blob: f0728433337d5d9077aef727fbc9d0c68bb96ab1 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
4.. contents::
5
Douglas Raillardd7c21b72017-06-28 15:23:03 +01006Introduction
7------------
8
Dan Handley610e7e12018-03-01 18:44:00 +00009Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +010010mandatory and optional modifications for both the cold and warm boot paths.
11Modifications consist of:
12
13- Implementing a platform-specific function or variable,
14- Setting up the execution context in a certain way, or
15- Defining certain constants (for example #defines).
16
17The platform-specific functions and variables are declared in
18`include/plat/common/platform.h`_. The firmware provides a default implementation
19of variables and functions to fulfill the optional requirements. These
20implementations are all weakly defined; they are provided to ease the porting
21effort. Each platform port can override them with its own implementation if the
22default implementation is inadequate.
23
Douglas Raillardd7c21b72017-06-28 15:23:03 +010024Some modifications are common to all Boot Loader (BL) stages. Section 2
25discusses these in detail. The subsequent sections discuss the remaining
26modifications for each BL stage in detail.
27
Dan Handley610e7e12018-03-01 18:44:00 +000028This document should be read in conjunction with the TF-A `User Guide`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010029
Soby Mathew02bdbb92018-09-26 11:17:23 +010030Please refer to the `Platform compatibility policy`_ for the policy regarding
31compatibility and deprecation of these porting interfaces.
32
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000033Only Arm development platforms (such as FVP and Juno) may use the
34functions/definitions in ``include/plat/arm/common/`` and the corresponding
35source files in ``plat/arm/common/``. This is done so that there are no
36dependencies between platforms maintained by different people/companies. If you
37want to use any of the functionality present in ``plat/arm`` files, please
38create a pull request that moves the code to ``plat/common`` so that it can be
39discussed.
40
Douglas Raillardd7c21b72017-06-28 15:23:03 +010041Common modifications
42--------------------
43
44This section covers the modifications that should be made by the platform for
45each BL stage to correctly port the firmware stack. They are categorized as
46either mandatory or optional.
47
48Common mandatory modifications
49------------------------------
50
51A platform port must enable the Memory Management Unit (MMU) as well as the
52instruction and data caches for each BL stage. Setting up the translation
53tables is the responsibility of the platform port because memory maps differ
54across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010055provided to help in this setup.
56
57Note that although this library supports non-identity mappings, this is intended
58only for re-mapping peripheral physical addresses and allows platforms with high
59I/O addresses to reduce their virtual address space. All other addresses
60corresponding to code and data must currently use an identity mapping.
61
Dan Handley610e7e12018-03-01 18:44:00 +000062Also, the only translation granule size supported in TF-A is 4KB, as various
63parts of the code assume that is the case. It is not possible to switch to
6416 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010065
Dan Handley610e7e12018-03-01 18:44:00 +000066In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010067platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
68an identity mapping for all addresses.
69
70If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
71block of identity mapped secure memory with Device-nGnRE attributes aligned to
72page boundary (4K) for each BL stage. All sections which allocate coherent
73memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
74section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
75possible for the firmware to place variables in it using the following C code
76directive:
77
78::
79
80 __section("bakery_lock")
81
82Or alternatively the following assembler code directive:
83
84::
85
86 .section bakery_lock
87
88The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
89used to allocate any data structures that are accessed both when a CPU is
90executing with its MMU and caches enabled, and when it's running with its MMU
91and caches disabled. Examples are given below.
92
93The following variables, functions and constants must be defined by the platform
94for the firmware to work correctly.
95
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010096File : platform_def.h [mandatory]
97~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010098
99Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +0000100include path with the following constants defined. This will require updating
101the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100102
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100103Platform ports may optionally use the file `include/plat/common/common_def.h`_,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100104which provides typical values for some of the constants below. These values are
105likely to be suitable for all platform ports.
106
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100107- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100108
109 Defines the linker format used by the platform, for example
110 ``elf64-littleaarch64``.
111
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100112- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100113
114 Defines the processor architecture for the linker by the platform, for
115 example ``aarch64``.
116
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100117- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
119 Defines the normal stack memory available to each CPU. This constant is used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100120 by `plat/common/aarch64/platform_mp_stack.S`_ and
121 `plat/common/aarch64/platform_up_stack.S`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100122
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100123- **define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100124
125 Defines the size in bits of the largest cache line across all the cache
126 levels in the platform.
127
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100128- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100129
130 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
131 function.
132
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100133- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100134
135 Defines the total number of CPUs implemented by the platform across all
136 clusters in the system.
137
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100138- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100139
140 Defines the total number of nodes in the power domain topology
141 tree at all the power domain levels used by the platform.
142 This macro is used by the PSCI implementation to allocate
143 data structures to represent power domain topology.
144
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100145- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100146
147 Defines the maximum power domain level that the power management operations
148 should apply to. More often, but not always, the power domain level
149 corresponds to affinity level. This macro allows the PSCI implementation
150 to know the highest power domain level that it should consider for power
151 management operations in the system that the platform implements. For
152 example, the Base AEM FVP implements two clusters with a configurable
153 number of CPUs and it reports the maximum power domain level as 1.
154
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100155- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100156
157 Defines the local power state corresponding to the deepest power down
158 possible at every power domain level in the platform. The local power
159 states for each level may be sparsely allocated between 0 and this value
160 with 0 being reserved for the RUN state. The PSCI implementation uses this
161 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100162 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100163
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100164- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100165
166 Defines the local power state corresponding to the deepest retention state
167 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100170 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100171
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100172- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100173
174 Defines the maximum number of local power states per power domain level
175 that the platform supports. The default value of this macro is 2 since
176 most platforms just support a maximum of two local power states at each
177 power domain level (power-down and retention). If the platform needs to
178 account for more local power states, then it must redefine this macro.
179
180 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100181 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100182
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100183- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100184
185 Defines the base address in secure ROM where BL1 originally lives. Must be
186 aligned on a page-size boundary.
187
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100188- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100189
190 Defines the maximum address in secure ROM that BL1's actual content (i.e.
191 excluding any data section allocated at runtime) can occupy.
192
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100193- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100194
195 Defines the base address in secure RAM where BL1's read-write data will live
196 at runtime. Must be aligned on a page-size boundary.
197
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100198- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100199
200 Defines the maximum address in secure RAM that BL1's read-write data can
201 occupy at runtime.
202
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100203- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
205 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000206 Must be aligned on a page-size boundary. This constant is not applicable
207 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100208
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100209- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100210
211 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000212 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
213
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100214- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000215
216 Defines the base address in secure XIP memory where BL2 RO section originally
217 lives. Must be aligned on a page-size boundary. This constant is only needed
218 when BL2_IN_XIP_MEM is set to '1'.
219
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100220- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000221
222 Defines the maximum address in secure XIP memory that BL2's actual content
223 (i.e. excluding any data section allocated at runtime) can occupy. This
224 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
225
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100226- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000227
228 Defines the base address in secure RAM where BL2's read-write data will live
229 at runtime. Must be aligned on a page-size boundary. This constant is only
230 needed when BL2_IN_XIP_MEM is set to '1'.
231
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100232- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000233
234 Defines the maximum address in secure RAM that BL2's read-write data can
235 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
236 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100237
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100238- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100239
240 Defines the base address in secure RAM where BL2 loads the BL31 binary
241 image. Must be aligned on a page-size boundary.
242
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100243- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100244
245 Defines the maximum address in secure RAM that the BL31 image can occupy.
246
247For every image, the platform must define individual identifiers that will be
248used by BL1 or BL2 to load the corresponding image into memory from non-volatile
249storage. For the sake of performance, integer numbers will be used as
250identifiers. The platform will use those identifiers to return the relevant
251information about the image to be loaded (file handler, load address,
252authentication information, etc.). The following image identifiers are
253mandatory:
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 BL2 image identifier, used by BL1 to load BL2.
258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100259- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
261 BL31 image identifier, used by BL2 to load BL31.
262
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100263- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100264
265 BL33 image identifier, used by BL2 to load BL33.
266
267If Trusted Board Boot is enabled, the following certificate identifiers must
268also be defined:
269
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100270- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100271
272 BL2 content certificate identifier, used by BL1 to load the BL2 content
273 certificate.
274
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100275- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100276
277 Trusted key certificate identifier, used by BL2 to load the trusted key
278 certificate.
279
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100280- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100281
282 BL31 key certificate identifier, used by BL2 to load the BL31 key
283 certificate.
284
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100285- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100286
287 BL31 content certificate identifier, used by BL2 to load the BL31 content
288 certificate.
289
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100290- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100291
292 BL33 key certificate identifier, used by BL2 to load the BL33 key
293 certificate.
294
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100295- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100296
297 BL33 content certificate identifier, used by BL2 to load the BL33 content
298 certificate.
299
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100300- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100301
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100302 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100303 FWU content certificate.
304
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100305- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306
Dan Handley610e7e12018-03-01 18:44:00 +0000307 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100308 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000309 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100310 set.
311
312If the AP Firmware Updater Configuration image, BL2U is used, the following
313must also be defined:
314
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100315- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100316
317 Defines the base address in secure memory where BL1 copies the BL2U binary
318 image. Must be aligned on a page-size boundary.
319
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100320- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100321
322 Defines the maximum address in secure memory that the BL2U image can occupy.
323
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100324- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100325
326 BL2U image identifier, used by BL1 to fetch an image descriptor
327 corresponding to BL2U.
328
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100329If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100330must also be defined:
331
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100332- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100333
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100334 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
335 corresponding to SCP_BL2U.
Dan Handley610e7e12018-03-01 18:44:00 +0000336 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100338If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100339also be defined:
340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100343 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100344 Must be aligned on a page-size boundary.
Dan Handley610e7e12018-03-01 18:44:00 +0000345 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100347- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
350 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100352If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353be defined:
354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358 Must be aligned on a page-size boundary.
Dan Handley610e7e12018-03-01 18:44:00 +0000359 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100360
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100361- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
364 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100365
366For the the Firmware update capability of TRUSTED BOARD BOOT, the following
367macros may also be defined:
368
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100369- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100370
371 Total number of images that can be loaded simultaneously. If the platform
372 doesn't specify any value, it defaults to 10.
373
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100374If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100375also be defined:
376
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100377- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000380 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100381
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100382- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100384 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385 certificate (mandatory when Trusted Board Boot is enabled).
386
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100387- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100388
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100389 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100390 content certificate (mandatory when Trusted Board Boot is enabled).
391
392If a BL32 image is supported by the platform, the following constants must
393also be defined:
394
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100395- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100396
397 BL32 image identifier, used by BL2 to load BL32.
398
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100399- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100400
401 BL32 key certificate identifier, used by BL2 to load the BL32 key
402 certificate (mandatory when Trusted Board Boot is enabled).
403
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100404- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100405
406 BL32 content certificate identifier, used by BL2 to load the BL32 content
407 certificate (mandatory when Trusted Board Boot is enabled).
408
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100409- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100410
411 Defines the base address in secure memory where BL2 loads the BL32 binary
412 image. Must be aligned on a page-size boundary.
413
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100414- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100415
416 Defines the maximum address that the BL32 image can occupy.
417
418If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
419platform, the following constants must also be defined:
420
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100421- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100422
423 Defines the base address of the secure memory used by the TSP image on the
424 platform. This must be at the same address or below ``BL32_BASE``.
425
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100426- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100427
428 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000429 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
430 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
431 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100432
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100433- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100434
435 Defines the ID of the secure physical generic timer interrupt used by the
436 TSP's interrupt handling code.
437
438If the platform port uses the translation table library code, the following
439constants must also be defined:
440
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100441- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100442
443 Optional flag that can be set per-image to enable the dynamic allocation of
444 regions even when the MMU is enabled. If not defined, only static
445 functionality will be available, if defined and set to 1 it will also
446 include the dynamic functionality.
447
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100448- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100449
450 Defines the maximum number of translation tables that are allocated by the
451 translation table library code. To minimize the amount of runtime memory
452 used, choose the smallest value needed to map the required virtual addresses
453 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
454 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
455 as well.
456
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100457- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100458
459 Defines the maximum number of regions that are allocated by the translation
460 table library code. A region consists of physical base address, virtual base
461 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
462 defined in the ``mmap_region_t`` structure. The platform defines the regions
463 that should be mapped. Then, the translation table library will create the
464 corresponding tables and descriptors at runtime. To minimize the amount of
465 runtime memory used, choose the smallest value needed to register the
466 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
467 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
468 the dynamic regions as well.
469
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100470- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100471
472 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000473 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100474
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100475- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100476
477 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000478 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100479
480If the platform port uses the IO storage framework, the following constants
481must also be defined:
482
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100483- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100484
485 Defines the maximum number of registered IO devices. Attempting to register
486 more devices than this value using ``io_register_device()`` will fail with
487 -ENOMEM.
488
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100489- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100490
491 Defines the maximum number of open IO handles. Attempting to open more IO
492 entities than this value using ``io_open()`` will fail with -ENOMEM.
493
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100494- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100495
496 Defines the maximum number of registered IO block devices. Attempting to
497 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100498 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100499 With this macro, multiple block devices could be supported at the same
500 time.
501
502If the platform needs to allocate data within the per-cpu data framework in
503BL31, it should define the following macro. Currently this is only required if
504the platform decides not to use the coherent memory section by undefining the
505``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
506required memory within the the per-cpu data to minimize wastage.
507
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100508- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100509
510 Defines the memory (in bytes) to be reserved within the per-cpu data
511 structure for use by the platform layer.
512
513The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000514memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100515
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100516- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100517
518 Defines the maximum address in secure RAM that the BL31's progbits sections
519 can occupy.
520
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100521- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100522
523 Defines the maximum address that the TSP's progbits sections can occupy.
524
525If the platform port uses the PL061 GPIO driver, the following constant may
526optionally be defined:
527
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100528- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100529 Maximum number of GPIOs required by the platform. This allows control how
530 much memory is allocated for PL061 GPIO controllers. The default value is
531
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100532 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100533
534If the platform port uses the partition driver, the following constant may
535optionally be defined:
536
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100537- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100538 Maximum number of partition entries required by the platform. This allows
539 control how much memory is allocated for partition entries. The default
540 value is 128.
541 `For example, define the build flag in platform.mk`_:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100542 PLAT_PARTITION_MAX_ENTRIES := 12
543 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100544
545The following constant is optional. It should be defined to override the default
546behaviour of the ``assert()`` function (for example, to save memory).
547
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100548- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100549 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
550 ``assert()`` prints the name of the file, the line number and the asserted
551 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
552 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
553 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
554 defined, it defaults to ``LOG_LEVEL``.
555
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000556If the platform port uses the Activity Monitor Unit, the following constants
557may be defined:
558
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100559- **PLAT_AMU_GROUP1_COUNTERS_MASK**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000560 This mask reflects the set of group counters that should be enabled. The
561 maximum number of group 1 counters supported by AMUv1 is 16 so the mask
562 can be at most 0xffff. If the platform does not define this mask, no group 1
563 counters are enabled. If the platform defines this mask, the following
564 constant needs to also be defined.
565
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100566- **PLAT_AMU_GROUP1_NR_COUNTERS**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000567 This value is used to allocate an array to save and restore the counters
568 specified by ``PLAT_AMU_GROUP1_COUNTERS_MASK`` on CPU suspend.
569 This value should be equal to the highest bit position set in the
570 mask, plus 1. The maximum number of group 1 counters in AMUv1 is 16.
571
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100572File : plat_macros.S [mandatory]
573~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100574
575Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000576the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100577found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
578
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100579- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100580
581 This macro allows the crash reporting routine to print relevant platform
582 registers in case of an unhandled exception in BL31. This aids in debugging
583 and this macro can be defined to be empty in case register reporting is not
584 desired.
585
586 For instance, GIC or interconnect registers may be helpful for
587 troubleshooting.
588
589Handling Reset
590--------------
591
592BL1 by default implements the reset vector where execution starts from a cold
593or warm boot. BL31 can be optionally set as a reset vector using the
594``RESET_TO_BL31`` make variable.
595
596For each CPU, the reset vector code is responsible for the following tasks:
597
598#. Distinguishing between a cold boot and a warm boot.
599
600#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
601 the CPU is placed in a platform-specific state until the primary CPU
602 performs the necessary steps to remove it from this state.
603
604#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
605 specific address in the BL31 image in the same processor mode as it was
606 when released from reset.
607
608The following functions need to be implemented by the platform port to enable
609reset vector code to perform the above tasks.
610
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100611Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
612~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100613
614::
615
616 Argument : void
617 Return : uintptr_t
618
619This function is called with the MMU and caches disabled
620(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
621distinguishing between a warm and cold reset for the current CPU using
622platform-specific means. If it's a warm reset, then it returns the warm
623reset entrypoint point provided to ``plat_setup_psci_ops()`` during
624BL31 initialization. If it's a cold reset then this function must return zero.
625
626This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000627Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100628not assume that callee saved registers are preserved across a call to this
629function.
630
631This function fulfills requirement 1 and 3 listed above.
632
633Note that for platforms that support programming the reset address, it is
634expected that a CPU will start executing code directly at the right address,
635both on a cold and warm reset. In this case, there is no need to identify the
636type of reset nor to query the warm reset entrypoint. Therefore, implementing
637this function is not required on such platforms.
638
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100639Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
640~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100641
642::
643
644 Argument : void
645
646This function is called with the MMU and data caches disabled. It is responsible
647for placing the executing secondary CPU in a platform-specific state until the
648primary CPU performs the necessary actions to bring it out of that state and
649allow entry into the OS. This function must not return.
650
Dan Handley610e7e12018-03-01 18:44:00 +0000651In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100652itself off. The primary CPU is responsible for powering up the secondary CPUs
653when normal world software requires them. When booting an EL3 payload instead,
654they stay powered on and are put in a holding pen until their mailbox gets
655populated.
656
657This function fulfills requirement 2 above.
658
659Note that for platforms that can't release secondary CPUs out of reset, only the
660primary CPU will execute the cold boot code. Therefore, implementing this
661function is not required on such platforms.
662
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100663Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
664~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100665
666::
667
668 Argument : void
669 Return : unsigned int
670
671This function identifies whether the current CPU is the primary CPU or a
672secondary CPU. A return value of zero indicates that the CPU is not the
673primary CPU, while a non-zero return value indicates that the CPU is the
674primary CPU.
675
676Note that for platforms that can't release secondary CPUs out of reset, only the
677primary CPU will execute the cold boot code. Therefore, there is no need to
678distinguish between primary and secondary CPUs and implementing this function is
679not required.
680
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100681Function : platform_mem_init() [mandatory]
682~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100683
684::
685
686 Argument : void
687 Return : void
688
689This function is called before any access to data is made by the firmware, in
690order to carry out any essential memory initialization.
691
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100692Function: plat_get_rotpk_info()
693~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100694
695::
696
697 Argument : void *, void **, unsigned int *, unsigned int *
698 Return : int
699
700This function is mandatory when Trusted Board Boot is enabled. It returns a
701pointer to the ROTPK stored in the platform (or a hash of it) and its length.
702The ROTPK must be encoded in DER format according to the following ASN.1
703structure:
704
705::
706
707 AlgorithmIdentifier ::= SEQUENCE {
708 algorithm OBJECT IDENTIFIER,
709 parameters ANY DEFINED BY algorithm OPTIONAL
710 }
711
712 SubjectPublicKeyInfo ::= SEQUENCE {
713 algorithm AlgorithmIdentifier,
714 subjectPublicKey BIT STRING
715 }
716
717In case the function returns a hash of the key:
718
719::
720
721 DigestInfo ::= SEQUENCE {
722 digestAlgorithm AlgorithmIdentifier,
723 digest OCTET STRING
724 }
725
726The function returns 0 on success. Any other value is treated as error by the
727Trusted Board Boot. The function also reports extra information related
728to the ROTPK in the flags parameter:
729
730::
731
732 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
733 hash.
734 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
735 verification while the platform ROTPK is not deployed.
736 When this flag is set, the function does not need to
737 return a platform ROTPK, and the authentication
738 framework uses the ROTPK in the certificate without
739 verifying it against the platform value. This flag
740 must not be used in a deployed production environment.
741
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100742Function: plat_get_nv_ctr()
743~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100744
745::
746
747 Argument : void *, unsigned int *
748 Return : int
749
750This function is mandatory when Trusted Board Boot is enabled. It returns the
751non-volatile counter value stored in the platform in the second argument. The
752cookie in the first argument may be used to select the counter in case the
753platform provides more than one (for example, on platforms that use the default
754TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100755TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100756
757The function returns 0 on success. Any other value means the counter value could
758not be retrieved from the platform.
759
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100760Function: plat_set_nv_ctr()
761~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100762
763::
764
765 Argument : void *, unsigned int
766 Return : int
767
768This function is mandatory when Trusted Board Boot is enabled. It sets a new
769counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100770select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100771the updated counter value to be written to the NV counter.
772
773The function returns 0 on success. Any other value means the counter value could
774not be updated.
775
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100776Function: plat_set_nv_ctr2()
777~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100778
779::
780
781 Argument : void *, const auth_img_desc_t *, unsigned int
782 Return : int
783
784This function is optional when Trusted Board Boot is enabled. If this
785interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
786first argument passed is a cookie and is typically used to
787differentiate between a Non Trusted NV Counter and a Trusted NV
788Counter. The second argument is a pointer to an authentication image
789descriptor and may be used to decide if the counter is allowed to be
790updated or not. The third argument is the updated counter value to
791be written to the NV counter.
792
793The function returns 0 on success. Any other value means the counter value
794either could not be updated or the authentication image descriptor indicates
795that it is not allowed to be updated.
796
797Common mandatory function modifications
798---------------------------------------
799
800The following functions are mandatory functions which need to be implemented
801by the platform port.
802
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100803Function : plat_my_core_pos()
804~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100805
806::
807
808 Argument : void
809 Return : unsigned int
810
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000811This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100812CPU-specific linear index into blocks of memory (for example while allocating
813per-CPU stacks). This function will be invoked very early in the
814initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000815implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100816runtime environment. This function can clobber x0 - x8 and must preserve
817x9 - x29.
818
819This function plays a crucial role in the power domain topology framework in
820PSCI and details of this can be found in `Power Domain Topology Design`_.
821
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100822Function : plat_core_pos_by_mpidr()
823~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100824
825::
826
827 Argument : u_register_t
828 Return : int
829
830This function validates the ``MPIDR`` of a CPU and converts it to an index,
831which can be used as a CPU-specific linear index into blocks of memory. In
832case the ``MPIDR`` is invalid, this function returns -1. This function will only
833be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000834utilize the C runtime environment. For further details about how TF-A
835represents the power domain topology and how this relates to the linear CPU
836index, please refer `Power Domain Topology Design`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100837
Ambroise Vincentd207f562019-04-10 12:50:27 +0100838Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
839~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
840
841::
842
843 Arguments : void **heap_addr, size_t *heap_size
844 Return : int
845
846This function is invoked during Mbed TLS library initialisation to get a heap,
847by means of a starting address and a size. This heap will then be used
848internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
849must be able to provide a heap to it.
850
851A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
852which a heap is statically reserved during compile time inside every image
853(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
854the function simply returns the address and size of this "pre-allocated" heap.
855For a platform to use this default implementation, only a call to the helper
856from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
857
858However, by writting their own implementation, platforms have the potential to
859optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
860shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
861twice.
862
863On success the function should return 0 and a negative error code otherwise.
864
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100865Common optional modifications
866-----------------------------
867
868The following are helper functions implemented by the firmware that perform
869common platform-specific tasks. A platform may choose to override these
870definitions.
871
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100872Function : plat_set_my_stack()
873~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100874
875::
876
877 Argument : void
878 Return : void
879
880This function sets the current stack pointer to the normal memory stack that
881has been allocated for the current CPU. For BL images that only require a
882stack for the primary CPU, the UP version of the function is used. The size
883of the stack allocated to each CPU is specified by the platform defined
884constant ``PLATFORM_STACK_SIZE``.
885
886Common implementations of this function for the UP and MP BL images are
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100887provided in `plat/common/aarch64/platform_up_stack.S`_ and
888`plat/common/aarch64/platform_mp_stack.S`_
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100889
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100890Function : plat_get_my_stack()
891~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100892
893::
894
895 Argument : void
896 Return : uintptr_t
897
898This function returns the base address of the normal memory stack that
899has been allocated for the current CPU. For BL images that only require a
900stack for the primary CPU, the UP version of the function is used. The size
901of the stack allocated to each CPU is specified by the platform defined
902constant ``PLATFORM_STACK_SIZE``.
903
904Common implementations of this function for the UP and MP BL images are
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100905provided in `plat/common/aarch64/platform_up_stack.S`_ and
906`plat/common/aarch64/platform_mp_stack.S`_
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100907
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100908Function : plat_report_exception()
909~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100910
911::
912
913 Argument : unsigned int
914 Return : void
915
916A platform may need to report various information about its status when an
917exception is taken, for example the current exception level, the CPU security
918state (secure/non-secure), the exception type, and so on. This function is
919called in the following circumstances:
920
921- In BL1, whenever an exception is taken.
922- In BL2, whenever an exception is taken.
923
924The default implementation doesn't do anything, to avoid making assumptions
925about the way the platform displays its status information.
926
927For AArch64, this function receives the exception type as its argument.
928Possible values for exceptions types are listed in the
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100929`include/common/bl_common.h`_ header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +0000930related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100931
932For AArch32, this function receives the exception mode as its argument.
933Possible values for exception modes are listed in the
934`include/lib/aarch32/arch.h`_ header file.
935
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100936Function : plat_reset_handler()
937~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100938
939::
940
941 Argument : void
942 Return : void
943
944A platform may need to do additional initialization after reset. This function
945allows the platform to do the platform specific intializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000946specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100947preserve the values of callee saved registers x19 to x29.
948
949The default implementation doesn't do anything. If a platform needs to override
950the default implementation, refer to the `Firmware Design`_ for general
951guidelines.
952
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100953Function : plat_disable_acp()
954~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100955
956::
957
958 Argument : void
959 Return : void
960
John Tsichritzis6dda9762018-07-23 09:18:04 +0100961This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100962present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +0100963doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100964it has restrictions for stack usage and it can use the registers x0 - x17 as
965scratch registers. It should preserve the value in x18 register as it is used
966by the caller to store the return address.
967
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100968Function : plat_error_handler()
969~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100970
971::
972
973 Argument : int
974 Return : void
975
976This API is called when the generic code encounters an error situation from
977which it cannot continue. It allows the platform to perform error reporting or
978recovery actions (for example, reset the system). This function must not return.
979
980The parameter indicates the type of error using standard codes from ``errno.h``.
981Possible errors reported by the generic code are:
982
983- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
984 Board Boot is enabled)
985- ``-ENOENT``: the requested image or certificate could not be found or an IO
986 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +0000987- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
988 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100989
990The default implementation simply spins.
991
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100992Function : plat_panic_handler()
993~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100994
995::
996
997 Argument : void
998 Return : void
999
1000This API is called when the generic code encounters an unexpected error
1001situation from which it cannot recover. This function must not return,
1002and must be implemented in assembly because it may be called before the C
1003environment is initialized.
1004
1005Note: The address from where it was called is stored in x30 (Link Register).
1006The default implementation simply spins.
1007
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001008Function : plat_get_bl_image_load_info()
1009~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001010
1011::
1012
1013 Argument : void
1014 Return : bl_load_info_t *
1015
1016This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001017populated to load. This function is invoked in BL2 to load the
1018BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001019
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001020Function : plat_get_next_bl_params()
1021~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001022
1023::
1024
1025 Argument : void
1026 Return : bl_params_t *
1027
1028This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001029kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001030function is invoked in BL2 to pass this information to the next BL
1031image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001032
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001033Function : plat_get_stack_protector_canary()
1034~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001035
1036::
1037
1038 Argument : void
1039 Return : u_register_t
1040
1041This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001042when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001043value will weaken the protection as the attacker could easily write the right
1044value as part of the attack most of the time. Therefore, it should return a
1045true random number.
1046
1047Note: For the protection to be effective, the global data need to be placed at
1048a lower address than the stack bases. Failure to do so would allow an attacker
1049to overwrite the canary as part of the stack buffer overflow attack.
1050
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001051Function : plat_flush_next_bl_params()
1052~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001053
1054::
1055
1056 Argument : void
1057 Return : void
1058
1059This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001060next image. This function is invoked in BL2 to flush this information
1061to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001062
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001063Function : plat_log_get_prefix()
1064~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001065
1066::
1067
1068 Argument : unsigned int
1069 Return : const char *
1070
1071This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001072prepended to all the log output from TF-A. The `log_level` (argument) will
1073correspond to one of the standard log levels defined in debug.h. The platform
1074can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001075the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001076increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001077
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001078Modifications specific to a Boot Loader stage
1079---------------------------------------------
1080
1081Boot Loader Stage 1 (BL1)
1082-------------------------
1083
1084BL1 implements the reset vector where execution starts from after a cold or
1085warm boot. For each CPU, BL1 is responsible for the following tasks:
1086
1087#. Handling the reset as described in section 2.2
1088
1089#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1090 only this CPU executes the remaining BL1 code, including loading and passing
1091 control to the BL2 stage.
1092
1093#. Identifying and starting the Firmware Update process (if required).
1094
1095#. Loading the BL2 image from non-volatile storage into secure memory at the
1096 address specified by the platform defined constant ``BL2_BASE``.
1097
1098#. Populating a ``meminfo`` structure with the following information in memory,
1099 accessible by BL2 immediately upon entry.
1100
1101 ::
1102
1103 meminfo.total_base = Base address of secure RAM visible to BL2
1104 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001105
Soby Mathew97b1bff2018-09-27 16:46:41 +01001106 By default, BL1 places this ``meminfo`` structure at the end of secure
1107 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001108
Soby Mathewb1bf0442018-02-16 14:52:52 +00001109 It is possible for the platform to decide where it wants to place the
1110 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1111 BL2 by overriding the weak default implementation of
1112 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001113
1114The following functions need to be implemented by the platform port to enable
1115BL1 to perform the above tasks.
1116
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001117Function : bl1_early_platform_setup() [mandatory]
1118~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001119
1120::
1121
1122 Argument : void
1123 Return : void
1124
1125This function executes with the MMU and data caches disabled. It is only called
1126by the primary CPU.
1127
Dan Handley610e7e12018-03-01 18:44:00 +00001128On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001129
1130- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1131
1132- Initializes a UART (PL011 console), which enables access to the ``printf``
1133 family of functions in BL1.
1134
1135- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1136 the CCI slave interface corresponding to the cluster that includes the
1137 primary CPU.
1138
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001139Function : bl1_plat_arch_setup() [mandatory]
1140~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001141
1142::
1143
1144 Argument : void
1145 Return : void
1146
1147This function performs any platform-specific and architectural setup that the
1148platform requires. Platform-specific setup might include configuration of
1149memory controllers and the interconnect.
1150
Dan Handley610e7e12018-03-01 18:44:00 +00001151In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001152
1153This function helps fulfill requirement 2 above.
1154
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001155Function : bl1_platform_setup() [mandatory]
1156~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001157
1158::
1159
1160 Argument : void
1161 Return : void
1162
1163This function executes with the MMU and data caches enabled. It is responsible
1164for performing any remaining platform-specific setup that can occur after the
1165MMU and data cache have been enabled.
1166
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001167if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001168sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001169
Dan Handley610e7e12018-03-01 18:44:00 +00001170In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001171layer used to load the next bootloader image.
1172
1173This function helps fulfill requirement 4 above.
1174
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001175Function : bl1_plat_sec_mem_layout() [mandatory]
1176~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001177
1178::
1179
1180 Argument : void
1181 Return : meminfo *
1182
1183This function should only be called on the cold boot path. It executes with the
1184MMU and data caches enabled. The pointer returned by this function must point to
1185a ``meminfo`` structure containing the extents and availability of secure RAM for
1186the BL1 stage.
1187
1188::
1189
1190 meminfo.total_base = Base address of secure RAM visible to BL1
1191 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001192
1193This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1194populates a similar structure to tell BL2 the extents of memory available for
1195its own use.
1196
1197This function helps fulfill requirements 4 and 5 above.
1198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001199Function : bl1_plat_prepare_exit() [optional]
1200~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001201
1202::
1203
1204 Argument : entry_point_info_t *
1205 Return : void
1206
1207This function is called prior to exiting BL1 in response to the
1208``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1209platform specific clean up or bookkeeping operations before transferring
1210control to the next image. It receives the address of the ``entry_point_info_t``
1211structure passed from BL2. This function runs with MMU disabled.
1212
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001213Function : bl1_plat_set_ep_info() [optional]
1214~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001215
1216::
1217
1218 Argument : unsigned int image_id, entry_point_info_t *ep_info
1219 Return : void
1220
1221This function allows platforms to override ``ep_info`` for the given ``image_id``.
1222
1223The default implementation just returns.
1224
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001225Function : bl1_plat_get_next_image_id() [optional]
1226~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001227
1228::
1229
1230 Argument : void
1231 Return : unsigned int
1232
1233This and the following function must be overridden to enable the FWU feature.
1234
1235BL1 calls this function after platform setup to identify the next image to be
1236loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1237with the normal boot sequence, which loads and executes BL2. If the platform
1238returns a different image id, BL1 assumes that Firmware Update is required.
1239
Dan Handley610e7e12018-03-01 18:44:00 +00001240The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001241platforms override this function to detect if firmware update is required, and
1242if so, return the first image in the firmware update process.
1243
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001244Function : bl1_plat_get_image_desc() [optional]
1245~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001246
1247::
1248
1249 Argument : unsigned int image_id
1250 Return : image_desc_t *
1251
1252BL1 calls this function to get the image descriptor information ``image_desc_t``
1253for the provided ``image_id`` from the platform.
1254
Dan Handley610e7e12018-03-01 18:44:00 +00001255The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001256standard platforms return an image descriptor corresponding to BL2 or one of
1257the firmware update images defined in the Trusted Board Boot Requirements
1258specification.
1259
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001260Function : bl1_plat_handle_pre_image_load() [optional]
1261~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001262
1263::
1264
Soby Mathew2f38ce32018-02-08 17:45:12 +00001265 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001266 Return : int
1267
1268This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001269corresponding to ``image_id``. This function is invoked in BL1, both in cold
1270boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001271
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001272Function : bl1_plat_handle_post_image_load() [optional]
1273~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001274
1275::
1276
Soby Mathew2f38ce32018-02-08 17:45:12 +00001277 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001278 Return : int
1279
1280This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001281corresponding to ``image_id``. This function is invoked in BL1, both in cold
1282boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001283
Soby Mathewb1bf0442018-02-16 14:52:52 +00001284The default weak implementation of this function calculates the amount of
1285Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1286structure at the beginning of this free memory and populates it. The address
1287of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1288information to BL2.
1289
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001290Function : bl1_plat_fwu_done() [optional]
1291~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001292
1293::
1294
1295 Argument : unsigned int image_id, uintptr_t image_src,
1296 unsigned int image_size
1297 Return : void
1298
1299BL1 calls this function when the FWU process is complete. It must not return.
1300The platform may override this function to take platform specific action, for
1301example to initiate the normal boot flow.
1302
1303The default implementation spins forever.
1304
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001305Function : bl1_plat_mem_check() [mandatory]
1306~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001307
1308::
1309
1310 Argument : uintptr_t mem_base, unsigned int mem_size,
1311 unsigned int flags
1312 Return : int
1313
1314BL1 calls this function while handling FWU related SMCs, more specifically when
1315copying or authenticating an image. Its responsibility is to ensure that the
1316region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1317that this memory corresponds to either a secure or non-secure memory region as
1318indicated by the security state of the ``flags`` argument.
1319
1320This function can safely assume that the value resulting from the addition of
1321``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1322overflow.
1323
1324This function must return 0 on success, a non-null error code otherwise.
1325
1326The default implementation of this function asserts therefore platforms must
1327override it when using the FWU feature.
1328
1329Boot Loader Stage 2 (BL2)
1330-------------------------
1331
1332The BL2 stage is executed only by the primary CPU, which is determined in BL1
1333using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001334``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1335``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1336non-volatile storage to secure/non-secure RAM. After all the images are loaded
1337then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1338images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001339
1340The following functions must be implemented by the platform port to enable BL2
1341to perform the above tasks.
1342
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001343Function : bl2_early_platform_setup2() [mandatory]
1344~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001345
1346::
1347
Soby Mathew97b1bff2018-09-27 16:46:41 +01001348 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001349 Return : void
1350
1351This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001352by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1353are platform specific.
1354
1355On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001356
Soby Mathew97b1bff2018-09-27 16:46:41 +01001357 arg0 - Points to load address of HW_CONFIG if present
1358
1359 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1360 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001361
Dan Handley610e7e12018-03-01 18:44:00 +00001362On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001363
1364- Initializes a UART (PL011 console), which enables access to the ``printf``
1365 family of functions in BL2.
1366
1367- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001368 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1369 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001371Function : bl2_plat_arch_setup() [mandatory]
1372~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001373
1374::
1375
1376 Argument : void
1377 Return : void
1378
1379This function executes with the MMU and data caches disabled. It is only called
1380by the primary CPU.
1381
1382The purpose of this function is to perform any architectural initialization
1383that varies across platforms.
1384
Dan Handley610e7e12018-03-01 18:44:00 +00001385On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001386
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001387Function : bl2_platform_setup() [mandatory]
1388~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001389
1390::
1391
1392 Argument : void
1393 Return : void
1394
1395This function may execute with the MMU and data caches enabled if the platform
1396port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1397called by the primary CPU.
1398
1399The purpose of this function is to perform any platform initialization
1400specific to BL2.
1401
Dan Handley610e7e12018-03-01 18:44:00 +00001402In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001403configuration of the TrustZone controller to allow non-secure masters access
1404to most of DRAM. Part of DRAM is reserved for secure world use.
1405
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001406Function : bl2_plat_handle_pre_image_load() [optional]
1407~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001408
1409::
1410
1411 Argument : unsigned int
1412 Return : int
1413
1414This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001415for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001416loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001417
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001418Function : bl2_plat_handle_post_image_load() [optional]
1419~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001420
1421::
1422
1423 Argument : unsigned int
1424 Return : int
1425
1426This function can be used by the platforms to update/use image information
1427for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001428loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001429
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001430Function : bl2_plat_preload_setup [optional]
1431~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001432
1433::
John Tsichritzisee10e792018-06-06 09:38:10 +01001434
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001435 Argument : void
1436 Return : void
1437
1438This optional function performs any BL2 platform initialization
1439required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001440bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001441boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001442plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001443
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001444Function : plat_try_next_boot_source() [optional]
1445~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001446
1447::
John Tsichritzisee10e792018-06-06 09:38:10 +01001448
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001449 Argument : void
1450 Return : int
1451
1452This optional function passes to the next boot source in the redundancy
1453sequence.
1454
1455This function moves the current boot redundancy source to the next
1456element in the boot sequence. If there are no more boot sources then it
1457must return 0, otherwise it must return 1. The default implementation
1458of this always returns 0.
1459
Roberto Vargasb1584272017-11-20 13:36:10 +00001460Boot Loader Stage 2 (BL2) at EL3
1461--------------------------------
1462
Dan Handley610e7e12018-03-01 18:44:00 +00001463When the platform has a non-TF-A Boot ROM it is desirable to jump
1464directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Roberto Vargasb1584272017-11-20 13:36:10 +00001465execute at EL3 instead of executing at EL1. Refer to the `Firmware
1466Design`_ for more information.
1467
1468All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001469bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1470their work is done now by bl2_el3_early_platform_setup and
1471bl2_el3_plat_arch_setup. These functions should generally implement
1472the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001473
1474
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001475Function : bl2_el3_early_platform_setup() [mandatory]
1476~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001477
1478::
John Tsichritzisee10e792018-06-06 09:38:10 +01001479
Roberto Vargasb1584272017-11-20 13:36:10 +00001480 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1481 Return : void
1482
1483This function executes with the MMU and data caches disabled. It is only called
1484by the primary CPU. This function receives four parameters which can be used
1485by the platform to pass any needed information from the Boot ROM to BL2.
1486
Dan Handley610e7e12018-03-01 18:44:00 +00001487On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001488
1489- Initializes a UART (PL011 console), which enables access to the ``printf``
1490 family of functions in BL2.
1491
1492- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001493 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1494 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001495
1496- Initializes the private variables that define the memory layout used.
1497
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001498Function : bl2_el3_plat_arch_setup() [mandatory]
1499~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001500
1501::
John Tsichritzisee10e792018-06-06 09:38:10 +01001502
Roberto Vargasb1584272017-11-20 13:36:10 +00001503 Argument : void
1504 Return : void
1505
1506This function executes with the MMU and data caches disabled. It is only called
1507by the primary CPU.
1508
1509The purpose of this function is to perform any architectural initialization
1510that varies across platforms.
1511
Dan Handley610e7e12018-03-01 18:44:00 +00001512On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001513
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001514Function : bl2_el3_plat_prepare_exit() [optional]
1515~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001516
1517::
John Tsichritzisee10e792018-06-06 09:38:10 +01001518
Roberto Vargasb1584272017-11-20 13:36:10 +00001519 Argument : void
1520 Return : void
1521
1522This function is called prior to exiting BL2 and run the next image.
1523It should be used to perform platform specific clean up or bookkeeping
1524operations before transferring control to the next image. This function
1525runs with MMU disabled.
1526
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001527FWU Boot Loader Stage 2 (BL2U)
1528------------------------------
1529
1530The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1531process and is executed only by the primary CPU. BL1 passes control to BL2U at
1532``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1533
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001534#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1535 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1536 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1537 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001538 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1539 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1540
1541#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001542 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001543 normal world can access DDR memory.
1544
1545The following functions must be implemented by the platform port to enable
1546BL2U to perform the tasks mentioned above.
1547
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001548Function : bl2u_early_platform_setup() [mandatory]
1549~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001550
1551::
1552
1553 Argument : meminfo *mem_info, void *plat_info
1554 Return : void
1555
1556This function executes with the MMU and data caches disabled. It is only
1557called by the primary CPU. The arguments to this function is the address
1558of the ``meminfo`` structure and platform specific info provided by BL1.
1559
1560The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1561private storage as the original memory may be subsequently overwritten by BL2U.
1562
Dan Handley610e7e12018-03-01 18:44:00 +00001563On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001564to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001565variable.
1566
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001567Function : bl2u_plat_arch_setup() [mandatory]
1568~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001569
1570::
1571
1572 Argument : void
1573 Return : void
1574
1575This function executes with the MMU and data caches disabled. It is only
1576called by the primary CPU.
1577
1578The purpose of this function is to perform any architectural initialization
1579that varies across platforms, for example enabling the MMU (since the memory
1580map differs across platforms).
1581
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001582Function : bl2u_platform_setup() [mandatory]
1583~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001584
1585::
1586
1587 Argument : void
1588 Return : void
1589
1590This function may execute with the MMU and data caches enabled if the platform
1591port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1592called by the primary CPU.
1593
1594The purpose of this function is to perform any platform initialization
1595specific to BL2U.
1596
Dan Handley610e7e12018-03-01 18:44:00 +00001597In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001598configuration of the TrustZone controller to allow non-secure masters access
1599to most of DRAM. Part of DRAM is reserved for secure world use.
1600
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001601Function : bl2u_plat_handle_scp_bl2u() [optional]
1602~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001603
1604::
1605
1606 Argument : void
1607 Return : int
1608
1609This function is used to perform any platform-specific actions required to
1610handle the SCP firmware. Typically it transfers the image into SCP memory using
1611a platform-specific protocol and waits until SCP executes it and signals to the
1612Application Processor (AP) for BL2U execution to continue.
1613
1614This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001615This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001616
1617Boot Loader Stage 3-1 (BL31)
1618----------------------------
1619
1620During cold boot, the BL31 stage is executed only by the primary CPU. This is
1621determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1622control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1623CPUs. BL31 executes at EL3 and is responsible for:
1624
1625#. Re-initializing all architectural and platform state. Although BL1 performs
1626 some of this initialization, BL31 remains resident in EL3 and must ensure
1627 that EL3 architectural and platform state is completely initialized. It
1628 should make no assumptions about the system state when it receives control.
1629
1630#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001631 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1632 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001633
1634#. Providing runtime firmware services. Currently, BL31 only implements a
1635 subset of the Power State Coordination Interface (PSCI) API as a runtime
1636 service. See Section 3.3 below for details of porting the PSCI
1637 implementation.
1638
1639#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001640 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001641 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001642 executed and run the corresponding image. On ARM platforms, BL31 uses the
1643 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001644
1645If BL31 is a reset vector, It also needs to handle the reset as specified in
1646section 2.2 before the tasks described above.
1647
1648The following functions must be implemented by the platform port to enable BL31
1649to perform the above tasks.
1650
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001651Function : bl31_early_platform_setup2() [mandatory]
1652~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001653
1654::
1655
Soby Mathew97b1bff2018-09-27 16:46:41 +01001656 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001657 Return : void
1658
1659This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001660by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1661platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001662
Soby Mathew97b1bff2018-09-27 16:46:41 +01001663In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001664
Soby Mathew97b1bff2018-09-27 16:46:41 +01001665 arg0 - The pointer to the head of `bl_params_t` list
1666 which is list of executable images following BL31,
1667
1668 arg1 - Points to load address of SOC_FW_CONFIG if present
1669
1670 arg2 - Points to load address of HW_CONFIG if present
1671
1672 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1673 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001674
Soby Mathew97b1bff2018-09-27 16:46:41 +01001675The function runs through the `bl_param_t` list and extracts the entry point
1676information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001677
1678- Initialize a UART (PL011 console), which enables access to the ``printf``
1679 family of functions in BL31.
1680
1681- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1682 CCI slave interface corresponding to the cluster that includes the primary
1683 CPU.
1684
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001685Function : bl31_plat_arch_setup() [mandatory]
1686~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001687
1688::
1689
1690 Argument : void
1691 Return : void
1692
1693This function executes with the MMU and data caches disabled. It is only called
1694by the primary CPU.
1695
1696The purpose of this function is to perform any architectural initialization
1697that varies across platforms.
1698
Dan Handley610e7e12018-03-01 18:44:00 +00001699On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001700
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001701Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001702~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1703
1704::
1705
1706 Argument : void
1707 Return : void
1708
1709This function may execute with the MMU and data caches enabled if the platform
1710port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1711called by the primary CPU.
1712
1713The purpose of this function is to complete platform initialization so that both
1714BL31 runtime services and normal world software can function correctly.
1715
Dan Handley610e7e12018-03-01 18:44:00 +00001716On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001717
1718- Initialize the generic interrupt controller.
1719
1720 Depending on the GIC driver selected by the platform, the appropriate GICv2
1721 or GICv3 initialization will be done, which mainly consists of:
1722
1723 - Enable secure interrupts in the GIC CPU interface.
1724 - Disable the legacy interrupt bypass mechanism.
1725 - Configure the priority mask register to allow interrupts of all priorities
1726 to be signaled to the CPU interface.
1727 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1728 - Target all secure SPIs to CPU0.
1729 - Enable these secure interrupts in the GIC distributor.
1730 - Configure all other interrupts as non-secure.
1731 - Enable signaling of secure interrupts in the GIC distributor.
1732
1733- Enable system-level implementation of the generic timer counter through the
1734 memory mapped interface.
1735
1736- Grant access to the system counter timer module
1737
1738- Initialize the power controller device.
1739
1740 In particular, initialise the locks that prevent concurrent accesses to the
1741 power controller device.
1742
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001743Function : bl31_plat_runtime_setup() [optional]
1744~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001745
1746::
1747
1748 Argument : void
1749 Return : void
1750
1751The purpose of this function is allow the platform to perform any BL31 runtime
1752setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001753implementation of this function will invoke ``console_switch_state()`` to switch
1754console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001755
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001756Function : bl31_plat_get_next_image_ep_info() [mandatory]
1757~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001758
1759::
1760
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001761 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001762 Return : entry_point_info *
1763
1764This function may execute with the MMU and data caches enabled if the platform
1765port does the necessary initializations in ``bl31_plat_arch_setup()``.
1766
1767This function is called by ``bl31_main()`` to retrieve information provided by
1768BL2 for the next image in the security state specified by the argument. BL31
1769uses this information to pass control to that image in the specified security
1770state. This function must return a pointer to the ``entry_point_info`` structure
1771(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1772should return NULL otherwise.
1773
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001774Function : bl31_plat_enable_mmu [optional]
1775~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1776
1777::
1778
1779 Argument : uint32_t
1780 Return : void
1781
1782This function enables the MMU. The boot code calls this function with MMU and
1783caches disabled. This function should program necessary registers to enable
1784translation, and upon return, the MMU on the calling PE must be enabled.
1785
1786The function must honor flags passed in the first argument. These flags are
1787defined by the translation library, and can be found in the file
1788``include/lib/xlat_tables/xlat_mmu_helpers.h``.
1789
1790On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001791is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001792
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001793Function : plat_init_apiakey [optional]
1794~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1795
1796::
1797
1798 Argument : void
1799 Return : uint64_t *
1800
1801This function populates the ``plat_apiakey`` array that contains the values used
1802to set the ``APIAKey{Hi,Lo}_EL1`` registers. It returns a pointer to this array.
1803
1804The value should be obtained from a reliable source of randomness.
1805
1806This function is only needed if ARMv8.3 pointer authentication is used in the
1807Trusted Firmware by building with ``ENABLE_PAUTH=1``.
1808
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001809Function : plat_get_syscnt_freq2() [mandatory]
1810~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001811
1812::
1813
1814 Argument : void
1815 Return : unsigned int
1816
1817This function is used by the architecture setup code to retrieve the counter
1818frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00001819``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001820of the system counter, which is retrieved from the first entry in the frequency
1821modes table.
1822
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001823#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
1824~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001825
1826When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
1827bytes) aligned to the cache line boundary that should be allocated per-cpu to
1828accommodate all the bakery locks.
1829
1830If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
1831calculates the size of the ``bakery_lock`` input section, aligns it to the
1832nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
1833and stores the result in a linker symbol. This constant prevents a platform
1834from relying on the linker and provide a more efficient mechanism for
1835accessing per-cpu bakery lock information.
1836
1837If this constant is defined and its value is not equal to the value
1838calculated by the linker then a link time assertion is raised. A compile time
1839assertion is raised if the value of the constant is not aligned to the cache
1840line boundary.
1841
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001842SDEI porting requirements
1843~~~~~~~~~~~~~~~~~~~~~~~~~
1844
1845The SDEI dispatcher requires the platform to provide the following macros
1846and functions, of which some are optional, and some others mandatory.
1847
1848Macros
1849......
1850
1851Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
1852^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1853
1854This macro must be defined to the EL3 exception priority level associated with
1855Normal SDEI events on the platform. This must have a higher value (therefore of
1856lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
1857
1858Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
1859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1860
1861This macro must be defined to the EL3 exception priority level associated with
1862Critical SDEI events on the platform. This must have a lower value (therefore of
1863higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
1864
Jeenu Viswambharan7af48132018-01-16 09:29:30 +00001865**Note**: SDEI exception priorities must be the lowest among Secure priorities.
1866Among the SDEI exceptions, Critical SDEI priority must be higher than Normal
1867SDEI priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001868
1869Functions
1870.........
1871
1872Function: int plat_sdei_validate_entry_point(uintptr_t ep) [optional]
1873^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1874
1875::
1876
1877 Argument: uintptr_t
1878 Return: int
1879
1880This function validates the address of client entry points provided for both
1881event registration and *Complete and Resume* SDEI calls. The function takes one
1882argument, which is the address of the handler the SDEI client requested to
1883register. The function must return ``0`` for successful validation, or ``-1``
1884upon failure.
1885
Dan Handley610e7e12018-03-01 18:44:00 +00001886The default implementation always returns ``0``. On Arm platforms, this function
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001887is implemented to translate the entry point to physical address, and further to
1888ensure that the address is located in Non-secure DRAM.
1889
1890Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
1891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1892
1893::
1894
1895 Argument: uint64_t
1896 Argument: unsigned int
1897 Return: void
1898
1899SDEI specification requires that a PE comes out of reset with the events masked.
1900The client therefore is expected to call ``PE_UNMASK`` to unmask SDEI events on
1901the PE. No SDEI events can be dispatched until such time.
1902
1903Should a PE receive an interrupt that was bound to an SDEI event while the
1904events are masked on the PE, the dispatcher implementation invokes the function
1905``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
1906interrupt and the interrupt ID are passed as parameters.
1907
1908The default implementation only prints out a warning message.
1909
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001910Power State Coordination Interface (in BL31)
1911--------------------------------------------
1912
Dan Handley610e7e12018-03-01 18:44:00 +00001913The TF-A implementation of the PSCI API is based around the concept of a
1914*power domain*. A *power domain* is a CPU or a logical group of CPUs which
1915share some state on which power management operations can be performed as
1916specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
1917a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
1918*power domains* are arranged in a hierarchical tree structure and each
1919*power domain* can be identified in a system by the cpu index of any CPU that
1920is part of that domain and a *power domain level*. A processing element (for
1921example, a CPU) is at level 0. If the *power domain* node above a CPU is a
1922logical grouping of CPUs that share some state, then level 1 is that group of
1923CPUs (for example, a cluster), and level 2 is a group of clusters (for
1924example, the system). More details on the power domain topology and its
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001925organization can be found in `Power Domain Topology Design`_.
1926
1927BL31's platform initialization code exports a pointer to the platform-specific
1928power management operations required for the PSCI implementation to function
1929correctly. This information is populated in the ``plat_psci_ops`` structure. The
1930PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
1931power management operations on the power domains. For example, the target
1932CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
1933handler (if present) is called for the CPU power domain.
1934
1935The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
1936describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00001937defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001938array of local power states where each index corresponds to a power domain
1939level. Each entry contains the local power state the power domain at that power
1940level could enter. It depends on the ``validate_power_state()`` handler to
1941convert the power-state parameter (possibly encoding a composite power state)
1942passed in a PSCI ``CPU_SUSPEND`` call to this representation.
1943
1944The following functions form part of platform port of PSCI functionality.
1945
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001946Function : plat_psci_stat_accounting_start() [optional]
1947~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001948
1949::
1950
1951 Argument : const psci_power_state_t *
1952 Return : void
1953
1954This is an optional hook that platforms can implement for residency statistics
1955accounting before entering a low power state. The ``pwr_domain_state`` field of
1956``state_info`` (first argument) can be inspected if stat accounting is done
1957differently at CPU level versus higher levels. As an example, if the element at
1958index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
1959state, special hardware logic may be programmed in order to keep track of the
1960residency statistics. For higher levels (array indices > 0), the residency
1961statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
1962default implementation will use PMF to capture timestamps.
1963
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001964Function : plat_psci_stat_accounting_stop() [optional]
1965~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001966
1967::
1968
1969 Argument : const psci_power_state_t *
1970 Return : void
1971
1972This is an optional hook that platforms can implement for residency statistics
1973accounting after exiting from a low power state. The ``pwr_domain_state`` field
1974of ``state_info`` (first argument) can be inspected if stat accounting is done
1975differently at CPU level versus higher levels. As an example, if the element at
1976index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
1977state, special hardware logic may be programmed in order to keep track of the
1978residency statistics. For higher levels (array indices > 0), the residency
1979statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
1980default implementation will use PMF to capture timestamps.
1981
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001982Function : plat_psci_stat_get_residency() [optional]
1983~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001984
1985::
1986
1987 Argument : unsigned int, const psci_power_state_t *, int
1988 Return : u_register_t
1989
1990This is an optional interface that is is invoked after resuming from a low power
1991state and provides the time spent resident in that low power state by the power
1992domain at a particular power domain level. When a CPU wakes up from suspend,
1993all its parent power domain levels are also woken up. The generic PSCI code
1994invokes this function for each parent power domain that is resumed and it
1995identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
1996argument) describes the low power state that the power domain has resumed from.
1997The current CPU is the first CPU in the power domain to resume from the low
1998power state and the ``last_cpu_idx`` (third parameter) is the index of the last
1999CPU in the power domain to suspend and may be needed to calculate the residency
2000for that power domain.
2001
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002002Function : plat_get_target_pwr_state() [optional]
2003~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002004
2005::
2006
2007 Argument : unsigned int, const plat_local_state_t *, unsigned int
2008 Return : plat_local_state_t
2009
2010The PSCI generic code uses this function to let the platform participate in
2011state coordination during a power management operation. The function is passed
2012a pointer to an array of platform specific local power state ``states`` (second
2013argument) which contains the requested power state for each CPU at a particular
2014power domain level ``lvl`` (first argument) within the power domain. The function
2015is expected to traverse this array of upto ``ncpus`` (third argument) and return
2016a coordinated target power state by the comparing all the requested power
2017states. The target power state should not be deeper than any of the requested
2018power states.
2019
2020A weak definition of this API is provided by default wherein it assumes
2021that the platform assigns a local state value in order of increasing depth
2022of the power state i.e. for two power states X & Y, if X < Y
2023then X represents a shallower power state than Y. As a result, the
2024coordinated target local power state for a power domain will be the minimum
2025of the requested local power state values.
2026
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002027Function : plat_get_power_domain_tree_desc() [mandatory]
2028~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002029
2030::
2031
2032 Argument : void
2033 Return : const unsigned char *
2034
2035This function returns a pointer to the byte array containing the power domain
2036topology tree description. The format and method to construct this array are
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002037described in `Power Domain Topology Design`_. The BL31 PSCI initialization code
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002038requires this array to be described by the platform, either statically or
2039dynamically, to initialize the power domain topology tree. In case the array
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002040is populated dynamically, then plat_core_pos_by_mpidr() and
2041plat_my_core_pos() should also be implemented suitably so that the topology
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002042tree description matches the CPU indices returned by these APIs. These APIs
2043together form the platform interface for the PSCI topology framework.
2044
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002045Function : plat_setup_psci_ops() [mandatory]
2046~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002047
2048::
2049
2050 Argument : uintptr_t, const plat_psci_ops **
2051 Return : int
2052
2053This function may execute with the MMU and data caches enabled if the platform
2054port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2055called by the primary CPU.
2056
2057This function is called by PSCI initialization code. Its purpose is to let
2058the platform layer know about the warm boot entrypoint through the
2059``sec_entrypoint`` (first argument) and to export handler routines for
2060platform-specific psci power management actions by populating the passed
2061pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2062
2063A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002064the Arm FVP specific implementation of these handlers in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002065`plat/arm/board/fvp/fvp_pm.c`_ as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002066platform wants to support, the associated operation or operations in this
2067structure must be provided and implemented (Refer section 4 of
Dan Handley610e7e12018-03-01 18:44:00 +00002068`Firmware Design`_ for the PSCI API supported in TF-A). To disable a PSCI
2069function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002070structure instead of providing an empty implementation.
2071
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002072plat_psci_ops.cpu_standby()
2073...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002074
2075Perform the platform-specific actions to enter the standby state for a cpu
2076indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002077wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002078For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2079the suspend state type specified in the ``power-state`` parameter should be
2080STANDBY and the target power domain level specified should be the CPU. The
2081handler should put the CPU into a low power retention state (usually by
2082issuing a wfi instruction) and ensure that it can be woken up from that
2083state by a normal interrupt. The generic code expects the handler to succeed.
2084
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002085plat_psci_ops.pwr_domain_on()
2086.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002087
2088Perform the platform specific actions to power on a CPU, specified
2089by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002090return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002091
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002092plat_psci_ops.pwr_domain_off()
2093..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002094
2095Perform the platform specific actions to prepare to power off the calling CPU
2096and its higher parent power domain levels as indicated by the ``target_state``
2097(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2098
2099The ``target_state`` encodes the platform coordinated target local power states
2100for the CPU power domain and its parent power domain levels. The handler
2101needs to perform power management operation corresponding to the local state
2102at each power level.
2103
2104For this handler, the local power state for the CPU power domain will be a
2105power down state where as it could be either power down, retention or run state
2106for the higher power domain levels depending on the result of state
2107coordination. The generic code expects the handler to succeed.
2108
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002109plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2110...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002111
2112This optional function may be used as a performance optimization to replace
2113or complement pwr_domain_suspend() on some platforms. Its calling semantics
2114are identical to pwr_domain_suspend(), except the PSCI implementation only
2115calls this function when suspending to a power down state, and it guarantees
2116that data caches are enabled.
2117
2118When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2119before calling pwr_domain_suspend(). If the target_state corresponds to a
2120power down state and it is safe to perform some or all of the platform
2121specific actions in that function with data caches enabled, it may be more
2122efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2123= 1, data caches remain enabled throughout, and so there is no advantage to
2124moving platform specific actions to this function.
2125
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002126plat_psci_ops.pwr_domain_suspend()
2127..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002128
2129Perform the platform specific actions to prepare to suspend the calling
2130CPU and its higher parent power domain levels as indicated by the
2131``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2132API implementation.
2133
2134The ``target_state`` has a similar meaning as described in
2135the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2136target local power states for the CPU power domain and its parent
2137power domain levels. The handler needs to perform power management operation
2138corresponding to the local state at each power level. The generic code
2139expects the handler to succeed.
2140
Douglas Raillarda84996b2017-08-02 16:57:32 +01002141The difference between turning a power domain off versus suspending it is that
2142in the former case, the power domain is expected to re-initialize its state
2143when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2144case, the power domain is expected to save enough state so that it can resume
2145execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002146``pwr_domain_suspend_finish()``).
2147
Douglas Raillarda84996b2017-08-02 16:57:32 +01002148When suspending a core, the platform can also choose to power off the GICv3
2149Redistributor and ITS through an implementation-defined sequence. To achieve
2150this safely, the ITS context must be saved first. The architectural part is
2151implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2152sequence is implementation defined and it is therefore the responsibility of
2153the platform code to implement the necessary sequence. Then the GIC
2154Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2155Powering off the Redistributor requires the implementation to support it and it
2156is the responsibility of the platform code to execute the right implementation
2157defined sequence.
2158
2159When a system suspend is requested, the platform can also make use of the
2160``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2161it has saved the context of the Redistributors and ITS of all the cores in the
2162system. The context of the Distributor can be large and may require it to be
2163allocated in a special area if it cannot fit in the platform's global static
2164data, for example in DRAM. The Distributor can then be powered down using an
2165implementation-defined sequence.
2166
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002167plat_psci_ops.pwr_domain_pwr_down_wfi()
2168.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002169
2170This is an optional function and, if implemented, is expected to perform
2171platform specific actions including the ``wfi`` invocation which allows the
2172CPU to powerdown. Since this function is invoked outside the PSCI locks,
2173the actions performed in this hook must be local to the CPU or the platform
2174must ensure that races between multiple CPUs cannot occur.
2175
2176The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2177operation and it encodes the platform coordinated target local power states for
2178the CPU power domain and its parent power domain levels. This function must
2179not return back to the caller.
2180
2181If this function is not implemented by the platform, PSCI generic
2182implementation invokes ``psci_power_down_wfi()`` for power down.
2183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002184plat_psci_ops.pwr_domain_on_finish()
2185....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002186
2187This function is called by the PSCI implementation after the calling CPU is
2188powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2189It performs the platform-specific setup required to initialize enough state for
2190this CPU to enter the normal world and also provide secure runtime firmware
2191services.
2192
2193The ``target_state`` (first argument) is the prior state of the power domains
2194immediately before the CPU was turned on. It indicates which power domains
2195above the CPU might require initialization due to having previously been in
2196low power states. The generic code expects the handler to succeed.
2197
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002198plat_psci_ops.pwr_domain_suspend_finish()
2199.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002200
2201This function is called by the PSCI implementation after the calling CPU is
2202powered on and released from reset in response to an asynchronous wakeup
2203event, for example a timer interrupt that was programmed by the CPU during the
2204``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2205setup required to restore the saved state for this CPU to resume execution
2206in the normal world and also provide secure runtime firmware services.
2207
2208The ``target_state`` (first argument) has a similar meaning as described in
2209the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2210to succeed.
2211
Douglas Raillarda84996b2017-08-02 16:57:32 +01002212If the Distributor, Redistributors or ITS have been powered off as part of a
2213suspend, their context must be restored in this function in the reverse order
2214to how they were saved during suspend sequence.
2215
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002216plat_psci_ops.system_off()
2217..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002218
2219This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2220call. It performs the platform-specific system poweroff sequence after
2221notifying the Secure Payload Dispatcher.
2222
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002223plat_psci_ops.system_reset()
2224............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002225
2226This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2227call. It performs the platform-specific system reset sequence after
2228notifying the Secure Payload Dispatcher.
2229
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002230plat_psci_ops.validate_power_state()
2231....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002232
2233This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2234call to validate the ``power_state`` parameter of the PSCI API and if valid,
2235populate it in ``req_state`` (second argument) array as power domain level
2236specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002237return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002238normal world PSCI client.
2239
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002240plat_psci_ops.validate_ns_entrypoint()
2241......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002242
2243This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2244``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2245parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002246the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002247propagated back to the normal world PSCI client.
2248
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002249plat_psci_ops.get_sys_suspend_power_state()
2250...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002251
2252This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2253call to get the ``req_state`` parameter from platform which encodes the power
2254domain level specific local states to suspend to system affinity level. The
2255``req_state`` will be utilized to do the PSCI state coordination and
2256``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2257enter system suspend.
2258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002259plat_psci_ops.get_pwr_lvl_state_idx()
2260.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002261
2262This is an optional function and, if implemented, is invoked by the PSCI
2263implementation to convert the ``local_state`` (first argument) at a specified
2264``pwr_lvl`` (second argument) to an index between 0 and
2265``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2266supports more than two local power states at each power domain level, that is
2267``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2268local power states.
2269
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002270plat_psci_ops.translate_power_state_by_mpidr()
2271..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002272
2273This is an optional function and, if implemented, verifies the ``power_state``
2274(second argument) parameter of the PSCI API corresponding to a target power
2275domain. The target power domain is identified by using both ``MPIDR`` (first
2276argument) and the power domain level encoded in ``power_state``. The power domain
2277level specific local states are to be extracted from ``power_state`` and be
2278populated in the ``output_state`` (third argument) array. The functionality
2279is similar to the ``validate_power_state`` function described above and is
2280envisaged to be used in case the validity of ``power_state`` depend on the
2281targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002282domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002283function is not implemented, then the generic implementation relies on
2284``validate_power_state`` function to translate the ``power_state``.
2285
2286This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002287power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002288APIs as described in Section 5.18 of `PSCI`_.
2289
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002290plat_psci_ops.get_node_hw_state()
2291.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002292
2293This is an optional function. If implemented this function is intended to return
2294the power state of a node (identified by the first parameter, the ``MPIDR``) in
2295the power domain topology (identified by the second parameter, ``power_level``),
2296as retrieved from a power controller or equivalent component on the platform.
2297Upon successful completion, the implementation must map and return the final
2298status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2299must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2300appropriate.
2301
2302Implementations are not expected to handle ``power_levels`` greater than
2303``PLAT_MAX_PWR_LVL``.
2304
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002305plat_psci_ops.system_reset2()
2306.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002307
2308This is an optional function. If implemented this function is
2309called during the ``SYSTEM_RESET2`` call to perform a reset
2310based on the first parameter ``reset_type`` as specified in
2311`PSCI`_. The parameter ``cookie`` can be used to pass additional
2312reset information. If the ``reset_type`` is not supported, the
2313function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2314resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2315and vendor reset can return other PSCI error codes as defined
2316in `PSCI`_. On success this function will not return.
2317
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002318plat_psci_ops.write_mem_protect()
2319.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002320
2321This is an optional function. If implemented it enables or disables the
2322``MEM_PROTECT`` functionality based on the value of ``val``.
2323A non-zero value enables ``MEM_PROTECT`` and a value of zero
2324disables it. Upon encountering failures it must return a negative value
2325and on success it must return 0.
2326
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002327plat_psci_ops.read_mem_protect()
2328................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002329
2330This is an optional function. If implemented it returns the current
2331state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2332failures it must return a negative value and on success it must
2333return 0.
2334
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002335plat_psci_ops.mem_protect_chk()
2336...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002337
2338This is an optional function. If implemented it checks if a memory
2339region defined by a base address ``base`` and with a size of ``length``
2340bytes is protected by ``MEM_PROTECT``. If the region is protected
2341then it must return 0, otherwise it must return a negative number.
2342
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002343Interrupt Management framework (in BL31)
2344----------------------------------------
2345
2346BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2347generated in either security state and targeted to EL1 or EL2 in the non-secure
2348state or EL3/S-EL1 in the secure state. The design of this framework is
2349described in the `IMF Design Guide`_
2350
2351A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002352text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002353platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002354present in the platform. Arm standard platform layer supports both
2355`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2356and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2357FVP can be configured to use either GICv2 or GICv3 depending on the build flag
2358``FVP_USE_GIC_DRIVER`` (See FVP platform specific build options in
2359`User Guide`_ for more details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002360
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002361See also: `Interrupt Controller Abstraction APIs`__.
2362
Paul Beesleyea225122019-02-11 17:54:45 +00002363.. __: ../design/platform-interrupt-controller-API.rst
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002365Function : plat_interrupt_type_to_line() [mandatory]
2366~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002367
2368::
2369
2370 Argument : uint32_t, uint32_t
2371 Return : uint32_t
2372
Dan Handley610e7e12018-03-01 18:44:00 +00002373The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002374interrupt line. The specific line that is signaled depends on how the interrupt
2375controller (IC) reports different interrupt types from an execution context in
2376either security state. The IMF uses this API to determine which interrupt line
2377the platform IC uses to signal each type of interrupt supported by the framework
2378from a given security state. This API must be invoked at EL3.
2379
2380The first parameter will be one of the ``INTR_TYPE_*`` values (see
2381`IMF Design Guide`_) indicating the target type of the interrupt, the second parameter is the
2382security state of the originating execution context. The return result is the
2383bit position in the ``SCR_EL3`` register of the respective interrupt trap: IRQ=1,
2384FIQ=2.
2385
Dan Handley610e7e12018-03-01 18:44:00 +00002386In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002387configured as FIQs and Non-secure interrupts as IRQs from either security
2388state.
2389
Dan Handley610e7e12018-03-01 18:44:00 +00002390In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002391configured depends on the security state of the execution context when the
2392interrupt is signalled and are as follows:
2393
2394- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2395 NS-EL0/1/2 context.
2396- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2397 in the NS-EL0/1/2 context.
2398- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2399 context.
2400
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002401Function : plat_ic_get_pending_interrupt_type() [mandatory]
2402~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002403
2404::
2405
2406 Argument : void
2407 Return : uint32_t
2408
2409This API returns the type of the highest priority pending interrupt at the
2410platform IC. The IMF uses the interrupt type to retrieve the corresponding
2411handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2412pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2413``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2414
Dan Handley610e7e12018-03-01 18:44:00 +00002415In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002416Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2417the pending interrupt. The type of interrupt depends upon the id value as
2418follows.
2419
2420#. id < 1022 is reported as a S-EL1 interrupt
2421#. id = 1022 is reported as a Non-secure interrupt.
2422#. id = 1023 is reported as an invalid interrupt type.
2423
Dan Handley610e7e12018-03-01 18:44:00 +00002424In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002425``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2426is read to determine the id of the pending interrupt. The type of interrupt
2427depends upon the id value as follows.
2428
2429#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2430#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2431#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2432#. All other interrupt id's are reported as EL3 interrupt.
2433
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002434Function : plat_ic_get_pending_interrupt_id() [mandatory]
2435~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002436
2437::
2438
2439 Argument : void
2440 Return : uint32_t
2441
2442This API returns the id of the highest priority pending interrupt at the
2443platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2444pending.
2445
Dan Handley610e7e12018-03-01 18:44:00 +00002446In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002447Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2448pending interrupt. The id that is returned by API depends upon the value of
2449the id read from the interrupt controller as follows.
2450
2451#. id < 1022. id is returned as is.
2452#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2453 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2454 This id is returned by the API.
2455#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2456
Dan Handley610e7e12018-03-01 18:44:00 +00002457In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002458EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2459group 0 Register*, is read to determine the id of the pending interrupt. The id
2460that is returned by API depends upon the value of the id read from the
2461interrupt controller as follows.
2462
2463#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2464#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2465 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2466 Register* is read to determine the id of the group 1 interrupt. This id
2467 is returned by the API as long as it is a valid interrupt id
2468#. If the id is any of the special interrupt identifiers,
2469 ``INTR_ID_UNAVAILABLE`` is returned.
2470
2471When the API invoked from S-EL1 for GICv3 systems, the id read from system
2472register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002473Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002474``INTR_ID_UNAVAILABLE`` is returned.
2475
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002476Function : plat_ic_acknowledge_interrupt() [mandatory]
2477~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002478
2479::
2480
2481 Argument : void
2482 Return : uint32_t
2483
2484This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002485the highest pending interrupt has begun. It should return the raw, unmodified
2486value obtained from the interrupt controller when acknowledging an interrupt.
2487The actual interrupt number shall be extracted from this raw value using the API
2488`plat_ic_get_interrupt_id()`__.
2489
Paul Beesleyea225122019-02-11 17:54:45 +00002490.. __: ../design/platform-interrupt-controller-API.rst#function-unsigned-int-plat-ic-get-interrupt-id-unsigned-int-raw-optional
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002491
Dan Handley610e7e12018-03-01 18:44:00 +00002492This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002493Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2494priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002495It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002496
Dan Handley610e7e12018-03-01 18:44:00 +00002497In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002498from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2499Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2500reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2501group 1*. The read changes the state of the highest pending interrupt from
2502pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002503unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002504
2505The TSP uses this API to start processing of the secure physical timer
2506interrupt.
2507
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002508Function : plat_ic_end_of_interrupt() [mandatory]
2509~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002510
2511::
2512
2513 Argument : uint32_t
2514 Return : void
2515
2516This API is used by the CPU to indicate to the platform IC that processing of
2517the interrupt corresponding to the id (passed as the parameter) has
2518finished. The id should be the same as the id returned by the
2519``plat_ic_acknowledge_interrupt()`` API.
2520
Dan Handley610e7e12018-03-01 18:44:00 +00002521Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002522(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2523system register in case of GICv3 depending on where the API is invoked from,
2524EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2525controller.
2526
2527The TSP uses this API to finish processing of the secure physical timer
2528interrupt.
2529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002530Function : plat_ic_get_interrupt_type() [mandatory]
2531~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002532
2533::
2534
2535 Argument : uint32_t
2536 Return : uint32_t
2537
2538This API returns the type of the interrupt id passed as the parameter.
2539``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2540interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2541returned depending upon how the interrupt has been configured by the platform
2542IC. This API must be invoked at EL3.
2543
Dan Handley610e7e12018-03-01 18:44:00 +00002544Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002545and Non-secure interrupts as Group1 interrupts. It reads the group value
2546corresponding to the interrupt id from the relevant *Interrupt Group Register*
2547(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2548
Dan Handley610e7e12018-03-01 18:44:00 +00002549In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002550Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2551(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2552as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2553
2554Crash Reporting mechanism (in BL31)
2555-----------------------------------
2556
2557BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002558of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002559on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002560``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2561
2562The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2563implementation of all of them. Platforms may include this file to their
2564makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002565output to be routed over the normal console infrastructure and get printed on
2566consoles configured to output in crash state. ``console_set_scope()`` can be
2567used to control whether a console is used for crash output.
Julius Werner1338c9c2018-11-19 14:25:55 -08002568NOTE: Platforms are responsible for making sure that they only mark consoles for
2569use in the crash scope that are able to support this, i.e. that are written in
2570assembly and conform with the register clobber rules for putc() (x0-x2, x16-x17)
2571and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002572
Julius Werneraae9bb12017-09-18 16:49:48 -07002573In some cases (such as debugging very early crashes that happen before the
2574normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002575more explicitly. These platforms may instead provide custom implementations for
2576these. They are executed outside of a C environment and without a stack. Many
2577console drivers provide functions named ``console_xxx_core_init/putc/flush``
2578that are designed to be used by these functions. See Arm platforms (like juno)
2579for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002580
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002581Function : plat_crash_console_init [mandatory]
2582~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002583
2584::
2585
2586 Argument : void
2587 Return : int
2588
2589This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002590console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002591initialization and returns 1 on success.
2592
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002593Function : plat_crash_console_putc [mandatory]
2594~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002595
2596::
2597
2598 Argument : int
2599 Return : int
2600
2601This API is used by the crash reporting mechanism to print a character on the
2602designated crash console. It must only use general purpose registers x1 and
2603x2 to do its work. The parameter and the return value are in general purpose
2604register x0.
2605
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002606Function : plat_crash_console_flush [mandatory]
2607~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002608
2609::
2610
2611 Argument : void
2612 Return : int
2613
2614This API is used by the crash reporting mechanism to force write of all buffered
2615data on the designated crash console. It should only use general purpose
Julius Werneraae9bb12017-09-18 16:49:48 -07002616registers x0 through x5 to do its work. The return value is 0 on successful
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002617completion; otherwise the return value is -1.
2618
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002619External Abort handling and RAS Support
2620---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002621
2622Function : plat_ea_handler
2623~~~~~~~~~~~~~~~~~~~~~~~~~~
2624
2625::
2626
2627 Argument : int
2628 Argument : uint64_t
2629 Argument : void *
2630 Argument : void *
2631 Argument : uint64_t
2632 Return : void
2633
2634This function is invoked by the RAS framework for the platform to handle an
2635External Abort received at EL3. The intention of the function is to attempt to
2636resolve the cause of External Abort and return; if that's not possible, to
2637initiate orderly shutdown of the system.
2638
2639The first parameter (``int ea_reason``) indicates the reason for External Abort.
2640Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2641
2642The second parameter (``uint64_t syndrome``) is the respective syndrome
2643presented to EL3 after having received the External Abort. Depending on the
2644nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2645can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2646
2647The third parameter (``void *cookie``) is unused for now. The fourth parameter
2648(``void *handle``) is a pointer to the preempted context. The fifth parameter
2649(``uint64_t flags``) indicates the preempted security state. These parameters
2650are received from the top-level exception handler.
2651
2652If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2653function iterates through RAS handlers registered by the platform. If any of the
2654RAS handlers resolve the External Abort, no further action is taken.
2655
2656If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2657could resolve the External Abort, the default implementation prints an error
2658message, and panics.
2659
2660Function : plat_handle_uncontainable_ea
2661~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2662
2663::
2664
2665 Argument : int
2666 Argument : uint64_t
2667 Return : void
2668
2669This function is invoked by the RAS framework when an External Abort of
2670Uncontainable type is received at EL3. Due to the critical nature of
2671Uncontainable errors, the intention of this function is to initiate orderly
2672shutdown of the system, and is not expected to return.
2673
2674This function must be implemented in assembly.
2675
2676The first and second parameters are the same as that of ``plat_ea_handler``.
2677
2678The default implementation of this function calls
2679``report_unhandled_exception``.
2680
2681Function : plat_handle_double_fault
2682~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2683
2684::
2685
2686 Argument : int
2687 Argument : uint64_t
2688 Return : void
2689
2690This function is invoked by the RAS framework when another External Abort is
2691received at EL3 while one is already being handled. I.e., a call to
2692``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2693this function is to initiate orderly shutdown of the system, and is not expected
2694recover or return.
2695
2696This function must be implemented in assembly.
2697
2698The first and second parameters are the same as that of ``plat_ea_handler``.
2699
2700The default implementation of this function calls
2701``report_unhandled_exception``.
2702
2703Function : plat_handle_el3_ea
2704~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2705
2706::
2707
2708 Return : void
2709
2710This function is invoked when an External Abort is received while executing in
2711EL3. Due to its critical nature, the intention of this function is to initiate
2712orderly shutdown of the system, and is not expected recover or return.
2713
2714This function must be implemented in assembly.
2715
2716The default implementation of this function calls
2717``report_unhandled_exception``.
2718
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002719Build flags
2720-----------
2721
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002722There are some build flags which can be defined by the platform to control
2723inclusion or exclusion of certain BL stages from the FIP image. These flags
2724need to be defined in the platform makefile which will get included by the
2725build system.
2726
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002727- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002728 By default, this flag is defined ``yes`` by the build system and ``BL33``
2729 build option should be supplied as a build option. The platform has the
2730 option of excluding the BL33 image in the ``fip`` image by defining this flag
2731 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
2732 are used, this flag will be set to ``no`` automatically.
2733
2734C Library
2735---------
2736
2737To avoid subtle toolchain behavioral dependencies, the header files provided
2738by the compiler are not used. The software is built with the ``-nostdinc`` flag
2739to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00002740required headers are included in the TF-A source tree. The library only
2741contains those C library definitions required by the local implementation. If
2742more functionality is required, the needed library functions will need to be
2743added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002744
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002745Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
2746been written specifically for TF-A. Fome implementation files have been obtained
2747from `FreeBSD`_, others have been written specifically for TF-A as well. The
2748files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002749
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01002750SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
2751can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002752
2753Storage abstraction layer
2754-------------------------
2755
2756In order to improve platform independence and portability an storage abstraction
2757layer is used to load data from non-volatile platform storage.
2758
2759Each platform should register devices and their drivers via the Storage layer.
2760These drivers then need to be initialized by bootloader phases as
2761required in their respective ``blx_platform_setup()`` functions. Currently
2762storage access is only required by BL1 and BL2 phases. The ``load_image()``
2763function uses the storage layer to access non-volatile platform storage.
2764
Dan Handley610e7e12018-03-01 18:44:00 +00002765It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002766development platforms the Firmware Image Package (FIP) driver is provided as
2767the default means to load data from storage (see the "Firmware Image Package"
2768section in the `User Guide`_). The storage layer is described in the header file
2769``include/drivers/io/io_storage.h``. The implementation of the common library
2770is in ``drivers/io/io_storage.c`` and the driver files are located in
2771``drivers/io/``.
2772
2773Each IO driver must provide ``io_dev_*`` structures, as described in
2774``drivers/io/io_driver.h``. These are returned via a mandatory registration
2775function that is called on platform initialization. The semi-hosting driver
2776implementation in ``io_semihosting.c`` can be used as an example.
2777
2778The Storage layer provides mechanisms to initialize storage devices before
2779IO operations are called. The basic operations supported by the layer
2780include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
2781Drivers do not have to implement all operations, but each platform must
2782provide at least one driver for a device capable of supporting generic
2783operations such as loading a bootloader image.
2784
2785The current implementation only allows for known images to be loaded by the
2786firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00002787``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002788there). The platform layer (``plat_get_image_source()``) then returns a reference
2789to a device and a driver-specific ``spec`` which will be understood by the driver
2790to allow access to the image data.
2791
2792The layer is designed in such a way that is it possible to chain drivers with
2793other drivers. For example, file-system drivers may be implemented on top of
2794physical block devices, both represented by IO devices with corresponding
2795drivers. In such a case, the file-system "binding" with the block device may
2796be deferred until the file-system device is initialised.
2797
2798The abstraction currently depends on structures being statically allocated
2799by the drivers and callers, as the system does not yet provide a means of
2800dynamically allocating memory. This may also have the affect of limiting the
2801amount of open resources per driver.
2802
2803--------------
2804
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00002805*Copyright (c) 2013-2019, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002806
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002807.. _include/plat/common/platform.h: ../include/plat/common/platform.h
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002808.. _include/plat/arm/common/plat_arm.h: ../include/plat/arm/common/plat_arm.h%5D
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002809.. _User Guide: user-guide.rst
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002810.. _include/plat/common/common_def.h: ../include/plat/common/common_def.h
2811.. _include/plat/arm/common/arm_def.h: ../include/plat/arm/common/arm_def.h
2812.. _plat/common/aarch64/platform_mp_stack.S: ../plat/common/aarch64/platform_mp_stack.S
2813.. _plat/common/aarch64/platform_up_stack.S: ../plat/common/aarch64/platform_up_stack.S
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002814.. _For example, define the build flag in platform.mk: PLAT_PL061_MAX_GPIOS%20:=%20160
2815.. _Power Domain Topology Design: psci-pd-tree.rst
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002816.. _include/common/bl_common.h: ../include/common/bl_common.h
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002817.. _include/lib/aarch32/arch.h: ../include/lib/aarch32/arch.h
2818.. _Firmware Design: firmware-design.rst
2819.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002820.. _plat/arm/board/fvp/fvp_pm.c: ../plat/arm/board/fvp/fvp_pm.c
Soby Mathewf1e6c492018-10-02 14:01:03 +01002821.. _Platform compatibility policy: ./platform-compatibility-policy.rst
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002822.. _IMF Design Guide: interrupt-framework-design.rst
Dan Handley610e7e12018-03-01 18:44:00 +00002823.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002824.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00002825.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002826.. _SCC: http://www.simple-cc.org/