set of group counters that should be enabled. The
570 maximum number of group 1 counters supported by AMUv1 is 16 so the mask
571 can be at most 0xffff. If the platform does not define this mask, no group 1
572 counters are enabled. If the platform defines this mask, the following
573 constant needs to also be defined.
574
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100575- **PLAT_AMU_GROUP1_NR_COUNTERS**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000576 This value is used to allocate an array to save and restore the counters
577 specified by ``PLAT_AMU_GROUP1_COUNTERS_MASK`` on CPU suspend.
578 This value should be equal to the highest bit position set in the
579 mask, plus 1. The maximum number of group 1 counters in AMUv1 is 16.
580
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100581File : plat_macros.S [mandatory]
582~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100583
584Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000585the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100586found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
587
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100588- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100589
590 This macro allows the crash reporting routine to print relevant platform
591 registers in case of an unhandled exception in BL31. This aids in debugging
592 and this macro can be defined to be empty in case register reporting is not
593 desired.
594
595 For instance, GIC or interconnect registers may be helpful for
596 troubleshooting.
597
598Handling Reset
599--------------
600
601BL1 by default implements the reset vector where execution starts from a cold
602or warm boot. BL31 can be optionally set as a reset vector using the
603``RESET_TO_BL31`` make variable.
604
605For each CPU, the reset vector code is responsible for the following tasks:
606
607#. Distinguishing between a cold boot and a warm boot.
608
609#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
610 the CPU is placed in a platform-specific state until the primary CPU
611 performs the necessary steps to remove it from this state.
612
613#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
614 specific address in the BL31 image in the same processor mode as it was
615 when released from reset.
616
617The following functions need to be implemented by the platform port to enable
618reset vector code to perform the above tasks.
619
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100620Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
621~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100622
623::
624
625 Argument : void
626 Return : uintptr_t
627
628This function is called with the MMU and caches disabled
629(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
630distinguishing between a warm and cold reset for the current CPU using
631platform-specific means. If it's a warm reset, then it returns the warm
632reset entrypoint point provided to ``plat_setup_psci_ops()`` during
633BL31 initialization. If it's a cold reset then this function must return zero.
634
635This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000636Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100637not assume that callee saved registers are preserved across a call to this
638function.
639
640This function fulfills requirement 1 and 3 listed above.
641
642Note that for platforms that support programming the reset address, it is
643expected that a CPU will start executing code directly at the right address,
644both on a cold and warm reset. In this case, there is no need to identify the
645type of reset nor to query the warm reset entrypoint. Therefore, implementing
646this function is not required on such platforms.
647
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100648Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
649~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100650
651::
652
653 Argument : void
654
655This function is called with the MMU and data caches disabled. It is responsible
656for placing the executing secondary CPU in a platform-specific state until the
657primary CPU performs the necessary actions to bring it out of that state and
658allow entry into the OS. This function must not return.
659
Dan Handley610e7e12018-03-01 18:44:00 +0000660In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100661itself off. The primary CPU is responsible for powering up the secondary CPUs
662when normal world software requires them. When booting an EL3 payload instead,
663they stay powered on and are put in a holding pen until their mailbox gets
664populated.
665
666This function fulfills requirement 2 above.
667
668Note that for platforms that can't release secondary CPUs out of reset, only the
669primary CPU will execute the cold boot code. Therefore, implementing this
670function is not required on such platforms.
671
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100672Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
673~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100674
675::
676
677 Argument : void
678 Return : unsigned int
679
680This function identifies whether the current CPU is the primary CPU or a
681secondary CPU. A return value of zero indicates that the CPU is not the
682primary CPU, while a non-zero return value indicates that the CPU is the
683primary CPU.
684
685Note that for platforms that can't release secondary CPUs out of reset, only the
686primary CPU will execute the cold boot code. Therefore, there is no need to
687distinguish between primary and secondary CPUs and implementing this function is
688not required.
689
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100690Function : platform_mem_init() [mandatory]
691~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100692
693::
694
695 Argument : void
696 Return : void
697
698This function is called before any access to data is made by the firmware, in
699order to carry out any essential memory initialization.
700
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100701Function: plat_get_rotpk_info()
702~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100703
704::
705
706 Argument : void *, void **, unsigned int *, unsigned int *
707 Return : int
708
709This function is mandatory when Trusted Board Boot is enabled. It returns a
710pointer to the ROTPK stored in the platform (or a hash of it) and its length.
711The ROTPK must be encoded in DER format according to the following ASN.1
712structure:
713
714::
715
716 AlgorithmIdentifier ::= SEQUENCE {
717 algorithm OBJECT IDENTIFIER,
718 parameters ANY DEFINED BY algorithm OPTIONAL
719 }
720
721 SubjectPublicKeyInfo ::= SEQUENCE {
722 algorithm AlgorithmIdentifier,
723 subjectPublicKey BIT STRING
724 }
725
726In case the function returns a hash of the key:
727
728::
729
730 DigestInfo ::= SEQUENCE {
731 digestAlgorithm AlgorithmIdentifier,
732 digest OCTET STRING
733 }
734
735The function returns 0 on success. Any other value is treated as error by the
736Trusted Board Boot. The function also reports extra information related
737to the ROTPK in the flags parameter:
738
739::
740
741 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
742 hash.
743 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
744 verification while the platform ROTPK is not deployed.
745 When this flag is set, the function does not need to
746 return a platform ROTPK, and the authentication
747 framework uses the ROTPK in the certificate without
748 verifying it against the platform value. This flag
749 must not be used in a deployed production environment.
750
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100751Function: plat_get_nv_ctr()
752~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100753
754::
755
756 Argument : void *, unsigned int *
757 Return : int
758
759This function is mandatory when Trusted Board Boot is enabled. It returns the
760non-volatile counter value stored in the platform in the second argument. The
761cookie in the first argument may be used to select the counter in case the
762platform provides more than one (for example, on platforms that use the default
763TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100764TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100765
766The function returns 0 on success. Any other value means the counter value could
767not be retrieved from the platform.
768
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100769Function: plat_set_nv_ctr()
770~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100771
772::
773
774 Argument : void *, unsigned int
775 Return : int
776
777This function is mandatory when Trusted Board Boot is enabled. It sets a new
778counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100779select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100780the updated counter value to be written to the NV counter.
781
782The function returns 0 on success. Any other value means the counter value could
783not be updated.
784
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100785Function: plat_set_nv_ctr2()
786~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100787
788::
789
790 Argument : void *, const auth_img_desc_t *, unsigned int
791 Return : int
792
793This function is optional when Trusted Board Boot is enabled. If this
794interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
795first argument passed is a cookie and is typically used to
796differentiate between a Non Trusted NV Counter and a Trusted NV
797Counter. The second argument is a pointer to an authentication image
798descriptor and may be used to decide if the counter is allowed to be
799updated or not. The third argument is the updated counter value to
800be written to the NV counter.
801
802The function returns 0 on success. Any other value means the counter value
803either could not be updated or the authentication image descriptor indicates
804that it is not allowed to be updated.
805
806Common mandatory function modifications
807---------------------------------------
808
809The following functions are mandatory functions which need to be implemented
810by the platform port.
811
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100812Function : plat_my_core_pos()
813~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100814
815::
816
817 Argument : void
818 Return : unsigned int
819
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000820This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100821CPU-specific linear index into blocks of memory (for example while allocating
822per-CPU stacks). This function will be invoked very early in the
823initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000824implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100825runtime environment. This function can clobber x0 - x8 and must preserve
826x9 - x29.
827
828This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +0100829PSCI and details of this can be found in
830:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100831
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100832Function : plat_core_pos_by_mpidr()
833~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100834
835::
836
837 Argument : u_register_t
838 Return : int
839
840This function validates the ``MPIDR`` of a CPU and converts it to an index,
841which can be used as a CPU-specific linear index into blocks of memory. In
842case the ``MPIDR`` is invalid, this function returns -1. This function will only
843be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000844utilize the C runtime environment. For further details about how TF-A
845represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +0100846index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100847
Ambroise Vincentd207f562019-04-10 12:50:27 +0100848Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
849~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
850
851::
852
853 Arguments : void **heap_addr, size_t *heap_size
854 Return : int
855
856This function is invoked during Mbed TLS library initialisation to get a heap,
857by means of a starting address and a size. This heap will then be used
858internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
859must be able to provide a heap to it.
860
861A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
862which a heap is statically reserved during compile time inside every image
863(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
864the function simply returns the address and size of this "pre-allocated" heap.
865For a platform to use this default implementation, only a call to the helper
866from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
867
868However, by writting their own implementation, platforms have the potential to
869optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
870shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
871twice.
872
873On success the function should return 0 and a negative error code otherwise.
874
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100875Common optional modifications
876-----------------------------
877
878The following are helper functions implemented by the firmware that perform
879common platform-specific tasks. A platform may choose to override these
880definitions.
881
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100882Function : plat_set_my_stack()
883~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100884
885::
886
887 Argument : void
888 Return : void
889
890This function sets the current stack pointer to the normal memory stack that
891has been allocated for the current CPU. For BL images that only require a
892stack for the primary CPU, the UP version of the function is used. The size
893of the stack allocated to each CPU is specified by the platform defined
894constant ``PLATFORM_STACK_SIZE``.
895
896Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100897provided in ``plat/common/aarch64/platform_up_stack.S`` and
898``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100899
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100900Function : plat_get_my_stack()
901~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100902
903::
904
905 Argument : void
906 Return : uintptr_t
907
908This function returns the base address of the normal memory stack that
909has been allocated for the current CPU. For BL images that only require a
910stack for the primary CPU, the UP version of the function is used. The size
911of the stack allocated to each CPU is specified by the platform defined
912constant ``PLATFORM_STACK_SIZE``.
913
914Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100915provided in ``plat/common/aarch64/platform_up_stack.S`` and
916``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100917
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100918Function : plat_report_exception()
919~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100920
921::
922
923 Argument : unsigned int
924 Return : void
925
926A platform may need to report various information about its status when an
927exception is taken, for example the current exception level, the CPU security
928state (secure/non-secure), the exception type, and so on. This function is
929called in the following circumstances:
930
931- In BL1, whenever an exception is taken.
932- In BL2, whenever an exception is taken.
933
934The default implementation doesn't do anything, to avoid making assumptions
935about the way the platform displays its status information.
936
937For AArch64, this function receives the exception type as its argument.
938Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +0100939``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +0000940related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100941
942For AArch32, this function receives the exception mode as its argument.
943Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +0100944``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100945
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100946Function : plat_reset_handler()
947~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100948
949::
950
951 Argument : void
952 Return : void
953
954A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000955allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000956specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100957preserve the values of callee saved registers x19 to x29.
958
959The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +0100960the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100961guidelines.
962
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100963Function : plat_disable_acp()
964~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100965
966::
967
968 Argument : void
969 Return : void
970
John Tsichritzis6dda9762018-07-23 09:18:04 +0100971This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100972present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +0100973doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100974it has restrictions for stack usage and it can use the registers x0 - x17 as
975scratch registers. It should preserve the value in x18 register as it is used
976by the caller to store the return address.
977
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100978Function : plat_error_handler()
979~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100980
981::
982
983 Argument : int
984 Return : void
985
986This API is called when the generic code encounters an error situation from
987which it cannot continue. It allows the platform to perform error reporting or
988recovery actions (for example, reset the system). This function must not return.
989
990The parameter indicates the type of error using standard codes from ``errno.h``.
991Possible errors reported by the generic code are:
992
993- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
994 Board Boot is enabled)
995- ``-ENOENT``: the requested image or certificate could not be found or an IO
996 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +0000997- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
998 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100999
1000The default implementation simply spins.
1001
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001002Function : plat_panic_handler()
1003~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001004
1005::
1006
1007 Argument : void
1008 Return : void
1009
1010This API is called when the generic code encounters an unexpected error
1011situation from which it cannot recover. This function must not return,
1012and must be implemented in assembly because it may be called before the C
1013environment is initialized.
1014
Paul Beesleyba3ed402019-03-13 16:20:44 +00001015.. note::
1016 The address from where it was called is stored in x30 (Link Register).
1017 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001018
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001019Function : plat_get_bl_image_load_info()
1020~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001021
1022::
1023
1024 Argument : void
1025 Return : bl_load_info_t *
1026
1027This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001028populated to load. This function is invoked in BL2 to load the
1029BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001030
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001031Function : plat_get_next_bl_params()
1032~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001033
1034::
1035
1036 Argument : void
1037 Return : bl_params_t *
1038
1039This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001040kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001041function is invoked in BL2 to pass this information to the next BL
1042image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001043
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001044Function : plat_get_stack_protector_canary()
1045~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001046
1047::
1048
1049 Argument : void
1050 Return : u_register_t
1051
1052This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001053when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001054value will weaken the protection as the attacker could easily write the right
1055value as part of the attack most of the time. Therefore, it should return a
1056true random number.
1057
Paul Beesleyba3ed402019-03-13 16:20:44 +00001058.. warning::
1059 For the protection to be effective, the global data need to be placed at
1060 a lower address than the stack bases. Failure to do so would allow an
1061 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001062
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001063Function : plat_flush_next_bl_params()
1064~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001065
1066::
1067
1068 Argument : void
1069 Return : void
1070
1071This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001072next image. This function is invoked in BL2 to flush this information
1073to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001074
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001075Function : plat_log_get_prefix()
1076~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001077
1078::
1079
1080 Argument : unsigned int
1081 Return : const char *
1082
1083This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001084prepended to all the log output from TF-A. The `log_level` (argument) will
1085correspond to one of the standard log levels defined in debug.h. The platform
1086can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001087the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001088increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001089
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001090Modifications specific to a Boot Loader stage
1091---------------------------------------------
1092
1093Boot Loader Stage 1 (BL1)
1094-------------------------
1095
1096BL1 implements the reset vector where execution starts from after a cold or
1097warm boot. For each CPU, BL1 is responsible for the following tasks:
1098
1099#. Handling the reset as described in section 2.2
1100
1101#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1102 only this CPU executes the remaining BL1 code, including loading and passing
1103 control to the BL2 stage.
1104
1105#. Identifying and starting the Firmware Update process (if required).
1106
1107#. Loading the BL2 image from non-volatile storage into secure memory at the
1108 address specified by the platform defined constant ``BL2_BASE``.
1109
1110#. Populating a ``meminfo`` structure with the following information in memory,
1111 accessible by BL2 immediately upon entry.
1112
1113 ::
1114
1115 meminfo.total_base = Base address of secure RAM visible to BL2
1116 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001117
Soby Mathew97b1bff2018-09-27 16:46:41 +01001118 By default, BL1 places this ``meminfo`` structure at the end of secure
1119 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001120
Soby Mathewb1bf0442018-02-16 14:52:52 +00001121 It is possible for the platform to decide where it wants to place the
1122 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1123 BL2 by overriding the weak default implementation of
1124 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001125
1126The following functions need to be implemented by the platform port to enable
1127BL1 to perform the above tasks.
1128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001129Function : bl1_early_platform_setup() [mandatory]
1130~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001131
1132::
1133
1134 Argument : void
1135 Return : void
1136
1137This function executes with the MMU and data caches disabled. It is only called
1138by the primary CPU.
1139
Dan Handley610e7e12018-03-01 18:44:00 +00001140On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001141
1142- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1143
1144- Initializes a UART (PL011 console), which enables access to the ``printf``
1145 family of functions in BL1.
1146
1147- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1148 the CCI slave interface corresponding to the cluster that includes the
1149 primary CPU.
1150
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001151Function : bl1_plat_arch_setup() [mandatory]
1152~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001153
1154::
1155
1156 Argument : void
1157 Return : void
1158
1159This function performs any platform-specific and architectural setup that the
1160platform requires. Platform-specific setup might include configuration of
1161memory controllers and the interconnect.
1162
Dan Handley610e7e12018-03-01 18:44:00 +00001163In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001164
1165This function helps fulfill requirement 2 above.
1166
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001167Function : bl1_platform_setup() [mandatory]
1168~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001169
1170::
1171
1172 Argument : void
1173 Return : void
1174
1175This function executes with the MMU and data caches enabled. It is responsible
1176for performing any remaining platform-specific setup that can occur after the
1177MMU and data cache have been enabled.
1178
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001179if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001180sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001181
Dan Handley610e7e12018-03-01 18:44:00 +00001182In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001183layer used to load the next bootloader image.
1184
1185This function helps fulfill requirement 4 above.
1186
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001187Function : bl1_plat_sec_mem_layout() [mandatory]
1188~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001189
1190::
1191
1192 Argument : void
1193 Return : meminfo *
1194
1195This function should only be called on the cold boot path. It executes with the
1196MMU and data caches enabled. The pointer returned by this function must point to
1197a ``meminfo`` structure containing the extents and availability of secure RAM for
1198the BL1 stage.
1199
1200::
1201
1202 meminfo.total_base = Base address of secure RAM visible to BL1
1203 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001204
1205This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1206populates a similar structure to tell BL2 the extents of memory available for
1207its own use.
1208
1209This function helps fulfill requirements 4 and 5 above.
1210
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001211Function : bl1_plat_prepare_exit() [optional]
1212~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001213
1214::
1215
1216 Argument : entry_point_info_t *
1217 Return : void
1218
1219This function is called prior to exiting BL1 in response to the
1220``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1221platform specific clean up or bookkeeping operations before transferring
1222control to the next image. It receives the address of the ``entry_point_info_t``
1223structure passed from BL2. This function runs with MMU disabled.
1224
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001225Function : bl1_plat_set_ep_info() [optional]
1226~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001227
1228::
1229
1230 Argument : unsigned int image_id, entry_point_info_t *ep_info
1231 Return : void
1232
1233This function allows platforms to override ``ep_info`` for the given ``image_id``.
1234
1235The default implementation just returns.
1236
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001237Function : bl1_plat_get_next_image_id() [optional]
1238~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001239
1240::
1241
1242 Argument : void
1243 Return : unsigned int
1244
1245This and the following function must be overridden to enable the FWU feature.
1246
1247BL1 calls this function after platform setup to identify the next image to be
1248loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1249with the normal boot sequence, which loads and executes BL2. If the platform
1250returns a different image id, BL1 assumes that Firmware Update is required.
1251
Dan Handley610e7e12018-03-01 18:44:00 +00001252The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001253platforms override this function to detect if firmware update is required, and
1254if so, return the first image in the firmware update process.
1255
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001256Function : bl1_plat_get_image_desc() [optional]
1257~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001258
1259::
1260
1261 Argument : unsigned int image_id
1262 Return : image_desc_t *
1263
1264BL1 calls this function to get the image descriptor information ``image_desc_t``
1265for the provided ``image_id`` from the platform.
1266
Dan Handley610e7e12018-03-01 18:44:00 +00001267The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001268standard platforms return an image descriptor corresponding to BL2 or one of
1269the firmware update images defined in the Trusted Board Boot Requirements
1270specification.
1271
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001272Function : bl1_plat_handle_pre_image_load() [optional]
1273~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001274
1275::
1276
Soby Mathew2f38ce32018-02-08 17:45:12 +00001277 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001278 Return : int
1279
1280This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001281corresponding to ``image_id``. This function is invoked in BL1, both in cold
1282boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001283
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001284Function : bl1_plat_handle_post_image_load() [optional]
1285~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001286
1287::
1288
Soby Mathew2f38ce32018-02-08 17:45:12 +00001289 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001290 Return : int
1291
1292This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001293corresponding to ``image_id``. This function is invoked in BL1, both in cold
1294boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001295
Soby Mathewb1bf0442018-02-16 14:52:52 +00001296The default weak implementation of this function calculates the amount of
1297Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1298structure at the beginning of this free memory and populates it. The address
1299of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1300information to BL2.
1301
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001302Function : bl1_plat_fwu_done() [optional]
1303~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001304
1305::
1306
1307 Argument : unsigned int image_id, uintptr_t image_src,
1308 unsigned int image_size
1309 Return : void
1310
1311BL1 calls this function when the FWU process is complete. It must not return.
1312The platform may override this function to take platform specific action, for
1313example to initiate the normal boot flow.
1314
1315The default implementation spins forever.
1316
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001317Function : bl1_plat_mem_check() [mandatory]
1318~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001319
1320::
1321
1322 Argument : uintptr_t mem_base, unsigned int mem_size,
1323 unsigned int flags
1324 Return : int
1325
1326BL1 calls this function while handling FWU related SMCs, more specifically when
1327copying or authenticating an image. Its responsibility is to ensure that the
1328region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1329that this memory corresponds to either a secure or non-secure memory region as
1330indicated by the security state of the ``flags`` argument.
1331
1332This function can safely assume that the value resulting from the addition of
1333``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1334overflow.
1335
1336This function must return 0 on success, a non-null error code otherwise.
1337
1338The default implementation of this function asserts therefore platforms must
1339override it when using the FWU feature.
1340
1341Boot Loader Stage 2 (BL2)
1342-------------------------
1343
1344The BL2 stage is executed only by the primary CPU, which is determined in BL1
1345using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001346``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1347``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1348non-volatile storage to secure/non-secure RAM. After all the images are loaded
1349then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1350images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001351
1352The following functions must be implemented by the platform port to enable BL2
1353to perform the above tasks.
1354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001355Function : bl2_early_platform_setup2() [mandatory]
1356~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001357
1358::
1359
Soby Mathew97b1bff2018-09-27 16:46:41 +01001360 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001361 Return : void
1362
1363This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001364by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1365are platform specific.
1366
1367On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001368
Soby Mathew97b1bff2018-09-27 16:46:41 +01001369 arg0 - Points to load address of HW_CONFIG if present
1370
1371 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1372 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001373
Dan Handley610e7e12018-03-01 18:44:00 +00001374On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001375
1376- Initializes a UART (PL011 console), which enables access to the ``printf``
1377 family of functions in BL2.
1378
1379- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001380 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1381 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001382
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001383Function : bl2_plat_arch_setup() [mandatory]
1384~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001385
1386::
1387
1388 Argument : void
1389 Return : void
1390
1391This function executes with the MMU and data caches disabled. It is only called
1392by the primary CPU.
1393
1394The purpose of this function is to perform any architectural initialization
1395that varies across platforms.
1396
Dan Handley610e7e12018-03-01 18:44:00 +00001397On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001398
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001399Function : bl2_platform_setup() [mandatory]
1400~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001401
1402::
1403
1404 Argument : void
1405 Return : void
1406
1407This function may execute with the MMU and data caches enabled if the platform
1408port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1409called by the primary CPU.
1410
1411The purpose of this function is to perform any platform initialization
1412specific to BL2.
1413
Dan Handley610e7e12018-03-01 18:44:00 +00001414In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001415configuration of the TrustZone controller to allow non-secure masters access
1416to most of DRAM. Part of DRAM is reserved for secure world use.
1417
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001418Function : bl2_plat_handle_pre_image_load() [optional]
1419~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001420
1421::
1422
1423 Argument : unsigned int
1424 Return : int
1425
1426This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001427for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001428loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001429
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001430Function : bl2_plat_handle_post_image_load() [optional]
1431~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001432
1433::
1434
1435 Argument : unsigned int
1436 Return : int
1437
1438This function can be used by the platforms to update/use image information
1439for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001440loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001441
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001442Function : bl2_plat_preload_setup [optional]
1443~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001444
1445::
John Tsichritzisee10e792018-06-06 09:38:10 +01001446
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001447 Argument : void
1448 Return : void
1449
1450This optional function performs any BL2 platform initialization
1451required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001452bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001453boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001454plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001455
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001456Function : plat_try_next_boot_source() [optional]
1457~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001458
1459::
John Tsichritzisee10e792018-06-06 09:38:10 +01001460
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001461 Argument : void
1462 Return : int
1463
1464This optional function passes to the next boot source in the redundancy
1465sequence.
1466
1467This function moves the current boot redundancy source to the next
1468element in the boot sequence. If there are no more boot sources then it
1469must return 0, otherwise it must return 1. The default implementation
1470of this always returns 0.
1471
Roberto Vargasb1584272017-11-20 13:36:10 +00001472Boot Loader Stage 2 (BL2) at EL3
1473--------------------------------
1474
Dan Handley610e7e12018-03-01 18:44:00 +00001475When the platform has a non-TF-A Boot ROM it is desirable to jump
1476directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001477execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1478document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001479
1480All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001481bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1482their work is done now by bl2_el3_early_platform_setup and
1483bl2_el3_plat_arch_setup. These functions should generally implement
1484the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001485
1486
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001487Function : bl2_el3_early_platform_setup() [mandatory]
1488~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001489
1490::
John Tsichritzisee10e792018-06-06 09:38:10 +01001491
Roberto Vargasb1584272017-11-20 13:36:10 +00001492 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1493 Return : void
1494
1495This function executes with the MMU and data caches disabled. It is only called
1496by the primary CPU. This function receives four parameters which can be used
1497by the platform to pass any needed information from the Boot ROM to BL2.
1498
Dan Handley610e7e12018-03-01 18:44:00 +00001499On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001500
1501- Initializes a UART (PL011 console), which enables access to the ``printf``
1502 family of functions in BL2.
1503
1504- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001505 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1506 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001507
1508- Initializes the private variables that define the memory layout used.
1509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001510Function : bl2_el3_plat_arch_setup() [mandatory]
1511~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001512
1513::
John Tsichritzisee10e792018-06-06 09:38:10 +01001514
Roberto Vargasb1584272017-11-20 13:36:10 +00001515 Argument : void
1516 Return : void
1517
1518This function executes with the MMU and data caches disabled. It is only called
1519by the primary CPU.
1520
1521The purpose of this function is to perform any architectural initialization
1522that varies across platforms.
1523
Dan Handley610e7e12018-03-01 18:44:00 +00001524On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001525
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001526Function : bl2_el3_plat_prepare_exit() [optional]
1527~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001528
1529::
John Tsichritzisee10e792018-06-06 09:38:10 +01001530
Roberto Vargasb1584272017-11-20 13:36:10 +00001531 Argument : void
1532 Return : void
1533
1534This function is called prior to exiting BL2 and run the next image.
1535It should be used to perform platform specific clean up or bookkeeping
1536operations before transferring control to the next image. This function
1537runs with MMU disabled.
1538
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001539FWU Boot Loader Stage 2 (BL2U)
1540------------------------------
1541
1542The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1543process and is executed only by the primary CPU. BL1 passes control to BL2U at
1544``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1545
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001546#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1547 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1548 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1549 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001550 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1551 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1552
1553#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001554 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001555 normal world can access DDR memory.
1556
1557The following functions must be implemented by the platform port to enable
1558BL2U to perform the tasks mentioned above.
1559
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001560Function : bl2u_early_platform_setup() [mandatory]
1561~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001562
1563::
1564
1565 Argument : meminfo *mem_info, void *plat_info
1566 Return : void
1567
1568This function executes with the MMU and data caches disabled. It is only
1569called by the primary CPU. The arguments to this function is the address
1570of the ``meminfo`` structure and platform specific info provided by BL1.
1571
1572The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1573private storage as the original memory may be subsequently overwritten by BL2U.
1574
Dan Handley610e7e12018-03-01 18:44:00 +00001575On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001576to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001577variable.
1578
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001579Function : bl2u_plat_arch_setup() [mandatory]
1580~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001581
1582::
1583
1584 Argument : void
1585 Return : void
1586
1587This function executes with the MMU and data caches disabled. It is only
1588called by the primary CPU.
1589
1590The purpose of this function is to perform any architectural initialization
1591that varies across platforms, for example enabling the MMU (since the memory
1592map differs across platforms).
1593
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001594Function : bl2u_platform_setup() [mandatory]
1595~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001596
1597::
1598
1599 Argument : void
1600 Return : void
1601
1602This function may execute with the MMU and data caches enabled if the platform
1603port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1604called by the primary CPU.
1605
1606The purpose of this function is to perform any platform initialization
1607specific to BL2U.
1608
Dan Handley610e7e12018-03-01 18:44:00 +00001609In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001610configuration of the TrustZone controller to allow non-secure masters access
1611to most of DRAM. Part of DRAM is reserved for secure world use.
1612
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001613Function : bl2u_plat_handle_scp_bl2u() [optional]
1614~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001615
1616::
1617
1618 Argument : void
1619 Return : int
1620
1621This function is used to perform any platform-specific actions required to
1622handle the SCP firmware. Typically it transfers the image into SCP memory using
1623a platform-specific protocol and waits until SCP executes it and signals to the
1624Application Processor (AP) for BL2U execution to continue.
1625
1626This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001627This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001628
1629Boot Loader Stage 3-1 (BL31)
1630----------------------------
1631
1632During cold boot, the BL31 stage is executed only by the primary CPU. This is
1633determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1634control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1635CPUs. BL31 executes at EL3 and is responsible for:
1636
1637#. Re-initializing all architectural and platform state. Although BL1 performs
1638 some of this initialization, BL31 remains resident in EL3 and must ensure
1639 that EL3 architectural and platform state is completely initialized. It
1640 should make no assumptions about the system state when it receives control.
1641
1642#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001643 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1644 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001645
1646#. Providing runtime firmware services. Currently, BL31 only implements a
1647 subset of the Power State Coordination Interface (PSCI) API as a runtime
1648 service. See Section 3.3 below for details of porting the PSCI
1649 implementation.
1650
1651#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001652 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001653 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001654 executed and run the corresponding image. On ARM platforms, BL31 uses the
1655 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001656
1657If BL31 is a reset vector, It also needs to handle the reset as specified in
1658section 2.2 before the tasks described above.
1659
1660The following functions must be implemented by the platform port to enable BL31
1661to perform the above tasks.
1662
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001663Function : bl31_early_platform_setup2() [mandatory]
1664~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001665
1666::
1667
Soby Mathew97b1bff2018-09-27 16:46:41 +01001668 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001669 Return : void
1670
1671This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001672by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1673platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001674
Soby Mathew97b1bff2018-09-27 16:46:41 +01001675In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001676
Soby Mathew97b1bff2018-09-27 16:46:41 +01001677 arg0 - The pointer to the head of `bl_params_t` list
1678 which is list of executable images following BL31,
1679
1680 arg1 - Points to load address of SOC_FW_CONFIG if present
1681
1682 arg2 - Points to load address of HW_CONFIG if present
1683
1684 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1685 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001686
Soby Mathew97b1bff2018-09-27 16:46:41 +01001687The function runs through the `bl_param_t` list and extracts the entry point
1688information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001689
1690- Initialize a UART (PL011 console), which enables access to the ``printf``
1691 family of functions in BL31.
1692
1693- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1694 CCI slave interface corresponding to the cluster that includes the primary
1695 CPU.
1696
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001697Function : bl31_plat_arch_setup() [mandatory]
1698~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001699
1700::
1701
1702 Argument : void
1703 Return : void
1704
1705This function executes with the MMU and data caches disabled. It is only called
1706by the primary CPU.
1707
1708The purpose of this function is to perform any architectural initialization
1709that varies across platforms.
1710
Dan Handley610e7e12018-03-01 18:44:00 +00001711On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001712
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001713Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001714~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1715
1716::
1717
1718 Argument : void
1719 Return : void
1720
1721This function may execute with the MMU and data caches enabled if the platform
1722port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1723called by the primary CPU.
1724
1725The purpose of this function is to complete platform initialization so that both
1726BL31 runtime services and normal world software can function correctly.
1727
Dan Handley610e7e12018-03-01 18:44:00 +00001728On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001729
1730- Initialize the generic interrupt controller.
1731
1732 Depending on the GIC driver selected by the platform, the appropriate GICv2
1733 or GICv3 initialization will be done, which mainly consists of:
1734
1735 - Enable secure interrupts in the GIC CPU interface.
1736 - Disable the legacy interrupt bypass mechanism.
1737 - Configure the priority mask register to allow interrupts of all priorities
1738 to be signaled to the CPU interface.
1739 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1740 - Target all secure SPIs to CPU0.
1741 - Enable these secure interrupts in the GIC distributor.
1742 - Configure all other interrupts as non-secure.
1743 - Enable signaling of secure interrupts in the GIC distributor.
1744
1745- Enable system-level implementation of the generic timer counter through the
1746 memory mapped interface.
1747
1748- Grant access to the system counter timer module
1749
1750- Initialize the power controller device.
1751
1752 In particular, initialise the locks that prevent concurrent accesses to the
1753 power controller device.
1754
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001755Function : bl31_plat_runtime_setup() [optional]
1756~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001757
1758::
1759
1760 Argument : void
1761 Return : void
1762
1763The purpose of this function is allow the platform to perform any BL31 runtime
1764setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001765implementation of this function will invoke ``console_switch_state()`` to switch
1766console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001767
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001768Function : bl31_plat_get_next_image_ep_info() [mandatory]
1769~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001770
1771::
1772
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001773 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001774 Return : entry_point_info *
1775
1776This function may execute with the MMU and data caches enabled if the platform
1777port does the necessary initializations in ``bl31_plat_arch_setup()``.
1778
1779This function is called by ``bl31_main()`` to retrieve information provided by
1780BL2 for the next image in the security state specified by the argument. BL31
1781uses this information to pass control to that image in the specified security
1782state. This function must return a pointer to the ``entry_point_info`` structure
1783(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1784should return NULL otherwise.
1785
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001786Function : bl31_plat_enable_mmu [optional]
1787~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1788
1789::
1790
1791 Argument : uint32_t
1792 Return : void
1793
1794This function enables the MMU. The boot code calls this function with MMU and
1795caches disabled. This function should program necessary registers to enable
1796translation, and upon return, the MMU on the calling PE must be enabled.
1797
1798The function must honor flags passed in the first argument. These flags are
1799defined by the translation library, and can be found in the file
1800``include/lib/xlat_tables/xlat_mmu_helpers.h``.
1801
1802On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001803is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001804
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001805Function : plat_init_apkey [optional]
1806~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001807
1808::
1809
1810 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001811 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001812
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001813This function returns the 128-bit value which can be used to program ARMv8.3
1814pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001815
1816The value should be obtained from a reliable source of randomness.
1817
1818This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001819Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001820
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001821Function : plat_get_syscnt_freq2() [mandatory]
1822~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001823
1824::
1825
1826 Argument : void
1827 Return : unsigned int
1828
1829This function is used by the architecture setup code to retrieve the counter
1830frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00001831``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001832of the system counter, which is retrieved from the first entry in the frequency
1833modes table.
1834
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001835#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
1836~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001837
1838When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
1839bytes) aligned to the cache line boundary that should be allocated per-cpu to
1840accommodate all the bakery locks.
1841
1842If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
1843calculates the size of the ``bakery_lock`` input section, aligns it to the
1844nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
1845and stores the result in a linker symbol. This constant prevents a platform
1846from relying on the linker and provide a more efficient mechanism for
1847accessing per-cpu bakery lock information.
1848
1849If this constant is defined and its value is not equal to the value
1850calculated by the linker then a link time assertion is raised. A compile time
1851assertion is raised if the value of the constant is not aligned to the cache
1852line boundary.
1853
Paul Beesleyf8640672019-04-12 14:19:42 +01001854.. _porting_guide_sdei_requirements:
1855
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001856SDEI porting requirements
1857~~~~~~~~~~~~~~~~~~~~~~~~~
1858
Paul Beesley606d8072019-03-13 13:58:02 +00001859The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001860and functions, of which some are optional, and some others mandatory.
1861
1862Macros
1863......
1864
1865Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
1866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1867
1868This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00001869Normal |SDEI| events on the platform. This must have a higher value
1870(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001871
1872Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
1873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1874
1875This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00001876Critical |SDEI| events on the platform. This must have a lower value
1877(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001878
Paul Beesley606d8072019-03-13 13:58:02 +00001879**Note**: |SDEI| exception priorities must be the lowest among Secure
1880priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
1881be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001882
1883Functions
1884.........
1885
1886Function: int plat_sdei_validate_entry_point(uintptr_t ep) [optional]
1887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1888
1889::
1890
1891 Argument: uintptr_t
1892 Return: int
1893
1894This function validates the address of client entry points provided for both
Paul Beesley606d8072019-03-13 13:58:02 +00001895event registration and *Complete and Resume* |SDEI| calls. The function
1896takes one argument, which is the address of the handler the |SDEI| client
1897requested to register. The function must return ``0`` for successful validation,
1898or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001899
Dan Handley610e7e12018-03-01 18:44:00 +00001900The default implementation always returns ``0``. On Arm platforms, this function
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001901is implemented to translate the entry point to physical address, and further to
1902ensure that the address is located in Non-secure DRAM.
1903
1904Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
1905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1906
1907::
1908
1909 Argument: uint64_t
1910 Argument: unsigned int
1911 Return: void
1912
Paul Beesley606d8072019-03-13 13:58:02 +00001913|SDEI| specification requires that a PE comes out of reset with the events
1914masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
1915|SDEI| events on the PE. No |SDEI| events can be dispatched until such
1916time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001917
Paul Beesley606d8072019-03-13 13:58:02 +00001918Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001919events are masked on the PE, the dispatcher implementation invokes the function
1920``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
1921interrupt and the interrupt ID are passed as parameters.
1922
1923The default implementation only prints out a warning message.
1924
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001925Power State Coordination Interface (in BL31)
1926--------------------------------------------
1927
Dan Handley610e7e12018-03-01 18:44:00 +00001928The TF-A implementation of the PSCI API is based around the concept of a
1929*power domain*. A *power domain* is a CPU or a logical group of CPUs which
1930share some state on which power management operations can be performed as
1931specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
1932a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
1933*power domains* are arranged in a hierarchical tree structure and each
1934*power domain* can be identified in a system by the cpu index of any CPU that
1935is part of that domain and a *power domain level*. A processing element (for
1936example, a CPU) is at level 0. If the *power domain* node above a CPU is a
1937logical grouping of CPUs that share some state, then level 1 is that group of
1938CPUs (for example, a cluster), and level 2 is a group of clusters (for
1939example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01001940organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001941
1942BL31's platform initialization code exports a pointer to the platform-specific
1943power management operations required for the PSCI implementation to function
1944correctly. This information is populated in the ``plat_psci_ops`` structure. The
1945PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
1946power management operations on the power domains. For example, the target
1947CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
1948handler (if present) is called for the CPU power domain.
1949
1950The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
1951describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00001952defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001953array of local power states where each index corresponds to a power domain
1954level. Each entry contains the local power state the power domain at that power
1955level could enter. It depends on the ``validate_power_state()`` handler to
1956convert the power-state parameter (possibly encoding a composite power state)
1957passed in a PSCI ``CPU_SUSPEND`` call to this representation.
1958
1959The following functions form part of platform port of PSCI functionality.
1960
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001961Function : plat_psci_stat_accounting_start() [optional]
1962~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001963
1964::
1965
1966 Argument : const psci_power_state_t *
1967 Return : void
1968
1969This is an optional hook that platforms can implement for residency statistics
1970accounting before entering a low power state. The ``pwr_domain_state`` field of
1971``state_info`` (first argument) can be inspected if stat accounting is done
1972differently at CPU level versus higher levels. As an example, if the element at
1973index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
1974state, special hardware logic may be programmed in order to keep track of the
1975residency statistics. For higher levels (array indices > 0), the residency
1976statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
1977default implementation will use PMF to capture timestamps.
1978
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001979Function : plat_psci_stat_accounting_stop() [optional]
1980~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001981
1982::
1983
1984 Argument : const psci_power_state_t *
1985 Return : void
1986
1987This is an optional hook that platforms can implement for residency statistics
1988accounting after exiting from a low power state. The ``pwr_domain_state`` field
1989of ``state_info`` (first argument) can be inspected if stat accounting is done
1990differently at CPU level versus higher levels. As an example, if the element at
1991index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
1992state, special hardware logic may be programmed in order to keep track of the
1993residency statistics. For higher levels (array indices > 0), the residency
1994statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
1995default implementation will use PMF to capture timestamps.
1996
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001997Function : plat_psci_stat_get_residency() [optional]
1998~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001999
2000::
2001
2002 Argument : unsigned int, const psci_power_state_t *, int
2003 Return : u_register_t
2004
2005This is an optional interface that is is invoked after resuming from a low power
2006state and provides the time spent resident in that low power state by the power
2007domain at a particular power domain level. When a CPU wakes up from suspend,
2008all its parent power domain levels are also woken up. The generic PSCI code
2009invokes this function for each parent power domain that is resumed and it
2010identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2011argument) describes the low power state that the power domain has resumed from.
2012The current CPU is the first CPU in the power domain to resume from the low
2013power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2014CPU in the power domain to suspend and may be needed to calculate the residency
2015for that power domain.
2016
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002017Function : plat_get_target_pwr_state() [optional]
2018~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002019
2020::
2021
2022 Argument : unsigned int, const plat_local_state_t *, unsigned int
2023 Return : plat_local_state_t
2024
2025The PSCI generic code uses this function to let the platform participate in
2026state coordination during a power management operation. The function is passed
2027a pointer to an array of platform specific local power state ``states`` (second
2028argument) which contains the requested power state for each CPU at a particular
2029power domain level ``lvl`` (first argument) within the power domain. The function
2030is expected to traverse this array of upto ``ncpus`` (third argument) and return
2031a coordinated target power state by the comparing all the requested power
2032states. The target power state should not be deeper than any of the requested
2033power states.
2034
2035A weak definition of this API is provided by default wherein it assumes
2036that the platform assigns a local state value in order of increasing depth
2037of the power state i.e. for two power states X & Y, if X < Y
2038then X represents a shallower power state than Y. As a result, the
2039coordinated target local power state for a power domain will be the minimum
2040of the requested local power state values.
2041
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002042Function : plat_get_power_domain_tree_desc() [mandatory]
2043~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002044
2045::
2046
2047 Argument : void
2048 Return : const unsigned char *
2049
2050This function returns a pointer to the byte array containing the power domain
2051topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002052described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2053initialization code requires this array to be described by the platform, either
2054statically or dynamically, to initialize the power domain topology tree. In case
2055the array is populated dynamically, then plat_core_pos_by_mpidr() and
2056plat_my_core_pos() should also be implemented suitably so that the topology tree
2057description matches the CPU indices returned by these APIs. These APIs together
2058form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002059
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002060Function : plat_setup_psci_ops() [mandatory]
2061~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002062
2063::
2064
2065 Argument : uintptr_t, const plat_psci_ops **
2066 Return : int
2067
2068This function may execute with the MMU and data caches enabled if the platform
2069port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2070called by the primary CPU.
2071
2072This function is called by PSCI initialization code. Its purpose is to let
2073the platform layer know about the warm boot entrypoint through the
2074``sec_entrypoint`` (first argument) and to export handler routines for
2075platform-specific psci power management actions by populating the passed
2076pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2077
2078A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002079the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002080``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002081platform wants to support, the associated operation or operations in this
2082structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002083:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002084function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002085structure instead of providing an empty implementation.
2086
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002087plat_psci_ops.cpu_standby()
2088...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002089
2090Perform the platform-specific actions to enter the standby state for a cpu
2091indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002092wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002093For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2094the suspend state type specified in the ``power-state`` parameter should be
2095STANDBY and the target power domain level specified should be the CPU. The
2096handler should put the CPU into a low power retention state (usually by
2097issuing a wfi instruction) and ensure that it can be woken up from that
2098state by a normal interrupt. The generic code expects the handler to succeed.
2099
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002100plat_psci_ops.pwr_domain_on()
2101.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002102
2103Perform the platform specific actions to power on a CPU, specified
2104by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002105return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002106
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002107plat_psci_ops.pwr_domain_off()
2108..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002109
2110Perform the platform specific actions to prepare to power off the calling CPU
2111and its higher parent power domain levels as indicated by the ``target_state``
2112(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2113
2114The ``target_state`` encodes the platform coordinated target local power states
2115for the CPU power domain and its parent power domain levels. The handler
2116needs to perform power management operation corresponding to the local state
2117at each power level.
2118
2119For this handler, the local power state for the CPU power domain will be a
2120power down state where as it could be either power down, retention or run state
2121for the higher power domain levels depending on the result of state
2122coordination. The generic code expects the handler to succeed.
2123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002124plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2125...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002126
2127This optional function may be used as a performance optimization to replace
2128or complement pwr_domain_suspend() on some platforms. Its calling semantics
2129are identical to pwr_domain_suspend(), except the PSCI implementation only
2130calls this function when suspending to a power down state, and it guarantees
2131that data caches are enabled.
2132
2133When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2134before calling pwr_domain_suspend(). If the target_state corresponds to a
2135power down state and it is safe to perform some or all of the platform
2136specific actions in that function with data caches enabled, it may be more
2137efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2138= 1, data caches remain enabled throughout, and so there is no advantage to
2139moving platform specific actions to this function.
2140
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002141plat_psci_ops.pwr_domain_suspend()
2142..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002143
2144Perform the platform specific actions to prepare to suspend the calling
2145CPU and its higher parent power domain levels as indicated by the
2146``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2147API implementation.
2148
2149The ``target_state`` has a similar meaning as described in
2150the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2151target local power states for the CPU power domain and its parent
2152power domain levels. The handler needs to perform power management operation
2153corresponding to the local state at each power level. The generic code
2154expects the handler to succeed.
2155
Douglas Raillarda84996b2017-08-02 16:57:32 +01002156The difference between turning a power domain off versus suspending it is that
2157in the former case, the power domain is expected to re-initialize its state
2158when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2159case, the power domain is expected to save enough state so that it can resume
2160execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002161``pwr_domain_suspend_finish()``).
2162
Douglas Raillarda84996b2017-08-02 16:57:32 +01002163When suspending a core, the platform can also choose to power off the GICv3
2164Redistributor and ITS through an implementation-defined sequence. To achieve
2165this safely, the ITS context must be saved first. The architectural part is
2166implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2167sequence is implementation defined and it is therefore the responsibility of
2168the platform code to implement the necessary sequence. Then the GIC
2169Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2170Powering off the Redistributor requires the implementation to support it and it
2171is the responsibility of the platform code to execute the right implementation
2172defined sequence.
2173
2174When a system suspend is requested, the platform can also make use of the
2175``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2176it has saved the context of the Redistributors and ITS of all the cores in the
2177system. The context of the Distributor can be large and may require it to be
2178allocated in a special area if it cannot fit in the platform's global static
2179data, for example in DRAM. The Distributor can then be powered down using an
2180implementation-defined sequence.
2181
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002182plat_psci_ops.pwr_domain_pwr_down_wfi()
2183.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002184
2185This is an optional function and, if implemented, is expected to perform
2186platform specific actions including the ``wfi`` invocation which allows the
2187CPU to powerdown. Since this function is invoked outside the PSCI locks,
2188the actions performed in this hook must be local to the CPU or the platform
2189must ensure that races between multiple CPUs cannot occur.
2190
2191The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2192operation and it encodes the platform coordinated target local power states for
2193the CPU power domain and its parent power domain levels. This function must
2194not return back to the caller.
2195
2196If this function is not implemented by the platform, PSCI generic
2197implementation invokes ``psci_power_down_wfi()`` for power down.
2198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002199plat_psci_ops.pwr_domain_on_finish()
2200....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002201
2202This function is called by the PSCI implementation after the calling CPU is
2203powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2204It performs the platform-specific setup required to initialize enough state for
2205this CPU to enter the normal world and also provide secure runtime firmware
2206services.
2207
2208The ``target_state`` (first argument) is the prior state of the power domains
2209immediately before the CPU was turned on. It indicates which power domains
2210above the CPU might require initialization due to having previously been in
2211low power states. The generic code expects the handler to succeed.
2212
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002213plat_psci_ops.pwr_domain_on_finish_late() [optional]
2214...........................................................
2215
2216This optional function is called by the PSCI implementation after the calling
2217CPU is fully powered on with respective data caches enabled. The calling CPU and
2218the associated cluster are guaranteed to be participating in coherency. This
2219function gives the flexibility to perform any platform-specific actions safely,
2220such as initialization or modification of shared data structures, without the
2221overhead of explicit cache maintainace operations.
2222
2223The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2224operation. The generic code expects the handler to succeed.
2225
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002226plat_psci_ops.pwr_domain_suspend_finish()
2227.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002228
2229This function is called by the PSCI implementation after the calling CPU is
2230powered on and released from reset in response to an asynchronous wakeup
2231event, for example a timer interrupt that was programmed by the CPU during the
2232``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2233setup required to restore the saved state for this CPU to resume execution
2234in the normal world and also provide secure runtime firmware services.
2235
2236The ``target_state`` (first argument) has a similar meaning as described in
2237the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2238to succeed.
2239
Douglas Raillarda84996b2017-08-02 16:57:32 +01002240If the Distributor, Redistributors or ITS have been powered off as part of a
2241suspend, their context must be restored in this function in the reverse order
2242to how they were saved during suspend sequence.
2243
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002244plat_psci_ops.system_off()
2245..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002246
2247This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2248call. It performs the platform-specific system poweroff sequence after
2249notifying the Secure Payload Dispatcher.
2250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002251plat_psci_ops.system_reset()
2252............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002253
2254This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2255call. It performs the platform-specific system reset sequence after
2256notifying the Secure Payload Dispatcher.
2257
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002258plat_psci_ops.validate_power_state()
2259....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002260
2261This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2262call to validate the ``power_state`` parameter of the PSCI API and if valid,
2263populate it in ``req_state`` (second argument) array as power domain level
2264specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002265return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002266normal world PSCI client.
2267
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002268plat_psci_ops.validate_ns_entrypoint()
2269......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002270
2271This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2272``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2273parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002274the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002275propagated back to the normal world PSCI client.
2276
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002277plat_psci_ops.get_sys_suspend_power_state()
2278...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002279
2280This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2281call to get the ``req_state`` parameter from platform which encodes the power
2282domain level specific local states to suspend to system affinity level. The
2283``req_state`` will be utilized to do the PSCI state coordination and
2284``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2285enter system suspend.
2286
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002287plat_psci_ops.get_pwr_lvl_state_idx()
2288.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002289
2290This is an optional function and, if implemented, is invoked by the PSCI
2291implementation to convert the ``local_state`` (first argument) at a specified
2292``pwr_lvl`` (second argument) to an index between 0 and
2293``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2294supports more than two local power states at each power domain level, that is
2295``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2296local power states.
2297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002298plat_psci_ops.translate_power_state_by_mpidr()
2299..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002300
2301This is an optional function and, if implemented, verifies the ``power_state``
2302(second argument) parameter of the PSCI API corresponding to a target power
2303domain. The target power domain is identified by using both ``MPIDR`` (first
2304argument) and the power domain level encoded in ``power_state``. The power domain
2305level specific local states are to be extracted from ``power_state`` and be
2306populated in the ``output_state`` (third argument) array. The functionality
2307is similar to the ``validate_power_state`` function described above and is
2308envisaged to be used in case the validity of ``power_state`` depend on the
2309targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002310domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002311function is not implemented, then the generic implementation relies on
2312``validate_power_state`` function to translate the ``power_state``.
2313
2314This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002315power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002316APIs as described in Section 5.18 of `PSCI`_.
2317
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002318plat_psci_ops.get_node_hw_state()
2319.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002320
2321This is an optional function. If implemented this function is intended to return
2322the power state of a node (identified by the first parameter, the ``MPIDR``) in
2323the power domain topology (identified by the second parameter, ``power_level``),
2324as retrieved from a power controller or equivalent component on the platform.
2325Upon successful completion, the implementation must map and return the final
2326status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2327must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2328appropriate.
2329
2330Implementations are not expected to handle ``power_levels`` greater than
2331``PLAT_MAX_PWR_LVL``.
2332
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002333plat_psci_ops.system_reset2()
2334.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002335
2336This is an optional function. If implemented this function is
2337called during the ``SYSTEM_RESET2`` call to perform a reset
2338based on the first parameter ``reset_type`` as specified in
2339`PSCI`_. The parameter ``cookie`` can be used to pass additional
2340reset information. If the ``reset_type`` is not supported, the
2341function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2342resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2343and vendor reset can return other PSCI error codes as defined
2344in `PSCI`_. On success this function will not return.
2345
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002346plat_psci_ops.write_mem_protect()
2347.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002348
2349This is an optional function. If implemented it enables or disables the
2350``MEM_PROTECT`` functionality based on the value of ``val``.
2351A non-zero value enables ``MEM_PROTECT`` and a value of zero
2352disables it. Upon encountering failures it must return a negative value
2353and on success it must return 0.
2354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002355plat_psci_ops.read_mem_protect()
2356................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002357
2358This is an optional function. If implemented it returns the current
2359state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2360failures it must return a negative value and on success it must
2361return 0.
2362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002363plat_psci_ops.mem_protect_chk()
2364...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002365
2366This is an optional function. If implemented it checks if a memory
2367region defined by a base address ``base`` and with a size of ``length``
2368bytes is protected by ``MEM_PROTECT``. If the region is protected
2369then it must return 0, otherwise it must return a negative number.
2370
Paul Beesleyf8640672019-04-12 14:19:42 +01002371.. _porting_guide_imf_in_bl31:
2372
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002373Interrupt Management framework (in BL31)
2374----------------------------------------
2375
2376BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2377generated in either security state and targeted to EL1 or EL2 in the non-secure
2378state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002379described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002380
2381A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002382text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002383platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002384present in the platform. Arm standard platform layer supports both
2385`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2386and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2387FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002388``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2389details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002390
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002391See also: `Interrupt Controller Abstraction APIs`__.
2392
Paul Beesleyea225122019-02-11 17:54:45 +00002393.. __: ../design/platform-interrupt-controller-API.rst
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002394
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002395Function : plat_interrupt_type_to_line() [mandatory]
2396~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002397
2398::
2399
2400 Argument : uint32_t, uint32_t
2401 Return : uint32_t
2402
Dan Handley610e7e12018-03-01 18:44:00 +00002403The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002404interrupt line. The specific line that is signaled depends on how the interrupt
2405controller (IC) reports different interrupt types from an execution context in
2406either security state. The IMF uses this API to determine which interrupt line
2407the platform IC uses to signal each type of interrupt supported by the framework
2408from a given security state. This API must be invoked at EL3.
2409
2410The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01002411:ref:`Interrupt Management Framework`) indicating the target type of the
2412interrupt, the second parameter is the security state of the originating
2413execution context. The return result is the bit position in the ``SCR_EL3``
2414register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002415
Dan Handley610e7e12018-03-01 18:44:00 +00002416In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002417configured as FIQs and Non-secure interrupts as IRQs from either security
2418state.
2419
Dan Handley610e7e12018-03-01 18:44:00 +00002420In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002421configured depends on the security state of the execution context when the
2422interrupt is signalled and are as follows:
2423
2424- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2425 NS-EL0/1/2 context.
2426- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2427 in the NS-EL0/1/2 context.
2428- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2429 context.
2430
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002431Function : plat_ic_get_pending_interrupt_type() [mandatory]
2432~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002433
2434::
2435
2436 Argument : void
2437 Return : uint32_t
2438
2439This API returns the type of the highest priority pending interrupt at the
2440platform IC. The IMF uses the interrupt type to retrieve the corresponding
2441handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2442pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2443``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2444
Dan Handley610e7e12018-03-01 18:44:00 +00002445In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002446Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2447the pending interrupt. The type of interrupt depends upon the id value as
2448follows.
2449
2450#. id < 1022 is reported as a S-EL1 interrupt
2451#. id = 1022 is reported as a Non-secure interrupt.
2452#. id = 1023 is reported as an invalid interrupt type.
2453
Dan Handley610e7e12018-03-01 18:44:00 +00002454In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002455``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2456is read to determine the id of the pending interrupt. The type of interrupt
2457depends upon the id value as follows.
2458
2459#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2460#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2461#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2462#. All other interrupt id's are reported as EL3 interrupt.
2463
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002464Function : plat_ic_get_pending_interrupt_id() [mandatory]
2465~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002466
2467::
2468
2469 Argument : void
2470 Return : uint32_t
2471
2472This API returns the id of the highest priority pending interrupt at the
2473platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2474pending.
2475
Dan Handley610e7e12018-03-01 18:44:00 +00002476In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002477Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2478pending interrupt. The id that is returned by API depends upon the value of
2479the id read from the interrupt controller as follows.
2480
2481#. id < 1022. id is returned as is.
2482#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2483 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2484 This id is returned by the API.
2485#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2486
Dan Handley610e7e12018-03-01 18:44:00 +00002487In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002488EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2489group 0 Register*, is read to determine the id of the pending interrupt. The id
2490that is returned by API depends upon the value of the id read from the
2491interrupt controller as follows.
2492
2493#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2494#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2495 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2496 Register* is read to determine the id of the group 1 interrupt. This id
2497 is returned by the API as long as it is a valid interrupt id
2498#. If the id is any of the special interrupt identifiers,
2499 ``INTR_ID_UNAVAILABLE`` is returned.
2500
2501When the API invoked from S-EL1 for GICv3 systems, the id read from system
2502register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002503Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002504``INTR_ID_UNAVAILABLE`` is returned.
2505
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002506Function : plat_ic_acknowledge_interrupt() [mandatory]
2507~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002508
2509::
2510
2511 Argument : void
2512 Return : uint32_t
2513
2514This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002515the highest pending interrupt has begun. It should return the raw, unmodified
2516value obtained from the interrupt controller when acknowledging an interrupt.
2517The actual interrupt number shall be extracted from this raw value using the API
2518`plat_ic_get_interrupt_id()`__.
2519
Paul Beesleyea225122019-02-11 17:54:45 +00002520.. __: ../design/platform-interrupt-controller-API.rst#function-unsigned-int-plat-ic-get-interrupt-id-unsigned-int-raw-optional
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002521
Dan Handley610e7e12018-03-01 18:44:00 +00002522This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002523Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2524priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002525It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002526
Dan Handley610e7e12018-03-01 18:44:00 +00002527In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002528from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2529Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2530reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2531group 1*. The read changes the state of the highest pending interrupt from
2532pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002533unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002534
2535The TSP uses this API to start processing of the secure physical timer
2536interrupt.
2537
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002538Function : plat_ic_end_of_interrupt() [mandatory]
2539~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002540
2541::
2542
2543 Argument : uint32_t
2544 Return : void
2545
2546This API is used by the CPU to indicate to the platform IC that processing of
2547the interrupt corresponding to the id (passed as the parameter) has
2548finished. The id should be the same as the id returned by the
2549``plat_ic_acknowledge_interrupt()`` API.
2550
Dan Handley610e7e12018-03-01 18:44:00 +00002551Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002552(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2553system register in case of GICv3 depending on where the API is invoked from,
2554EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2555controller.
2556
2557The TSP uses this API to finish processing of the secure physical timer
2558interrupt.
2559
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002560Function : plat_ic_get_interrupt_type() [mandatory]
2561~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002562
2563::
2564
2565 Argument : uint32_t
2566 Return : uint32_t
2567
2568This API returns the type of the interrupt id passed as the parameter.
2569``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2570interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2571returned depending upon how the interrupt has been configured by the platform
2572IC. This API must be invoked at EL3.
2573
Dan Handley610e7e12018-03-01 18:44:00 +00002574Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002575and Non-secure interrupts as Group1 interrupts. It reads the group value
2576corresponding to the interrupt id from the relevant *Interrupt Group Register*
2577(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2578
Dan Handley610e7e12018-03-01 18:44:00 +00002579In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002580Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2581(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2582as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2583
2584Crash Reporting mechanism (in BL31)
2585-----------------------------------
2586
2587BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002588of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002589on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002590``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2591
2592The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2593implementation of all of them. Platforms may include this file to their
2594makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002595output to be routed over the normal console infrastructure and get printed on
2596consoles configured to output in crash state. ``console_set_scope()`` can be
2597used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00002598
2599.. note::
2600 Platforms are responsible for making sure that they only mark consoles for
2601 use in the crash scope that are able to support this, i.e. that are written
2602 in assembly and conform with the register clobber rules for putc()
2603 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002604
Julius Werneraae9bb12017-09-18 16:49:48 -07002605In some cases (such as debugging very early crashes that happen before the
2606normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002607more explicitly. These platforms may instead provide custom implementations for
2608these. They are executed outside of a C environment and without a stack. Many
2609console drivers provide functions named ``console_xxx_core_init/putc/flush``
2610that are designed to be used by these functions. See Arm platforms (like juno)
2611for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002612
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002613Function : plat_crash_console_init [mandatory]
2614~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002615
2616::
2617
2618 Argument : void
2619 Return : int
2620
2621This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002622console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002623initialization and returns 1 on success.
2624
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002625Function : plat_crash_console_putc [mandatory]
2626~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002627
2628::
2629
2630 Argument : int
2631 Return : int
2632
2633This API is used by the crash reporting mechanism to print a character on the
2634designated crash console. It must only use general purpose registers x1 and
2635x2 to do its work. The parameter and the return value are in general purpose
2636register x0.
2637
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002638Function : plat_crash_console_flush [mandatory]
2639~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002640
2641::
2642
2643 Argument : void
2644 Return : int
2645
2646This API is used by the crash reporting mechanism to force write of all buffered
2647data on the designated crash console. It should only use general purpose
Julius Werneraae9bb12017-09-18 16:49:48 -07002648registers x0 through x5 to do its work. The return value is 0 on successful
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002649completion; otherwise the return value is -1.
2650
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002651External Abort handling and RAS Support
2652---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002653
2654Function : plat_ea_handler
2655~~~~~~~~~~~~~~~~~~~~~~~~~~
2656
2657::
2658
2659 Argument : int
2660 Argument : uint64_t
2661 Argument : void *
2662 Argument : void *
2663 Argument : uint64_t
2664 Return : void
2665
2666This function is invoked by the RAS framework for the platform to handle an
2667External Abort received at EL3. The intention of the function is to attempt to
2668resolve the cause of External Abort and return; if that's not possible, to
2669initiate orderly shutdown of the system.
2670
2671The first parameter (``int ea_reason``) indicates the reason for External Abort.
2672Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2673
2674The second parameter (``uint64_t syndrome``) is the respective syndrome
2675presented to EL3 after having received the External Abort. Depending on the
2676nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2677can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2678
2679The third parameter (``void *cookie``) is unused for now. The fourth parameter
2680(``void *handle``) is a pointer to the preempted context. The fifth parameter
2681(``uint64_t flags``) indicates the preempted security state. These parameters
2682are received from the top-level exception handler.
2683
2684If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2685function iterates through RAS handlers registered by the platform. If any of the
2686RAS handlers resolve the External Abort, no further action is taken.
2687
2688If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2689could resolve the External Abort, the default implementation prints an error
2690message, and panics.
2691
2692Function : plat_handle_uncontainable_ea
2693~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2694
2695::
2696
2697 Argument : int
2698 Argument : uint64_t
2699 Return : void
2700
2701This function is invoked by the RAS framework when an External Abort of
2702Uncontainable type is received at EL3. Due to the critical nature of
2703Uncontainable errors, the intention of this function is to initiate orderly
2704shutdown of the system, and is not expected to return.
2705
2706This function must be implemented in assembly.
2707
2708The first and second parameters are the same as that of ``plat_ea_handler``.
2709
2710The default implementation of this function calls
2711``report_unhandled_exception``.
2712
2713Function : plat_handle_double_fault
2714~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2715
2716::
2717
2718 Argument : int
2719 Argument : uint64_t
2720 Return : void
2721
2722This function is invoked by the RAS framework when another External Abort is
2723received at EL3 while one is already being handled. I.e., a call to
2724``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2725this function is to initiate orderly shutdown of the system, and is not expected
2726recover or return.
2727
2728This function must be implemented in assembly.
2729
2730The first and second parameters are the same as that of ``plat_ea_handler``.
2731
2732The default implementation of this function calls
2733``report_unhandled_exception``.
2734
2735Function : plat_handle_el3_ea
2736~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2737
2738::
2739
2740 Return : void
2741
2742This function is invoked when an External Abort is received while executing in
2743EL3. Due to its critical nature, the intention of this function is to initiate
2744orderly shutdown of the system, and is not expected recover or return.
2745
2746This function must be implemented in assembly.
2747
2748The default implementation of this function calls
2749``report_unhandled_exception``.
2750
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002751Build flags
2752-----------
2753
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002754There are some build flags which can be defined by the platform to control
2755inclusion or exclusion of certain BL stages from the FIP image. These flags
2756need to be defined in the platform makefile which will get included by the
2757build system.
2758
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002759- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002760 By default, this flag is defined ``yes`` by the build system and ``BL33``
2761 build option should be supplied as a build option. The platform has the
2762 option of excluding the BL33 image in the ``fip`` image by defining this flag
2763 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
2764 are used, this flag will be set to ``no`` automatically.
2765
2766C Library
2767---------
2768
2769To avoid subtle toolchain behavioral dependencies, the header files provided
2770by the compiler are not used. The software is built with the ``-nostdinc`` flag
2771to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00002772required headers are included in the TF-A source tree. The library only
2773contains those C library definitions required by the local implementation. If
2774more functionality is required, the needed library functions will need to be
2775added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002776
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002777Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00002778been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002779from `FreeBSD`_, others have been written specifically for TF-A as well. The
2780files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002781
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01002782SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
2783can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002784
2785Storage abstraction layer
2786-------------------------
2787
Louis Mayencourtb5469002019-07-15 13:56:03 +01002788In order to improve platform independence and portability a storage abstraction
2789layer is used to load data from non-volatile platform storage. Currently
2790storage access is only required by BL1 and BL2 phases and performed inside the
2791``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002792
Louis Mayencourtb5469002019-07-15 13:56:03 +01002793.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002794
Dan Handley610e7e12018-03-01 18:44:00 +00002795It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002796development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002797the default means to load data from storage (see :ref:`firmware_design_fip`).
2798The storage layer is described in the header file
2799``include/drivers/io/io_storage.h``. The implementation of the common library is
2800in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002801``drivers/io/``.
2802
Louis Mayencourtb5469002019-07-15 13:56:03 +01002803.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
2804
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002805Each IO driver must provide ``io_dev_*`` structures, as described in
2806``drivers/io/io_driver.h``. These are returned via a mandatory registration
2807function that is called on platform initialization. The semi-hosting driver
2808implementation in ``io_semihosting.c`` can be used as an example.
2809
Louis Mayencourtb5469002019-07-15 13:56:03 +01002810Each platform should register devices and their drivers via the storage
2811abstraction layer. These drivers then need to be initialized by bootloader
2812phases as required in their respective ``blx_platform_setup()`` functions.
2813
2814.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
2815
2816The storage abstraction layer provides mechanisms (``io_dev_init()``) to
2817initialize storage devices before IO operations are called.
2818
2819.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
2820
2821The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002822include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
2823Drivers do not have to implement all operations, but each platform must
2824provide at least one driver for a device capable of supporting generic
2825operations such as loading a bootloader image.
2826
2827The current implementation only allows for known images to be loaded by the
2828firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00002829``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002830there). The platform layer (``plat_get_image_source()``) then returns a reference
2831to a device and a driver-specific ``spec`` which will be understood by the driver
2832to allow access to the image data.
2833
2834The layer is designed in such a way that is it possible to chain drivers with
2835other drivers. For example, file-system drivers may be implemented on top of
2836physical block devices, both represented by IO devices with corresponding
2837drivers. In such a case, the file-system "binding" with the block device may
2838be deferred until the file-system device is initialised.
2839
2840The abstraction currently depends on structures being statically allocated
2841by the drivers and callers, as the system does not yet provide a means of
2842dynamically allocating memory. This may also have the affect of limiting the
2843amount of open resources per driver.
2844
2845--------------
2846
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00002847*Copyright (c) 2013-2019, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002848
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002849.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00002850.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002851.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00002852.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002853.. _SCC: http://www.simple-cc.org/