blob: 1a4b107b6118131ee8621bc04909b2d07f899b7a [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
Sandrine Bailleux7a53a912023-02-08 13:55:51 +010017implementation of variables and functions to fulfill the optional requirements
18in order to ease the porting effort. Each platform port can use them as is or
19provide their own implementation if the default implementation is inadequate.
20
21 .. note::
22
23 TF-A historically provided default implementations of platform interfaces
24 as *weak* functions. This practice is now discouraged and new platform
25 interfaces as they get introduced in the code base should be *strongly*
26 defined. We intend to convert existing weak functions over time. Until
27 then, you will find references to *weak* functions in this document.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010028
Douglas Raillardd7c21b72017-06-28 15:23:03 +010029Some modifications are common to all Boot Loader (BL) stages. Section 2
30discusses these in detail. The subsequent sections discuss the remaining
31modifications for each BL stage in detail.
32
Sandrine Bailleuxdad35612022-11-08 13:36:42 +010033Please refer to the :ref:`Platform Ports Policy` for the policy regarding
34compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010035
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000036Only Arm development platforms (such as FVP and Juno) may use the
37functions/definitions in ``include/plat/arm/common/`` and the corresponding
38source files in ``plat/arm/common/``. This is done so that there are no
39dependencies between platforms maintained by different people/companies. If you
40want to use any of the functionality present in ``plat/arm`` files, please
41create a pull request that moves the code to ``plat/common`` so that it can be
42discussed.
43
Douglas Raillardd7c21b72017-06-28 15:23:03 +010044Common modifications
45--------------------
46
47This section covers the modifications that should be made by the platform for
48each BL stage to correctly port the firmware stack. They are categorized as
49either mandatory or optional.
50
51Common mandatory modifications
52------------------------------
53
54A platform port must enable the Memory Management Unit (MMU) as well as the
55instruction and data caches for each BL stage. Setting up the translation
56tables is the responsibility of the platform port because memory maps differ
57across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010058provided to help in this setup.
59
60Note that although this library supports non-identity mappings, this is intended
61only for re-mapping peripheral physical addresses and allows platforms with high
62I/O addresses to reduce their virtual address space. All other addresses
63corresponding to code and data must currently use an identity mapping.
64
Dan Handley610e7e12018-03-01 18:44:00 +000065Also, the only translation granule size supported in TF-A is 4KB, as various
66parts of the code assume that is the case. It is not possible to switch to
6716 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010068
Dan Handley610e7e12018-03-01 18:44:00 +000069In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010070platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
71an identity mapping for all addresses.
72
73If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
74block of identity mapped secure memory with Device-nGnRE attributes aligned to
75page boundary (4K) for each BL stage. All sections which allocate coherent
Chris Kay33bfc5e2023-02-14 11:30:04 +000076memory are grouped under ``.coherent_ram``. For ex: Bakery locks are placed in a
77section identified by name ``.bakery_lock`` inside ``.coherent_ram`` so that its
Douglas Raillardd7c21b72017-06-28 15:23:03 +010078possible for the firmware to place variables in it using the following C code
79directive:
80
81::
82
Chris Kay33bfc5e2023-02-14 11:30:04 +000083 __section(".bakery_lock")
Douglas Raillardd7c21b72017-06-28 15:23:03 +010084
85Or alternatively the following assembler code directive:
86
87::
88
Chris Kay33bfc5e2023-02-14 11:30:04 +000089 .section .bakery_lock
Douglas Raillardd7c21b72017-06-28 15:23:03 +010090
Chris Kay33bfc5e2023-02-14 11:30:04 +000091The ``.coherent_ram`` section is a sum of all sections like ``.bakery_lock`` which are
Douglas Raillardd7c21b72017-06-28 15:23:03 +010092used to allocate any data structures that are accessed both when a CPU is
93executing with its MMU and caches enabled, and when it's running with its MMU
94and caches disabled. Examples are given below.
95
96The following variables, functions and constants must be defined by the platform
97for the firmware to work correctly.
98
Javier Almansa Sobrino37bf69c2022-04-07 18:26:49 +010099.. _platform_def_mandatory:
100
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100101File : platform_def.h [mandatory]
102~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100103
104Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +0000105include path with the following constants defined. This will require updating
106the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100107
Paul Beesleyf8640672019-04-12 14:19:42 +0100108Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100109which provides typical values for some of the constants below. These values are
110likely to be suitable for all platform ports.
111
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100112- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100113
114 Defines the linker format used by the platform, for example
115 ``elf64-littleaarch64``.
116
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100117- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
119 Defines the processor architecture for the linker by the platform, for
120 example ``aarch64``.
121
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100122- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100123
124 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100125 by ``plat/common/aarch64/platform_mp_stack.S`` and
126 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100127
David Horstmann051fd6d2020-11-12 15:19:04 +0000128- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100129
Max Yufa0b4e82022-09-08 23:21:21 +0000130 Defines the size in bytes of the largest cache line across all the cache
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100131 levels in the platform.
132
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100133- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100134
135 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
136 function.
137
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100138- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100139
140 Defines the total number of CPUs implemented by the platform across all
141 clusters in the system.
142
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100143- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100144
145 Defines the total number of nodes in the power domain topology
146 tree at all the power domain levels used by the platform.
147 This macro is used by the PSCI implementation to allocate
148 data structures to represent power domain topology.
149
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100150- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100151
152 Defines the maximum power domain level that the power management operations
153 should apply to. More often, but not always, the power domain level
154 corresponds to affinity level. This macro allows the PSCI implementation
155 to know the highest power domain level that it should consider for power
156 management operations in the system that the platform implements. For
157 example, the Base AEM FVP implements two clusters with a configurable
158 number of CPUs and it reports the maximum power domain level as 1.
159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 Defines the local power state corresponding to the deepest power down
163 possible at every power domain level in the platform. The local power
164 states for each level may be sparsely allocated between 0 and this value
165 with 0 being reserved for the RUN state. The PSCI implementation uses this
166 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100167 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100168
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100169- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100170
171 Defines the local power state corresponding to the deepest retention state
172 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100173 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100174 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100175 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100176
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100177- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100178
179 Defines the maximum number of local power states per power domain level
180 that the platform supports. The default value of this macro is 2 since
181 most platforms just support a maximum of two local power states at each
182 power domain level (power-down and retention). If the platform needs to
183 account for more local power states, then it must redefine this macro.
184
185 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100186 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100187
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100188- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100189
190 Defines the base address in secure ROM where BL1 originally lives. Must be
191 aligned on a page-size boundary.
192
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100193- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100194
195 Defines the maximum address in secure ROM that BL1's actual content (i.e.
196 excluding any data section allocated at runtime) can occupy.
197
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100198- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100199
200 Defines the base address in secure RAM where BL1's read-write data will live
201 at runtime. Must be aligned on a page-size boundary.
202
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100203- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
205 Defines the maximum address in secure RAM that BL1's read-write data can
206 occupy at runtime.
207
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100208- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100209
210 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000211 Must be aligned on a page-size boundary. This constant is not applicable
212 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100213
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100214- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100215
216 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000217 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
218
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100219- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000220
221 Defines the base address in secure XIP memory where BL2 RO section originally
222 lives. Must be aligned on a page-size boundary. This constant is only needed
223 when BL2_IN_XIP_MEM is set to '1'.
224
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100225- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000226
227 Defines the maximum address in secure XIP memory that BL2's actual content
228 (i.e. excluding any data section allocated at runtime) can occupy. This
229 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
230
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100231- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000232
233 Defines the base address in secure RAM where BL2's read-write data will live
234 at runtime. Must be aligned on a page-size boundary. This constant is only
235 needed when BL2_IN_XIP_MEM is set to '1'.
236
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100237- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000238
239 Defines the maximum address in secure RAM that BL2's read-write data can
240 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
241 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100242
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100243- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100244
245 Defines the base address in secure RAM where BL2 loads the BL31 binary
246 image. Must be aligned on a page-size boundary.
247
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100248- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100249
250 Defines the maximum address in secure RAM that the BL31 image can occupy.
251
Tamas Ban1d3354e2022-09-16 14:09:30 +0200252- **#define : PLAT_RSS_COMMS_PAYLOAD_MAX_SIZE**
253
254 Defines the maximum message size between AP and RSS. Need to define if
255 platform supports RSS.
256
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100257For every image, the platform must define individual identifiers that will be
258used by BL1 or BL2 to load the corresponding image into memory from non-volatile
259storage. For the sake of performance, integer numbers will be used as
260identifiers. The platform will use those identifiers to return the relevant
261information about the image to be loaded (file handler, load address,
262authentication information, etc.). The following image identifiers are
263mandatory:
264
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100265- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100266
267 BL2 image identifier, used by BL1 to load BL2.
268
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100269- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100270
271 BL31 image identifier, used by BL2 to load BL31.
272
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100273- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100274
275 BL33 image identifier, used by BL2 to load BL33.
276
277If Trusted Board Boot is enabled, the following certificate identifiers must
278also be defined:
279
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100280- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100281
282 BL2 content certificate identifier, used by BL1 to load the BL2 content
283 certificate.
284
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100285- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100286
287 Trusted key certificate identifier, used by BL2 to load the trusted key
288 certificate.
289
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100290- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100291
292 BL31 key certificate identifier, used by BL2 to load the BL31 key
293 certificate.
294
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100295- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100296
297 BL31 content certificate identifier, used by BL2 to load the BL31 content
298 certificate.
299
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100300- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100301
302 BL33 key certificate identifier, used by BL2 to load the BL33 key
303 certificate.
304
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100305- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306
307 BL33 content certificate identifier, used by BL2 to load the BL33 content
308 certificate.
309
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100310- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100311
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100312 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100313 FWU content certificate.
314
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100315- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100316
Dan Handley610e7e12018-03-01 18:44:00 +0000317 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100318 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000319 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100320 set.
321
322If the AP Firmware Updater Configuration image, BL2U is used, the following
323must also be defined:
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326
327 Defines the base address in secure memory where BL1 copies the BL2U binary
328 image. Must be aligned on a page-size boundary.
329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100331
332 Defines the maximum address in secure memory that the BL2U image can occupy.
333
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100334- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
336 BL2U image identifier, used by BL1 to fetch an image descriptor
337 corresponding to BL2U.
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340must also be defined:
341
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100342- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100343
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100344 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
345 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000346
347 .. note::
348 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100349
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100350If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351also be defined:
352
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100353- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000357
358 .. note::
359 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100360
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100361- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
364 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100365
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100366If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367be defined:
368
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100369- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000373
374 .. note::
375 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100376
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100377- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
380 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100381
382For the the Firmware update capability of TRUSTED BOARD BOOT, the following
383macros may also be defined:
384
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100385- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100386
387 Total number of images that can be loaded simultaneously. If the platform
388 doesn't specify any value, it defaults to 10.
389
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100390If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100391also be defined:
392
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100393- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100394
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100395 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000396 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100397
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100398- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100399
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100400 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100401 certificate (mandatory when Trusted Board Boot is enabled).
402
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100403- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100404
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100405 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100406 content certificate (mandatory when Trusted Board Boot is enabled).
407
408If a BL32 image is supported by the platform, the following constants must
409also be defined:
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 BL32 image identifier, used by BL2 to load BL32.
414
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100415- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100416
417 BL32 key certificate identifier, used by BL2 to load the BL32 key
418 certificate (mandatory when Trusted Board Boot is enabled).
419
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100420- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100421
422 BL32 content certificate identifier, used by BL2 to load the BL32 content
423 certificate (mandatory when Trusted Board Boot is enabled).
424
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100425- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100426
427 Defines the base address in secure memory where BL2 loads the BL32 binary
428 image. Must be aligned on a page-size boundary.
429
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100430- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100431
432 Defines the maximum address that the BL32 image can occupy.
433
434If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
435platform, the following constants must also be defined:
436
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100437- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100438
439 Defines the base address of the secure memory used by the TSP image on the
440 platform. This must be at the same address or below ``BL32_BASE``.
441
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100442- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100443
444 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000445 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
446 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
447 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100448
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100449- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100450
451 Defines the ID of the secure physical generic timer interrupt used by the
452 TSP's interrupt handling code.
453
454If the platform port uses the translation table library code, the following
455constants must also be defined:
456
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100457- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100458
459 Optional flag that can be set per-image to enable the dynamic allocation of
460 regions even when the MMU is enabled. If not defined, only static
461 functionality will be available, if defined and set to 1 it will also
462 include the dynamic functionality.
463
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100464- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100465
466 Defines the maximum number of translation tables that are allocated by the
467 translation table library code. To minimize the amount of runtime memory
468 used, choose the smallest value needed to map the required virtual addresses
469 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
470 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
471 as well.
472
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100473- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100474
475 Defines the maximum number of regions that are allocated by the translation
476 table library code. A region consists of physical base address, virtual base
477 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
478 defined in the ``mmap_region_t`` structure. The platform defines the regions
479 that should be mapped. Then, the translation table library will create the
480 corresponding tables and descriptors at runtime. To minimize the amount of
481 runtime memory used, choose the smallest value needed to register the
482 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
483 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
484 the dynamic regions as well.
485
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100486- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100487
488 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000489 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000494 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100495
496If the platform port uses the IO storage framework, the following constants
497must also be defined:
498
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100499- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100500
501 Defines the maximum number of registered IO devices. Attempting to register
502 more devices than this value using ``io_register_device()`` will fail with
503 -ENOMEM.
504
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100505- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100506
507 Defines the maximum number of open IO handles. Attempting to open more IO
508 entities than this value using ``io_open()`` will fail with -ENOMEM.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the maximum number of registered IO block devices. Attempting to
513 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100514 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100515 With this macro, multiple block devices could be supported at the same
516 time.
517
518If the platform needs to allocate data within the per-cpu data framework in
519BL31, it should define the following macro. Currently this is only required if
520the platform decides not to use the coherent memory section by undefining the
521``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
522required memory within the the per-cpu data to minimize wastage.
523
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100524- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100525
526 Defines the memory (in bytes) to be reserved within the per-cpu data
527 structure for use by the platform layer.
528
529The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000530memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100532- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100533
534 Defines the maximum address in secure RAM that the BL31's progbits sections
535 can occupy.
536
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100537- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100538
539 Defines the maximum address that the TSP's progbits sections can occupy.
540
Wing Li2c556f32022-09-14 13:18:17 -0700541If the platform supports OS-initiated mode, i.e. the build option
542``PSCI_OS_INIT_MODE`` is enabled, and if the platform's maximum power domain
543level for PSCI_CPU_SUSPEND differs from ``PLAT_MAX_PWR_LVL``, the following
544constant must be defined.
545
546- **#define : PLAT_MAX_CPU_SUSPEND_PWR_LVL**
547
548 Defines the maximum power domain level that PSCI_CPU_SUSPEND should apply to.
549
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100550If the platform port uses the PL061 GPIO driver, the following constant may
551optionally be defined:
552
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100553- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554 Maximum number of GPIOs required by the platform. This allows control how
555 much memory is allocated for PL061 GPIO controllers. The default value is
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558
559If the platform port uses the partition driver, the following constant may
560optionally be defined:
561
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100562- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100563 Maximum number of partition entries required by the platform. This allows
564 control how much memory is allocated for partition entries. The default
565 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100566 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100567 PLAT_PARTITION_MAX_ENTRIES := 12
568 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100569
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800570- **PLAT_PARTITION_BLOCK_SIZE**
571 The size of partition block. It could be either 512 bytes or 4096 bytes.
572 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000573 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800574 PLAT_PARTITION_BLOCK_SIZE := 4096
575 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
576
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100577If the platform port uses the Arm® Ethos™-N NPU driver with TZMP1 support
578enabled, the following constants must also be defined.
579
580- **ARM_ETHOSN_NPU_PROT_FW_NSAID**
581
582 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use to
583 access the protected memory that contains the NPU's firmware.
584
Mikael Olsson80b61f52023-03-14 18:29:06 +0100585- **ARM_ETHOSN_NPU_PROT_DATA_RW_NSAID**
586
587 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
588 read/write access to the protected memory that contains inference data.
589
590- **ARM_ETHOSN_NPU_PROT_DATA_RO_NSAID**
591
592 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
593 read-only access to the protected memory that contains inference data.
594
595- **ARM_ETHOSN_NPU_NS_RW_DATA_NSAID**
596
597 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
598 read/write access to the non-protected memory.
599
600- **ARM_ETHOSN_NPU_NS_RO_DATA_NSAID**
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100601
Mikael Olsson80b61f52023-03-14 18:29:06 +0100602 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
603 read-only access to the non-protected memory.
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100604
Rob Hughes9a2177a2023-01-17 16:10:26 +0000605- **ARM_ETHOSN_NPU_FW_IMAGE_BASE** and **ARM_ETHOSN_NPU_FW_IMAGE_LIMIT**
606
607- Provide FCONF entries to configure the image source for NPU firmware (and certificates).
608
609- Add MMU mappings such that:
610
611 - BL2 can write the NPU firmware into the region defined by
612 ``ARM_ETHOSN_NPU_FW_IMAGE_BASE`` and ``ARM_ETHOSN_NPU_FW_IMAGE_LIMIT``
613 - BL31 (SiP service) can read the NPU firmware from the same region
614
615- Add the firmware image ID ``ARM_ETHOSN_NPU_FW_IMAGE_ID`` to the list of images loaded by BL2
616
617Please see the reference implementation code for the Juno platform as an example.
618
619
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100620The following constant is optional. It should be defined to override the default
621behaviour of the ``assert()`` function (for example, to save memory).
622
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100623- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100624 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
625 ``assert()`` prints the name of the file, the line number and the asserted
626 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
627 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
628 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
629 defined, it defaults to ``LOG_LEVEL``.
630
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100631If the platform port uses the DRTM feature, the following constants must be
632defined:
633
634- **#define : PLAT_DRTM_EVENT_LOG_MAX_SIZE**
635
636 Maximum Event Log size used by the platform. Platform can decide the maximum
637 size of the Event Log buffer, depending upon the highest hash algorithm
638 chosen and the number of components selected to measure during the DRTM
639 execution flow.
640
641- **#define : PLAT_DRTM_MMAP_ENTRIES**
642
643 Number of the MMAP entries used by the DRTM implementation to calculate the
644 size of address map region of the platform.
645
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100646File : plat_macros.S [mandatory]
647~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100648
649Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000650the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100651found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
652
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100653- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100654
655 This macro allows the crash reporting routine to print relevant platform
656 registers in case of an unhandled exception in BL31. This aids in debugging
657 and this macro can be defined to be empty in case register reporting is not
658 desired.
659
660 For instance, GIC or interconnect registers may be helpful for
661 troubleshooting.
662
663Handling Reset
664--------------
665
666BL1 by default implements the reset vector where execution starts from a cold
667or warm boot. BL31 can be optionally set as a reset vector using the
668``RESET_TO_BL31`` make variable.
669
670For each CPU, the reset vector code is responsible for the following tasks:
671
672#. Distinguishing between a cold boot and a warm boot.
673
674#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
675 the CPU is placed in a platform-specific state until the primary CPU
676 performs the necessary steps to remove it from this state.
677
678#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
679 specific address in the BL31 image in the same processor mode as it was
680 when released from reset.
681
682The following functions need to be implemented by the platform port to enable
683reset vector code to perform the above tasks.
684
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100685Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
686~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100687
688::
689
690 Argument : void
691 Return : uintptr_t
692
693This function is called with the MMU and caches disabled
694(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
695distinguishing between a warm and cold reset for the current CPU using
696platform-specific means. If it's a warm reset, then it returns the warm
697reset entrypoint point provided to ``plat_setup_psci_ops()`` during
698BL31 initialization. If it's a cold reset then this function must return zero.
699
700This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000701Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100702not assume that callee saved registers are preserved across a call to this
703function.
704
705This function fulfills requirement 1 and 3 listed above.
706
707Note that for platforms that support programming the reset address, it is
708expected that a CPU will start executing code directly at the right address,
709both on a cold and warm reset. In this case, there is no need to identify the
710type of reset nor to query the warm reset entrypoint. Therefore, implementing
711this function is not required on such platforms.
712
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100713Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
714~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100715
716::
717
718 Argument : void
719
720This function is called with the MMU and data caches disabled. It is responsible
721for placing the executing secondary CPU in a platform-specific state until the
722primary CPU performs the necessary actions to bring it out of that state and
723allow entry into the OS. This function must not return.
724
Dan Handley610e7e12018-03-01 18:44:00 +0000725In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100726itself off. The primary CPU is responsible for powering up the secondary CPUs
727when normal world software requires them. When booting an EL3 payload instead,
728they stay powered on and are put in a holding pen until their mailbox gets
729populated.
730
731This function fulfills requirement 2 above.
732
733Note that for platforms that can't release secondary CPUs out of reset, only the
734primary CPU will execute the cold boot code. Therefore, implementing this
735function is not required on such platforms.
736
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100737Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
738~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100739
740::
741
742 Argument : void
743 Return : unsigned int
744
745This function identifies whether the current CPU is the primary CPU or a
746secondary CPU. A return value of zero indicates that the CPU is not the
747primary CPU, while a non-zero return value indicates that the CPU is the
748primary CPU.
749
750Note that for platforms that can't release secondary CPUs out of reset, only the
751primary CPU will execute the cold boot code. Therefore, there is no need to
752distinguish between primary and secondary CPUs and implementing this function is
753not required.
754
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100755Function : platform_mem_init() [mandatory]
756~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100757
758::
759
760 Argument : void
761 Return : void
762
763This function is called before any access to data is made by the firmware, in
764order to carry out any essential memory initialization.
765
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100766Function: plat_get_rotpk_info()
767~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100768
769::
770
771 Argument : void *, void **, unsigned int *, unsigned int *
772 Return : int
773
774This function is mandatory when Trusted Board Boot is enabled. It returns a
775pointer to the ROTPK stored in the platform (or a hash of it) and its length.
776The ROTPK must be encoded in DER format according to the following ASN.1
777structure:
778
779::
780
781 AlgorithmIdentifier ::= SEQUENCE {
782 algorithm OBJECT IDENTIFIER,
783 parameters ANY DEFINED BY algorithm OPTIONAL
784 }
785
786 SubjectPublicKeyInfo ::= SEQUENCE {
787 algorithm AlgorithmIdentifier,
788 subjectPublicKey BIT STRING
789 }
790
791In case the function returns a hash of the key:
792
793::
794
795 DigestInfo ::= SEQUENCE {
796 digestAlgorithm AlgorithmIdentifier,
797 digest OCTET STRING
798 }
799
800The function returns 0 on success. Any other value is treated as error by the
801Trusted Board Boot. The function also reports extra information related
802to the ROTPK in the flags parameter:
803
804::
805
806 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
807 hash.
808 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
809 verification while the platform ROTPK is not deployed.
810 When this flag is set, the function does not need to
811 return a platform ROTPK, and the authentication
812 framework uses the ROTPK in the certificate without
813 verifying it against the platform value. This flag
814 must not be used in a deployed production environment.
815
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100816Function: plat_get_nv_ctr()
817~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100818
819::
820
821 Argument : void *, unsigned int *
822 Return : int
823
824This function is mandatory when Trusted Board Boot is enabled. It returns the
825non-volatile counter value stored in the platform in the second argument. The
826cookie in the first argument may be used to select the counter in case the
827platform provides more than one (for example, on platforms that use the default
828TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100829TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100830
831The function returns 0 on success. Any other value means the counter value could
832not be retrieved from the platform.
833
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100834Function: plat_set_nv_ctr()
835~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100836
837::
838
839 Argument : void *, unsigned int
840 Return : int
841
842This function is mandatory when Trusted Board Boot is enabled. It sets a new
843counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100844select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100845the updated counter value to be written to the NV counter.
846
847The function returns 0 on success. Any other value means the counter value could
848not be updated.
849
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100850Function: plat_set_nv_ctr2()
851~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100852
853::
854
855 Argument : void *, const auth_img_desc_t *, unsigned int
856 Return : int
857
858This function is optional when Trusted Board Boot is enabled. If this
859interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
860first argument passed is a cookie and is typically used to
861differentiate between a Non Trusted NV Counter and a Trusted NV
862Counter. The second argument is a pointer to an authentication image
863descriptor and may be used to decide if the counter is allowed to be
864updated or not. The third argument is the updated counter value to
865be written to the NV counter.
866
867The function returns 0 on success. Any other value means the counter value
868either could not be updated or the authentication image descriptor indicates
869that it is not allowed to be updated.
870
Nicolas Toromanoff7f95ac82020-11-09 12:14:52 +0100871Function: plat_convert_pk()
872~~~~~~~~~~~~~~~~~~~~~~~~~~~
873
874::
875
876 Argument : void *, unsigned int, void **, unsigned int *
877 Return : int
878
879This function is optional when Trusted Board Boot is enabled, and only
880used if the platform saves a hash of the ROTPK.
881First argument is the Distinguished Encoding Rules (DER) ROTPK.
882Second argument is its size.
883Third argument is used to return a pointer to a buffer, which hash should
884be the one saved in OTP.
885Fourth argument is a pointer to return its size.
886
887Most platforms save the hash of the ROTPK, but some may save slightly different
888information - e.g the hash of the ROTPK plus some related information.
889Defining this function allows to transform the ROTPK used to verify
890the signature to the buffer (a platform specific public key) which
891hash is saved in OTP.
892
893The default implementation copies the input key and length to the output without
894modification.
895
896The function returns 0 on success. Any other value means the expected
897public key buffer cannot be extracted.
898
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100899Dynamic Root of Trust for Measurement support (in BL31)
900-------------------------------------------------------
901
902The functions mentioned in this section are mandatory, when platform enables
903DRTM_SUPPORT build flag.
904
905Function : plat_get_addr_mmap()
906~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
907
908::
909
910 Argument : void
911 Return : const mmap_region_t *
912
913This function is used to return the address of the platform *address-map* table,
914which describes the regions of normal memory, memory mapped I/O
915and non-volatile memory.
916
917Function : plat_has_non_host_platforms()
918~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
919
920::
921
922 Argument : void
923 Return : bool
924
925This function returns *true* if the platform has any trusted devices capable of
926DMA, otherwise returns *false*.
927
928Function : plat_has_unmanaged_dma_peripherals()
929~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
930
931::
932
933 Argument : void
934 Return : bool
935
936This function returns *true* if platform uses peripherals whose DMA is not
937managed by an SMMU, otherwise returns *false*.
938
939Note -
940If the platform has peripherals that are not managed by the SMMU, then the
941platform should investigate such peripherals to determine whether they can
942be trusted, and such peripherals should be moved under "Non-host platforms"
943if they can be trusted.
944
945Function : plat_get_total_num_smmus()
946~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
947
948::
949
950 Argument : void
951 Return : unsigned int
952
953This function returns the total number of SMMUs in the platform.
954
955Function : plat_enumerate_smmus()
956~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
957::
958
959
960 Argument : void
961 Return : const uintptr_t *, size_t
962
963This function returns an array of SMMU addresses and the actual number of SMMUs
964reported by the platform.
965
966Function : plat_drtm_get_dma_prot_features()
967~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
968
969::
970
971 Argument : void
972 Return : const plat_drtm_dma_prot_features_t*
973
974This function returns the address of plat_drtm_dma_prot_features_t structure
975containing the maximum number of protected regions and bitmap with the types
976of DMA protection supported by the platform.
977For more details see section 3.3 Table 6 of `DRTM`_ specification.
978
979Function : plat_drtm_dma_prot_get_max_table_bytes()
980~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
981
982::
983
984 Argument : void
985 Return : uint64_t
986
987This function returns the maximum size of DMA protected regions table in
988bytes.
989
990Function : plat_drtm_get_tpm_features()
991~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
992
993::
994
995 Argument : void
996 Return : const plat_drtm_tpm_features_t*
997
998This function returns the address of *plat_drtm_tpm_features_t* structure
999containing PCR usage schema, TPM-based hash, and firmware hash algorithm
1000supported by the platform.
1001
1002Function : plat_drtm_get_min_size_normal_world_dce()
1003~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1004
1005::
1006
1007 Argument : void
1008 Return : uint64_t
1009
1010This function returns the size normal-world DCE of the platform.
1011
1012Function : plat_drtm_get_imp_def_dlme_region_size()
1013~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1014
1015::
1016
1017 Argument : void
1018 Return : uint64_t
1019
1020This function returns the size of implementation defined DLME region
1021of the platform.
1022
1023Function : plat_drtm_get_tcb_hash_table_size()
1024~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1025
1026::
1027
1028 Argument : void
1029 Return : uint64_t
1030
1031This function returns the size of TCB hash table of the platform.
1032
1033Function : plat_drtm_get_tcb_hash_features()
1034~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1035
1036::
1037
1038 Argument : void
1039 Return : uint64_t
1040
1041This function returns the Maximum number of TCB hashes recorded by the
1042platform.
1043For more details see section 3.3 Table 6 of `DRTM`_ specification.
1044
1045Function : plat_drtm_validate_ns_region()
1046~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1047
1048::
1049
1050 Argument : uintptr_t, uintptr_t
1051 Return : int
1052
1053This function validates that given region is within the Non-Secure region
1054of DRAM. This function takes a region start address and size an input
1055arguments, and returns 0 on success and -1 on failure.
1056
1057Function : plat_set_drtm_error()
1058~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1059
1060::
1061
1062 Argument : uint64_t
1063 Return : int
1064
1065This function writes a 64 bit error code received as input into
1066non-volatile storage and returns 0 on success and -1 on failure.
1067
1068Function : plat_get_drtm_error()
1069~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1070
1071::
1072
1073 Argument : uint64_t*
1074 Return : int
1075
1076This function reads a 64 bit error code from the non-volatile storage
1077into the received address, and returns 0 on success and -1 on failure.
1078
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001079Common mandatory function modifications
1080---------------------------------------
1081
1082The following functions are mandatory functions which need to be implemented
1083by the platform port.
1084
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001085Function : plat_my_core_pos()
1086~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001087
1088::
1089
1090 Argument : void
1091 Return : unsigned int
1092
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001093This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001094CPU-specific linear index into blocks of memory (for example while allocating
1095per-CPU stacks). This function will be invoked very early in the
1096initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001097implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001098runtime environment. This function can clobber x0 - x8 and must preserve
1099x9 - x29.
1100
1101This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +01001102PSCI and details of this can be found in
1103:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001104
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001105Function : plat_core_pos_by_mpidr()
1106~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001107
1108::
1109
1110 Argument : u_register_t
1111 Return : int
1112
1113This function validates the ``MPIDR`` of a CPU and converts it to an index,
1114which can be used as a CPU-specific linear index into blocks of memory. In
1115case the ``MPIDR`` is invalid, this function returns -1. This function will only
1116be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +00001117utilize the C runtime environment. For further details about how TF-A
1118represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +01001119index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001120
Ambroise Vincentd207f562019-04-10 12:50:27 +01001121Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
1122~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1123
1124::
1125
1126 Arguments : void **heap_addr, size_t *heap_size
1127 Return : int
1128
1129This function is invoked during Mbed TLS library initialisation to get a heap,
1130by means of a starting address and a size. This heap will then be used
1131internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
1132must be able to provide a heap to it.
1133
1134A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
1135which a heap is statically reserved during compile time inside every image
1136(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
1137the function simply returns the address and size of this "pre-allocated" heap.
1138For a platform to use this default implementation, only a call to the helper
1139from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
1140
1141However, by writting their own implementation, platforms have the potential to
1142optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
1143shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
1144twice.
1145
1146On success the function should return 0 and a negative error code otherwise.
1147
Sumit Gargc0c369c2019-11-15 18:47:53 +05301148Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
1149~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1150
1151::
1152
1153 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
1154 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
1155 size_t img_id_len
1156 Return : int
1157
1158This function provides a symmetric key (either SSK or BSSK depending on
1159fw_enc_status) which is invoked during runtime decryption of encrypted
1160firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
1161implementation for testing purposes which must be overridden by the platform
1162trying to implement a real world firmware encryption use-case.
1163
1164It also allows the platform to pass symmetric key identifier rather than
1165actual symmetric key which is useful in cases where the crypto backend provides
1166secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
1167flag must be set in ``flags``.
1168
1169In addition to above a platform may also choose to provide an image specific
1170symmetric key/identifier using img_id.
1171
1172On success the function should return 0 and a negative error code otherwise.
1173
Manish Pandey34a305e2021-10-21 21:53:49 +01001174Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
Sumit Gargc0c369c2019-11-15 18:47:53 +05301175
Manish V Badarkheda87af12021-06-20 21:14:46 +01001176Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
1177~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1178
1179::
1180
Sughosh Ganuf40154f2021-11-17 17:08:10 +05301181 Argument : const struct fwu_metadata *metadata
Manish V Badarkheda87af12021-06-20 21:14:46 +01001182 Return : void
1183
1184This function is mandatory when PSA_FWU_SUPPORT is enabled.
1185It provides a means to retrieve image specification (offset in
1186non-volatile storage and length) of active/updated images using the passed
1187FWU metadata, and update I/O policies of active/updated images using retrieved
1188image specification information.
1189Further I/O layer operations such as I/O open, I/O read, etc. on these
1190images rely on this function call.
1191
1192In Arm platforms, this function is used to set an I/O policy of the FIP image,
1193container of all active/updated secure and non-secure images.
1194
1195Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
1196~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1197
1198::
1199
1200 Argument : unsigned int image_id, uintptr_t *dev_handle,
1201 uintptr_t *image_spec
1202 Return : int
1203
1204This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
1205responsible for setting up the platform I/O policy of the requested metadata
1206image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
1207be used to load this image from the platform's non-volatile storage.
1208
1209FWU metadata can not be always stored as a raw image in non-volatile storage
1210to define its image specification (offset in non-volatile storage and length)
1211statically in I/O policy.
1212For example, the FWU metadata image is stored as a partition inside the GUID
1213partition table image. Its specification is defined in the partition table
1214that needs to be parsed dynamically.
1215This function provides a means to retrieve such dynamic information to set
1216the I/O policy of the FWU metadata image.
1217Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
1218image relies on this function call.
1219
1220It returns '0' on success, otherwise a negative error value on error.
1221Alongside, returns device handle and image specification from the I/O policy
1222of the requested FWU metadata image.
1223
Sughosh Ganu4e336a62021-12-01 15:53:32 +05301224Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]
1225~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1226
1227::
1228
1229 Argument : void
1230 Return : uint32_t
1231
1232This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the
1233means to retrieve the boot index value from the platform. The boot index is the
1234bank from which the platform has booted the firmware images.
1235
1236By default, the platform will read the metadata structure and try to boot from
1237the active bank. If the platform fails to boot from the active bank due to
1238reasons like an Authentication failure, or on crossing a set number of watchdog
1239resets while booting from the active bank, the platform can then switch to boot
1240from a different bank. This function then returns the bank that the platform
1241should boot its images from.
1242
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001243Common optional modifications
1244-----------------------------
1245
1246The following are helper functions implemented by the firmware that perform
1247common platform-specific tasks. A platform may choose to override these
1248definitions.
1249
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001250Function : plat_set_my_stack()
1251~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001252
1253::
1254
1255 Argument : void
1256 Return : void
1257
1258This function sets the current stack pointer to the normal memory stack that
1259has been allocated for the current CPU. For BL images that only require a
1260stack for the primary CPU, the UP version of the function is used. The size
1261of the stack allocated to each CPU is specified by the platform defined
1262constant ``PLATFORM_STACK_SIZE``.
1263
1264Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001265provided in ``plat/common/aarch64/platform_up_stack.S`` and
1266``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001267
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001268Function : plat_get_my_stack()
1269~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001270
1271::
1272
1273 Argument : void
1274 Return : uintptr_t
1275
1276This function returns the base address of the normal memory stack that
1277has been allocated for the current CPU. For BL images that only require a
1278stack for the primary CPU, the UP version of the function is used. The size
1279of the stack allocated to each CPU is specified by the platform defined
1280constant ``PLATFORM_STACK_SIZE``.
1281
1282Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001283provided in ``plat/common/aarch64/platform_up_stack.S`` and
1284``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001285
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001286Function : plat_report_exception()
1287~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001288
1289::
1290
1291 Argument : unsigned int
1292 Return : void
1293
1294A platform may need to report various information about its status when an
1295exception is taken, for example the current exception level, the CPU security
1296state (secure/non-secure), the exception type, and so on. This function is
1297called in the following circumstances:
1298
1299- In BL1, whenever an exception is taken.
1300- In BL2, whenever an exception is taken.
1301
1302The default implementation doesn't do anything, to avoid making assumptions
1303about the way the platform displays its status information.
1304
1305For AArch64, this function receives the exception type as its argument.
1306Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001307``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001308related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001309
1310For AArch32, this function receives the exception mode as its argument.
1311Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001312``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001313
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001314Function : plat_reset_handler()
1315~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001316
1317::
1318
1319 Argument : void
1320 Return : void
1321
1322A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001323allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001324specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001325preserve the values of callee saved registers x19 to x29.
1326
1327The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001328the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001329guidelines.
1330
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001331Function : plat_disable_acp()
1332~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001333
1334::
1335
1336 Argument : void
1337 Return : void
1338
John Tsichritzis6dda9762018-07-23 09:18:04 +01001339This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001340present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001341doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001342it has restrictions for stack usage and it can use the registers x0 - x17 as
1343scratch registers. It should preserve the value in x18 register as it is used
1344by the caller to store the return address.
1345
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001346Function : plat_error_handler()
1347~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001348
1349::
1350
1351 Argument : int
1352 Return : void
1353
1354This API is called when the generic code encounters an error situation from
1355which it cannot continue. It allows the platform to perform error reporting or
1356recovery actions (for example, reset the system). This function must not return.
1357
1358The parameter indicates the type of error using standard codes from ``errno.h``.
1359Possible errors reported by the generic code are:
1360
1361- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1362 Board Boot is enabled)
1363- ``-ENOENT``: the requested image or certificate could not be found or an IO
1364 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001365- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1366 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001367
1368The default implementation simply spins.
1369
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001370Function : plat_panic_handler()
1371~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001372
1373::
1374
1375 Argument : void
1376 Return : void
1377
1378This API is called when the generic code encounters an unexpected error
1379situation from which it cannot recover. This function must not return,
1380and must be implemented in assembly because it may be called before the C
1381environment is initialized.
1382
Paul Beesleyba3ed402019-03-13 16:20:44 +00001383.. note::
1384 The address from where it was called is stored in x30 (Link Register).
1385 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001386
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01001387Function : plat_system_reset()
1388~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1389
1390::
1391
1392 Argument : void
1393 Return : void
1394
1395This function is used by the platform to resets the system. It can be used
1396in any specific use-case where system needs to be resetted. For example,
1397in case of DRTM implementation this function reset the system after
1398writing the DRTM error code in the non-volatile storage. This function
1399never returns. Failure in reset results in panic.
1400
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001401Function : plat_get_bl_image_load_info()
1402~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001403
1404::
1405
1406 Argument : void
1407 Return : bl_load_info_t *
1408
1409This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001410populated to load. This function is invoked in BL2 to load the
1411BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001412
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001413Function : plat_get_next_bl_params()
1414~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001415
1416::
1417
1418 Argument : void
1419 Return : bl_params_t *
1420
1421This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001422kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001423function is invoked in BL2 to pass this information to the next BL
1424image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001425
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001426Function : plat_get_stack_protector_canary()
1427~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001428
1429::
1430
1431 Argument : void
1432 Return : u_register_t
1433
1434This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001435when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001436value will weaken the protection as the attacker could easily write the right
1437value as part of the attack most of the time. Therefore, it should return a
1438true random number.
1439
Paul Beesleyba3ed402019-03-13 16:20:44 +00001440.. warning::
1441 For the protection to be effective, the global data need to be placed at
1442 a lower address than the stack bases. Failure to do so would allow an
1443 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001444
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001445Function : plat_flush_next_bl_params()
1446~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001447
1448::
1449
1450 Argument : void
1451 Return : void
1452
1453This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001454next image. This function is invoked in BL2 to flush this information
1455to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001456
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001457Function : plat_log_get_prefix()
1458~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001459
1460::
1461
1462 Argument : unsigned int
1463 Return : const char *
1464
1465This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001466prepended to all the log output from TF-A. The `log_level` (argument) will
1467correspond to one of the standard log levels defined in debug.h. The platform
1468can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001469the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001470increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001471
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001472Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001473~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001474
1475::
1476
1477 Argument : void
1478 Return : int32_t
1479
1480This function returns soc version which mainly consist of below fields
1481
1482::
1483
1484 soc_version[30:24] = JEP-106 continuation code for the SiP
1485 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001486 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001487
1488Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001489~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001490
1491::
1492
1493 Argument : void
1494 Return : int32_t
1495
1496This function returns soc revision in below format
1497
1498::
1499
1500 soc_revision[0:30] = SOC revision of specific SOC
1501
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001502Function : plat_is_smccc_feature_available()
1503~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1504
1505::
1506
1507 Argument : u_register_t
1508 Return : int32_t
1509
1510This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1511the SMCCC function specified in the argument; otherwise returns
1512SMC_ARCH_CALL_NOT_SUPPORTED.
1513
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001514Function : plat_mboot_measure_image()
1515~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1516
1517::
1518
1519 Argument : unsigned int, image_info_t *
Manish V Badarkhe931c6ef2021-10-21 09:06:18 +01001520 Return : int
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001521
1522When the MEASURED_BOOT flag is enabled:
1523
1524- This function measures the given image and records its measurement using
1525 the measured boot backend driver.
1526- On the Arm FVP port, this function measures the given image using its
1527 passed id and information and then records that measurement in the
1528 Event Log buffer.
Manish V Badarkhe931c6ef2021-10-21 09:06:18 +01001529- This function must return 0 on success, a signed integer error code
1530 otherwise.
1531
1532When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1533
1534Function : plat_mboot_measure_critical_data()
1535~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1536
1537::
1538
1539 Argument : unsigned int, const void *, size_t
1540 Return : int
1541
1542When the MEASURED_BOOT flag is enabled:
1543
1544- This function measures the given critical data structure and records its
1545 measurement using the measured boot backend driver.
1546- This function must return 0 on success, a signed integer error code
1547 otherwise.
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001548
1549When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1550
Okash Khawaja037b56e2022-11-04 12:38:01 +00001551Function : plat_can_cmo()
1552~~~~~~~~~~~~~~~~~~~~~~~~~
1553
1554::
1555
1556 Argument : void
1557 Return : uint64_t
1558
1559When CONDITIONAL_CMO flag is enabled:
1560
1561- This function indicates whether cache management operations should be
1562 performed. It returns 0 if CMOs should be skipped and non-zero
1563 otherwise.
Okash Khawaja94532202022-11-14 12:50:30 +00001564- The function must not clobber x1, x2 and x3. It's also not safe to rely on
1565 stack. Otherwise obey AAPCS.
Okash Khawaja037b56e2022-11-04 12:38:01 +00001566
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001567Modifications specific to a Boot Loader stage
1568---------------------------------------------
1569
1570Boot Loader Stage 1 (BL1)
1571-------------------------
1572
1573BL1 implements the reset vector where execution starts from after a cold or
1574warm boot. For each CPU, BL1 is responsible for the following tasks:
1575
1576#. Handling the reset as described in section 2.2
1577
1578#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1579 only this CPU executes the remaining BL1 code, including loading and passing
1580 control to the BL2 stage.
1581
1582#. Identifying and starting the Firmware Update process (if required).
1583
1584#. Loading the BL2 image from non-volatile storage into secure memory at the
1585 address specified by the platform defined constant ``BL2_BASE``.
1586
1587#. Populating a ``meminfo`` structure with the following information in memory,
1588 accessible by BL2 immediately upon entry.
1589
1590 ::
1591
1592 meminfo.total_base = Base address of secure RAM visible to BL2
1593 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001594
Soby Mathew97b1bff2018-09-27 16:46:41 +01001595 By default, BL1 places this ``meminfo`` structure at the end of secure
1596 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001597
Soby Mathewb1bf0442018-02-16 14:52:52 +00001598 It is possible for the platform to decide where it wants to place the
1599 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1600 BL2 by overriding the weak default implementation of
1601 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001602
1603The following functions need to be implemented by the platform port to enable
1604BL1 to perform the above tasks.
1605
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001606Function : bl1_early_platform_setup() [mandatory]
1607~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001608
1609::
1610
1611 Argument : void
1612 Return : void
1613
1614This function executes with the MMU and data caches disabled. It is only called
1615by the primary CPU.
1616
Dan Handley610e7e12018-03-01 18:44:00 +00001617On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001618
1619- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1620
1621- Initializes a UART (PL011 console), which enables access to the ``printf``
1622 family of functions in BL1.
1623
1624- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1625 the CCI slave interface corresponding to the cluster that includes the
1626 primary CPU.
1627
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001628Function : bl1_plat_arch_setup() [mandatory]
1629~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001630
1631::
1632
1633 Argument : void
1634 Return : void
1635
1636This function performs any platform-specific and architectural setup that the
1637platform requires. Platform-specific setup might include configuration of
1638memory controllers and the interconnect.
1639
Dan Handley610e7e12018-03-01 18:44:00 +00001640In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001641
1642This function helps fulfill requirement 2 above.
1643
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001644Function : bl1_platform_setup() [mandatory]
1645~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001646
1647::
1648
1649 Argument : void
1650 Return : void
1651
1652This function executes with the MMU and data caches enabled. It is responsible
1653for performing any remaining platform-specific setup that can occur after the
1654MMU and data cache have been enabled.
1655
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001656if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001657sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001658
Dan Handley610e7e12018-03-01 18:44:00 +00001659In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001660layer used to load the next bootloader image.
1661
1662This function helps fulfill requirement 4 above.
1663
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001664Function : bl1_plat_sec_mem_layout() [mandatory]
1665~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001666
1667::
1668
1669 Argument : void
1670 Return : meminfo *
1671
1672This function should only be called on the cold boot path. It executes with the
1673MMU and data caches enabled. The pointer returned by this function must point to
1674a ``meminfo`` structure containing the extents and availability of secure RAM for
1675the BL1 stage.
1676
1677::
1678
1679 meminfo.total_base = Base address of secure RAM visible to BL1
1680 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001681
1682This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1683populates a similar structure to tell BL2 the extents of memory available for
1684its own use.
1685
1686This function helps fulfill requirements 4 and 5 above.
1687
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001688Function : bl1_plat_prepare_exit() [optional]
1689~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001690
1691::
1692
1693 Argument : entry_point_info_t *
1694 Return : void
1695
1696This function is called prior to exiting BL1 in response to the
1697``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1698platform specific clean up or bookkeeping operations before transferring
1699control to the next image. It receives the address of the ``entry_point_info_t``
1700structure passed from BL2. This function runs with MMU disabled.
1701
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001702Function : bl1_plat_set_ep_info() [optional]
1703~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001704
1705::
1706
1707 Argument : unsigned int image_id, entry_point_info_t *ep_info
1708 Return : void
1709
1710This function allows platforms to override ``ep_info`` for the given ``image_id``.
1711
1712The default implementation just returns.
1713
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001714Function : bl1_plat_get_next_image_id() [optional]
1715~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001716
1717::
1718
1719 Argument : void
1720 Return : unsigned int
1721
1722This and the following function must be overridden to enable the FWU feature.
1723
1724BL1 calls this function after platform setup to identify the next image to be
1725loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1726with the normal boot sequence, which loads and executes BL2. If the platform
1727returns a different image id, BL1 assumes that Firmware Update is required.
1728
Dan Handley610e7e12018-03-01 18:44:00 +00001729The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001730platforms override this function to detect if firmware update is required, and
1731if so, return the first image in the firmware update process.
1732
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001733Function : bl1_plat_get_image_desc() [optional]
1734~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001735
1736::
1737
1738 Argument : unsigned int image_id
1739 Return : image_desc_t *
1740
1741BL1 calls this function to get the image descriptor information ``image_desc_t``
1742for the provided ``image_id`` from the platform.
1743
Dan Handley610e7e12018-03-01 18:44:00 +00001744The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001745standard platforms return an image descriptor corresponding to BL2 or one of
1746the firmware update images defined in the Trusted Board Boot Requirements
1747specification.
1748
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001749Function : bl1_plat_handle_pre_image_load() [optional]
1750~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001751
1752::
1753
Soby Mathew2f38ce32018-02-08 17:45:12 +00001754 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001755 Return : int
1756
1757This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001758corresponding to ``image_id``. This function is invoked in BL1, both in cold
1759boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001760
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001761Function : bl1_plat_handle_post_image_load() [optional]
1762~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001763
1764::
1765
Soby Mathew2f38ce32018-02-08 17:45:12 +00001766 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001767 Return : int
1768
1769This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001770corresponding to ``image_id``. This function is invoked in BL1, both in cold
1771boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001772
Soby Mathewb1bf0442018-02-16 14:52:52 +00001773The default weak implementation of this function calculates the amount of
1774Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1775structure at the beginning of this free memory and populates it. The address
1776of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1777information to BL2.
1778
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001779Function : bl1_plat_fwu_done() [optional]
1780~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001781
1782::
1783
1784 Argument : unsigned int image_id, uintptr_t image_src,
1785 unsigned int image_size
1786 Return : void
1787
1788BL1 calls this function when the FWU process is complete. It must not return.
1789The platform may override this function to take platform specific action, for
1790example to initiate the normal boot flow.
1791
1792The default implementation spins forever.
1793
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001794Function : bl1_plat_mem_check() [mandatory]
1795~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001796
1797::
1798
1799 Argument : uintptr_t mem_base, unsigned int mem_size,
1800 unsigned int flags
1801 Return : int
1802
1803BL1 calls this function while handling FWU related SMCs, more specifically when
1804copying or authenticating an image. Its responsibility is to ensure that the
1805region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1806that this memory corresponds to either a secure or non-secure memory region as
1807indicated by the security state of the ``flags`` argument.
1808
1809This function can safely assume that the value resulting from the addition of
1810``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1811overflow.
1812
1813This function must return 0 on success, a non-null error code otherwise.
1814
1815The default implementation of this function asserts therefore platforms must
1816override it when using the FWU feature.
1817
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001818Function : bl1_plat_mboot_init() [optional]
1819~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1820
1821::
1822
1823 Argument : void
1824 Return : void
1825
1826When the MEASURED_BOOT flag is enabled:
1827
1828- This function is used to initialize the backend driver(s) of measured boot.
1829- On the Arm FVP port, this function is used to initialize the Event Log
1830 backend driver, and also to write header information in the Event Log buffer.
1831
1832When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1833
1834Function : bl1_plat_mboot_finish() [optional]
1835~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1836
1837::
1838
1839 Argument : void
1840 Return : void
1841
1842When the MEASURED_BOOT flag is enabled:
1843
1844- This function is used to finalize the measured boot backend driver(s),
1845 and also, set the information for the next bootloader component to
1846 extend the measurement if needed.
1847- On the Arm FVP port, this function is used to pass the base address of
1848 the Event Log buffer and its size to BL2 via tb_fw_config to extend the
1849 Event Log buffer with the measurement of various images loaded by BL2.
1850 It results in panic on error.
1851
1852When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1853
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001854Boot Loader Stage 2 (BL2)
1855-------------------------
1856
1857The BL2 stage is executed only by the primary CPU, which is determined in BL1
1858using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001859``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1860``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1861non-volatile storage to secure/non-secure RAM. After all the images are loaded
1862then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1863images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001864
1865The following functions must be implemented by the platform port to enable BL2
1866to perform the above tasks.
1867
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001868Function : bl2_early_platform_setup2() [mandatory]
1869~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001870
1871::
1872
Soby Mathew97b1bff2018-09-27 16:46:41 +01001873 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001874 Return : void
1875
1876This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001877by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1878are platform specific.
1879
1880On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001881
Manish V Badarkhe81414512020-06-24 15:58:38 +01001882 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001883
1884 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1885 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001886
Dan Handley610e7e12018-03-01 18:44:00 +00001887On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001888
1889- Initializes a UART (PL011 console), which enables access to the ``printf``
1890 family of functions in BL2.
1891
1892- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001893 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1894 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001895
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001896Function : bl2_plat_arch_setup() [mandatory]
1897~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001898
1899::
1900
1901 Argument : void
1902 Return : void
1903
1904This function executes with the MMU and data caches disabled. It is only called
1905by the primary CPU.
1906
1907The purpose of this function is to perform any architectural initialization
1908that varies across platforms.
1909
Dan Handley610e7e12018-03-01 18:44:00 +00001910On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001911
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001912Function : bl2_platform_setup() [mandatory]
1913~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001914
1915::
1916
1917 Argument : void
1918 Return : void
1919
1920This function may execute with the MMU and data caches enabled if the platform
1921port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1922called by the primary CPU.
1923
1924The purpose of this function is to perform any platform initialization
1925specific to BL2.
1926
Dan Handley610e7e12018-03-01 18:44:00 +00001927In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001928configuration of the TrustZone controller to allow non-secure masters access
1929to most of DRAM. Part of DRAM is reserved for secure world use.
1930
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001931Function : bl2_plat_handle_pre_image_load() [optional]
1932~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001933
1934::
1935
1936 Argument : unsigned int
1937 Return : int
1938
1939This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001940for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001941loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001942
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001943Function : bl2_plat_handle_post_image_load() [optional]
1944~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001945
1946::
1947
1948 Argument : unsigned int
1949 Return : int
1950
1951This function can be used by the platforms to update/use image information
1952for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001953loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001954
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001955Function : bl2_plat_preload_setup [optional]
1956~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001957
1958::
John Tsichritzisee10e792018-06-06 09:38:10 +01001959
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001960 Argument : void
1961 Return : void
1962
1963This optional function performs any BL2 platform initialization
1964required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001965bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001966boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001967plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001968
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001969Function : plat_try_next_boot_source() [optional]
1970~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001971
1972::
John Tsichritzisee10e792018-06-06 09:38:10 +01001973
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001974 Argument : void
1975 Return : int
1976
1977This optional function passes to the next boot source in the redundancy
1978sequence.
1979
1980This function moves the current boot redundancy source to the next
1981element in the boot sequence. If there are no more boot sources then it
1982must return 0, otherwise it must return 1. The default implementation
1983of this always returns 0.
1984
Sandrine Bailleuxeb5fadc2022-07-13 10:07:54 +02001985Function : bl2_plat_mboot_init() [optional]
1986~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1987
1988::
1989
1990 Argument : void
1991 Return : void
1992
1993When the MEASURED_BOOT flag is enabled:
1994
1995- This function is used to initialize the backend driver(s) of measured boot.
1996- On the Arm FVP port, this function is used to initialize the Event Log
1997 backend driver with the Event Log buffer information (base address and
1998 size) received from BL1. It results in panic on error.
1999
2000When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
2001
2002Function : bl2_plat_mboot_finish() [optional]
2003~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2004
2005::
2006
2007 Argument : void
2008 Return : void
2009
2010When the MEASURED_BOOT flag is enabled:
2011
2012- This function is used to finalize the measured boot backend driver(s),
2013 and also, set the information for the next bootloader component to extend
2014 the measurement if needed.
2015- On the Arm FVP port, this function is used to pass the Event Log buffer
2016 information (base address and size) to non-secure(BL33) and trusted OS(BL32)
2017 via nt_fw and tos_fw config respectively. It results in panic on error.
2018
2019When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
2020
Roberto Vargasb1584272017-11-20 13:36:10 +00002021Boot Loader Stage 2 (BL2) at EL3
2022--------------------------------
2023
Dan Handley610e7e12018-03-01 18:44:00 +00002024When the platform has a non-TF-A Boot ROM it is desirable to jump
2025directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01002026execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
2027document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00002028
2029All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002030bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
2031their work is done now by bl2_el3_early_platform_setup and
2032bl2_el3_plat_arch_setup. These functions should generally implement
2033the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00002034
2035
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002036Function : bl2_el3_early_platform_setup() [mandatory]
2037~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00002038
2039::
John Tsichritzisee10e792018-06-06 09:38:10 +01002040
Roberto Vargasb1584272017-11-20 13:36:10 +00002041 Argument : u_register_t, u_register_t, u_register_t, u_register_t
2042 Return : void
2043
2044This function executes with the MMU and data caches disabled. It is only called
2045by the primary CPU. This function receives four parameters which can be used
2046by the platform to pass any needed information from the Boot ROM to BL2.
2047
Dan Handley610e7e12018-03-01 18:44:00 +00002048On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00002049
2050- Initializes a UART (PL011 console), which enables access to the ``printf``
2051 family of functions in BL2.
2052
2053- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002054 images. It is necessary to do this early on platforms with a SCP_BL2 image,
2055 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00002056
2057- Initializes the private variables that define the memory layout used.
2058
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002059Function : bl2_el3_plat_arch_setup() [mandatory]
2060~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00002061
2062::
John Tsichritzisee10e792018-06-06 09:38:10 +01002063
Roberto Vargasb1584272017-11-20 13:36:10 +00002064 Argument : void
2065 Return : void
2066
2067This function executes with the MMU and data caches disabled. It is only called
2068by the primary CPU.
2069
2070The purpose of this function is to perform any architectural initialization
2071that varies across platforms.
2072
Dan Handley610e7e12018-03-01 18:44:00 +00002073On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00002074
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002075Function : bl2_el3_plat_prepare_exit() [optional]
2076~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00002077
2078::
John Tsichritzisee10e792018-06-06 09:38:10 +01002079
Roberto Vargasb1584272017-11-20 13:36:10 +00002080 Argument : void
2081 Return : void
2082
2083This function is called prior to exiting BL2 and run the next image.
2084It should be used to perform platform specific clean up or bookkeeping
2085operations before transferring control to the next image. This function
2086runs with MMU disabled.
2087
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002088FWU Boot Loader Stage 2 (BL2U)
2089------------------------------
2090
2091The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
2092process and is executed only by the primary CPU. BL1 passes control to BL2U at
2093``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
2094
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002095#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
2096 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
2097 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
2098 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002099 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
2100 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
2101
2102#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00002103 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002104 normal world can access DDR memory.
2105
2106The following functions must be implemented by the platform port to enable
2107BL2U to perform the tasks mentioned above.
2108
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002109Function : bl2u_early_platform_setup() [mandatory]
2110~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002111
2112::
2113
2114 Argument : meminfo *mem_info, void *plat_info
2115 Return : void
2116
2117This function executes with the MMU and data caches disabled. It is only
2118called by the primary CPU. The arguments to this function is the address
2119of the ``meminfo`` structure and platform specific info provided by BL1.
2120
2121The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
2122private storage as the original memory may be subsequently overwritten by BL2U.
2123
Dan Handley610e7e12018-03-01 18:44:00 +00002124On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002125to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002126variable.
2127
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002128Function : bl2u_plat_arch_setup() [mandatory]
2129~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002130
2131::
2132
2133 Argument : void
2134 Return : void
2135
2136This function executes with the MMU and data caches disabled. It is only
2137called by the primary CPU.
2138
2139The purpose of this function is to perform any architectural initialization
2140that varies across platforms, for example enabling the MMU (since the memory
2141map differs across platforms).
2142
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002143Function : bl2u_platform_setup() [mandatory]
2144~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002145
2146::
2147
2148 Argument : void
2149 Return : void
2150
2151This function may execute with the MMU and data caches enabled if the platform
2152port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
2153called by the primary CPU.
2154
2155The purpose of this function is to perform any platform initialization
2156specific to BL2U.
2157
Dan Handley610e7e12018-03-01 18:44:00 +00002158In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002159configuration of the TrustZone controller to allow non-secure masters access
2160to most of DRAM. Part of DRAM is reserved for secure world use.
2161
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002162Function : bl2u_plat_handle_scp_bl2u() [optional]
2163~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002164
2165::
2166
2167 Argument : void
2168 Return : int
2169
2170This function is used to perform any platform-specific actions required to
2171handle the SCP firmware. Typically it transfers the image into SCP memory using
2172a platform-specific protocol and waits until SCP executes it and signals to the
2173Application Processor (AP) for BL2U execution to continue.
2174
2175This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002176This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002177
2178Boot Loader Stage 3-1 (BL31)
2179----------------------------
2180
2181During cold boot, the BL31 stage is executed only by the primary CPU. This is
2182determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
2183control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
2184CPUs. BL31 executes at EL3 and is responsible for:
2185
2186#. Re-initializing all architectural and platform state. Although BL1 performs
2187 some of this initialization, BL31 remains resident in EL3 and must ensure
2188 that EL3 architectural and platform state is completely initialized. It
2189 should make no assumptions about the system state when it receives control.
2190
2191#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01002192 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
2193 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002194
2195#. Providing runtime firmware services. Currently, BL31 only implements a
2196 subset of the Power State Coordination Interface (PSCI) API as a runtime
Boyan Karatotev907d38b2022-11-22 12:01:09 +00002197 service. See :ref:`psci_in_bl31` below for details of porting the PSCI
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002198 implementation.
2199
2200#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002201 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002202 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01002203 executed and run the corresponding image. On ARM platforms, BL31 uses the
2204 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002205
2206If BL31 is a reset vector, It also needs to handle the reset as specified in
2207section 2.2 before the tasks described above.
2208
2209The following functions must be implemented by the platform port to enable BL31
2210to perform the above tasks.
2211
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002212Function : bl31_early_platform_setup2() [mandatory]
2213~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002214
2215::
2216
Soby Mathew97b1bff2018-09-27 16:46:41 +01002217 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002218 Return : void
2219
2220This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01002221by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
2222platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002223
Soby Mathew97b1bff2018-09-27 16:46:41 +01002224In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002225
Soby Mathew97b1bff2018-09-27 16:46:41 +01002226 arg0 - The pointer to the head of `bl_params_t` list
2227 which is list of executable images following BL31,
2228
2229 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01002230 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01002231
Mikael Olsson0232da22021-02-12 17:30:16 +01002232 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01002233 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01002234
2235 arg2 - Points to load address of HW_CONFIG if present
2236
2237 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
2238 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002239
Soby Mathew97b1bff2018-09-27 16:46:41 +01002240The function runs through the `bl_param_t` list and extracts the entry point
2241information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002242
2243- Initialize a UART (PL011 console), which enables access to the ``printf``
2244 family of functions in BL31.
2245
2246- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
2247 CCI slave interface corresponding to the cluster that includes the primary
2248 CPU.
2249
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002250Function : bl31_plat_arch_setup() [mandatory]
2251~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002252
2253::
2254
2255 Argument : void
2256 Return : void
2257
2258This function executes with the MMU and data caches disabled. It is only called
2259by the primary CPU.
2260
2261The purpose of this function is to perform any architectural initialization
2262that varies across platforms.
2263
Dan Handley610e7e12018-03-01 18:44:00 +00002264On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002266Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002267~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2268
2269::
2270
2271 Argument : void
2272 Return : void
2273
2274This function may execute with the MMU and data caches enabled if the platform
2275port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
2276called by the primary CPU.
2277
2278The purpose of this function is to complete platform initialization so that both
2279BL31 runtime services and normal world software can function correctly.
2280
Dan Handley610e7e12018-03-01 18:44:00 +00002281On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002282
2283- Initialize the generic interrupt controller.
2284
2285 Depending on the GIC driver selected by the platform, the appropriate GICv2
2286 or GICv3 initialization will be done, which mainly consists of:
2287
2288 - Enable secure interrupts in the GIC CPU interface.
2289 - Disable the legacy interrupt bypass mechanism.
2290 - Configure the priority mask register to allow interrupts of all priorities
2291 to be signaled to the CPU interface.
2292 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
2293 - Target all secure SPIs to CPU0.
2294 - Enable these secure interrupts in the GIC distributor.
2295 - Configure all other interrupts as non-secure.
2296 - Enable signaling of secure interrupts in the GIC distributor.
2297
2298- Enable system-level implementation of the generic timer counter through the
2299 memory mapped interface.
2300
2301- Grant access to the system counter timer module
2302
2303- Initialize the power controller device.
2304
2305 In particular, initialise the locks that prevent concurrent accesses to the
2306 power controller device.
2307
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002308Function : bl31_plat_runtime_setup() [optional]
2309~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002310
2311::
2312
2313 Argument : void
2314 Return : void
2315
2316The purpose of this function is allow the platform to perform any BL31 runtime
2317setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07002318implementation of this function will invoke ``console_switch_state()`` to switch
2319console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002320
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002321Function : bl31_plat_get_next_image_ep_info() [mandatory]
2322~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002323
2324::
2325
Sandrine Bailleux842117d2018-05-14 14:25:47 +02002326 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002327 Return : entry_point_info *
2328
2329This function may execute with the MMU and data caches enabled if the platform
2330port does the necessary initializations in ``bl31_plat_arch_setup()``.
2331
2332This function is called by ``bl31_main()`` to retrieve information provided by
2333BL2 for the next image in the security state specified by the argument. BL31
2334uses this information to pass control to that image in the specified security
2335state. This function must return a pointer to the ``entry_point_info`` structure
2336(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
2337should return NULL otherwise.
2338
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002339Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
Soby Mathew294e1cf2022-03-22 16:19:39 +00002340~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2341
2342::
2343
2344 Argument : uintptr_t, size_t *, uintptr_t, size_t
2345 Return : int
2346
2347This function returns the Platform attestation token.
2348
2349The parameters of the function are:
2350
2351 arg0 - A pointer to the buffer where the Platform token should be copied by
2352 this function. The buffer must be big enough to hold the Platform
2353 token.
2354
2355 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2356 function returns the platform token length in this parameter.
2357
2358 arg2 - A pointer to the buffer where the challenge object is stored.
2359
2360 arg3 - The length of the challenge object in bytes. Possible values are 32,
2361 48 and 64.
2362
2363The function returns 0 on success, -EINVAL on failure.
2364
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002365Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
2366~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewf05d93a2022-03-22 16:21:19 +00002367
2368::
2369
2370 Argument : uintptr_t, size_t *, unsigned int
2371 Return : int
2372
2373This function returns the delegated realm attestation key which will be used to
2374sign Realm attestation token. The API currently only supports P-384 ECC curve
2375key.
2376
2377The parameters of the function are:
2378
2379 arg0 - A pointer to the buffer where the attestation key should be copied
2380 by this function. The buffer must be big enough to hold the
2381 attestation key.
2382
2383 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2384 function returns the attestation key length in this parameter.
2385
2386 arg2 - The type of the elliptic curve to which the requested attestation key
2387 belongs.
2388
2389The function returns 0 on success, -EINVAL on failure.
2390
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002391Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
2392~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2393
2394::
2395
2396 Argument : uintptr_t *
2397 Return : size_t
2398
2399This function returns the size of the shared area between EL3 and RMM (or 0 on
2400failure). A pointer to the shared area (or a NULL pointer on failure) is stored
2401in the pointer passed as argument.
2402
Javier Almansa Sobrino4165e842022-04-25 17:18:15 +01002403Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
2404~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2405
2406::
2407
2408 Arguments : rmm_manifest_t *manifest
2409 Return : int
2410
2411When ENABLE_RME is enabled, this function populates a boot manifest for the
2412RMM image and stores it in the area specified by manifest.
2413
2414When ENABLE_RME is disabled, this function is not used.
2415
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002416Function : bl31_plat_enable_mmu [optional]
2417~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2418
2419::
2420
2421 Argument : uint32_t
2422 Return : void
2423
2424This function enables the MMU. The boot code calls this function with MMU and
2425caches disabled. This function should program necessary registers to enable
2426translation, and upon return, the MMU on the calling PE must be enabled.
2427
2428The function must honor flags passed in the first argument. These flags are
2429defined by the translation library, and can be found in the file
2430``include/lib/xlat_tables/xlat_mmu_helpers.h``.
2431
2432On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002433is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002434
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002435Function : plat_init_apkey [optional]
2436~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002437
2438::
2439
2440 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002441 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002442
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002443This function returns the 128-bit value which can be used to program ARMv8.3
2444pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002445
2446The value should be obtained from a reliable source of randomness.
2447
2448This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002449Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002450
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002451Function : plat_get_syscnt_freq2() [mandatory]
2452~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002453
2454::
2455
2456 Argument : void
2457 Return : unsigned int
2458
2459This function is used by the architecture setup code to retrieve the counter
2460frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00002461``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002462of the system counter, which is retrieved from the first entry in the frequency
2463modes table.
2464
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002465#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2466~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002467
2468When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2469bytes) aligned to the cache line boundary that should be allocated per-cpu to
2470accommodate all the bakery locks.
2471
2472If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
Chris Kay33bfc5e2023-02-14 11:30:04 +00002473calculates the size of the ``.bakery_lock`` input section, aligns it to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002474nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2475and stores the result in a linker symbol. This constant prevents a platform
2476from relying on the linker and provide a more efficient mechanism for
2477accessing per-cpu bakery lock information.
2478
2479If this constant is defined and its value is not equal to the value
2480calculated by the linker then a link time assertion is raised. A compile time
2481assertion is raised if the value of the constant is not aligned to the cache
2482line boundary.
2483
Paul Beesleyf8640672019-04-12 14:19:42 +01002484.. _porting_guide_sdei_requirements:
2485
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002486SDEI porting requirements
2487~~~~~~~~~~~~~~~~~~~~~~~~~
2488
Paul Beesley606d8072019-03-13 13:58:02 +00002489The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002490and functions, of which some are optional, and some others mandatory.
2491
2492Macros
2493......
2494
2495Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2497
2498This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002499Normal |SDEI| events on the platform. This must have a higher value
2500(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002501
2502Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2504
2505This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002506Critical |SDEI| events on the platform. This must have a lower value
2507(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002508
Paul Beesley606d8072019-03-13 13:58:02 +00002509**Note**: |SDEI| exception priorities must be the lowest among Secure
2510priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2511be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002512
2513Functions
2514.........
2515
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002516Function: int plat_sdei_validate_entry_point() [optional]
2517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002518
2519::
2520
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002521 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002522 Return: int
2523
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002524This function validates the entry point address of the event handler provided by
2525the client for both event registration and *Complete and Resume* |SDEI| calls.
2526The function ensures that the address is valid in the client translation regime.
2527
2528The second argument is the exception level that the client is executing in. It
2529can be Non-Secure EL1 or Non-Secure EL2.
2530
2531The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002532
Dan Handley610e7e12018-03-01 18:44:00 +00002533The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002534translates the entry point address within the client translation regime and
2535further ensures that the resulting physical address is located in Non-secure
2536DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002537
2538Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2540
2541::
2542
2543 Argument: uint64_t
2544 Argument: unsigned int
2545 Return: void
2546
Paul Beesley606d8072019-03-13 13:58:02 +00002547|SDEI| specification requires that a PE comes out of reset with the events
2548masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2549|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2550time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002551
Paul Beesley606d8072019-03-13 13:58:02 +00002552Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002553events are masked on the PE, the dispatcher implementation invokes the function
2554``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2555interrupt and the interrupt ID are passed as parameters.
2556
2557The default implementation only prints out a warning message.
2558
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002559.. _porting_guide_trng_requirements:
2560
2561TRNG porting requirements
2562~~~~~~~~~~~~~~~~~~~~~~~~~
2563
2564The |TRNG| backend requires the platform to provide the following values
2565and mandatory functions.
2566
2567Values
2568......
2569
2570value: uuid_t plat_trng_uuid [mandatory]
2571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2572
2573This value must be defined to the UUID of the TRNG backend that is specific to
Jayanth Dodderi Chidanand7c7faff2022-10-11 17:16:07 +01002574the hardware after ``plat_entropy_setup`` function is called. This value must
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002575conform to the SMCCC calling convention; The most significant 32 bits of the
2576UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2577w0 indicates failure to get a TRNG source.
2578
2579Functions
2580.........
2581
2582Function: void plat_entropy_setup(void) [mandatory]
2583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2584
2585::
2586
2587 Argument: none
2588 Return: none
2589
2590This function is expected to do platform-specific initialization of any TRNG
2591hardware. This may include generating a UUID from a hardware-specific seed.
2592
2593Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2595
2596::
2597
2598 Argument: uint64_t *
2599 Return: bool
2600 Out : when the return value is true, the entropy has been written into the
2601 storage pointed to
2602
2603This function writes entropy into storage provided by the caller. If no entropy
2604is available, it must return false and the storage must not be written.
2605
Boyan Karatotev907d38b2022-11-22 12:01:09 +00002606.. _psci_in_bl31:
2607
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002608Power State Coordination Interface (in BL31)
2609--------------------------------------------
2610
Dan Handley610e7e12018-03-01 18:44:00 +00002611The TF-A implementation of the PSCI API is based around the concept of a
2612*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2613share some state on which power management operations can be performed as
2614specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2615a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2616*power domains* are arranged in a hierarchical tree structure and each
2617*power domain* can be identified in a system by the cpu index of any CPU that
2618is part of that domain and a *power domain level*. A processing element (for
2619example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2620logical grouping of CPUs that share some state, then level 1 is that group of
2621CPUs (for example, a cluster), and level 2 is a group of clusters (for
2622example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002623organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002624
2625BL31's platform initialization code exports a pointer to the platform-specific
2626power management operations required for the PSCI implementation to function
2627correctly. This information is populated in the ``plat_psci_ops`` structure. The
2628PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2629power management operations on the power domains. For example, the target
2630CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2631handler (if present) is called for the CPU power domain.
2632
2633The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2634describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002635defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002636array of local power states where each index corresponds to a power domain
2637level. Each entry contains the local power state the power domain at that power
2638level could enter. It depends on the ``validate_power_state()`` handler to
2639convert the power-state parameter (possibly encoding a composite power state)
2640passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2641
2642The following functions form part of platform port of PSCI functionality.
2643
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002644Function : plat_psci_stat_accounting_start() [optional]
2645~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002646
2647::
2648
2649 Argument : const psci_power_state_t *
2650 Return : void
2651
2652This is an optional hook that platforms can implement for residency statistics
2653accounting before entering a low power state. The ``pwr_domain_state`` field of
2654``state_info`` (first argument) can be inspected if stat accounting is done
2655differently at CPU level versus higher levels. As an example, if the element at
2656index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2657state, special hardware logic may be programmed in order to keep track of the
2658residency statistics. For higher levels (array indices > 0), the residency
2659statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2660default implementation will use PMF to capture timestamps.
2661
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002662Function : plat_psci_stat_accounting_stop() [optional]
2663~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002664
2665::
2666
2667 Argument : const psci_power_state_t *
2668 Return : void
2669
2670This is an optional hook that platforms can implement for residency statistics
2671accounting after exiting from a low power state. The ``pwr_domain_state`` field
2672of ``state_info`` (first argument) can be inspected if stat accounting is done
2673differently at CPU level versus higher levels. As an example, if the element at
2674index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2675state, special hardware logic may be programmed in order to keep track of the
2676residency statistics. For higher levels (array indices > 0), the residency
2677statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2678default implementation will use PMF to capture timestamps.
2679
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002680Function : plat_psci_stat_get_residency() [optional]
2681~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002682
2683::
2684
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002685 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002686 Return : u_register_t
2687
2688This is an optional interface that is is invoked after resuming from a low power
2689state and provides the time spent resident in that low power state by the power
2690domain at a particular power domain level. When a CPU wakes up from suspend,
2691all its parent power domain levels are also woken up. The generic PSCI code
2692invokes this function for each parent power domain that is resumed and it
2693identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2694argument) describes the low power state that the power domain has resumed from.
2695The current CPU is the first CPU in the power domain to resume from the low
2696power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2697CPU in the power domain to suspend and may be needed to calculate the residency
2698for that power domain.
2699
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002700Function : plat_get_target_pwr_state() [optional]
2701~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002702
2703::
2704
2705 Argument : unsigned int, const plat_local_state_t *, unsigned int
2706 Return : plat_local_state_t
2707
2708The PSCI generic code uses this function to let the platform participate in
2709state coordination during a power management operation. The function is passed
2710a pointer to an array of platform specific local power state ``states`` (second
2711argument) which contains the requested power state for each CPU at a particular
2712power domain level ``lvl`` (first argument) within the power domain. The function
2713is expected to traverse this array of upto ``ncpus`` (third argument) and return
2714a coordinated target power state by the comparing all the requested power
2715states. The target power state should not be deeper than any of the requested
2716power states.
2717
2718A weak definition of this API is provided by default wherein it assumes
2719that the platform assigns a local state value in order of increasing depth
2720of the power state i.e. for two power states X & Y, if X < Y
2721then X represents a shallower power state than Y. As a result, the
2722coordinated target local power state for a power domain will be the minimum
2723of the requested local power state values.
2724
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002725Function : plat_get_power_domain_tree_desc() [mandatory]
2726~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002727
2728::
2729
2730 Argument : void
2731 Return : const unsigned char *
2732
2733This function returns a pointer to the byte array containing the power domain
2734topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002735described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2736initialization code requires this array to be described by the platform, either
2737statically or dynamically, to initialize the power domain topology tree. In case
2738the array is populated dynamically, then plat_core_pos_by_mpidr() and
2739plat_my_core_pos() should also be implemented suitably so that the topology tree
2740description matches the CPU indices returned by these APIs. These APIs together
2741form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002742
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002743Function : plat_setup_psci_ops() [mandatory]
2744~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002745
2746::
2747
2748 Argument : uintptr_t, const plat_psci_ops **
2749 Return : int
2750
2751This function may execute with the MMU and data caches enabled if the platform
2752port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2753called by the primary CPU.
2754
2755This function is called by PSCI initialization code. Its purpose is to let
2756the platform layer know about the warm boot entrypoint through the
2757``sec_entrypoint`` (first argument) and to export handler routines for
2758platform-specific psci power management actions by populating the passed
2759pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2760
2761A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002762the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002763``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002764platform wants to support, the associated operation or operations in this
2765structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002766:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002767function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002768structure instead of providing an empty implementation.
2769
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002770plat_psci_ops.cpu_standby()
2771...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002772
2773Perform the platform-specific actions to enter the standby state for a cpu
2774indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002775wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002776For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2777the suspend state type specified in the ``power-state`` parameter should be
2778STANDBY and the target power domain level specified should be the CPU. The
2779handler should put the CPU into a low power retention state (usually by
2780issuing a wfi instruction) and ensure that it can be woken up from that
2781state by a normal interrupt. The generic code expects the handler to succeed.
2782
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002783plat_psci_ops.pwr_domain_on()
2784.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002785
2786Perform the platform specific actions to power on a CPU, specified
2787by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002788return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002789
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002790plat_psci_ops.pwr_domain_off()
2791..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002792
2793Perform the platform specific actions to prepare to power off the calling CPU
2794and its higher parent power domain levels as indicated by the ``target_state``
2795(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2796
2797The ``target_state`` encodes the platform coordinated target local power states
2798for the CPU power domain and its parent power domain levels. The handler
2799needs to perform power management operation corresponding to the local state
2800at each power level.
2801
2802For this handler, the local power state for the CPU power domain will be a
2803power down state where as it could be either power down, retention or run state
2804for the higher power domain levels depending on the result of state
2805coordination. The generic code expects the handler to succeed.
2806
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002807plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2808...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002809
2810This optional function may be used as a performance optimization to replace
2811or complement pwr_domain_suspend() on some platforms. Its calling semantics
2812are identical to pwr_domain_suspend(), except the PSCI implementation only
2813calls this function when suspending to a power down state, and it guarantees
2814that data caches are enabled.
2815
2816When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2817before calling pwr_domain_suspend(). If the target_state corresponds to a
2818power down state and it is safe to perform some or all of the platform
2819specific actions in that function with data caches enabled, it may be more
2820efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2821= 1, data caches remain enabled throughout, and so there is no advantage to
2822moving platform specific actions to this function.
2823
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002824plat_psci_ops.pwr_domain_suspend()
2825..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002826
2827Perform the platform specific actions to prepare to suspend the calling
2828CPU and its higher parent power domain levels as indicated by the
2829``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2830API implementation.
2831
2832The ``target_state`` has a similar meaning as described in
2833the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2834target local power states for the CPU power domain and its parent
2835power domain levels. The handler needs to perform power management operation
2836corresponding to the local state at each power level. The generic code
2837expects the handler to succeed.
2838
Douglas Raillarda84996b2017-08-02 16:57:32 +01002839The difference between turning a power domain off versus suspending it is that
2840in the former case, the power domain is expected to re-initialize its state
2841when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2842case, the power domain is expected to save enough state so that it can resume
2843execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002844``pwr_domain_suspend_finish()``).
2845
Douglas Raillarda84996b2017-08-02 16:57:32 +01002846When suspending a core, the platform can also choose to power off the GICv3
2847Redistributor and ITS through an implementation-defined sequence. To achieve
2848this safely, the ITS context must be saved first. The architectural part is
2849implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2850sequence is implementation defined and it is therefore the responsibility of
2851the platform code to implement the necessary sequence. Then the GIC
2852Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2853Powering off the Redistributor requires the implementation to support it and it
2854is the responsibility of the platform code to execute the right implementation
2855defined sequence.
2856
2857When a system suspend is requested, the platform can also make use of the
2858``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2859it has saved the context of the Redistributors and ITS of all the cores in the
2860system. The context of the Distributor can be large and may require it to be
2861allocated in a special area if it cannot fit in the platform's global static
2862data, for example in DRAM. The Distributor can then be powered down using an
2863implementation-defined sequence.
2864
Wing Li2c556f32022-09-14 13:18:17 -07002865If the build option ``PSCI_OS_INIT_MODE`` is enabled, the generic code expects
2866the platform to return PSCI_E_SUCCESS on success, or either PSCI_E_DENIED or
2867PSCI_E_INVALID_PARAMS as appropriate for any invalid requests.
2868
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002869plat_psci_ops.pwr_domain_pwr_down_wfi()
2870.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002871
2872This is an optional function and, if implemented, is expected to perform
2873platform specific actions including the ``wfi`` invocation which allows the
2874CPU to powerdown. Since this function is invoked outside the PSCI locks,
2875the actions performed in this hook must be local to the CPU or the platform
2876must ensure that races between multiple CPUs cannot occur.
2877
2878The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2879operation and it encodes the platform coordinated target local power states for
2880the CPU power domain and its parent power domain levels. This function must
Boyan Karatotev43771f32022-10-05 13:41:56 +01002881not return back to the caller (by calling wfi in an infinite loop to ensure
2882some CPUs power down mitigations work properly).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002883
2884If this function is not implemented by the platform, PSCI generic
2885implementation invokes ``psci_power_down_wfi()`` for power down.
2886
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002887plat_psci_ops.pwr_domain_on_finish()
2888....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002889
2890This function is called by the PSCI implementation after the calling CPU is
2891powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2892It performs the platform-specific setup required to initialize enough state for
2893this CPU to enter the normal world and also provide secure runtime firmware
2894services.
2895
2896The ``target_state`` (first argument) is the prior state of the power domains
2897immediately before the CPU was turned on. It indicates which power domains
2898above the CPU might require initialization due to having previously been in
2899low power states. The generic code expects the handler to succeed.
2900
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002901plat_psci_ops.pwr_domain_on_finish_late() [optional]
2902...........................................................
2903
2904This optional function is called by the PSCI implementation after the calling
2905CPU is fully powered on with respective data caches enabled. The calling CPU and
2906the associated cluster are guaranteed to be participating in coherency. This
2907function gives the flexibility to perform any platform-specific actions safely,
2908such as initialization or modification of shared data structures, without the
2909overhead of explicit cache maintainace operations.
2910
2911The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2912operation. The generic code expects the handler to succeed.
2913
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002914plat_psci_ops.pwr_domain_suspend_finish()
2915.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002916
2917This function is called by the PSCI implementation after the calling CPU is
2918powered on and released from reset in response to an asynchronous wakeup
2919event, for example a timer interrupt that was programmed by the CPU during the
2920``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2921setup required to restore the saved state for this CPU to resume execution
2922in the normal world and also provide secure runtime firmware services.
2923
2924The ``target_state`` (first argument) has a similar meaning as described in
2925the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2926to succeed.
2927
Douglas Raillarda84996b2017-08-02 16:57:32 +01002928If the Distributor, Redistributors or ITS have been powered off as part of a
2929suspend, their context must be restored in this function in the reverse order
2930to how they were saved during suspend sequence.
2931
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002932plat_psci_ops.system_off()
2933..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002934
2935This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2936call. It performs the platform-specific system poweroff sequence after
2937notifying the Secure Payload Dispatcher.
2938
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002939plat_psci_ops.system_reset()
2940............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002941
2942This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2943call. It performs the platform-specific system reset sequence after
2944notifying the Secure Payload Dispatcher.
2945
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002946plat_psci_ops.validate_power_state()
2947....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002948
2949This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2950call to validate the ``power_state`` parameter of the PSCI API and if valid,
2951populate it in ``req_state`` (second argument) array as power domain level
2952specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002953return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002954normal world PSCI client.
2955
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002956plat_psci_ops.validate_ns_entrypoint()
2957......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002958
2959This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2960``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2961parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002962the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002963propagated back to the normal world PSCI client.
2964
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002965plat_psci_ops.get_sys_suspend_power_state()
2966...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002967
2968This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2969call to get the ``req_state`` parameter from platform which encodes the power
2970domain level specific local states to suspend to system affinity level. The
2971``req_state`` will be utilized to do the PSCI state coordination and
2972``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2973enter system suspend.
2974
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002975plat_psci_ops.get_pwr_lvl_state_idx()
2976.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002977
2978This is an optional function and, if implemented, is invoked by the PSCI
2979implementation to convert the ``local_state`` (first argument) at a specified
2980``pwr_lvl`` (second argument) to an index between 0 and
2981``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2982supports more than two local power states at each power domain level, that is
2983``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2984local power states.
2985
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002986plat_psci_ops.translate_power_state_by_mpidr()
2987..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002988
2989This is an optional function and, if implemented, verifies the ``power_state``
2990(second argument) parameter of the PSCI API corresponding to a target power
2991domain. The target power domain is identified by using both ``MPIDR`` (first
2992argument) and the power domain level encoded in ``power_state``. The power domain
2993level specific local states are to be extracted from ``power_state`` and be
2994populated in the ``output_state`` (third argument) array. The functionality
2995is similar to the ``validate_power_state`` function described above and is
2996envisaged to be used in case the validity of ``power_state`` depend on the
2997targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002998domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002999function is not implemented, then the generic implementation relies on
3000``validate_power_state`` function to translate the ``power_state``.
3001
3002This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003003power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003004APIs as described in Section 5.18 of `PSCI`_.
3005
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003006plat_psci_ops.get_node_hw_state()
3007.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003008
3009This is an optional function. If implemented this function is intended to return
3010the power state of a node (identified by the first parameter, the ``MPIDR``) in
3011the power domain topology (identified by the second parameter, ``power_level``),
3012as retrieved from a power controller or equivalent component on the platform.
3013Upon successful completion, the implementation must map and return the final
3014status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
3015must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
3016appropriate.
3017
3018Implementations are not expected to handle ``power_levels`` greater than
3019``PLAT_MAX_PWR_LVL``.
3020
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003021plat_psci_ops.system_reset2()
3022.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003023
3024This is an optional function. If implemented this function is
3025called during the ``SYSTEM_RESET2`` call to perform a reset
3026based on the first parameter ``reset_type`` as specified in
3027`PSCI`_. The parameter ``cookie`` can be used to pass additional
3028reset information. If the ``reset_type`` is not supported, the
3029function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
3030resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
3031and vendor reset can return other PSCI error codes as defined
3032in `PSCI`_. On success this function will not return.
3033
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003034plat_psci_ops.write_mem_protect()
3035.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003036
3037This is an optional function. If implemented it enables or disables the
3038``MEM_PROTECT`` functionality based on the value of ``val``.
3039A non-zero value enables ``MEM_PROTECT`` and a value of zero
3040disables it. Upon encountering failures it must return a negative value
3041and on success it must return 0.
3042
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003043plat_psci_ops.read_mem_protect()
3044................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003045
3046This is an optional function. If implemented it returns the current
3047state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
3048failures it must return a negative value and on success it must
3049return 0.
3050
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003051plat_psci_ops.mem_protect_chk()
3052...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003053
3054This is an optional function. If implemented it checks if a memory
3055region defined by a base address ``base`` and with a size of ``length``
3056bytes is protected by ``MEM_PROTECT``. If the region is protected
3057then it must return 0, otherwise it must return a negative number.
3058
Paul Beesleyf8640672019-04-12 14:19:42 +01003059.. _porting_guide_imf_in_bl31:
3060
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003061Interrupt Management framework (in BL31)
3062----------------------------------------
3063
3064BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
3065generated in either security state and targeted to EL1 or EL2 in the non-secure
3066state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01003067described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003068
3069A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00003070text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003071platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00003072present in the platform. Arm standard platform layer supports both
3073`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
3074and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
3075FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003076``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
3077details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003078
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05003079See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01003080
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003081Function : plat_interrupt_type_to_line() [mandatory]
3082~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003083
3084::
3085
3086 Argument : uint32_t, uint32_t
3087 Return : uint32_t
3088
Dan Handley610e7e12018-03-01 18:44:00 +00003089The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003090interrupt line. The specific line that is signaled depends on how the interrupt
3091controller (IC) reports different interrupt types from an execution context in
3092either security state. The IMF uses this API to determine which interrupt line
3093the platform IC uses to signal each type of interrupt supported by the framework
3094from a given security state. This API must be invoked at EL3.
3095
3096The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01003097:ref:`Interrupt Management Framework`) indicating the target type of the
3098interrupt, the second parameter is the security state of the originating
3099execution context. The return result is the bit position in the ``SCR_EL3``
3100register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003101
Dan Handley610e7e12018-03-01 18:44:00 +00003102In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003103configured as FIQs and Non-secure interrupts as IRQs from either security
3104state.
3105
Dan Handley610e7e12018-03-01 18:44:00 +00003106In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003107configured depends on the security state of the execution context when the
3108interrupt is signalled and are as follows:
3109
3110- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
3111 NS-EL0/1/2 context.
3112- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
3113 in the NS-EL0/1/2 context.
3114- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
3115 context.
3116
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003117Function : plat_ic_get_pending_interrupt_type() [mandatory]
3118~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003119
3120::
3121
3122 Argument : void
3123 Return : uint32_t
3124
3125This API returns the type of the highest priority pending interrupt at the
3126platform IC. The IMF uses the interrupt type to retrieve the corresponding
3127handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
3128pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
3129``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
3130
Dan Handley610e7e12018-03-01 18:44:00 +00003131In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003132Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
3133the pending interrupt. The type of interrupt depends upon the id value as
3134follows.
3135
3136#. id < 1022 is reported as a S-EL1 interrupt
3137#. id = 1022 is reported as a Non-secure interrupt.
3138#. id = 1023 is reported as an invalid interrupt type.
3139
Dan Handley610e7e12018-03-01 18:44:00 +00003140In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003141``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
3142is read to determine the id of the pending interrupt. The type of interrupt
3143depends upon the id value as follows.
3144
3145#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
3146#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
3147#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
3148#. All other interrupt id's are reported as EL3 interrupt.
3149
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003150Function : plat_ic_get_pending_interrupt_id() [mandatory]
3151~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003152
3153::
3154
3155 Argument : void
3156 Return : uint32_t
3157
3158This API returns the id of the highest priority pending interrupt at the
3159platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
3160pending.
3161
Dan Handley610e7e12018-03-01 18:44:00 +00003162In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003163Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
3164pending interrupt. The id that is returned by API depends upon the value of
3165the id read from the interrupt controller as follows.
3166
3167#. id < 1022. id is returned as is.
3168#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
3169 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
3170 This id is returned by the API.
3171#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
3172
Dan Handley610e7e12018-03-01 18:44:00 +00003173In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003174EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
3175group 0 Register*, is read to determine the id of the pending interrupt. The id
3176that is returned by API depends upon the value of the id read from the
3177interrupt controller as follows.
3178
3179#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
3180#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
3181 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
3182 Register* is read to determine the id of the group 1 interrupt. This id
3183 is returned by the API as long as it is a valid interrupt id
3184#. If the id is any of the special interrupt identifiers,
3185 ``INTR_ID_UNAVAILABLE`` is returned.
3186
3187When the API invoked from S-EL1 for GICv3 systems, the id read from system
3188register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003189Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003190``INTR_ID_UNAVAILABLE`` is returned.
3191
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003192Function : plat_ic_acknowledge_interrupt() [mandatory]
3193~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003194
3195::
3196
3197 Argument : void
3198 Return : uint32_t
3199
3200This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003201the highest pending interrupt has begun. It should return the raw, unmodified
3202value obtained from the interrupt controller when acknowledging an interrupt.
3203The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05003204`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003205
Dan Handley610e7e12018-03-01 18:44:00 +00003206This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003207Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
3208priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003209It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003210
Dan Handley610e7e12018-03-01 18:44:00 +00003211In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003212from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
3213Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
3214reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
3215group 1*. The read changes the state of the highest pending interrupt from
3216pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003217unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003218
3219The TSP uses this API to start processing of the secure physical timer
3220interrupt.
3221
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003222Function : plat_ic_end_of_interrupt() [mandatory]
3223~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003224
3225::
3226
3227 Argument : uint32_t
3228 Return : void
3229
3230This API is used by the CPU to indicate to the platform IC that processing of
3231the interrupt corresponding to the id (passed as the parameter) has
3232finished. The id should be the same as the id returned by the
3233``plat_ic_acknowledge_interrupt()`` API.
3234
Dan Handley610e7e12018-03-01 18:44:00 +00003235Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003236(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
3237system register in case of GICv3 depending on where the API is invoked from,
3238EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
3239controller.
3240
3241The TSP uses this API to finish processing of the secure physical timer
3242interrupt.
3243
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003244Function : plat_ic_get_interrupt_type() [mandatory]
3245~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003246
3247::
3248
3249 Argument : uint32_t
3250 Return : uint32_t
3251
3252This API returns the type of the interrupt id passed as the parameter.
3253``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
3254interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
3255returned depending upon how the interrupt has been configured by the platform
3256IC. This API must be invoked at EL3.
3257
Dan Handley610e7e12018-03-01 18:44:00 +00003258Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003259and Non-secure interrupts as Group1 interrupts. It reads the group value
3260corresponding to the interrupt id from the relevant *Interrupt Group Register*
3261(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
3262
Dan Handley610e7e12018-03-01 18:44:00 +00003263In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003264Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
3265(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
3266as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
3267
Manish Pandey3161fa52022-11-02 16:30:09 +00003268Common helper functions
3269-----------------------
Govindraj Rajab6709b02023-02-21 17:43:55 +00003270Function : elx_panic()
3271~~~~~~~~~~~~~~~~~~~~~~
Manish Pandey3161fa52022-11-02 16:30:09 +00003272
Govindraj Rajab6709b02023-02-21 17:43:55 +00003273::
3274
3275 Argument : void
3276 Return : void
3277
3278This API is called from assembly files when reporting a critical failure
3279that has occured in lower EL and is been trapped in EL3. This call
3280**must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003281
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003282Function : el3_panic()
3283~~~~~~~~~~~~~~~~~~~~~~
Manish Pandey3161fa52022-11-02 16:30:09 +00003284
3285::
3286
3287 Argument : void
3288 Return : void
3289
3290This API is called from assembly files when encountering a critical failure that
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003291cannot be recovered from. This function assumes that it is invoked from a C
3292runtime environment i.e. valid stack exists. This call **must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003293
3294Function : panic()
3295~~~~~~~~~~~~~~~~~~
3296
3297::
3298
3299 Argument : void
3300 Return : void
3301
3302This API called from C files when encountering a critical failure that cannot
3303be recovered from. This function in turn prints backtrace (if enabled) and calls
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003304el3_panic(). This call **must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003305
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003306Crash Reporting mechanism (in BL31)
3307-----------------------------------
3308
3309BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003310of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00003311on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003312``plat_crash_console_putc`` and ``plat_crash_console_flush``.
3313
3314The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
3315implementation of all of them. Platforms may include this file to their
3316makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003317output to be routed over the normal console infrastructure and get printed on
3318consoles configured to output in crash state. ``console_set_scope()`` can be
3319used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00003320
3321.. note::
3322 Platforms are responsible for making sure that they only mark consoles for
3323 use in the crash scope that are able to support this, i.e. that are written
3324 in assembly and conform with the register clobber rules for putc()
3325 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003326
Julius Werneraae9bb12017-09-18 16:49:48 -07003327In some cases (such as debugging very early crashes that happen before the
3328normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08003329more explicitly. These platforms may instead provide custom implementations for
3330these. They are executed outside of a C environment and without a stack. Many
3331console drivers provide functions named ``console_xxx_core_init/putc/flush``
3332that are designed to be used by these functions. See Arm platforms (like juno)
3333for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003334
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003335Function : plat_crash_console_init [mandatory]
3336~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003337
3338::
3339
3340 Argument : void
3341 Return : int
3342
3343This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003344console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003345initialization and returns 1 on success.
3346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003347Function : plat_crash_console_putc [mandatory]
3348~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003349
3350::
3351
3352 Argument : int
3353 Return : int
3354
3355This API is used by the crash reporting mechanism to print a character on the
3356designated crash console. It must only use general purpose registers x1 and
3357x2 to do its work. The parameter and the return value are in general purpose
3358register x0.
3359
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003360Function : plat_crash_console_flush [mandatory]
3361~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003362
3363::
3364
3365 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003366 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003367
3368This API is used by the crash reporting mechanism to force write of all buffered
3369data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003370registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003371
Manish Pandey9c9f38a2020-06-30 00:46:08 +01003372.. _External Abort handling and RAS Support:
3373
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01003374External Abort handling and RAS Support
3375---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01003376
3377Function : plat_ea_handler
3378~~~~~~~~~~~~~~~~~~~~~~~~~~
3379
3380::
3381
3382 Argument : int
3383 Argument : uint64_t
3384 Argument : void *
3385 Argument : void *
3386 Argument : uint64_t
3387 Return : void
3388
3389This function is invoked by the RAS framework for the platform to handle an
3390External Abort received at EL3. The intention of the function is to attempt to
3391resolve the cause of External Abort and return; if that's not possible, to
3392initiate orderly shutdown of the system.
3393
3394The first parameter (``int ea_reason``) indicates the reason for External Abort.
3395Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
3396
3397The second parameter (``uint64_t syndrome``) is the respective syndrome
3398presented to EL3 after having received the External Abort. Depending on the
3399nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
3400can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
3401
3402The third parameter (``void *cookie``) is unused for now. The fourth parameter
3403(``void *handle``) is a pointer to the preempted context. The fifth parameter
3404(``uint64_t flags``) indicates the preempted security state. These parameters
3405are received from the top-level exception handler.
3406
3407If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
3408function iterates through RAS handlers registered by the platform. If any of the
3409RAS handlers resolve the External Abort, no further action is taken.
3410
3411If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
3412could resolve the External Abort, the default implementation prints an error
3413message, and panics.
3414
3415Function : plat_handle_uncontainable_ea
3416~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3417
3418::
3419
3420 Argument : int
3421 Argument : uint64_t
3422 Return : void
3423
3424This function is invoked by the RAS framework when an External Abort of
3425Uncontainable type is received at EL3. Due to the critical nature of
3426Uncontainable errors, the intention of this function is to initiate orderly
3427shutdown of the system, and is not expected to return.
3428
3429This function must be implemented in assembly.
3430
3431The first and second parameters are the same as that of ``plat_ea_handler``.
3432
3433The default implementation of this function calls
3434``report_unhandled_exception``.
3435
3436Function : plat_handle_double_fault
3437~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3438
3439::
3440
3441 Argument : int
3442 Argument : uint64_t
3443 Return : void
3444
3445This function is invoked by the RAS framework when another External Abort is
3446received at EL3 while one is already being handled. I.e., a call to
3447``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
3448this function is to initiate orderly shutdown of the system, and is not expected
3449recover or return.
3450
3451This function must be implemented in assembly.
3452
3453The first and second parameters are the same as that of ``plat_ea_handler``.
3454
3455The default implementation of this function calls
3456``report_unhandled_exception``.
3457
3458Function : plat_handle_el3_ea
3459~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3460
3461::
3462
3463 Return : void
3464
3465This function is invoked when an External Abort is received while executing in
3466EL3. Due to its critical nature, the intention of this function is to initiate
3467orderly shutdown of the system, and is not expected recover or return.
3468
3469This function must be implemented in assembly.
3470
3471The default implementation of this function calls
3472``report_unhandled_exception``.
3473
Andre Przywarabdc76f12022-11-21 17:07:25 +00003474Function : plat_handle_rng_trap
3475~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3476
3477::
3478
3479 Argument : uint64_t
3480 Argument : cpu_context_t *
3481 Return : int
3482
3483This function is invoked by BL31's exception handler when there is a synchronous
3484system register trap caused by access to the RNDR or RNDRRS registers. It allows
3485platforms implementing ``FEAT_RNG_TRAP`` and enabling ``ENABLE_FEAT_RNG_TRAP`` to
3486emulate those system registers by returing back some entropy to the lower EL.
3487
3488The first parameter (``uint64_t esr_el3``) contains the content of the ESR_EL3
3489syndrome register, which encodes the instruction that was trapped. The interesting
3490information in there is the target register (``get_sysreg_iss_rt()``).
3491
3492The second parameter (``cpu_context_t *ctx``) represents the CPU state in the
3493lower exception level, at the time when the execution of the ``mrs`` instruction
3494was trapped. Its content can be changed, to put the entropy into the target
3495register.
3496
3497The return value indicates how to proceed:
3498
3499- When returning ``TRAP_RET_UNHANDLED`` (-1), the machine will panic.
3500- When returning ``TRAP_RET_REPEAT`` (0), the exception handler will return
3501 to the same instruction, so its execution will be repeated.
3502- When returning ``TRAP_RET_CONTINUE`` (1), the exception handler will return
3503 to the next instruction.
3504
3505This function needs to be implemented by a platform if it enables FEAT_RNG_TRAP.
3506
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003507Build flags
3508-----------
3509
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003510There are some build flags which can be defined by the platform to control
3511inclusion or exclusion of certain BL stages from the FIP image. These flags
3512need to be defined in the platform makefile which will get included by the
3513build system.
3514
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003515- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003516 By default, this flag is defined ``yes`` by the build system and ``BL33``
3517 build option should be supplied as a build option. The platform has the
3518 option of excluding the BL33 image in the ``fip`` image by defining this flag
3519 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3520 are used, this flag will be set to ``no`` automatically.
3521
Paul Beesley07f0a312019-05-16 13:33:18 +01003522Platform include paths
3523----------------------
3524
3525Platforms are allowed to add more include paths to be passed to the compiler.
3526The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3527particular for the file ``platform_def.h``.
3528
3529Example:
3530
3531.. code:: c
3532
3533 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3534
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003535C Library
3536---------
3537
3538To avoid subtle toolchain behavioral dependencies, the header files provided
3539by the compiler are not used. The software is built with the ``-nostdinc`` flag
3540to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00003541required headers are included in the TF-A source tree. The library only
3542contains those C library definitions required by the local implementation. If
3543more functionality is required, the needed library functions will need to be
3544added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003545
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003546Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00003547been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003548from `FreeBSD`_, others have been written specifically for TF-A as well. The
3549files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003550
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01003551SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3552can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003553
3554Storage abstraction layer
3555-------------------------
3556
Louis Mayencourtb5469002019-07-15 13:56:03 +01003557In order to improve platform independence and portability a storage abstraction
3558layer is used to load data from non-volatile platform storage. Currently
3559storage access is only required by BL1 and BL2 phases and performed inside the
3560``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003561
Louis Mayencourtb5469002019-07-15 13:56:03 +01003562.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003563
Dan Handley610e7e12018-03-01 18:44:00 +00003564It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003565development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003566the default means to load data from storage (see :ref:`firmware_design_fip`).
3567The storage layer is described in the header file
3568``include/drivers/io/io_storage.h``. The implementation of the common library is
3569in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003570``drivers/io/``.
3571
Louis Mayencourtb5469002019-07-15 13:56:03 +01003572.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
3573
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003574Each IO driver must provide ``io_dev_*`` structures, as described in
3575``drivers/io/io_driver.h``. These are returned via a mandatory registration
3576function that is called on platform initialization. The semi-hosting driver
3577implementation in ``io_semihosting.c`` can be used as an example.
3578
Louis Mayencourtb5469002019-07-15 13:56:03 +01003579Each platform should register devices and their drivers via the storage
3580abstraction layer. These drivers then need to be initialized by bootloader
3581phases as required in their respective ``blx_platform_setup()`` functions.
3582
3583.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
3584
3585The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3586initialize storage devices before IO operations are called.
3587
3588.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
3589
3590The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003591include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3592Drivers do not have to implement all operations, but each platform must
3593provide at least one driver for a device capable of supporting generic
3594operations such as loading a bootloader image.
3595
3596The current implementation only allows for known images to be loaded by the
3597firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003598``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003599there). The platform layer (``plat_get_image_source()``) then returns a reference
3600to a device and a driver-specific ``spec`` which will be understood by the driver
3601to allow access to the image data.
3602
3603The layer is designed in such a way that is it possible to chain drivers with
3604other drivers. For example, file-system drivers may be implemented on top of
3605physical block devices, both represented by IO devices with corresponding
3606drivers. In such a case, the file-system "binding" with the block device may
3607be deferred until the file-system device is initialised.
3608
3609The abstraction currently depends on structures being statically allocated
3610by the drivers and callers, as the system does not yet provide a means of
3611dynamically allocating memory. This may also have the affect of limiting the
3612amount of open resources per driver.
3613
3614--------------
3615
Chris Kay33bfc5e2023-02-14 11:30:04 +00003616*Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003617
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003618.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00003619.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003620.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003621.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003622.. _SCC: http://www.simple-cc.org/
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01003623.. _DRTM: https://developer.arm.com/documentation/den0113/a