blob: 4639fd5fd14cd32d25635cc76e9a3b249785c5e0 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Paul Beesleyf8640672019-04-12 14:19:42 +010026Please refer to the :ref:`Platform Compatibility Policy` for the policy
27regarding compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010028
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillardd7c21b72017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley610e7e12018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010061
Dan Handley610e7e12018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Javier Almansa Sobrino37bf69c2022-04-07 18:26:49 +010092.. _platform_def_mandatory:
93
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010094File : platform_def.h [mandatory]
95~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010096
97Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000098include path with the following constants defined. This will require updating
99the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100
Paul Beesleyf8640672019-04-12 14:19:42 +0100101Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100102which provides typical values for some of the constants below. These values are
103likely to be suitable for all platform ports.
104
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100105- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100106
107 Defines the linker format used by the platform, for example
108 ``elf64-littleaarch64``.
109
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100110- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100111
112 Defines the processor architecture for the linker by the platform, for
113 example ``aarch64``.
114
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100115- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100116
117 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100118 by ``plat/common/aarch64/platform_mp_stack.S`` and
119 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
David Horstmann051fd6d2020-11-12 15:19:04 +0000121- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100122
Max Yufa0b4e82022-09-08 23:21:21 +0000123 Defines the size in bytes of the largest cache line across all the cache
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100124 levels in the platform.
125
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100126- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100127
128 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
129 function.
130
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100131- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100132
133 Defines the total number of CPUs implemented by the platform across all
134 clusters in the system.
135
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100136- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100137
138 Defines the total number of nodes in the power domain topology
139 tree at all the power domain levels used by the platform.
140 This macro is used by the PSCI implementation to allocate
141 data structures to represent power domain topology.
142
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100143- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100144
145 Defines the maximum power domain level that the power management operations
146 should apply to. More often, but not always, the power domain level
147 corresponds to affinity level. This macro allows the PSCI implementation
148 to know the highest power domain level that it should consider for power
149 management operations in the system that the platform implements. For
150 example, the Base AEM FVP implements two clusters with a configurable
151 number of CPUs and it reports the maximum power domain level as 1.
152
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100153- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100154
155 Defines the local power state corresponding to the deepest power down
156 possible at every power domain level in the platform. The local power
157 states for each level may be sparsely allocated between 0 and this value
158 with 0 being reserved for the RUN state. The PSCI implementation uses this
159 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100162- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100163
164 Defines the local power state corresponding to the deepest retention state
165 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100170- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100171
172 Defines the maximum number of local power states per power domain level
173 that the platform supports. The default value of this macro is 2 since
174 most platforms just support a maximum of two local power states at each
175 power domain level (power-down and retention). If the platform needs to
176 account for more local power states, then it must redefine this macro.
177
178 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100181- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100182
183 Defines the base address in secure ROM where BL1 originally lives. Must be
184 aligned on a page-size boundary.
185
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100186- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100187
188 Defines the maximum address in secure ROM that BL1's actual content (i.e.
189 excluding any data section allocated at runtime) can occupy.
190
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100191- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100192
193 Defines the base address in secure RAM where BL1's read-write data will live
194 at runtime. Must be aligned on a page-size boundary.
195
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100196- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100197
198 Defines the maximum address in secure RAM that BL1's read-write data can
199 occupy at runtime.
200
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100201- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100202
203 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000204 Must be aligned on a page-size boundary. This constant is not applicable
205 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100207- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100208
209 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000210 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
211
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100212- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000213
214 Defines the base address in secure XIP memory where BL2 RO section originally
215 lives. Must be aligned on a page-size boundary. This constant is only needed
216 when BL2_IN_XIP_MEM is set to '1'.
217
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100218- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000219
220 Defines the maximum address in secure XIP memory that BL2's actual content
221 (i.e. excluding any data section allocated at runtime) can occupy. This
222 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
223
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100224- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000225
226 Defines the base address in secure RAM where BL2's read-write data will live
227 at runtime. Must be aligned on a page-size boundary. This constant is only
228 needed when BL2_IN_XIP_MEM is set to '1'.
229
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100230- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000231
232 Defines the maximum address in secure RAM that BL2's read-write data can
233 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
234 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100236- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100237
238 Defines the base address in secure RAM where BL2 loads the BL31 binary
239 image. Must be aligned on a page-size boundary.
240
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100241- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100242
243 Defines the maximum address in secure RAM that the BL31 image can occupy.
244
Tamas Ban1d3354e2022-09-16 14:09:30 +0200245- **#define : PLAT_RSS_COMMS_PAYLOAD_MAX_SIZE**
246
247 Defines the maximum message size between AP and RSS. Need to define if
248 platform supports RSS.
249
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100250For every image, the platform must define individual identifiers that will be
251used by BL1 or BL2 to load the corresponding image into memory from non-volatile
252storage. For the sake of performance, integer numbers will be used as
253identifiers. The platform will use those identifiers to return the relevant
254information about the image to be loaded (file handler, load address,
255authentication information, etc.). The following image identifiers are
256mandatory:
257
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100258- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100259
260 BL2 image identifier, used by BL1 to load BL2.
261
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100262- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100263
264 BL31 image identifier, used by BL2 to load BL31.
265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100266- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100267
268 BL33 image identifier, used by BL2 to load BL33.
269
270If Trusted Board Boot is enabled, the following certificate identifiers must
271also be defined:
272
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100273- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100274
275 BL2 content certificate identifier, used by BL1 to load the BL2 content
276 certificate.
277
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100278- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100279
280 Trusted key certificate identifier, used by BL2 to load the trusted key
281 certificate.
282
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100283- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100284
285 BL31 key certificate identifier, used by BL2 to load the BL31 key
286 certificate.
287
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100288- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100289
290 BL31 content certificate identifier, used by BL2 to load the BL31 content
291 certificate.
292
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100293- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100294
295 BL33 key certificate identifier, used by BL2 to load the BL33 key
296 certificate.
297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299
300 BL33 content certificate identifier, used by BL2 to load the BL33 content
301 certificate.
302
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100303- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100305 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 FWU content certificate.
307
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100308- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100309
Dan Handley610e7e12018-03-01 18:44:00 +0000310 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100311 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000312 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100313 set.
314
315If the AP Firmware Updater Configuration image, BL2U is used, the following
316must also be defined:
317
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100318- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100319
320 Defines the base address in secure memory where BL1 copies the BL2U binary
321 image. Must be aligned on a page-size boundary.
322
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100323- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100324
325 Defines the maximum address in secure memory that the BL2U image can occupy.
326
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100327- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100328
329 BL2U image identifier, used by BL1 to fetch an image descriptor
330 corresponding to BL2U.
331
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100332If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100333must also be defined:
334
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100335- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100336
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100337 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
338 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000339
340 .. note::
341 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100343If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100344also be defined:
345
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100346- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100347
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100348 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100349 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000350
351 .. note::
352 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100354- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100355
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100356 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
357 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100359If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100360be defined:
361
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100362- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100363
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100364 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100365 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000366
367 .. note::
368 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100369
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100370- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100371
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100372 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
373 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100374
375For the the Firmware update capability of TRUSTED BOARD BOOT, the following
376macros may also be defined:
377
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100378- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100379
380 Total number of images that can be loaded simultaneously. If the platform
381 doesn't specify any value, it defaults to 10.
382
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100383If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100384also be defined:
385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100388 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000389 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100391- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100393 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100394 certificate (mandatory when Trusted Board Boot is enabled).
395
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100396- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100397
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100398 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100399 content certificate (mandatory when Trusted Board Boot is enabled).
400
401If a BL32 image is supported by the platform, the following constants must
402also be defined:
403
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100404- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100405
406 BL32 image identifier, used by BL2 to load BL32.
407
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100408- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100409
410 BL32 key certificate identifier, used by BL2 to load the BL32 key
411 certificate (mandatory when Trusted Board Boot is enabled).
412
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100413- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100414
415 BL32 content certificate identifier, used by BL2 to load the BL32 content
416 certificate (mandatory when Trusted Board Boot is enabled).
417
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100418- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100419
420 Defines the base address in secure memory where BL2 loads the BL32 binary
421 image. Must be aligned on a page-size boundary.
422
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100423- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100424
425 Defines the maximum address that the BL32 image can occupy.
426
427If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
428platform, the following constants must also be defined:
429
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100430- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100431
432 Defines the base address of the secure memory used by the TSP image on the
433 platform. This must be at the same address or below ``BL32_BASE``.
434
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100435- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100436
437 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000438 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
439 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
440 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100441
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100442- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100443
444 Defines the ID of the secure physical generic timer interrupt used by the
445 TSP's interrupt handling code.
446
447If the platform port uses the translation table library code, the following
448constants must also be defined:
449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100450- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100451
452 Optional flag that can be set per-image to enable the dynamic allocation of
453 regions even when the MMU is enabled. If not defined, only static
454 functionality will be available, if defined and set to 1 it will also
455 include the dynamic functionality.
456
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100457- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100458
459 Defines the maximum number of translation tables that are allocated by the
460 translation table library code. To minimize the amount of runtime memory
461 used, choose the smallest value needed to map the required virtual addresses
462 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
463 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
464 as well.
465
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100466- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100467
468 Defines the maximum number of regions that are allocated by the translation
469 table library code. A region consists of physical base address, virtual base
470 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
471 defined in the ``mmap_region_t`` structure. The platform defines the regions
472 that should be mapped. Then, the translation table library will create the
473 corresponding tables and descriptors at runtime. To minimize the amount of
474 runtime memory used, choose the smallest value needed to register the
475 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
476 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
477 the dynamic regions as well.
478
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100479- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100480
481 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000482 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100483
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100484- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100485
486 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000487 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100488
489If the platform port uses the IO storage framework, the following constants
490must also be defined:
491
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100492- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100493
494 Defines the maximum number of registered IO devices. Attempting to register
495 more devices than this value using ``io_register_device()`` will fail with
496 -ENOMEM.
497
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100498- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100499
500 Defines the maximum number of open IO handles. Attempting to open more IO
501 entities than this value using ``io_open()`` will fail with -ENOMEM.
502
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100503- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100504
505 Defines the maximum number of registered IO block devices. Attempting to
506 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100507 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100508 With this macro, multiple block devices could be supported at the same
509 time.
510
511If the platform needs to allocate data within the per-cpu data framework in
512BL31, it should define the following macro. Currently this is only required if
513the platform decides not to use the coherent memory section by undefining the
514``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
515required memory within the the per-cpu data to minimize wastage.
516
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100517- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100518
519 Defines the memory (in bytes) to be reserved within the per-cpu data
520 structure for use by the platform layer.
521
522The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000523memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100524
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100525- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100526
527 Defines the maximum address in secure RAM that the BL31's progbits sections
528 can occupy.
529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100530- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531
532 Defines the maximum address that the TSP's progbits sections can occupy.
533
534If the platform port uses the PL061 GPIO driver, the following constant may
535optionally be defined:
536
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100537- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100538 Maximum number of GPIOs required by the platform. This allows control how
539 much memory is allocated for PL061 GPIO controllers. The default value is
540
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100541 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100542
543If the platform port uses the partition driver, the following constant may
544optionally be defined:
545
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100546- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100547 Maximum number of partition entries required by the platform. This allows
548 control how much memory is allocated for partition entries. The default
549 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100550 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100551 PLAT_PARTITION_MAX_ENTRIES := 12
552 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100553
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800554- **PLAT_PARTITION_BLOCK_SIZE**
555 The size of partition block. It could be either 512 bytes or 4096 bytes.
556 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000557 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800558 PLAT_PARTITION_BLOCK_SIZE := 4096
559 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
560
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100561The following constant is optional. It should be defined to override the default
562behaviour of the ``assert()`` function (for example, to save memory).
563
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100564- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100565 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
566 ``assert()`` prints the name of the file, the line number and the asserted
567 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
568 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
569 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
570 defined, it defaults to ``LOG_LEVEL``.
571
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100572If the platform port uses the DRTM feature, the following constants must be
573defined:
574
575- **#define : PLAT_DRTM_EVENT_LOG_MAX_SIZE**
576
577 Maximum Event Log size used by the platform. Platform can decide the maximum
578 size of the Event Log buffer, depending upon the highest hash algorithm
579 chosen and the number of components selected to measure during the DRTM
580 execution flow.
581
582- **#define : PLAT_DRTM_MMAP_ENTRIES**
583
584 Number of the MMAP entries used by the DRTM implementation to calculate the
585 size of address map region of the platform.
586
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100587File : plat_macros.S [mandatory]
588~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100589
590Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000591the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100592found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
593
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100594- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100595
596 This macro allows the crash reporting routine to print relevant platform
597 registers in case of an unhandled exception in BL31. This aids in debugging
598 and this macro can be defined to be empty in case register reporting is not
599 desired.
600
601 For instance, GIC or interconnect registers may be helpful for
602 troubleshooting.
603
604Handling Reset
605--------------
606
607BL1 by default implements the reset vector where execution starts from a cold
608or warm boot. BL31 can be optionally set as a reset vector using the
609``RESET_TO_BL31`` make variable.
610
611For each CPU, the reset vector code is responsible for the following tasks:
612
613#. Distinguishing between a cold boot and a warm boot.
614
615#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
616 the CPU is placed in a platform-specific state until the primary CPU
617 performs the necessary steps to remove it from this state.
618
619#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
620 specific address in the BL31 image in the same processor mode as it was
621 when released from reset.
622
623The following functions need to be implemented by the platform port to enable
624reset vector code to perform the above tasks.
625
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100626Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
627~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100628
629::
630
631 Argument : void
632 Return : uintptr_t
633
634This function is called with the MMU and caches disabled
635(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
636distinguishing between a warm and cold reset for the current CPU using
637platform-specific means. If it's a warm reset, then it returns the warm
638reset entrypoint point provided to ``plat_setup_psci_ops()`` during
639BL31 initialization. If it's a cold reset then this function must return zero.
640
641This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000642Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100643not assume that callee saved registers are preserved across a call to this
644function.
645
646This function fulfills requirement 1 and 3 listed above.
647
648Note that for platforms that support programming the reset address, it is
649expected that a CPU will start executing code directly at the right address,
650both on a cold and warm reset. In this case, there is no need to identify the
651type of reset nor to query the warm reset entrypoint. Therefore, implementing
652this function is not required on such platforms.
653
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100654Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
655~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100656
657::
658
659 Argument : void
660
661This function is called with the MMU and data caches disabled. It is responsible
662for placing the executing secondary CPU in a platform-specific state until the
663primary CPU performs the necessary actions to bring it out of that state and
664allow entry into the OS. This function must not return.
665
Dan Handley610e7e12018-03-01 18:44:00 +0000666In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100667itself off. The primary CPU is responsible for powering up the secondary CPUs
668when normal world software requires them. When booting an EL3 payload instead,
669they stay powered on and are put in a holding pen until their mailbox gets
670populated.
671
672This function fulfills requirement 2 above.
673
674Note that for platforms that can't release secondary CPUs out of reset, only the
675primary CPU will execute the cold boot code. Therefore, implementing this
676function is not required on such platforms.
677
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100678Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
679~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100680
681::
682
683 Argument : void
684 Return : unsigned int
685
686This function identifies whether the current CPU is the primary CPU or a
687secondary CPU. A return value of zero indicates that the CPU is not the
688primary CPU, while a non-zero return value indicates that the CPU is the
689primary CPU.
690
691Note that for platforms that can't release secondary CPUs out of reset, only the
692primary CPU will execute the cold boot code. Therefore, there is no need to
693distinguish between primary and secondary CPUs and implementing this function is
694not required.
695
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100696Function : platform_mem_init() [mandatory]
697~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100698
699::
700
701 Argument : void
702 Return : void
703
704This function is called before any access to data is made by the firmware, in
705order to carry out any essential memory initialization.
706
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100707Function: plat_get_rotpk_info()
708~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100709
710::
711
712 Argument : void *, void **, unsigned int *, unsigned int *
713 Return : int
714
715This function is mandatory when Trusted Board Boot is enabled. It returns a
716pointer to the ROTPK stored in the platform (or a hash of it) and its length.
717The ROTPK must be encoded in DER format according to the following ASN.1
718structure:
719
720::
721
722 AlgorithmIdentifier ::= SEQUENCE {
723 algorithm OBJECT IDENTIFIER,
724 parameters ANY DEFINED BY algorithm OPTIONAL
725 }
726
727 SubjectPublicKeyInfo ::= SEQUENCE {
728 algorithm AlgorithmIdentifier,
729 subjectPublicKey BIT STRING
730 }
731
732In case the function returns a hash of the key:
733
734::
735
736 DigestInfo ::= SEQUENCE {
737 digestAlgorithm AlgorithmIdentifier,
738 digest OCTET STRING
739 }
740
741The function returns 0 on success. Any other value is treated as error by the
742Trusted Board Boot. The function also reports extra information related
743to the ROTPK in the flags parameter:
744
745::
746
747 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
748 hash.
749 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
750 verification while the platform ROTPK is not deployed.
751 When this flag is set, the function does not need to
752 return a platform ROTPK, and the authentication
753 framework uses the ROTPK in the certificate without
754 verifying it against the platform value. This flag
755 must not be used in a deployed production environment.
756
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100757Function: plat_get_nv_ctr()
758~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100759
760::
761
762 Argument : void *, unsigned int *
763 Return : int
764
765This function is mandatory when Trusted Board Boot is enabled. It returns the
766non-volatile counter value stored in the platform in the second argument. The
767cookie in the first argument may be used to select the counter in case the
768platform provides more than one (for example, on platforms that use the default
769TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100770TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100771
772The function returns 0 on success. Any other value means the counter value could
773not be retrieved from the platform.
774
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100775Function: plat_set_nv_ctr()
776~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100777
778::
779
780 Argument : void *, unsigned int
781 Return : int
782
783This function is mandatory when Trusted Board Boot is enabled. It sets a new
784counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100785select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100786the updated counter value to be written to the NV counter.
787
788The function returns 0 on success. Any other value means the counter value could
789not be updated.
790
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100791Function: plat_set_nv_ctr2()
792~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100793
794::
795
796 Argument : void *, const auth_img_desc_t *, unsigned int
797 Return : int
798
799This function is optional when Trusted Board Boot is enabled. If this
800interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
801first argument passed is a cookie and is typically used to
802differentiate between a Non Trusted NV Counter and a Trusted NV
803Counter. The second argument is a pointer to an authentication image
804descriptor and may be used to decide if the counter is allowed to be
805updated or not. The third argument is the updated counter value to
806be written to the NV counter.
807
808The function returns 0 on success. Any other value means the counter value
809either could not be updated or the authentication image descriptor indicates
810that it is not allowed to be updated.
811
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100812Dynamic Root of Trust for Measurement support (in BL31)
813-------------------------------------------------------
814
815The functions mentioned in this section are mandatory, when platform enables
816DRTM_SUPPORT build flag.
817
818Function : plat_get_addr_mmap()
819~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
820
821::
822
823 Argument : void
824 Return : const mmap_region_t *
825
826This function is used to return the address of the platform *address-map* table,
827which describes the regions of normal memory, memory mapped I/O
828and non-volatile memory.
829
830Function : plat_has_non_host_platforms()
831~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
832
833::
834
835 Argument : void
836 Return : bool
837
838This function returns *true* if the platform has any trusted devices capable of
839DMA, otherwise returns *false*.
840
841Function : plat_has_unmanaged_dma_peripherals()
842~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
843
844::
845
846 Argument : void
847 Return : bool
848
849This function returns *true* if platform uses peripherals whose DMA is not
850managed by an SMMU, otherwise returns *false*.
851
852Note -
853If the platform has peripherals that are not managed by the SMMU, then the
854platform should investigate such peripherals to determine whether they can
855be trusted, and such peripherals should be moved under "Non-host platforms"
856if they can be trusted.
857
858Function : plat_get_total_num_smmus()
859~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
860
861::
862
863 Argument : void
864 Return : unsigned int
865
866This function returns the total number of SMMUs in the platform.
867
868Function : plat_enumerate_smmus()
869~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
870::
871
872
873 Argument : void
874 Return : const uintptr_t *, size_t
875
876This function returns an array of SMMU addresses and the actual number of SMMUs
877reported by the platform.
878
879Function : plat_drtm_get_dma_prot_features()
880~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
881
882::
883
884 Argument : void
885 Return : const plat_drtm_dma_prot_features_t*
886
887This function returns the address of plat_drtm_dma_prot_features_t structure
888containing the maximum number of protected regions and bitmap with the types
889of DMA protection supported by the platform.
890For more details see section 3.3 Table 6 of `DRTM`_ specification.
891
892Function : plat_drtm_dma_prot_get_max_table_bytes()
893~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
894
895::
896
897 Argument : void
898 Return : uint64_t
899
900This function returns the maximum size of DMA protected regions table in
901bytes.
902
903Function : plat_drtm_get_tpm_features()
904~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
905
906::
907
908 Argument : void
909 Return : const plat_drtm_tpm_features_t*
910
911This function returns the address of *plat_drtm_tpm_features_t* structure
912containing PCR usage schema, TPM-based hash, and firmware hash algorithm
913supported by the platform.
914
915Function : plat_drtm_get_min_size_normal_world_dce()
916~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
917
918::
919
920 Argument : void
921 Return : uint64_t
922
923This function returns the size normal-world DCE of the platform.
924
925Function : plat_drtm_get_imp_def_dlme_region_size()
926~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
927
928::
929
930 Argument : void
931 Return : uint64_t
932
933This function returns the size of implementation defined DLME region
934of the platform.
935
936Function : plat_drtm_get_tcb_hash_table_size()
937~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
938
939::
940
941 Argument : void
942 Return : uint64_t
943
944This function returns the size of TCB hash table of the platform.
945
946Function : plat_drtm_get_tcb_hash_features()
947~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
948
949::
950
951 Argument : void
952 Return : uint64_t
953
954This function returns the Maximum number of TCB hashes recorded by the
955platform.
956For more details see section 3.3 Table 6 of `DRTM`_ specification.
957
958Function : plat_drtm_validate_ns_region()
959~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
960
961::
962
963 Argument : uintptr_t, uintptr_t
964 Return : int
965
966This function validates that given region is within the Non-Secure region
967of DRAM. This function takes a region start address and size an input
968arguments, and returns 0 on success and -1 on failure.
969
970Function : plat_set_drtm_error()
971~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
972
973::
974
975 Argument : uint64_t
976 Return : int
977
978This function writes a 64 bit error code received as input into
979non-volatile storage and returns 0 on success and -1 on failure.
980
981Function : plat_get_drtm_error()
982~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
983
984::
985
986 Argument : uint64_t*
987 Return : int
988
989This function reads a 64 bit error code from the non-volatile storage
990into the received address, and returns 0 on success and -1 on failure.
991
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100992Common mandatory function modifications
993---------------------------------------
994
995The following functions are mandatory functions which need to be implemented
996by the platform port.
997
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100998Function : plat_my_core_pos()
999~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001000
1001::
1002
1003 Argument : void
1004 Return : unsigned int
1005
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001006This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001007CPU-specific linear index into blocks of memory (for example while allocating
1008per-CPU stacks). This function will be invoked very early in the
1009initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001010implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001011runtime environment. This function can clobber x0 - x8 and must preserve
1012x9 - x29.
1013
1014This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +01001015PSCI and details of this can be found in
1016:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001017
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001018Function : plat_core_pos_by_mpidr()
1019~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001020
1021::
1022
1023 Argument : u_register_t
1024 Return : int
1025
1026This function validates the ``MPIDR`` of a CPU and converts it to an index,
1027which can be used as a CPU-specific linear index into blocks of memory. In
1028case the ``MPIDR`` is invalid, this function returns -1. This function will only
1029be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +00001030utilize the C runtime environment. For further details about how TF-A
1031represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +01001032index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001033
Ambroise Vincentd207f562019-04-10 12:50:27 +01001034Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
1035~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1036
1037::
1038
1039 Arguments : void **heap_addr, size_t *heap_size
1040 Return : int
1041
1042This function is invoked during Mbed TLS library initialisation to get a heap,
1043by means of a starting address and a size. This heap will then be used
1044internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
1045must be able to provide a heap to it.
1046
1047A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
1048which a heap is statically reserved during compile time inside every image
1049(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
1050the function simply returns the address and size of this "pre-allocated" heap.
1051For a platform to use this default implementation, only a call to the helper
1052from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
1053
1054However, by writting their own implementation, platforms have the potential to
1055optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
1056shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
1057twice.
1058
1059On success the function should return 0 and a negative error code otherwise.
1060
Sumit Gargc0c369c2019-11-15 18:47:53 +05301061Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
1062~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1063
1064::
1065
1066 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
1067 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
1068 size_t img_id_len
1069 Return : int
1070
1071This function provides a symmetric key (either SSK or BSSK depending on
1072fw_enc_status) which is invoked during runtime decryption of encrypted
1073firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
1074implementation for testing purposes which must be overridden by the platform
1075trying to implement a real world firmware encryption use-case.
1076
1077It also allows the platform to pass symmetric key identifier rather than
1078actual symmetric key which is useful in cases where the crypto backend provides
1079secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
1080flag must be set in ``flags``.
1081
1082In addition to above a platform may also choose to provide an image specific
1083symmetric key/identifier using img_id.
1084
1085On success the function should return 0 and a negative error code otherwise.
1086
Manish Pandey34a305e2021-10-21 21:53:49 +01001087Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
Sumit Gargc0c369c2019-11-15 18:47:53 +05301088
Manish V Badarkheda87af12021-06-20 21:14:46 +01001089Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
1090~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1091
1092::
1093
Sughosh Ganuf40154f2021-11-17 17:08:10 +05301094 Argument : const struct fwu_metadata *metadata
Manish V Badarkheda87af12021-06-20 21:14:46 +01001095 Return : void
1096
1097This function is mandatory when PSA_FWU_SUPPORT is enabled.
1098It provides a means to retrieve image specification (offset in
1099non-volatile storage and length) of active/updated images using the passed
1100FWU metadata, and update I/O policies of active/updated images using retrieved
1101image specification information.
1102Further I/O layer operations such as I/O open, I/O read, etc. on these
1103images rely on this function call.
1104
1105In Arm platforms, this function is used to set an I/O policy of the FIP image,
1106container of all active/updated secure and non-secure images.
1107
1108Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
1109~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1110
1111::
1112
1113 Argument : unsigned int image_id, uintptr_t *dev_handle,
1114 uintptr_t *image_spec
1115 Return : int
1116
1117This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
1118responsible for setting up the platform I/O policy of the requested metadata
1119image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
1120be used to load this image from the platform's non-volatile storage.
1121
1122FWU metadata can not be always stored as a raw image in non-volatile storage
1123to define its image specification (offset in non-volatile storage and length)
1124statically in I/O policy.
1125For example, the FWU metadata image is stored as a partition inside the GUID
1126partition table image. Its specification is defined in the partition table
1127that needs to be parsed dynamically.
1128This function provides a means to retrieve such dynamic information to set
1129the I/O policy of the FWU metadata image.
1130Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
1131image relies on this function call.
1132
1133It returns '0' on success, otherwise a negative error value on error.
1134Alongside, returns device handle and image specification from the I/O policy
1135of the requested FWU metadata image.
1136
Sughosh Ganu4e336a62021-12-01 15:53:32 +05301137Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]
1138~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1139
1140::
1141
1142 Argument : void
1143 Return : uint32_t
1144
1145This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the
1146means to retrieve the boot index value from the platform. The boot index is the
1147bank from which the platform has booted the firmware images.
1148
1149By default, the platform will read the metadata structure and try to boot from
1150the active bank. If the platform fails to boot from the active bank due to
1151reasons like an Authentication failure, or on crossing a set number of watchdog
1152resets while booting from the active bank, the platform can then switch to boot
1153from a different bank. This function then returns the bank that the platform
1154should boot its images from.
1155
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001156Common optional modifications
1157-----------------------------
1158
1159The following are helper functions implemented by the firmware that perform
1160common platform-specific tasks. A platform may choose to override these
1161definitions.
1162
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001163Function : plat_set_my_stack()
1164~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001165
1166::
1167
1168 Argument : void
1169 Return : void
1170
1171This function sets the current stack pointer to the normal memory stack that
1172has been allocated for the current CPU. For BL images that only require a
1173stack for the primary CPU, the UP version of the function is used. The size
1174of the stack allocated to each CPU is specified by the platform defined
1175constant ``PLATFORM_STACK_SIZE``.
1176
1177Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001178provided in ``plat/common/aarch64/platform_up_stack.S`` and
1179``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001180
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001181Function : plat_get_my_stack()
1182~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001183
1184::
1185
1186 Argument : void
1187 Return : uintptr_t
1188
1189This function returns the base address of the normal memory stack that
1190has been allocated for the current CPU. For BL images that only require a
1191stack for the primary CPU, the UP version of the function is used. The size
1192of the stack allocated to each CPU is specified by the platform defined
1193constant ``PLATFORM_STACK_SIZE``.
1194
1195Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001196provided in ``plat/common/aarch64/platform_up_stack.S`` and
1197``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001199Function : plat_report_exception()
1200~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001201
1202::
1203
1204 Argument : unsigned int
1205 Return : void
1206
1207A platform may need to report various information about its status when an
1208exception is taken, for example the current exception level, the CPU security
1209state (secure/non-secure), the exception type, and so on. This function is
1210called in the following circumstances:
1211
1212- In BL1, whenever an exception is taken.
1213- In BL2, whenever an exception is taken.
1214
1215The default implementation doesn't do anything, to avoid making assumptions
1216about the way the platform displays its status information.
1217
1218For AArch64, this function receives the exception type as its argument.
1219Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001220``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001221related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001222
1223For AArch32, this function receives the exception mode as its argument.
1224Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001225``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001226
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001227Function : plat_reset_handler()
1228~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001229
1230::
1231
1232 Argument : void
1233 Return : void
1234
1235A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001236allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001237specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001238preserve the values of callee saved registers x19 to x29.
1239
1240The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001241the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001242guidelines.
1243
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001244Function : plat_disable_acp()
1245~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001246
1247::
1248
1249 Argument : void
1250 Return : void
1251
John Tsichritzis6dda9762018-07-23 09:18:04 +01001252This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001253present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001254doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001255it has restrictions for stack usage and it can use the registers x0 - x17 as
1256scratch registers. It should preserve the value in x18 register as it is used
1257by the caller to store the return address.
1258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001259Function : plat_error_handler()
1260~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001261
1262::
1263
1264 Argument : int
1265 Return : void
1266
1267This API is called when the generic code encounters an error situation from
1268which it cannot continue. It allows the platform to perform error reporting or
1269recovery actions (for example, reset the system). This function must not return.
1270
1271The parameter indicates the type of error using standard codes from ``errno.h``.
1272Possible errors reported by the generic code are:
1273
1274- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1275 Board Boot is enabled)
1276- ``-ENOENT``: the requested image or certificate could not be found or an IO
1277 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001278- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1279 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001280
1281The default implementation simply spins.
1282
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001283Function : plat_panic_handler()
1284~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001285
1286::
1287
1288 Argument : void
1289 Return : void
1290
1291This API is called when the generic code encounters an unexpected error
1292situation from which it cannot recover. This function must not return,
1293and must be implemented in assembly because it may be called before the C
1294environment is initialized.
1295
Paul Beesleyba3ed402019-03-13 16:20:44 +00001296.. note::
1297 The address from where it was called is stored in x30 (Link Register).
1298 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001299
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01001300Function : plat_system_reset()
1301~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1302
1303::
1304
1305 Argument : void
1306 Return : void
1307
1308This function is used by the platform to resets the system. It can be used
1309in any specific use-case where system needs to be resetted. For example,
1310in case of DRTM implementation this function reset the system after
1311writing the DRTM error code in the non-volatile storage. This function
1312never returns. Failure in reset results in panic.
1313
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001314Function : plat_get_bl_image_load_info()
1315~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001316
1317::
1318
1319 Argument : void
1320 Return : bl_load_info_t *
1321
1322This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001323populated to load. This function is invoked in BL2 to load the
1324BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001325
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001326Function : plat_get_next_bl_params()
1327~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001328
1329::
1330
1331 Argument : void
1332 Return : bl_params_t *
1333
1334This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001335kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001336function is invoked in BL2 to pass this information to the next BL
1337image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001339Function : plat_get_stack_protector_canary()
1340~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001341
1342::
1343
1344 Argument : void
1345 Return : u_register_t
1346
1347This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001348when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001349value will weaken the protection as the attacker could easily write the right
1350value as part of the attack most of the time. Therefore, it should return a
1351true random number.
1352
Paul Beesleyba3ed402019-03-13 16:20:44 +00001353.. warning::
1354 For the protection to be effective, the global data need to be placed at
1355 a lower address than the stack bases. Failure to do so would allow an
1356 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001357
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001358Function : plat_flush_next_bl_params()
1359~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001360
1361::
1362
1363 Argument : void
1364 Return : void
1365
1366This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001367next image. This function is invoked in BL2 to flush this information
1368to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001369
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001370Function : plat_log_get_prefix()
1371~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001372
1373::
1374
1375 Argument : unsigned int
1376 Return : const char *
1377
1378This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001379prepended to all the log output from TF-A. The `log_level` (argument) will
1380correspond to one of the standard log levels defined in debug.h. The platform
1381can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001382the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001383increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001384
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001385Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001386~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001387
1388::
1389
1390 Argument : void
1391 Return : int32_t
1392
1393This function returns soc version which mainly consist of below fields
1394
1395::
1396
1397 soc_version[30:24] = JEP-106 continuation code for the SiP
1398 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001399 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001400
1401Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001402~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001403
1404::
1405
1406 Argument : void
1407 Return : int32_t
1408
1409This function returns soc revision in below format
1410
1411::
1412
1413 soc_revision[0:30] = SOC revision of specific SOC
1414
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001415Function : plat_is_smccc_feature_available()
1416~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1417
1418::
1419
1420 Argument : u_register_t
1421 Return : int32_t
1422
1423This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1424the SMCCC function specified in the argument; otherwise returns
1425SMC_ARCH_CALL_NOT_SUPPORTED.
1426
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001427Function : plat_mboot_measure_image()
1428~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1429
1430::
1431
1432 Argument : unsigned int, image_info_t *
Manish V Badarkhe931c6ef2021-10-21 09:06:18 +01001433 Return : int
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001434
1435When the MEASURED_BOOT flag is enabled:
1436
1437- This function measures the given image and records its measurement using
1438 the measured boot backend driver.
1439- On the Arm FVP port, this function measures the given image using its
1440 passed id and information and then records that measurement in the
1441 Event Log buffer.
Manish V Badarkhe931c6ef2021-10-21 09:06:18 +01001442- This function must return 0 on success, a signed integer error code
1443 otherwise.
1444
1445When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1446
1447Function : plat_mboot_measure_critical_data()
1448~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1449
1450::
1451
1452 Argument : unsigned int, const void *, size_t
1453 Return : int
1454
1455When the MEASURED_BOOT flag is enabled:
1456
1457- This function measures the given critical data structure and records its
1458 measurement using the measured boot backend driver.
1459- This function must return 0 on success, a signed integer error code
1460 otherwise.
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001461
1462When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1463
Okash Khawaja037b56e2022-11-04 12:38:01 +00001464Function : plat_can_cmo()
1465~~~~~~~~~~~~~~~~~~~~~~~~~
1466
1467::
1468
1469 Argument : void
1470 Return : uint64_t
1471
1472When CONDITIONAL_CMO flag is enabled:
1473
1474- This function indicates whether cache management operations should be
1475 performed. It returns 0 if CMOs should be skipped and non-zero
1476 otherwise.
1477- The function must not clobber x2 and x3. It's also not safe to rely on stack.
1478 Otherwise obey AAPCS.
1479
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001480Modifications specific to a Boot Loader stage
1481---------------------------------------------
1482
1483Boot Loader Stage 1 (BL1)
1484-------------------------
1485
1486BL1 implements the reset vector where execution starts from after a cold or
1487warm boot. For each CPU, BL1 is responsible for the following tasks:
1488
1489#. Handling the reset as described in section 2.2
1490
1491#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1492 only this CPU executes the remaining BL1 code, including loading and passing
1493 control to the BL2 stage.
1494
1495#. Identifying and starting the Firmware Update process (if required).
1496
1497#. Loading the BL2 image from non-volatile storage into secure memory at the
1498 address specified by the platform defined constant ``BL2_BASE``.
1499
1500#. Populating a ``meminfo`` structure with the following information in memory,
1501 accessible by BL2 immediately upon entry.
1502
1503 ::
1504
1505 meminfo.total_base = Base address of secure RAM visible to BL2
1506 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001507
Soby Mathew97b1bff2018-09-27 16:46:41 +01001508 By default, BL1 places this ``meminfo`` structure at the end of secure
1509 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001510
Soby Mathewb1bf0442018-02-16 14:52:52 +00001511 It is possible for the platform to decide where it wants to place the
1512 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1513 BL2 by overriding the weak default implementation of
1514 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001515
1516The following functions need to be implemented by the platform port to enable
1517BL1 to perform the above tasks.
1518
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001519Function : bl1_early_platform_setup() [mandatory]
1520~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001521
1522::
1523
1524 Argument : void
1525 Return : void
1526
1527This function executes with the MMU and data caches disabled. It is only called
1528by the primary CPU.
1529
Dan Handley610e7e12018-03-01 18:44:00 +00001530On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001531
1532- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1533
1534- Initializes a UART (PL011 console), which enables access to the ``printf``
1535 family of functions in BL1.
1536
1537- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1538 the CCI slave interface corresponding to the cluster that includes the
1539 primary CPU.
1540
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001541Function : bl1_plat_arch_setup() [mandatory]
1542~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001543
1544::
1545
1546 Argument : void
1547 Return : void
1548
1549This function performs any platform-specific and architectural setup that the
1550platform requires. Platform-specific setup might include configuration of
1551memory controllers and the interconnect.
1552
Dan Handley610e7e12018-03-01 18:44:00 +00001553In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001554
1555This function helps fulfill requirement 2 above.
1556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001557Function : bl1_platform_setup() [mandatory]
1558~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001559
1560::
1561
1562 Argument : void
1563 Return : void
1564
1565This function executes with the MMU and data caches enabled. It is responsible
1566for performing any remaining platform-specific setup that can occur after the
1567MMU and data cache have been enabled.
1568
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001569if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001570sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001571
Dan Handley610e7e12018-03-01 18:44:00 +00001572In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001573layer used to load the next bootloader image.
1574
1575This function helps fulfill requirement 4 above.
1576
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001577Function : bl1_plat_sec_mem_layout() [mandatory]
1578~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001579
1580::
1581
1582 Argument : void
1583 Return : meminfo *
1584
1585This function should only be called on the cold boot path. It executes with the
1586MMU and data caches enabled. The pointer returned by this function must point to
1587a ``meminfo`` structure containing the extents and availability of secure RAM for
1588the BL1 stage.
1589
1590::
1591
1592 meminfo.total_base = Base address of secure RAM visible to BL1
1593 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001594
1595This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1596populates a similar structure to tell BL2 the extents of memory available for
1597its own use.
1598
1599This function helps fulfill requirements 4 and 5 above.
1600
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001601Function : bl1_plat_prepare_exit() [optional]
1602~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001603
1604::
1605
1606 Argument : entry_point_info_t *
1607 Return : void
1608
1609This function is called prior to exiting BL1 in response to the
1610``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1611platform specific clean up or bookkeeping operations before transferring
1612control to the next image. It receives the address of the ``entry_point_info_t``
1613structure passed from BL2. This function runs with MMU disabled.
1614
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001615Function : bl1_plat_set_ep_info() [optional]
1616~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001617
1618::
1619
1620 Argument : unsigned int image_id, entry_point_info_t *ep_info
1621 Return : void
1622
1623This function allows platforms to override ``ep_info`` for the given ``image_id``.
1624
1625The default implementation just returns.
1626
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001627Function : bl1_plat_get_next_image_id() [optional]
1628~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001629
1630::
1631
1632 Argument : void
1633 Return : unsigned int
1634
1635This and the following function must be overridden to enable the FWU feature.
1636
1637BL1 calls this function after platform setup to identify the next image to be
1638loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1639with the normal boot sequence, which loads and executes BL2. If the platform
1640returns a different image id, BL1 assumes that Firmware Update is required.
1641
Dan Handley610e7e12018-03-01 18:44:00 +00001642The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001643platforms override this function to detect if firmware update is required, and
1644if so, return the first image in the firmware update process.
1645
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001646Function : bl1_plat_get_image_desc() [optional]
1647~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001648
1649::
1650
1651 Argument : unsigned int image_id
1652 Return : image_desc_t *
1653
1654BL1 calls this function to get the image descriptor information ``image_desc_t``
1655for the provided ``image_id`` from the platform.
1656
Dan Handley610e7e12018-03-01 18:44:00 +00001657The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001658standard platforms return an image descriptor corresponding to BL2 or one of
1659the firmware update images defined in the Trusted Board Boot Requirements
1660specification.
1661
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001662Function : bl1_plat_handle_pre_image_load() [optional]
1663~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001664
1665::
1666
Soby Mathew2f38ce32018-02-08 17:45:12 +00001667 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001668 Return : int
1669
1670This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001671corresponding to ``image_id``. This function is invoked in BL1, both in cold
1672boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001673
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001674Function : bl1_plat_handle_post_image_load() [optional]
1675~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001676
1677::
1678
Soby Mathew2f38ce32018-02-08 17:45:12 +00001679 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001680 Return : int
1681
1682This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001683corresponding to ``image_id``. This function is invoked in BL1, both in cold
1684boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001685
Soby Mathewb1bf0442018-02-16 14:52:52 +00001686The default weak implementation of this function calculates the amount of
1687Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1688structure at the beginning of this free memory and populates it. The address
1689of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1690information to BL2.
1691
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001692Function : bl1_plat_fwu_done() [optional]
1693~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001694
1695::
1696
1697 Argument : unsigned int image_id, uintptr_t image_src,
1698 unsigned int image_size
1699 Return : void
1700
1701BL1 calls this function when the FWU process is complete. It must not return.
1702The platform may override this function to take platform specific action, for
1703example to initiate the normal boot flow.
1704
1705The default implementation spins forever.
1706
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001707Function : bl1_plat_mem_check() [mandatory]
1708~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001709
1710::
1711
1712 Argument : uintptr_t mem_base, unsigned int mem_size,
1713 unsigned int flags
1714 Return : int
1715
1716BL1 calls this function while handling FWU related SMCs, more specifically when
1717copying or authenticating an image. Its responsibility is to ensure that the
1718region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1719that this memory corresponds to either a secure or non-secure memory region as
1720indicated by the security state of the ``flags`` argument.
1721
1722This function can safely assume that the value resulting from the addition of
1723``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1724overflow.
1725
1726This function must return 0 on success, a non-null error code otherwise.
1727
1728The default implementation of this function asserts therefore platforms must
1729override it when using the FWU feature.
1730
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001731Function : bl1_plat_mboot_init() [optional]
1732~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1733
1734::
1735
1736 Argument : void
1737 Return : void
1738
1739When the MEASURED_BOOT flag is enabled:
1740
1741- This function is used to initialize the backend driver(s) of measured boot.
1742- On the Arm FVP port, this function is used to initialize the Event Log
1743 backend driver, and also to write header information in the Event Log buffer.
1744
1745When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1746
1747Function : bl1_plat_mboot_finish() [optional]
1748~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1749
1750::
1751
1752 Argument : void
1753 Return : void
1754
1755When the MEASURED_BOOT flag is enabled:
1756
1757- This function is used to finalize the measured boot backend driver(s),
1758 and also, set the information for the next bootloader component to
1759 extend the measurement if needed.
1760- On the Arm FVP port, this function is used to pass the base address of
1761 the Event Log buffer and its size to BL2 via tb_fw_config to extend the
1762 Event Log buffer with the measurement of various images loaded by BL2.
1763 It results in panic on error.
1764
1765When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1766
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001767Boot Loader Stage 2 (BL2)
1768-------------------------
1769
1770The BL2 stage is executed only by the primary CPU, which is determined in BL1
1771using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001772``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1773``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1774non-volatile storage to secure/non-secure RAM. After all the images are loaded
1775then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1776images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001777
1778The following functions must be implemented by the platform port to enable BL2
1779to perform the above tasks.
1780
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001781Function : bl2_early_platform_setup2() [mandatory]
1782~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001783
1784::
1785
Soby Mathew97b1bff2018-09-27 16:46:41 +01001786 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001787 Return : void
1788
1789This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001790by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1791are platform specific.
1792
1793On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001794
Manish V Badarkhe81414512020-06-24 15:58:38 +01001795 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001796
1797 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1798 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001799
Dan Handley610e7e12018-03-01 18:44:00 +00001800On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001801
1802- Initializes a UART (PL011 console), which enables access to the ``printf``
1803 family of functions in BL2.
1804
1805- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001806 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1807 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001808
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001809Function : bl2_plat_arch_setup() [mandatory]
1810~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001811
1812::
1813
1814 Argument : void
1815 Return : void
1816
1817This function executes with the MMU and data caches disabled. It is only called
1818by the primary CPU.
1819
1820The purpose of this function is to perform any architectural initialization
1821that varies across platforms.
1822
Dan Handley610e7e12018-03-01 18:44:00 +00001823On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001824
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001825Function : bl2_platform_setup() [mandatory]
1826~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001827
1828::
1829
1830 Argument : void
1831 Return : void
1832
1833This function may execute with the MMU and data caches enabled if the platform
1834port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1835called by the primary CPU.
1836
1837The purpose of this function is to perform any platform initialization
1838specific to BL2.
1839
Dan Handley610e7e12018-03-01 18:44:00 +00001840In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001841configuration of the TrustZone controller to allow non-secure masters access
1842to most of DRAM. Part of DRAM is reserved for secure world use.
1843
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001844Function : bl2_plat_handle_pre_image_load() [optional]
1845~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001846
1847::
1848
1849 Argument : unsigned int
1850 Return : int
1851
1852This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001853for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001854loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001855
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001856Function : bl2_plat_handle_post_image_load() [optional]
1857~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001858
1859::
1860
1861 Argument : unsigned int
1862 Return : int
1863
1864This function can be used by the platforms to update/use image information
1865for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001866loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001867
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001868Function : bl2_plat_preload_setup [optional]
1869~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001870
1871::
John Tsichritzisee10e792018-06-06 09:38:10 +01001872
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001873 Argument : void
1874 Return : void
1875
1876This optional function performs any BL2 platform initialization
1877required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001878bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001879boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001880plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001881
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001882Function : plat_try_next_boot_source() [optional]
1883~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001884
1885::
John Tsichritzisee10e792018-06-06 09:38:10 +01001886
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001887 Argument : void
1888 Return : int
1889
1890This optional function passes to the next boot source in the redundancy
1891sequence.
1892
1893This function moves the current boot redundancy source to the next
1894element in the boot sequence. If there are no more boot sources then it
1895must return 0, otherwise it must return 1. The default implementation
1896of this always returns 0.
1897
Sandrine Bailleuxeb5fadc2022-07-13 10:07:54 +02001898Function : bl2_plat_mboot_init() [optional]
1899~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1900
1901::
1902
1903 Argument : void
1904 Return : void
1905
1906When the MEASURED_BOOT flag is enabled:
1907
1908- This function is used to initialize the backend driver(s) of measured boot.
1909- On the Arm FVP port, this function is used to initialize the Event Log
1910 backend driver with the Event Log buffer information (base address and
1911 size) received from BL1. It results in panic on error.
1912
1913When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1914
1915Function : bl2_plat_mboot_finish() [optional]
1916~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1917
1918::
1919
1920 Argument : void
1921 Return : void
1922
1923When the MEASURED_BOOT flag is enabled:
1924
1925- This function is used to finalize the measured boot backend driver(s),
1926 and also, set the information for the next bootloader component to extend
1927 the measurement if needed.
1928- On the Arm FVP port, this function is used to pass the Event Log buffer
1929 information (base address and size) to non-secure(BL33) and trusted OS(BL32)
1930 via nt_fw and tos_fw config respectively. It results in panic on error.
1931
1932When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1933
Roberto Vargasb1584272017-11-20 13:36:10 +00001934Boot Loader Stage 2 (BL2) at EL3
1935--------------------------------
1936
Dan Handley610e7e12018-03-01 18:44:00 +00001937When the platform has a non-TF-A Boot ROM it is desirable to jump
1938directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001939execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1940document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001941
1942All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001943bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1944their work is done now by bl2_el3_early_platform_setup and
1945bl2_el3_plat_arch_setup. These functions should generally implement
1946the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001947
1948
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001949Function : bl2_el3_early_platform_setup() [mandatory]
1950~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001951
1952::
John Tsichritzisee10e792018-06-06 09:38:10 +01001953
Roberto Vargasb1584272017-11-20 13:36:10 +00001954 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1955 Return : void
1956
1957This function executes with the MMU and data caches disabled. It is only called
1958by the primary CPU. This function receives four parameters which can be used
1959by the platform to pass any needed information from the Boot ROM to BL2.
1960
Dan Handley610e7e12018-03-01 18:44:00 +00001961On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001962
1963- Initializes a UART (PL011 console), which enables access to the ``printf``
1964 family of functions in BL2.
1965
1966- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001967 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1968 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001969
1970- Initializes the private variables that define the memory layout used.
1971
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001972Function : bl2_el3_plat_arch_setup() [mandatory]
1973~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001974
1975::
John Tsichritzisee10e792018-06-06 09:38:10 +01001976
Roberto Vargasb1584272017-11-20 13:36:10 +00001977 Argument : void
1978 Return : void
1979
1980This function executes with the MMU and data caches disabled. It is only called
1981by the primary CPU.
1982
1983The purpose of this function is to perform any architectural initialization
1984that varies across platforms.
1985
Dan Handley610e7e12018-03-01 18:44:00 +00001986On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001987
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001988Function : bl2_el3_plat_prepare_exit() [optional]
1989~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001990
1991::
John Tsichritzisee10e792018-06-06 09:38:10 +01001992
Roberto Vargasb1584272017-11-20 13:36:10 +00001993 Argument : void
1994 Return : void
1995
1996This function is called prior to exiting BL2 and run the next image.
1997It should be used to perform platform specific clean up or bookkeeping
1998operations before transferring control to the next image. This function
1999runs with MMU disabled.
2000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002001FWU Boot Loader Stage 2 (BL2U)
2002------------------------------
2003
2004The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
2005process and is executed only by the primary CPU. BL1 passes control to BL2U at
2006``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
2007
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002008#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
2009 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
2010 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
2011 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002012 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
2013 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
2014
2015#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00002016 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002017 normal world can access DDR memory.
2018
2019The following functions must be implemented by the platform port to enable
2020BL2U to perform the tasks mentioned above.
2021
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002022Function : bl2u_early_platform_setup() [mandatory]
2023~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002024
2025::
2026
2027 Argument : meminfo *mem_info, void *plat_info
2028 Return : void
2029
2030This function executes with the MMU and data caches disabled. It is only
2031called by the primary CPU. The arguments to this function is the address
2032of the ``meminfo`` structure and platform specific info provided by BL1.
2033
2034The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
2035private storage as the original memory may be subsequently overwritten by BL2U.
2036
Dan Handley610e7e12018-03-01 18:44:00 +00002037On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002038to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002039variable.
2040
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002041Function : bl2u_plat_arch_setup() [mandatory]
2042~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002043
2044::
2045
2046 Argument : void
2047 Return : void
2048
2049This function executes with the MMU and data caches disabled. It is only
2050called by the primary CPU.
2051
2052The purpose of this function is to perform any architectural initialization
2053that varies across platforms, for example enabling the MMU (since the memory
2054map differs across platforms).
2055
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002056Function : bl2u_platform_setup() [mandatory]
2057~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002058
2059::
2060
2061 Argument : void
2062 Return : void
2063
2064This function may execute with the MMU and data caches enabled if the platform
2065port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
2066called by the primary CPU.
2067
2068The purpose of this function is to perform any platform initialization
2069specific to BL2U.
2070
Dan Handley610e7e12018-03-01 18:44:00 +00002071In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002072configuration of the TrustZone controller to allow non-secure masters access
2073to most of DRAM. Part of DRAM is reserved for secure world use.
2074
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002075Function : bl2u_plat_handle_scp_bl2u() [optional]
2076~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002077
2078::
2079
2080 Argument : void
2081 Return : int
2082
2083This function is used to perform any platform-specific actions required to
2084handle the SCP firmware. Typically it transfers the image into SCP memory using
2085a platform-specific protocol and waits until SCP executes it and signals to the
2086Application Processor (AP) for BL2U execution to continue.
2087
2088This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002089This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002090
2091Boot Loader Stage 3-1 (BL31)
2092----------------------------
2093
2094During cold boot, the BL31 stage is executed only by the primary CPU. This is
2095determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
2096control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
2097CPUs. BL31 executes at EL3 and is responsible for:
2098
2099#. Re-initializing all architectural and platform state. Although BL1 performs
2100 some of this initialization, BL31 remains resident in EL3 and must ensure
2101 that EL3 architectural and platform state is completely initialized. It
2102 should make no assumptions about the system state when it receives control.
2103
2104#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01002105 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
2106 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002107
2108#. Providing runtime firmware services. Currently, BL31 only implements a
2109 subset of the Power State Coordination Interface (PSCI) API as a runtime
2110 service. See Section 3.3 below for details of porting the PSCI
2111 implementation.
2112
2113#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002114 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002115 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01002116 executed and run the corresponding image. On ARM platforms, BL31 uses the
2117 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002118
2119If BL31 is a reset vector, It also needs to handle the reset as specified in
2120section 2.2 before the tasks described above.
2121
2122The following functions must be implemented by the platform port to enable BL31
2123to perform the above tasks.
2124
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002125Function : bl31_early_platform_setup2() [mandatory]
2126~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002127
2128::
2129
Soby Mathew97b1bff2018-09-27 16:46:41 +01002130 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002131 Return : void
2132
2133This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01002134by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
2135platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002136
Soby Mathew97b1bff2018-09-27 16:46:41 +01002137In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002138
Soby Mathew97b1bff2018-09-27 16:46:41 +01002139 arg0 - The pointer to the head of `bl_params_t` list
2140 which is list of executable images following BL31,
2141
2142 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01002143 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01002144
Mikael Olsson0232da22021-02-12 17:30:16 +01002145 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01002146 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01002147
2148 arg2 - Points to load address of HW_CONFIG if present
2149
2150 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
2151 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002152
Soby Mathew97b1bff2018-09-27 16:46:41 +01002153The function runs through the `bl_param_t` list and extracts the entry point
2154information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002155
2156- Initialize a UART (PL011 console), which enables access to the ``printf``
2157 family of functions in BL31.
2158
2159- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
2160 CCI slave interface corresponding to the cluster that includes the primary
2161 CPU.
2162
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002163Function : bl31_plat_arch_setup() [mandatory]
2164~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002165
2166::
2167
2168 Argument : void
2169 Return : void
2170
2171This function executes with the MMU and data caches disabled. It is only called
2172by the primary CPU.
2173
2174The purpose of this function is to perform any architectural initialization
2175that varies across platforms.
2176
Dan Handley610e7e12018-03-01 18:44:00 +00002177On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002178
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002179Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002180~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2181
2182::
2183
2184 Argument : void
2185 Return : void
2186
2187This function may execute with the MMU and data caches enabled if the platform
2188port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
2189called by the primary CPU.
2190
2191The purpose of this function is to complete platform initialization so that both
2192BL31 runtime services and normal world software can function correctly.
2193
Dan Handley610e7e12018-03-01 18:44:00 +00002194On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002195
2196- Initialize the generic interrupt controller.
2197
2198 Depending on the GIC driver selected by the platform, the appropriate GICv2
2199 or GICv3 initialization will be done, which mainly consists of:
2200
2201 - Enable secure interrupts in the GIC CPU interface.
2202 - Disable the legacy interrupt bypass mechanism.
2203 - Configure the priority mask register to allow interrupts of all priorities
2204 to be signaled to the CPU interface.
2205 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
2206 - Target all secure SPIs to CPU0.
2207 - Enable these secure interrupts in the GIC distributor.
2208 - Configure all other interrupts as non-secure.
2209 - Enable signaling of secure interrupts in the GIC distributor.
2210
2211- Enable system-level implementation of the generic timer counter through the
2212 memory mapped interface.
2213
2214- Grant access to the system counter timer module
2215
2216- Initialize the power controller device.
2217
2218 In particular, initialise the locks that prevent concurrent accesses to the
2219 power controller device.
2220
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002221Function : bl31_plat_runtime_setup() [optional]
2222~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002223
2224::
2225
2226 Argument : void
2227 Return : void
2228
2229The purpose of this function is allow the platform to perform any BL31 runtime
2230setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07002231implementation of this function will invoke ``console_switch_state()`` to switch
2232console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002233
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002234Function : bl31_plat_get_next_image_ep_info() [mandatory]
2235~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002236
2237::
2238
Sandrine Bailleux842117d2018-05-14 14:25:47 +02002239 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002240 Return : entry_point_info *
2241
2242This function may execute with the MMU and data caches enabled if the platform
2243port does the necessary initializations in ``bl31_plat_arch_setup()``.
2244
2245This function is called by ``bl31_main()`` to retrieve information provided by
2246BL2 for the next image in the security state specified by the argument. BL31
2247uses this information to pass control to that image in the specified security
2248state. This function must return a pointer to the ``entry_point_info`` structure
2249(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
2250should return NULL otherwise.
2251
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002252Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
Soby Mathew294e1cf2022-03-22 16:19:39 +00002253~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2254
2255::
2256
2257 Argument : uintptr_t, size_t *, uintptr_t, size_t
2258 Return : int
2259
2260This function returns the Platform attestation token.
2261
2262The parameters of the function are:
2263
2264 arg0 - A pointer to the buffer where the Platform token should be copied by
2265 this function. The buffer must be big enough to hold the Platform
2266 token.
2267
2268 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2269 function returns the platform token length in this parameter.
2270
2271 arg2 - A pointer to the buffer where the challenge object is stored.
2272
2273 arg3 - The length of the challenge object in bytes. Possible values are 32,
2274 48 and 64.
2275
2276The function returns 0 on success, -EINVAL on failure.
2277
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002278Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
2279~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewf05d93a2022-03-22 16:21:19 +00002280
2281::
2282
2283 Argument : uintptr_t, size_t *, unsigned int
2284 Return : int
2285
2286This function returns the delegated realm attestation key which will be used to
2287sign Realm attestation token. The API currently only supports P-384 ECC curve
2288key.
2289
2290The parameters of the function are:
2291
2292 arg0 - A pointer to the buffer where the attestation key should be copied
2293 by this function. The buffer must be big enough to hold the
2294 attestation key.
2295
2296 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2297 function returns the attestation key length in this parameter.
2298
2299 arg2 - The type of the elliptic curve to which the requested attestation key
2300 belongs.
2301
2302The function returns 0 on success, -EINVAL on failure.
2303
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002304Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
2305~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2306
2307::
2308
2309 Argument : uintptr_t *
2310 Return : size_t
2311
2312This function returns the size of the shared area between EL3 and RMM (or 0 on
2313failure). A pointer to the shared area (or a NULL pointer on failure) is stored
2314in the pointer passed as argument.
2315
Javier Almansa Sobrino4165e842022-04-25 17:18:15 +01002316Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
2317~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2318
2319::
2320
2321 Arguments : rmm_manifest_t *manifest
2322 Return : int
2323
2324When ENABLE_RME is enabled, this function populates a boot manifest for the
2325RMM image and stores it in the area specified by manifest.
2326
2327When ENABLE_RME is disabled, this function is not used.
2328
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002329Function : bl31_plat_enable_mmu [optional]
2330~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2331
2332::
2333
2334 Argument : uint32_t
2335 Return : void
2336
2337This function enables the MMU. The boot code calls this function with MMU and
2338caches disabled. This function should program necessary registers to enable
2339translation, and upon return, the MMU on the calling PE must be enabled.
2340
2341The function must honor flags passed in the first argument. These flags are
2342defined by the translation library, and can be found in the file
2343``include/lib/xlat_tables/xlat_mmu_helpers.h``.
2344
2345On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002346is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002347
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002348Function : plat_init_apkey [optional]
2349~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002350
2351::
2352
2353 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002354 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002355
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002356This function returns the 128-bit value which can be used to program ARMv8.3
2357pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002358
2359The value should be obtained from a reliable source of randomness.
2360
2361This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002362Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002363
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002364Function : plat_get_syscnt_freq2() [mandatory]
2365~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002366
2367::
2368
2369 Argument : void
2370 Return : unsigned int
2371
2372This function is used by the architecture setup code to retrieve the counter
2373frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00002374``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002375of the system counter, which is retrieved from the first entry in the frequency
2376modes table.
2377
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002378#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2379~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002380
2381When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2382bytes) aligned to the cache line boundary that should be allocated per-cpu to
2383accommodate all the bakery locks.
2384
2385If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
2386calculates the size of the ``bakery_lock`` input section, aligns it to the
2387nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2388and stores the result in a linker symbol. This constant prevents a platform
2389from relying on the linker and provide a more efficient mechanism for
2390accessing per-cpu bakery lock information.
2391
2392If this constant is defined and its value is not equal to the value
2393calculated by the linker then a link time assertion is raised. A compile time
2394assertion is raised if the value of the constant is not aligned to the cache
2395line boundary.
2396
Paul Beesleyf8640672019-04-12 14:19:42 +01002397.. _porting_guide_sdei_requirements:
2398
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002399SDEI porting requirements
2400~~~~~~~~~~~~~~~~~~~~~~~~~
2401
Paul Beesley606d8072019-03-13 13:58:02 +00002402The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002403and functions, of which some are optional, and some others mandatory.
2404
2405Macros
2406......
2407
2408Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2410
2411This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002412Normal |SDEI| events on the platform. This must have a higher value
2413(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002414
2415Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2417
2418This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002419Critical |SDEI| events on the platform. This must have a lower value
2420(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002421
Paul Beesley606d8072019-03-13 13:58:02 +00002422**Note**: |SDEI| exception priorities must be the lowest among Secure
2423priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2424be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002425
2426Functions
2427.........
2428
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002429Function: int plat_sdei_validate_entry_point() [optional]
2430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002431
2432::
2433
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002434 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002435 Return: int
2436
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002437This function validates the entry point address of the event handler provided by
2438the client for both event registration and *Complete and Resume* |SDEI| calls.
2439The function ensures that the address is valid in the client translation regime.
2440
2441The second argument is the exception level that the client is executing in. It
2442can be Non-Secure EL1 or Non-Secure EL2.
2443
2444The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002445
Dan Handley610e7e12018-03-01 18:44:00 +00002446The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002447translates the entry point address within the client translation regime and
2448further ensures that the resulting physical address is located in Non-secure
2449DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002450
2451Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2453
2454::
2455
2456 Argument: uint64_t
2457 Argument: unsigned int
2458 Return: void
2459
Paul Beesley606d8072019-03-13 13:58:02 +00002460|SDEI| specification requires that a PE comes out of reset with the events
2461masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2462|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2463time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002464
Paul Beesley606d8072019-03-13 13:58:02 +00002465Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002466events are masked on the PE, the dispatcher implementation invokes the function
2467``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2468interrupt and the interrupt ID are passed as parameters.
2469
2470The default implementation only prints out a warning message.
2471
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002472.. _porting_guide_trng_requirements:
2473
2474TRNG porting requirements
2475~~~~~~~~~~~~~~~~~~~~~~~~~
2476
2477The |TRNG| backend requires the platform to provide the following values
2478and mandatory functions.
2479
2480Values
2481......
2482
2483value: uuid_t plat_trng_uuid [mandatory]
2484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2485
2486This value must be defined to the UUID of the TRNG backend that is specific to
Jayanth Dodderi Chidanand7c7faff2022-10-11 17:16:07 +01002487the hardware after ``plat_entropy_setup`` function is called. This value must
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002488conform to the SMCCC calling convention; The most significant 32 bits of the
2489UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2490w0 indicates failure to get a TRNG source.
2491
2492Functions
2493.........
2494
2495Function: void plat_entropy_setup(void) [mandatory]
2496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2497
2498::
2499
2500 Argument: none
2501 Return: none
2502
2503This function is expected to do platform-specific initialization of any TRNG
2504hardware. This may include generating a UUID from a hardware-specific seed.
2505
2506Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2508
2509::
2510
2511 Argument: uint64_t *
2512 Return: bool
2513 Out : when the return value is true, the entropy has been written into the
2514 storage pointed to
2515
2516This function writes entropy into storage provided by the caller. If no entropy
2517is available, it must return false and the storage must not be written.
2518
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002519Power State Coordination Interface (in BL31)
2520--------------------------------------------
2521
Dan Handley610e7e12018-03-01 18:44:00 +00002522The TF-A implementation of the PSCI API is based around the concept of a
2523*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2524share some state on which power management operations can be performed as
2525specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2526a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2527*power domains* are arranged in a hierarchical tree structure and each
2528*power domain* can be identified in a system by the cpu index of any CPU that
2529is part of that domain and a *power domain level*. A processing element (for
2530example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2531logical grouping of CPUs that share some state, then level 1 is that group of
2532CPUs (for example, a cluster), and level 2 is a group of clusters (for
2533example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002534organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002535
2536BL31's platform initialization code exports a pointer to the platform-specific
2537power management operations required for the PSCI implementation to function
2538correctly. This information is populated in the ``plat_psci_ops`` structure. The
2539PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2540power management operations on the power domains. For example, the target
2541CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2542handler (if present) is called for the CPU power domain.
2543
2544The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2545describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002546defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002547array of local power states where each index corresponds to a power domain
2548level. Each entry contains the local power state the power domain at that power
2549level could enter. It depends on the ``validate_power_state()`` handler to
2550convert the power-state parameter (possibly encoding a composite power state)
2551passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2552
2553The following functions form part of platform port of PSCI functionality.
2554
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002555Function : plat_psci_stat_accounting_start() [optional]
2556~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002557
2558::
2559
2560 Argument : const psci_power_state_t *
2561 Return : void
2562
2563This is an optional hook that platforms can implement for residency statistics
2564accounting before entering a low power state. The ``pwr_domain_state`` field of
2565``state_info`` (first argument) can be inspected if stat accounting is done
2566differently at CPU level versus higher levels. As an example, if the element at
2567index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2568state, special hardware logic may be programmed in order to keep track of the
2569residency statistics. For higher levels (array indices > 0), the residency
2570statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2571default implementation will use PMF to capture timestamps.
2572
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002573Function : plat_psci_stat_accounting_stop() [optional]
2574~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002575
2576::
2577
2578 Argument : const psci_power_state_t *
2579 Return : void
2580
2581This is an optional hook that platforms can implement for residency statistics
2582accounting after exiting from a low power state. The ``pwr_domain_state`` field
2583of ``state_info`` (first argument) can be inspected if stat accounting is done
2584differently at CPU level versus higher levels. As an example, if the element at
2585index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2586state, special hardware logic may be programmed in order to keep track of the
2587residency statistics. For higher levels (array indices > 0), the residency
2588statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2589default implementation will use PMF to capture timestamps.
2590
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002591Function : plat_psci_stat_get_residency() [optional]
2592~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002593
2594::
2595
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002596 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002597 Return : u_register_t
2598
2599This is an optional interface that is is invoked after resuming from a low power
2600state and provides the time spent resident in that low power state by the power
2601domain at a particular power domain level. When a CPU wakes up from suspend,
2602all its parent power domain levels are also woken up. The generic PSCI code
2603invokes this function for each parent power domain that is resumed and it
2604identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2605argument) describes the low power state that the power domain has resumed from.
2606The current CPU is the first CPU in the power domain to resume from the low
2607power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2608CPU in the power domain to suspend and may be needed to calculate the residency
2609for that power domain.
2610
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002611Function : plat_get_target_pwr_state() [optional]
2612~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002613
2614::
2615
2616 Argument : unsigned int, const plat_local_state_t *, unsigned int
2617 Return : plat_local_state_t
2618
2619The PSCI generic code uses this function to let the platform participate in
2620state coordination during a power management operation. The function is passed
2621a pointer to an array of platform specific local power state ``states`` (second
2622argument) which contains the requested power state for each CPU at a particular
2623power domain level ``lvl`` (first argument) within the power domain. The function
2624is expected to traverse this array of upto ``ncpus`` (third argument) and return
2625a coordinated target power state by the comparing all the requested power
2626states. The target power state should not be deeper than any of the requested
2627power states.
2628
2629A weak definition of this API is provided by default wherein it assumes
2630that the platform assigns a local state value in order of increasing depth
2631of the power state i.e. for two power states X & Y, if X < Y
2632then X represents a shallower power state than Y. As a result, the
2633coordinated target local power state for a power domain will be the minimum
2634of the requested local power state values.
2635
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002636Function : plat_get_power_domain_tree_desc() [mandatory]
2637~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002638
2639::
2640
2641 Argument : void
2642 Return : const unsigned char *
2643
2644This function returns a pointer to the byte array containing the power domain
2645topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002646described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2647initialization code requires this array to be described by the platform, either
2648statically or dynamically, to initialize the power domain topology tree. In case
2649the array is populated dynamically, then plat_core_pos_by_mpidr() and
2650plat_my_core_pos() should also be implemented suitably so that the topology tree
2651description matches the CPU indices returned by these APIs. These APIs together
2652form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002653
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002654Function : plat_setup_psci_ops() [mandatory]
2655~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002656
2657::
2658
2659 Argument : uintptr_t, const plat_psci_ops **
2660 Return : int
2661
2662This function may execute with the MMU and data caches enabled if the platform
2663port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2664called by the primary CPU.
2665
2666This function is called by PSCI initialization code. Its purpose is to let
2667the platform layer know about the warm boot entrypoint through the
2668``sec_entrypoint`` (first argument) and to export handler routines for
2669platform-specific psci power management actions by populating the passed
2670pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2671
2672A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002673the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002674``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002675platform wants to support, the associated operation or operations in this
2676structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002677:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002678function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002679structure instead of providing an empty implementation.
2680
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002681plat_psci_ops.cpu_standby()
2682...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002683
2684Perform the platform-specific actions to enter the standby state for a cpu
2685indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002686wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002687For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2688the suspend state type specified in the ``power-state`` parameter should be
2689STANDBY and the target power domain level specified should be the CPU. The
2690handler should put the CPU into a low power retention state (usually by
2691issuing a wfi instruction) and ensure that it can be woken up from that
2692state by a normal interrupt. The generic code expects the handler to succeed.
2693
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002694plat_psci_ops.pwr_domain_on()
2695.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002696
2697Perform the platform specific actions to power on a CPU, specified
2698by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002699return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002700
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002701plat_psci_ops.pwr_domain_off()
2702..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002703
2704Perform the platform specific actions to prepare to power off the calling CPU
2705and its higher parent power domain levels as indicated by the ``target_state``
2706(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2707
2708The ``target_state`` encodes the platform coordinated target local power states
2709for the CPU power domain and its parent power domain levels. The handler
2710needs to perform power management operation corresponding to the local state
2711at each power level.
2712
2713For this handler, the local power state for the CPU power domain will be a
2714power down state where as it could be either power down, retention or run state
2715for the higher power domain levels depending on the result of state
2716coordination. The generic code expects the handler to succeed.
2717
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002718plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2719...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002720
2721This optional function may be used as a performance optimization to replace
2722or complement pwr_domain_suspend() on some platforms. Its calling semantics
2723are identical to pwr_domain_suspend(), except the PSCI implementation only
2724calls this function when suspending to a power down state, and it guarantees
2725that data caches are enabled.
2726
2727When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2728before calling pwr_domain_suspend(). If the target_state corresponds to a
2729power down state and it is safe to perform some or all of the platform
2730specific actions in that function with data caches enabled, it may be more
2731efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2732= 1, data caches remain enabled throughout, and so there is no advantage to
2733moving platform specific actions to this function.
2734
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002735plat_psci_ops.pwr_domain_suspend()
2736..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002737
2738Perform the platform specific actions to prepare to suspend the calling
2739CPU and its higher parent power domain levels as indicated by the
2740``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2741API implementation.
2742
2743The ``target_state`` has a similar meaning as described in
2744the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2745target local power states for the CPU power domain and its parent
2746power domain levels. The handler needs to perform power management operation
2747corresponding to the local state at each power level. The generic code
2748expects the handler to succeed.
2749
Douglas Raillarda84996b2017-08-02 16:57:32 +01002750The difference between turning a power domain off versus suspending it is that
2751in the former case, the power domain is expected to re-initialize its state
2752when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2753case, the power domain is expected to save enough state so that it can resume
2754execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002755``pwr_domain_suspend_finish()``).
2756
Douglas Raillarda84996b2017-08-02 16:57:32 +01002757When suspending a core, the platform can also choose to power off the GICv3
2758Redistributor and ITS through an implementation-defined sequence. To achieve
2759this safely, the ITS context must be saved first. The architectural part is
2760implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2761sequence is implementation defined and it is therefore the responsibility of
2762the platform code to implement the necessary sequence. Then the GIC
2763Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2764Powering off the Redistributor requires the implementation to support it and it
2765is the responsibility of the platform code to execute the right implementation
2766defined sequence.
2767
2768When a system suspend is requested, the platform can also make use of the
2769``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2770it has saved the context of the Redistributors and ITS of all the cores in the
2771system. The context of the Distributor can be large and may require it to be
2772allocated in a special area if it cannot fit in the platform's global static
2773data, for example in DRAM. The Distributor can then be powered down using an
2774implementation-defined sequence.
2775
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002776plat_psci_ops.pwr_domain_pwr_down_wfi()
2777.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002778
2779This is an optional function and, if implemented, is expected to perform
2780platform specific actions including the ``wfi`` invocation which allows the
2781CPU to powerdown. Since this function is invoked outside the PSCI locks,
2782the actions performed in this hook must be local to the CPU or the platform
2783must ensure that races between multiple CPUs cannot occur.
2784
2785The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2786operation and it encodes the platform coordinated target local power states for
2787the CPU power domain and its parent power domain levels. This function must
Boyan Karatotev43771f32022-10-05 13:41:56 +01002788not return back to the caller (by calling wfi in an infinite loop to ensure
2789some CPUs power down mitigations work properly).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002790
2791If this function is not implemented by the platform, PSCI generic
2792implementation invokes ``psci_power_down_wfi()`` for power down.
2793
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002794plat_psci_ops.pwr_domain_on_finish()
2795....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002796
2797This function is called by the PSCI implementation after the calling CPU is
2798powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2799It performs the platform-specific setup required to initialize enough state for
2800this CPU to enter the normal world and also provide secure runtime firmware
2801services.
2802
2803The ``target_state`` (first argument) is the prior state of the power domains
2804immediately before the CPU was turned on. It indicates which power domains
2805above the CPU might require initialization due to having previously been in
2806low power states. The generic code expects the handler to succeed.
2807
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002808plat_psci_ops.pwr_domain_on_finish_late() [optional]
2809...........................................................
2810
2811This optional function is called by the PSCI implementation after the calling
2812CPU is fully powered on with respective data caches enabled. The calling CPU and
2813the associated cluster are guaranteed to be participating in coherency. This
2814function gives the flexibility to perform any platform-specific actions safely,
2815such as initialization or modification of shared data structures, without the
2816overhead of explicit cache maintainace operations.
2817
2818The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2819operation. The generic code expects the handler to succeed.
2820
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002821plat_psci_ops.pwr_domain_suspend_finish()
2822.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002823
2824This function is called by the PSCI implementation after the calling CPU is
2825powered on and released from reset in response to an asynchronous wakeup
2826event, for example a timer interrupt that was programmed by the CPU during the
2827``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2828setup required to restore the saved state for this CPU to resume execution
2829in the normal world and also provide secure runtime firmware services.
2830
2831The ``target_state`` (first argument) has a similar meaning as described in
2832the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2833to succeed.
2834
Douglas Raillarda84996b2017-08-02 16:57:32 +01002835If the Distributor, Redistributors or ITS have been powered off as part of a
2836suspend, their context must be restored in this function in the reverse order
2837to how they were saved during suspend sequence.
2838
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002839plat_psci_ops.system_off()
2840..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002841
2842This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2843call. It performs the platform-specific system poweroff sequence after
2844notifying the Secure Payload Dispatcher.
2845
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002846plat_psci_ops.system_reset()
2847............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002848
2849This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2850call. It performs the platform-specific system reset sequence after
2851notifying the Secure Payload Dispatcher.
2852
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002853plat_psci_ops.validate_power_state()
2854....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002855
2856This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2857call to validate the ``power_state`` parameter of the PSCI API and if valid,
2858populate it in ``req_state`` (second argument) array as power domain level
2859specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002860return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002861normal world PSCI client.
2862
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002863plat_psci_ops.validate_ns_entrypoint()
2864......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002865
2866This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2867``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2868parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002869the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002870propagated back to the normal world PSCI client.
2871
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002872plat_psci_ops.get_sys_suspend_power_state()
2873...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002874
2875This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2876call to get the ``req_state`` parameter from platform which encodes the power
2877domain level specific local states to suspend to system affinity level. The
2878``req_state`` will be utilized to do the PSCI state coordination and
2879``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2880enter system suspend.
2881
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002882plat_psci_ops.get_pwr_lvl_state_idx()
2883.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002884
2885This is an optional function and, if implemented, is invoked by the PSCI
2886implementation to convert the ``local_state`` (first argument) at a specified
2887``pwr_lvl`` (second argument) to an index between 0 and
2888``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2889supports more than two local power states at each power domain level, that is
2890``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2891local power states.
2892
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002893plat_psci_ops.translate_power_state_by_mpidr()
2894..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002895
2896This is an optional function and, if implemented, verifies the ``power_state``
2897(second argument) parameter of the PSCI API corresponding to a target power
2898domain. The target power domain is identified by using both ``MPIDR`` (first
2899argument) and the power domain level encoded in ``power_state``. The power domain
2900level specific local states are to be extracted from ``power_state`` and be
2901populated in the ``output_state`` (third argument) array. The functionality
2902is similar to the ``validate_power_state`` function described above and is
2903envisaged to be used in case the validity of ``power_state`` depend on the
2904targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002905domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002906function is not implemented, then the generic implementation relies on
2907``validate_power_state`` function to translate the ``power_state``.
2908
2909This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002910power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002911APIs as described in Section 5.18 of `PSCI`_.
2912
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002913plat_psci_ops.get_node_hw_state()
2914.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002915
2916This is an optional function. If implemented this function is intended to return
2917the power state of a node (identified by the first parameter, the ``MPIDR``) in
2918the power domain topology (identified by the second parameter, ``power_level``),
2919as retrieved from a power controller or equivalent component on the platform.
2920Upon successful completion, the implementation must map and return the final
2921status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2922must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2923appropriate.
2924
2925Implementations are not expected to handle ``power_levels`` greater than
2926``PLAT_MAX_PWR_LVL``.
2927
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002928plat_psci_ops.system_reset2()
2929.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002930
2931This is an optional function. If implemented this function is
2932called during the ``SYSTEM_RESET2`` call to perform a reset
2933based on the first parameter ``reset_type`` as specified in
2934`PSCI`_. The parameter ``cookie`` can be used to pass additional
2935reset information. If the ``reset_type`` is not supported, the
2936function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2937resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2938and vendor reset can return other PSCI error codes as defined
2939in `PSCI`_. On success this function will not return.
2940
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002941plat_psci_ops.write_mem_protect()
2942.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002943
2944This is an optional function. If implemented it enables or disables the
2945``MEM_PROTECT`` functionality based on the value of ``val``.
2946A non-zero value enables ``MEM_PROTECT`` and a value of zero
2947disables it. Upon encountering failures it must return a negative value
2948and on success it must return 0.
2949
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002950plat_psci_ops.read_mem_protect()
2951................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002952
2953This is an optional function. If implemented it returns the current
2954state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2955failures it must return a negative value and on success it must
2956return 0.
2957
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002958plat_psci_ops.mem_protect_chk()
2959...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002960
2961This is an optional function. If implemented it checks if a memory
2962region defined by a base address ``base`` and with a size of ``length``
2963bytes is protected by ``MEM_PROTECT``. If the region is protected
2964then it must return 0, otherwise it must return a negative number.
2965
Paul Beesleyf8640672019-04-12 14:19:42 +01002966.. _porting_guide_imf_in_bl31:
2967
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002968Interrupt Management framework (in BL31)
2969----------------------------------------
2970
2971BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2972generated in either security state and targeted to EL1 or EL2 in the non-secure
2973state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002974described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002975
2976A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002977text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002978platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002979present in the platform. Arm standard platform layer supports both
2980`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2981and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2982FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002983``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2984details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002985
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002986See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002987
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002988Function : plat_interrupt_type_to_line() [mandatory]
2989~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002990
2991::
2992
2993 Argument : uint32_t, uint32_t
2994 Return : uint32_t
2995
Dan Handley610e7e12018-03-01 18:44:00 +00002996The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002997interrupt line. The specific line that is signaled depends on how the interrupt
2998controller (IC) reports different interrupt types from an execution context in
2999either security state. The IMF uses this API to determine which interrupt line
3000the platform IC uses to signal each type of interrupt supported by the framework
3001from a given security state. This API must be invoked at EL3.
3002
3003The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01003004:ref:`Interrupt Management Framework`) indicating the target type of the
3005interrupt, the second parameter is the security state of the originating
3006execution context. The return result is the bit position in the ``SCR_EL3``
3007register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003008
Dan Handley610e7e12018-03-01 18:44:00 +00003009In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003010configured as FIQs and Non-secure interrupts as IRQs from either security
3011state.
3012
Dan Handley610e7e12018-03-01 18:44:00 +00003013In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003014configured depends on the security state of the execution context when the
3015interrupt is signalled and are as follows:
3016
3017- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
3018 NS-EL0/1/2 context.
3019- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
3020 in the NS-EL0/1/2 context.
3021- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
3022 context.
3023
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003024Function : plat_ic_get_pending_interrupt_type() [mandatory]
3025~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003026
3027::
3028
3029 Argument : void
3030 Return : uint32_t
3031
3032This API returns the type of the highest priority pending interrupt at the
3033platform IC. The IMF uses the interrupt type to retrieve the corresponding
3034handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
3035pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
3036``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
3037
Dan Handley610e7e12018-03-01 18:44:00 +00003038In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003039Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
3040the pending interrupt. The type of interrupt depends upon the id value as
3041follows.
3042
3043#. id < 1022 is reported as a S-EL1 interrupt
3044#. id = 1022 is reported as a Non-secure interrupt.
3045#. id = 1023 is reported as an invalid interrupt type.
3046
Dan Handley610e7e12018-03-01 18:44:00 +00003047In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003048``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
3049is read to determine the id of the pending interrupt. The type of interrupt
3050depends upon the id value as follows.
3051
3052#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
3053#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
3054#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
3055#. All other interrupt id's are reported as EL3 interrupt.
3056
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003057Function : plat_ic_get_pending_interrupt_id() [mandatory]
3058~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003059
3060::
3061
3062 Argument : void
3063 Return : uint32_t
3064
3065This API returns the id of the highest priority pending interrupt at the
3066platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
3067pending.
3068
Dan Handley610e7e12018-03-01 18:44:00 +00003069In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003070Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
3071pending interrupt. The id that is returned by API depends upon the value of
3072the id read from the interrupt controller as follows.
3073
3074#. id < 1022. id is returned as is.
3075#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
3076 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
3077 This id is returned by the API.
3078#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
3079
Dan Handley610e7e12018-03-01 18:44:00 +00003080In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003081EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
3082group 0 Register*, is read to determine the id of the pending interrupt. The id
3083that is returned by API depends upon the value of the id read from the
3084interrupt controller as follows.
3085
3086#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
3087#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
3088 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
3089 Register* is read to determine the id of the group 1 interrupt. This id
3090 is returned by the API as long as it is a valid interrupt id
3091#. If the id is any of the special interrupt identifiers,
3092 ``INTR_ID_UNAVAILABLE`` is returned.
3093
3094When the API invoked from S-EL1 for GICv3 systems, the id read from system
3095register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003096Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003097``INTR_ID_UNAVAILABLE`` is returned.
3098
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003099Function : plat_ic_acknowledge_interrupt() [mandatory]
3100~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003101
3102::
3103
3104 Argument : void
3105 Return : uint32_t
3106
3107This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003108the highest pending interrupt has begun. It should return the raw, unmodified
3109value obtained from the interrupt controller when acknowledging an interrupt.
3110The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05003111`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003112
Dan Handley610e7e12018-03-01 18:44:00 +00003113This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003114Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
3115priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003116It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003117
Dan Handley610e7e12018-03-01 18:44:00 +00003118In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003119from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
3120Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
3121reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
3122group 1*. The read changes the state of the highest pending interrupt from
3123pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003124unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003125
3126The TSP uses this API to start processing of the secure physical timer
3127interrupt.
3128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003129Function : plat_ic_end_of_interrupt() [mandatory]
3130~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003131
3132::
3133
3134 Argument : uint32_t
3135 Return : void
3136
3137This API is used by the CPU to indicate to the platform IC that processing of
3138the interrupt corresponding to the id (passed as the parameter) has
3139finished. The id should be the same as the id returned by the
3140``plat_ic_acknowledge_interrupt()`` API.
3141
Dan Handley610e7e12018-03-01 18:44:00 +00003142Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003143(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
3144system register in case of GICv3 depending on where the API is invoked from,
3145EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
3146controller.
3147
3148The TSP uses this API to finish processing of the secure physical timer
3149interrupt.
3150
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003151Function : plat_ic_get_interrupt_type() [mandatory]
3152~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003153
3154::
3155
3156 Argument : uint32_t
3157 Return : uint32_t
3158
3159This API returns the type of the interrupt id passed as the parameter.
3160``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
3161interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
3162returned depending upon how the interrupt has been configured by the platform
3163IC. This API must be invoked at EL3.
3164
Dan Handley610e7e12018-03-01 18:44:00 +00003165Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003166and Non-secure interrupts as Group1 interrupts. It reads the group value
3167corresponding to the interrupt id from the relevant *Interrupt Group Register*
3168(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
3169
Dan Handley610e7e12018-03-01 18:44:00 +00003170In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003171Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
3172(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
3173as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
3174
3175Crash Reporting mechanism (in BL31)
3176-----------------------------------
3177
3178BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003179of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00003180on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003181``plat_crash_console_putc`` and ``plat_crash_console_flush``.
3182
3183The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
3184implementation of all of them. Platforms may include this file to their
3185makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003186output to be routed over the normal console infrastructure and get printed on
3187consoles configured to output in crash state. ``console_set_scope()`` can be
3188used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00003189
3190.. note::
3191 Platforms are responsible for making sure that they only mark consoles for
3192 use in the crash scope that are able to support this, i.e. that are written
3193 in assembly and conform with the register clobber rules for putc()
3194 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003195
Julius Werneraae9bb12017-09-18 16:49:48 -07003196In some cases (such as debugging very early crashes that happen before the
3197normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08003198more explicitly. These platforms may instead provide custom implementations for
3199these. They are executed outside of a C environment and without a stack. Many
3200console drivers provide functions named ``console_xxx_core_init/putc/flush``
3201that are designed to be used by these functions. See Arm platforms (like juno)
3202for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003203
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003204Function : plat_crash_console_init [mandatory]
3205~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003206
3207::
3208
3209 Argument : void
3210 Return : int
3211
3212This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003213console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003214initialization and returns 1 on success.
3215
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003216Function : plat_crash_console_putc [mandatory]
3217~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003218
3219::
3220
3221 Argument : int
3222 Return : int
3223
3224This API is used by the crash reporting mechanism to print a character on the
3225designated crash console. It must only use general purpose registers x1 and
3226x2 to do its work. The parameter and the return value are in general purpose
3227register x0.
3228
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003229Function : plat_crash_console_flush [mandatory]
3230~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003231
3232::
3233
3234 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003235 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003236
3237This API is used by the crash reporting mechanism to force write of all buffered
3238data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003239registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003240
Manish Pandey9c9f38a2020-06-30 00:46:08 +01003241.. _External Abort handling and RAS Support:
3242
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01003243External Abort handling and RAS Support
3244---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01003245
3246Function : plat_ea_handler
3247~~~~~~~~~~~~~~~~~~~~~~~~~~
3248
3249::
3250
3251 Argument : int
3252 Argument : uint64_t
3253 Argument : void *
3254 Argument : void *
3255 Argument : uint64_t
3256 Return : void
3257
3258This function is invoked by the RAS framework for the platform to handle an
3259External Abort received at EL3. The intention of the function is to attempt to
3260resolve the cause of External Abort and return; if that's not possible, to
3261initiate orderly shutdown of the system.
3262
3263The first parameter (``int ea_reason``) indicates the reason for External Abort.
3264Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
3265
3266The second parameter (``uint64_t syndrome``) is the respective syndrome
3267presented to EL3 after having received the External Abort. Depending on the
3268nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
3269can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
3270
3271The third parameter (``void *cookie``) is unused for now. The fourth parameter
3272(``void *handle``) is a pointer to the preempted context. The fifth parameter
3273(``uint64_t flags``) indicates the preempted security state. These parameters
3274are received from the top-level exception handler.
3275
3276If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
3277function iterates through RAS handlers registered by the platform. If any of the
3278RAS handlers resolve the External Abort, no further action is taken.
3279
3280If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
3281could resolve the External Abort, the default implementation prints an error
3282message, and panics.
3283
3284Function : plat_handle_uncontainable_ea
3285~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3286
3287::
3288
3289 Argument : int
3290 Argument : uint64_t
3291 Return : void
3292
3293This function is invoked by the RAS framework when an External Abort of
3294Uncontainable type is received at EL3. Due to the critical nature of
3295Uncontainable errors, the intention of this function is to initiate orderly
3296shutdown of the system, and is not expected to return.
3297
3298This function must be implemented in assembly.
3299
3300The first and second parameters are the same as that of ``plat_ea_handler``.
3301
3302The default implementation of this function calls
3303``report_unhandled_exception``.
3304
3305Function : plat_handle_double_fault
3306~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3307
3308::
3309
3310 Argument : int
3311 Argument : uint64_t
3312 Return : void
3313
3314This function is invoked by the RAS framework when another External Abort is
3315received at EL3 while one is already being handled. I.e., a call to
3316``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
3317this function is to initiate orderly shutdown of the system, and is not expected
3318recover or return.
3319
3320This function must be implemented in assembly.
3321
3322The first and second parameters are the same as that of ``plat_ea_handler``.
3323
3324The default implementation of this function calls
3325``report_unhandled_exception``.
3326
3327Function : plat_handle_el3_ea
3328~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3329
3330::
3331
3332 Return : void
3333
3334This function is invoked when an External Abort is received while executing in
3335EL3. Due to its critical nature, the intention of this function is to initiate
3336orderly shutdown of the system, and is not expected recover or return.
3337
3338This function must be implemented in assembly.
3339
3340The default implementation of this function calls
3341``report_unhandled_exception``.
3342
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003343Build flags
3344-----------
3345
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003346There are some build flags which can be defined by the platform to control
3347inclusion or exclusion of certain BL stages from the FIP image. These flags
3348need to be defined in the platform makefile which will get included by the
3349build system.
3350
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003351- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003352 By default, this flag is defined ``yes`` by the build system and ``BL33``
3353 build option should be supplied as a build option. The platform has the
3354 option of excluding the BL33 image in the ``fip`` image by defining this flag
3355 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3356 are used, this flag will be set to ``no`` automatically.
3357
Paul Beesley07f0a312019-05-16 13:33:18 +01003358Platform include paths
3359----------------------
3360
3361Platforms are allowed to add more include paths to be passed to the compiler.
3362The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3363particular for the file ``platform_def.h``.
3364
3365Example:
3366
3367.. code:: c
3368
3369 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3370
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003371C Library
3372---------
3373
3374To avoid subtle toolchain behavioral dependencies, the header files provided
3375by the compiler are not used. The software is built with the ``-nostdinc`` flag
3376to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00003377required headers are included in the TF-A source tree. The library only
3378contains those C library definitions required by the local implementation. If
3379more functionality is required, the needed library functions will need to be
3380added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003381
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003382Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00003383been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003384from `FreeBSD`_, others have been written specifically for TF-A as well. The
3385files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003386
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01003387SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3388can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003389
3390Storage abstraction layer
3391-------------------------
3392
Louis Mayencourtb5469002019-07-15 13:56:03 +01003393In order to improve platform independence and portability a storage abstraction
3394layer is used to load data from non-volatile platform storage. Currently
3395storage access is only required by BL1 and BL2 phases and performed inside the
3396``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003397
Louis Mayencourtb5469002019-07-15 13:56:03 +01003398.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003399
Dan Handley610e7e12018-03-01 18:44:00 +00003400It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003401development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003402the default means to load data from storage (see :ref:`firmware_design_fip`).
3403The storage layer is described in the header file
3404``include/drivers/io/io_storage.h``. The implementation of the common library is
3405in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003406``drivers/io/``.
3407
Louis Mayencourtb5469002019-07-15 13:56:03 +01003408.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
3409
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003410Each IO driver must provide ``io_dev_*`` structures, as described in
3411``drivers/io/io_driver.h``. These are returned via a mandatory registration
3412function that is called on platform initialization. The semi-hosting driver
3413implementation in ``io_semihosting.c`` can be used as an example.
3414
Louis Mayencourtb5469002019-07-15 13:56:03 +01003415Each platform should register devices and their drivers via the storage
3416abstraction layer. These drivers then need to be initialized by bootloader
3417phases as required in their respective ``blx_platform_setup()`` functions.
3418
3419.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
3420
3421The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3422initialize storage devices before IO operations are called.
3423
3424.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
3425
3426The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003427include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3428Drivers do not have to implement all operations, but each platform must
3429provide at least one driver for a device capable of supporting generic
3430operations such as loading a bootloader image.
3431
3432The current implementation only allows for known images to be loaded by the
3433firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003434``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003435there). The platform layer (``plat_get_image_source()``) then returns a reference
3436to a device and a driver-specific ``spec`` which will be understood by the driver
3437to allow access to the image data.
3438
3439The layer is designed in such a way that is it possible to chain drivers with
3440other drivers. For example, file-system drivers may be implemented on top of
3441physical block devices, both represented by IO devices with corresponding
3442drivers. In such a case, the file-system "binding" with the block device may
3443be deferred until the file-system device is initialised.
3444
3445The abstraction currently depends on structures being statically allocated
3446by the drivers and callers, as the system does not yet provide a means of
3447dynamically allocating memory. This may also have the affect of limiting the
3448amount of open resources per driver.
3449
3450--------------
3451
Soby Mathewf05d93a2022-03-22 16:21:19 +00003452*Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003453
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003454.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00003455.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003456.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003457.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003458.. _SCC: http://www.simple-cc.org/
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01003459.. _DRTM: https://developer.arm.com/documentation/den0113/a