blob: 57eba3ce2067b81f0ebcad9b16e3d899ab408936 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Paul Beesleyf8640672019-04-12 14:19:42 +010026Please refer to the :ref:`Platform Compatibility Policy` for the policy
27regarding compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010028
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillardd7c21b72017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley610e7e12018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010061
Dan Handley610e7e12018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010092File : platform_def.h [mandatory]
93~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010094
95Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000096include path with the following constants defined. This will require updating
97the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010098
Paul Beesleyf8640672019-04-12 14:19:42 +010099Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100which provides typical values for some of the constants below. These values are
101likely to be suitable for all platform ports.
102
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100103- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100104
105 Defines the linker format used by the platform, for example
106 ``elf64-littleaarch64``.
107
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100108- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100109
110 Defines the processor architecture for the linker by the platform, for
111 example ``aarch64``.
112
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100113- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100114
115 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100116 by ``plat/common/aarch64/platform_mp_stack.S`` and
117 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
David Horstmann051fd6d2020-11-12 15:19:04 +0000119- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
121 Defines the size in bits of the largest cache line across all the cache
122 levels in the platform.
123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100124- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100125
126 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
127 function.
128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100129- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100130
131 Defines the total number of CPUs implemented by the platform across all
132 clusters in the system.
133
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100134- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100135
136 Defines the total number of nodes in the power domain topology
137 tree at all the power domain levels used by the platform.
138 This macro is used by the PSCI implementation to allocate
139 data structures to represent power domain topology.
140
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100141- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100142
143 Defines the maximum power domain level that the power management operations
144 should apply to. More often, but not always, the power domain level
145 corresponds to affinity level. This macro allows the PSCI implementation
146 to know the highest power domain level that it should consider for power
147 management operations in the system that the platform implements. For
148 example, the Base AEM FVP implements two clusters with a configurable
149 number of CPUs and it reports the maximum power domain level as 1.
150
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100151- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100152
153 Defines the local power state corresponding to the deepest power down
154 possible at every power domain level in the platform. The local power
155 states for each level may be sparsely allocated between 0 and this value
156 with 0 being reserved for the RUN state. The PSCI implementation uses this
157 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100158 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 Defines the local power state corresponding to the deepest retention state
163 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100164 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100165 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
170 Defines the maximum number of local power states per power domain level
171 that the platform supports. The default value of this macro is 2 since
172 most platforms just support a maximum of two local power states at each
173 power domain level (power-down and retention). If the platform needs to
174 account for more local power states, then it must redefine this macro.
175
176 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100177 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100178
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
181 Defines the base address in secure ROM where BL1 originally lives. Must be
182 aligned on a page-size boundary.
183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100184- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100185
186 Defines the maximum address in secure ROM that BL1's actual content (i.e.
187 excluding any data section allocated at runtime) can occupy.
188
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100189- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100190
191 Defines the base address in secure RAM where BL1's read-write data will live
192 at runtime. Must be aligned on a page-size boundary.
193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100194- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100195
196 Defines the maximum address in secure RAM that BL1's read-write data can
197 occupy at runtime.
198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100199- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100200
201 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000202 Must be aligned on a page-size boundary. This constant is not applicable
203 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100205- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
207 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000208 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100210- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000211
212 Defines the base address in secure XIP memory where BL2 RO section originally
213 lives. Must be aligned on a page-size boundary. This constant is only needed
214 when BL2_IN_XIP_MEM is set to '1'.
215
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100216- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000217
218 Defines the maximum address in secure XIP memory that BL2's actual content
219 (i.e. excluding any data section allocated at runtime) can occupy. This
220 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
221
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100222- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000223
224 Defines the base address in secure RAM where BL2's read-write data will live
225 at runtime. Must be aligned on a page-size boundary. This constant is only
226 needed when BL2_IN_XIP_MEM is set to '1'.
227
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100228- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000229
230 Defines the maximum address in secure RAM that BL2's read-write data can
231 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
232 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100233
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100234- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
236 Defines the base address in secure RAM where BL2 loads the BL31 binary
237 image. Must be aligned on a page-size boundary.
238
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100239- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100240
241 Defines the maximum address in secure RAM that the BL31 image can occupy.
242
243For every image, the platform must define individual identifiers that will be
244used by BL1 or BL2 to load the corresponding image into memory from non-volatile
245storage. For the sake of performance, integer numbers will be used as
246identifiers. The platform will use those identifiers to return the relevant
247information about the image to be loaded (file handler, load address,
248authentication information, etc.). The following image identifiers are
249mandatory:
250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100251- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100252
253 BL2 image identifier, used by BL1 to load BL2.
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 BL31 image identifier, used by BL2 to load BL31.
258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100259- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
261 BL33 image identifier, used by BL2 to load BL33.
262
263If Trusted Board Boot is enabled, the following certificate identifiers must
264also be defined:
265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100266- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100267
268 BL2 content certificate identifier, used by BL1 to load the BL2 content
269 certificate.
270
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100271- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100272
273 Trusted key certificate identifier, used by BL2 to load the trusted key
274 certificate.
275
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100276- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100277
278 BL31 key certificate identifier, used by BL2 to load the BL31 key
279 certificate.
280
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100281- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100282
283 BL31 content certificate identifier, used by BL2 to load the BL31 content
284 certificate.
285
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100286- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100287
288 BL33 key certificate identifier, used by BL2 to load the BL33 key
289 certificate.
290
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100291- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100292
293 BL33 content certificate identifier, used by BL2 to load the BL33 content
294 certificate.
295
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100296- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299 FWU content certificate.
300
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100301- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100302
Dan Handley610e7e12018-03-01 18:44:00 +0000303 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000305 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 set.
307
308If the AP Firmware Updater Configuration image, BL2U is used, the following
309must also be defined:
310
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100311- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100312
313 Defines the base address in secure memory where BL1 copies the BL2U binary
314 image. Must be aligned on a page-size boundary.
315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100316- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100317
318 Defines the maximum address in secure memory that the BL2U image can occupy.
319
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100320- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100321
322 BL2U image identifier, used by BL1 to fetch an image descriptor
323 corresponding to BL2U.
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326must also be defined:
327
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100328- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
331 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000332
333 .. note::
334 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100336If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337also be defined:
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000343
344 .. note::
345 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100347- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
350 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100352If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353be defined:
354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000359
360 .. note::
361 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100365 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
366 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367
368For the the Firmware update capability of TRUSTED BOARD BOOT, the following
369macros may also be defined:
370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372
373 Total number of images that can be loaded simultaneously. If the platform
374 doesn't specify any value, it defaults to 10.
375
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100376If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100377also be defined:
378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100381 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000382 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100384- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387 certificate (mandatory when Trusted Board Boot is enabled).
388
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100389- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100391 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392 content certificate (mandatory when Trusted Board Boot is enabled).
393
394If a BL32 image is supported by the platform, the following constants must
395also be defined:
396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100397- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100398
399 BL32 image identifier, used by BL2 to load BL32.
400
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100401- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100402
403 BL32 key certificate identifier, used by BL2 to load the BL32 key
404 certificate (mandatory when Trusted Board Boot is enabled).
405
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100406- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100407
408 BL32 content certificate identifier, used by BL2 to load the BL32 content
409 certificate (mandatory when Trusted Board Boot is enabled).
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 Defines the base address in secure memory where BL2 loads the BL32 binary
414 image. Must be aligned on a page-size boundary.
415
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100416- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100417
418 Defines the maximum address that the BL32 image can occupy.
419
420If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
421platform, the following constants must also be defined:
422
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100423- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100424
425 Defines the base address of the secure memory used by the TSP image on the
426 platform. This must be at the same address or below ``BL32_BASE``.
427
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100428- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100429
430 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000431 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
432 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
433 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100434
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100435- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100436
437 Defines the ID of the secure physical generic timer interrupt used by the
438 TSP's interrupt handling code.
439
440If the platform port uses the translation table library code, the following
441constants must also be defined:
442
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100443- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100444
445 Optional flag that can be set per-image to enable the dynamic allocation of
446 regions even when the MMU is enabled. If not defined, only static
447 functionality will be available, if defined and set to 1 it will also
448 include the dynamic functionality.
449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100450- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100451
452 Defines the maximum number of translation tables that are allocated by the
453 translation table library code. To minimize the amount of runtime memory
454 used, choose the smallest value needed to map the required virtual addresses
455 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
456 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
457 as well.
458
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100459- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100460
461 Defines the maximum number of regions that are allocated by the translation
462 table library code. A region consists of physical base address, virtual base
463 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
464 defined in the ``mmap_region_t`` structure. The platform defines the regions
465 that should be mapped. Then, the translation table library will create the
466 corresponding tables and descriptors at runtime. To minimize the amount of
467 runtime memory used, choose the smallest value needed to register the
468 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
469 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
470 the dynamic regions as well.
471
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100472- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100473
474 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000475 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100476
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100477- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100478
479 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000480 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100481
482If the platform port uses the IO storage framework, the following constants
483must also be defined:
484
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100485- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100486
487 Defines the maximum number of registered IO devices. Attempting to register
488 more devices than this value using ``io_register_device()`` will fail with
489 -ENOMEM.
490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the maximum number of open IO handles. Attempting to open more IO
494 entities than this value using ``io_open()`` will fail with -ENOMEM.
495
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100496- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100497
498 Defines the maximum number of registered IO block devices. Attempting to
499 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100500 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100501 With this macro, multiple block devices could be supported at the same
502 time.
503
504If the platform needs to allocate data within the per-cpu data framework in
505BL31, it should define the following macro. Currently this is only required if
506the platform decides not to use the coherent memory section by undefining the
507``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
508required memory within the the per-cpu data to minimize wastage.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the memory (in bytes) to be reserved within the per-cpu data
513 structure for use by the platform layer.
514
515The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000516memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100517
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100518- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100519
520 Defines the maximum address in secure RAM that the BL31's progbits sections
521 can occupy.
522
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100523- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100524
525 Defines the maximum address that the TSP's progbits sections can occupy.
526
527If the platform port uses the PL061 GPIO driver, the following constant may
528optionally be defined:
529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100530- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531 Maximum number of GPIOs required by the platform. This allows control how
532 much memory is allocated for PL061 GPIO controllers. The default value is
533
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100534 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100535
536If the platform port uses the partition driver, the following constant may
537optionally be defined:
538
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100539- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100540 Maximum number of partition entries required by the platform. This allows
541 control how much memory is allocated for partition entries. The default
542 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100543 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100544 PLAT_PARTITION_MAX_ENTRIES := 12
545 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100546
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800547- **PLAT_PARTITION_BLOCK_SIZE**
548 The size of partition block. It could be either 512 bytes or 4096 bytes.
549 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000550 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800551 PLAT_PARTITION_BLOCK_SIZE := 4096
552 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
553
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554The following constant is optional. It should be defined to override the default
555behaviour of the ``assert()`` function (for example, to save memory).
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
559 ``assert()`` prints the name of the file, the line number and the asserted
560 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
561 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
562 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
563 defined, it defaults to ``LOG_LEVEL``.
564
Alexei Fedorov7e6306b2020-07-14 08:17:56 +0100565If the platform port uses the Activity Monitor Unit, the following constant
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000566may be defined:
567
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100568- **PLAT_AMU_GROUP1_COUNTERS_MASK**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000569 This mask reflects the set of group counters that should be enabled. The
570 maximum number of group 1 counters supported by AMUv1 is 16 so the mask
571 can be at most 0xffff. If the platform does not define this mask, no group 1
Alexei Fedorov7e6306b2020-07-14 08:17:56 +0100572 counters are enabled.
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000573
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100574File : plat_macros.S [mandatory]
575~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100576
577Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000578the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100579found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
580
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100581- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100582
583 This macro allows the crash reporting routine to print relevant platform
584 registers in case of an unhandled exception in BL31. This aids in debugging
585 and this macro can be defined to be empty in case register reporting is not
586 desired.
587
588 For instance, GIC or interconnect registers may be helpful for
589 troubleshooting.
590
591Handling Reset
592--------------
593
594BL1 by default implements the reset vector where execution starts from a cold
595or warm boot. BL31 can be optionally set as a reset vector using the
596``RESET_TO_BL31`` make variable.
597
598For each CPU, the reset vector code is responsible for the following tasks:
599
600#. Distinguishing between a cold boot and a warm boot.
601
602#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
603 the CPU is placed in a platform-specific state until the primary CPU
604 performs the necessary steps to remove it from this state.
605
606#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
607 specific address in the BL31 image in the same processor mode as it was
608 when released from reset.
609
610The following functions need to be implemented by the platform port to enable
611reset vector code to perform the above tasks.
612
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100613Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
614~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100615
616::
617
618 Argument : void
619 Return : uintptr_t
620
621This function is called with the MMU and caches disabled
622(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
623distinguishing between a warm and cold reset for the current CPU using
624platform-specific means. If it's a warm reset, then it returns the warm
625reset entrypoint point provided to ``plat_setup_psci_ops()`` during
626BL31 initialization. If it's a cold reset then this function must return zero.
627
628This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000629Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100630not assume that callee saved registers are preserved across a call to this
631function.
632
633This function fulfills requirement 1 and 3 listed above.
634
635Note that for platforms that support programming the reset address, it is
636expected that a CPU will start executing code directly at the right address,
637both on a cold and warm reset. In this case, there is no need to identify the
638type of reset nor to query the warm reset entrypoint. Therefore, implementing
639this function is not required on such platforms.
640
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100641Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
642~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100643
644::
645
646 Argument : void
647
648This function is called with the MMU and data caches disabled. It is responsible
649for placing the executing secondary CPU in a platform-specific state until the
650primary CPU performs the necessary actions to bring it out of that state and
651allow entry into the OS. This function must not return.
652
Dan Handley610e7e12018-03-01 18:44:00 +0000653In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100654itself off. The primary CPU is responsible for powering up the secondary CPUs
655when normal world software requires them. When booting an EL3 payload instead,
656they stay powered on and are put in a holding pen until their mailbox gets
657populated.
658
659This function fulfills requirement 2 above.
660
661Note that for platforms that can't release secondary CPUs out of reset, only the
662primary CPU will execute the cold boot code. Therefore, implementing this
663function is not required on such platforms.
664
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100665Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
666~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100667
668::
669
670 Argument : void
671 Return : unsigned int
672
673This function identifies whether the current CPU is the primary CPU or a
674secondary CPU. A return value of zero indicates that the CPU is not the
675primary CPU, while a non-zero return value indicates that the CPU is the
676primary CPU.
677
678Note that for platforms that can't release secondary CPUs out of reset, only the
679primary CPU will execute the cold boot code. Therefore, there is no need to
680distinguish between primary and secondary CPUs and implementing this function is
681not required.
682
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100683Function : platform_mem_init() [mandatory]
684~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100685
686::
687
688 Argument : void
689 Return : void
690
691This function is called before any access to data is made by the firmware, in
692order to carry out any essential memory initialization.
693
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100694Function: plat_get_rotpk_info()
695~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100696
697::
698
699 Argument : void *, void **, unsigned int *, unsigned int *
700 Return : int
701
702This function is mandatory when Trusted Board Boot is enabled. It returns a
703pointer to the ROTPK stored in the platform (or a hash of it) and its length.
704The ROTPK must be encoded in DER format according to the following ASN.1
705structure:
706
707::
708
709 AlgorithmIdentifier ::= SEQUENCE {
710 algorithm OBJECT IDENTIFIER,
711 parameters ANY DEFINED BY algorithm OPTIONAL
712 }
713
714 SubjectPublicKeyInfo ::= SEQUENCE {
715 algorithm AlgorithmIdentifier,
716 subjectPublicKey BIT STRING
717 }
718
719In case the function returns a hash of the key:
720
721::
722
723 DigestInfo ::= SEQUENCE {
724 digestAlgorithm AlgorithmIdentifier,
725 digest OCTET STRING
726 }
727
728The function returns 0 on success. Any other value is treated as error by the
729Trusted Board Boot. The function also reports extra information related
730to the ROTPK in the flags parameter:
731
732::
733
734 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
735 hash.
736 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
737 verification while the platform ROTPK is not deployed.
738 When this flag is set, the function does not need to
739 return a platform ROTPK, and the authentication
740 framework uses the ROTPK in the certificate without
741 verifying it against the platform value. This flag
742 must not be used in a deployed production environment.
743
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100744Function: plat_get_nv_ctr()
745~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100746
747::
748
749 Argument : void *, unsigned int *
750 Return : int
751
752This function is mandatory when Trusted Board Boot is enabled. It returns the
753non-volatile counter value stored in the platform in the second argument. The
754cookie in the first argument may be used to select the counter in case the
755platform provides more than one (for example, on platforms that use the default
756TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100757TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100758
759The function returns 0 on success. Any other value means the counter value could
760not be retrieved from the platform.
761
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100762Function: plat_set_nv_ctr()
763~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100764
765::
766
767 Argument : void *, unsigned int
768 Return : int
769
770This function is mandatory when Trusted Board Boot is enabled. It sets a new
771counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100772select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100773the updated counter value to be written to the NV counter.
774
775The function returns 0 on success. Any other value means the counter value could
776not be updated.
777
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100778Function: plat_set_nv_ctr2()
779~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100780
781::
782
783 Argument : void *, const auth_img_desc_t *, unsigned int
784 Return : int
785
786This function is optional when Trusted Board Boot is enabled. If this
787interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
788first argument passed is a cookie and is typically used to
789differentiate between a Non Trusted NV Counter and a Trusted NV
790Counter. The second argument is a pointer to an authentication image
791descriptor and may be used to decide if the counter is allowed to be
792updated or not. The third argument is the updated counter value to
793be written to the NV counter.
794
795The function returns 0 on success. Any other value means the counter value
796either could not be updated or the authentication image descriptor indicates
797that it is not allowed to be updated.
798
799Common mandatory function modifications
800---------------------------------------
801
802The following functions are mandatory functions which need to be implemented
803by the platform port.
804
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100805Function : plat_my_core_pos()
806~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100807
808::
809
810 Argument : void
811 Return : unsigned int
812
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000813This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100814CPU-specific linear index into blocks of memory (for example while allocating
815per-CPU stacks). This function will be invoked very early in the
816initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000817implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100818runtime environment. This function can clobber x0 - x8 and must preserve
819x9 - x29.
820
821This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +0100822PSCI and details of this can be found in
823:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100824
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100825Function : plat_core_pos_by_mpidr()
826~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100827
828::
829
830 Argument : u_register_t
831 Return : int
832
833This function validates the ``MPIDR`` of a CPU and converts it to an index,
834which can be used as a CPU-specific linear index into blocks of memory. In
835case the ``MPIDR`` is invalid, this function returns -1. This function will only
836be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000837utilize the C runtime environment. For further details about how TF-A
838represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +0100839index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100840
Ambroise Vincentd207f562019-04-10 12:50:27 +0100841Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
842~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
843
844::
845
846 Arguments : void **heap_addr, size_t *heap_size
847 Return : int
848
849This function is invoked during Mbed TLS library initialisation to get a heap,
850by means of a starting address and a size. This heap will then be used
851internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
852must be able to provide a heap to it.
853
854A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
855which a heap is statically reserved during compile time inside every image
856(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
857the function simply returns the address and size of this "pre-allocated" heap.
858For a platform to use this default implementation, only a call to the helper
859from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
860
861However, by writting their own implementation, platforms have the potential to
862optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
863shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
864twice.
865
866On success the function should return 0 and a negative error code otherwise.
867
Sumit Gargc0c369c2019-11-15 18:47:53 +0530868Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
869~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
870
871::
872
873 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
874 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
875 size_t img_id_len
876 Return : int
877
878This function provides a symmetric key (either SSK or BSSK depending on
879fw_enc_status) which is invoked during runtime decryption of encrypted
880firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
881implementation for testing purposes which must be overridden by the platform
882trying to implement a real world firmware encryption use-case.
883
884It also allows the platform to pass symmetric key identifier rather than
885actual symmetric key which is useful in cases where the crypto backend provides
886secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
887flag must be set in ``flags``.
888
889In addition to above a platform may also choose to provide an image specific
890symmetric key/identifier using img_id.
891
892On success the function should return 0 and a negative error code otherwise.
893
Manish Pandey34a305e2021-10-21 21:53:49 +0100894Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
Sumit Gargc0c369c2019-11-15 18:47:53 +0530895
Manish V Badarkheda87af12021-06-20 21:14:46 +0100896Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
897~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
898
899::
900
901 Argument : struct fwu_metadata *metadata
902 Return : void
903
904This function is mandatory when PSA_FWU_SUPPORT is enabled.
905It provides a means to retrieve image specification (offset in
906non-volatile storage and length) of active/updated images using the passed
907FWU metadata, and update I/O policies of active/updated images using retrieved
908image specification information.
909Further I/O layer operations such as I/O open, I/O read, etc. on these
910images rely on this function call.
911
912In Arm platforms, this function is used to set an I/O policy of the FIP image,
913container of all active/updated secure and non-secure images.
914
915Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
916~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
917
918::
919
920 Argument : unsigned int image_id, uintptr_t *dev_handle,
921 uintptr_t *image_spec
922 Return : int
923
924This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
925responsible for setting up the platform I/O policy of the requested metadata
926image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
927be used to load this image from the platform's non-volatile storage.
928
929FWU metadata can not be always stored as a raw image in non-volatile storage
930to define its image specification (offset in non-volatile storage and length)
931statically in I/O policy.
932For example, the FWU metadata image is stored as a partition inside the GUID
933partition table image. Its specification is defined in the partition table
934that needs to be parsed dynamically.
935This function provides a means to retrieve such dynamic information to set
936the I/O policy of the FWU metadata image.
937Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
938image relies on this function call.
939
940It returns '0' on success, otherwise a negative error value on error.
941Alongside, returns device handle and image specification from the I/O policy
942of the requested FWU metadata image.
943
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100944Common optional modifications
945-----------------------------
946
947The following are helper functions implemented by the firmware that perform
948common platform-specific tasks. A platform may choose to override these
949definitions.
950
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100951Function : plat_set_my_stack()
952~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100953
954::
955
956 Argument : void
957 Return : void
958
959This function sets the current stack pointer to the normal memory stack that
960has been allocated for the current CPU. For BL images that only require a
961stack for the primary CPU, the UP version of the function is used. The size
962of the stack allocated to each CPU is specified by the platform defined
963constant ``PLATFORM_STACK_SIZE``.
964
965Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100966provided in ``plat/common/aarch64/platform_up_stack.S`` and
967``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100968
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100969Function : plat_get_my_stack()
970~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100971
972::
973
974 Argument : void
975 Return : uintptr_t
976
977This function returns the base address of the normal memory stack that
978has been allocated for the current CPU. For BL images that only require a
979stack for the primary CPU, the UP version of the function is used. The size
980of the stack allocated to each CPU is specified by the platform defined
981constant ``PLATFORM_STACK_SIZE``.
982
983Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100984provided in ``plat/common/aarch64/platform_up_stack.S`` and
985``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100986
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100987Function : plat_report_exception()
988~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100989
990::
991
992 Argument : unsigned int
993 Return : void
994
995A platform may need to report various information about its status when an
996exception is taken, for example the current exception level, the CPU security
997state (secure/non-secure), the exception type, and so on. This function is
998called in the following circumstances:
999
1000- In BL1, whenever an exception is taken.
1001- In BL2, whenever an exception is taken.
1002
1003The default implementation doesn't do anything, to avoid making assumptions
1004about the way the platform displays its status information.
1005
1006For AArch64, this function receives the exception type as its argument.
1007Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001008``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001009related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001010
1011For AArch32, this function receives the exception mode as its argument.
1012Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001013``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001014
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001015Function : plat_reset_handler()
1016~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001017
1018::
1019
1020 Argument : void
1021 Return : void
1022
1023A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001024allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001025specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001026preserve the values of callee saved registers x19 to x29.
1027
1028The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001029the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001030guidelines.
1031
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001032Function : plat_disable_acp()
1033~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001034
1035::
1036
1037 Argument : void
1038 Return : void
1039
John Tsichritzis6dda9762018-07-23 09:18:04 +01001040This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001041present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001042doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001043it has restrictions for stack usage and it can use the registers x0 - x17 as
1044scratch registers. It should preserve the value in x18 register as it is used
1045by the caller to store the return address.
1046
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001047Function : plat_error_handler()
1048~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001049
1050::
1051
1052 Argument : int
1053 Return : void
1054
1055This API is called when the generic code encounters an error situation from
1056which it cannot continue. It allows the platform to perform error reporting or
1057recovery actions (for example, reset the system). This function must not return.
1058
1059The parameter indicates the type of error using standard codes from ``errno.h``.
1060Possible errors reported by the generic code are:
1061
1062- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1063 Board Boot is enabled)
1064- ``-ENOENT``: the requested image or certificate could not be found or an IO
1065 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001066- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1067 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001068
1069The default implementation simply spins.
1070
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001071Function : plat_panic_handler()
1072~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001073
1074::
1075
1076 Argument : void
1077 Return : void
1078
1079This API is called when the generic code encounters an unexpected error
1080situation from which it cannot recover. This function must not return,
1081and must be implemented in assembly because it may be called before the C
1082environment is initialized.
1083
Paul Beesleyba3ed402019-03-13 16:20:44 +00001084.. note::
1085 The address from where it was called is stored in x30 (Link Register).
1086 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001087
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001088Function : plat_get_bl_image_load_info()
1089~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001090
1091::
1092
1093 Argument : void
1094 Return : bl_load_info_t *
1095
1096This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001097populated to load. This function is invoked in BL2 to load the
1098BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001099
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001100Function : plat_get_next_bl_params()
1101~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001102
1103::
1104
1105 Argument : void
1106 Return : bl_params_t *
1107
1108This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001109kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001110function is invoked in BL2 to pass this information to the next BL
1111image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001112
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001113Function : plat_get_stack_protector_canary()
1114~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001115
1116::
1117
1118 Argument : void
1119 Return : u_register_t
1120
1121This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001122when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001123value will weaken the protection as the attacker could easily write the right
1124value as part of the attack most of the time. Therefore, it should return a
1125true random number.
1126
Paul Beesleyba3ed402019-03-13 16:20:44 +00001127.. warning::
1128 For the protection to be effective, the global data need to be placed at
1129 a lower address than the stack bases. Failure to do so would allow an
1130 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001131
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001132Function : plat_flush_next_bl_params()
1133~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001134
1135::
1136
1137 Argument : void
1138 Return : void
1139
1140This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001141next image. This function is invoked in BL2 to flush this information
1142to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001143
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001144Function : plat_log_get_prefix()
1145~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001146
1147::
1148
1149 Argument : unsigned int
1150 Return : const char *
1151
1152This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001153prepended to all the log output from TF-A. The `log_level` (argument) will
1154correspond to one of the standard log levels defined in debug.h. The platform
1155can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001156the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001157increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001158
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001159Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001160~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001161
1162::
1163
1164 Argument : void
1165 Return : int32_t
1166
1167This function returns soc version which mainly consist of below fields
1168
1169::
1170
1171 soc_version[30:24] = JEP-106 continuation code for the SiP
1172 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001173 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001174
1175Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001176~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001177
1178::
1179
1180 Argument : void
1181 Return : int32_t
1182
1183This function returns soc revision in below format
1184
1185::
1186
1187 soc_revision[0:30] = SOC revision of specific SOC
1188
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001189Function : plat_is_smccc_feature_available()
1190~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1191
1192::
1193
1194 Argument : u_register_t
1195 Return : int32_t
1196
1197This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1198the SMCCC function specified in the argument; otherwise returns
1199SMC_ARCH_CALL_NOT_SUPPORTED.
1200
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001201Function : plat_mboot_measure_image()
1202~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1203
1204::
1205
1206 Argument : unsigned int, image_info_t *
1207 Return : void
1208
1209When the MEASURED_BOOT flag is enabled:
1210
1211- This function measures the given image and records its measurement using
1212 the measured boot backend driver.
1213- On the Arm FVP port, this function measures the given image using its
1214 passed id and information and then records that measurement in the
1215 Event Log buffer.
1216- This function must return 0 on success, a negative error code otherwise.
1217
1218When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1219
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001220Modifications specific to a Boot Loader stage
1221---------------------------------------------
1222
1223Boot Loader Stage 1 (BL1)
1224-------------------------
1225
1226BL1 implements the reset vector where execution starts from after a cold or
1227warm boot. For each CPU, BL1 is responsible for the following tasks:
1228
1229#. Handling the reset as described in section 2.2
1230
1231#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1232 only this CPU executes the remaining BL1 code, including loading and passing
1233 control to the BL2 stage.
1234
1235#. Identifying and starting the Firmware Update process (if required).
1236
1237#. Loading the BL2 image from non-volatile storage into secure memory at the
1238 address specified by the platform defined constant ``BL2_BASE``.
1239
1240#. Populating a ``meminfo`` structure with the following information in memory,
1241 accessible by BL2 immediately upon entry.
1242
1243 ::
1244
1245 meminfo.total_base = Base address of secure RAM visible to BL2
1246 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001247
Soby Mathew97b1bff2018-09-27 16:46:41 +01001248 By default, BL1 places this ``meminfo`` structure at the end of secure
1249 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001250
Soby Mathewb1bf0442018-02-16 14:52:52 +00001251 It is possible for the platform to decide where it wants to place the
1252 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1253 BL2 by overriding the weak default implementation of
1254 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001255
1256The following functions need to be implemented by the platform port to enable
1257BL1 to perform the above tasks.
1258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001259Function : bl1_early_platform_setup() [mandatory]
1260~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001261
1262::
1263
1264 Argument : void
1265 Return : void
1266
1267This function executes with the MMU and data caches disabled. It is only called
1268by the primary CPU.
1269
Dan Handley610e7e12018-03-01 18:44:00 +00001270On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001271
1272- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1273
1274- Initializes a UART (PL011 console), which enables access to the ``printf``
1275 family of functions in BL1.
1276
1277- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1278 the CCI slave interface corresponding to the cluster that includes the
1279 primary CPU.
1280
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001281Function : bl1_plat_arch_setup() [mandatory]
1282~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001283
1284::
1285
1286 Argument : void
1287 Return : void
1288
1289This function performs any platform-specific and architectural setup that the
1290platform requires. Platform-specific setup might include configuration of
1291memory controllers and the interconnect.
1292
Dan Handley610e7e12018-03-01 18:44:00 +00001293In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001294
1295This function helps fulfill requirement 2 above.
1296
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001297Function : bl1_platform_setup() [mandatory]
1298~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001299
1300::
1301
1302 Argument : void
1303 Return : void
1304
1305This function executes with the MMU and data caches enabled. It is responsible
1306for performing any remaining platform-specific setup that can occur after the
1307MMU and data cache have been enabled.
1308
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001309if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001310sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001311
Dan Handley610e7e12018-03-01 18:44:00 +00001312In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001313layer used to load the next bootloader image.
1314
1315This function helps fulfill requirement 4 above.
1316
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001317Function : bl1_plat_sec_mem_layout() [mandatory]
1318~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001319
1320::
1321
1322 Argument : void
1323 Return : meminfo *
1324
1325This function should only be called on the cold boot path. It executes with the
1326MMU and data caches enabled. The pointer returned by this function must point to
1327a ``meminfo`` structure containing the extents and availability of secure RAM for
1328the BL1 stage.
1329
1330::
1331
1332 meminfo.total_base = Base address of secure RAM visible to BL1
1333 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001334
1335This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1336populates a similar structure to tell BL2 the extents of memory available for
1337its own use.
1338
1339This function helps fulfill requirements 4 and 5 above.
1340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001341Function : bl1_plat_prepare_exit() [optional]
1342~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001343
1344::
1345
1346 Argument : entry_point_info_t *
1347 Return : void
1348
1349This function is called prior to exiting BL1 in response to the
1350``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1351platform specific clean up or bookkeeping operations before transferring
1352control to the next image. It receives the address of the ``entry_point_info_t``
1353structure passed from BL2. This function runs with MMU disabled.
1354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001355Function : bl1_plat_set_ep_info() [optional]
1356~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001357
1358::
1359
1360 Argument : unsigned int image_id, entry_point_info_t *ep_info
1361 Return : void
1362
1363This function allows platforms to override ``ep_info`` for the given ``image_id``.
1364
1365The default implementation just returns.
1366
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001367Function : bl1_plat_get_next_image_id() [optional]
1368~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001369
1370::
1371
1372 Argument : void
1373 Return : unsigned int
1374
1375This and the following function must be overridden to enable the FWU feature.
1376
1377BL1 calls this function after platform setup to identify the next image to be
1378loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1379with the normal boot sequence, which loads and executes BL2. If the platform
1380returns a different image id, BL1 assumes that Firmware Update is required.
1381
Dan Handley610e7e12018-03-01 18:44:00 +00001382The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001383platforms override this function to detect if firmware update is required, and
1384if so, return the first image in the firmware update process.
1385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001386Function : bl1_plat_get_image_desc() [optional]
1387~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001388
1389::
1390
1391 Argument : unsigned int image_id
1392 Return : image_desc_t *
1393
1394BL1 calls this function to get the image descriptor information ``image_desc_t``
1395for the provided ``image_id`` from the platform.
1396
Dan Handley610e7e12018-03-01 18:44:00 +00001397The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001398standard platforms return an image descriptor corresponding to BL2 or one of
1399the firmware update images defined in the Trusted Board Boot Requirements
1400specification.
1401
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001402Function : bl1_plat_handle_pre_image_load() [optional]
1403~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001404
1405::
1406
Soby Mathew2f38ce32018-02-08 17:45:12 +00001407 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001408 Return : int
1409
1410This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001411corresponding to ``image_id``. This function is invoked in BL1, both in cold
1412boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001413
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001414Function : bl1_plat_handle_post_image_load() [optional]
1415~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001416
1417::
1418
Soby Mathew2f38ce32018-02-08 17:45:12 +00001419 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001420 Return : int
1421
1422This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001423corresponding to ``image_id``. This function is invoked in BL1, both in cold
1424boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001425
Soby Mathewb1bf0442018-02-16 14:52:52 +00001426The default weak implementation of this function calculates the amount of
1427Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1428structure at the beginning of this free memory and populates it. The address
1429of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1430information to BL2.
1431
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001432Function : bl1_plat_fwu_done() [optional]
1433~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001434
1435::
1436
1437 Argument : unsigned int image_id, uintptr_t image_src,
1438 unsigned int image_size
1439 Return : void
1440
1441BL1 calls this function when the FWU process is complete. It must not return.
1442The platform may override this function to take platform specific action, for
1443example to initiate the normal boot flow.
1444
1445The default implementation spins forever.
1446
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001447Function : bl1_plat_mem_check() [mandatory]
1448~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001449
1450::
1451
1452 Argument : uintptr_t mem_base, unsigned int mem_size,
1453 unsigned int flags
1454 Return : int
1455
1456BL1 calls this function while handling FWU related SMCs, more specifically when
1457copying or authenticating an image. Its responsibility is to ensure that the
1458region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1459that this memory corresponds to either a secure or non-secure memory region as
1460indicated by the security state of the ``flags`` argument.
1461
1462This function can safely assume that the value resulting from the addition of
1463``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1464overflow.
1465
1466This function must return 0 on success, a non-null error code otherwise.
1467
1468The default implementation of this function asserts therefore platforms must
1469override it when using the FWU feature.
1470
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001471Function : bl1_plat_mboot_init() [optional]
1472~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1473
1474::
1475
1476 Argument : void
1477 Return : void
1478
1479When the MEASURED_BOOT flag is enabled:
1480
1481- This function is used to initialize the backend driver(s) of measured boot.
1482- On the Arm FVP port, this function is used to initialize the Event Log
1483 backend driver, and also to write header information in the Event Log buffer.
1484
1485When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1486
1487Function : bl1_plat_mboot_finish() [optional]
1488~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1489
1490::
1491
1492 Argument : void
1493 Return : void
1494
1495When the MEASURED_BOOT flag is enabled:
1496
1497- This function is used to finalize the measured boot backend driver(s),
1498 and also, set the information for the next bootloader component to
1499 extend the measurement if needed.
1500- On the Arm FVP port, this function is used to pass the base address of
1501 the Event Log buffer and its size to BL2 via tb_fw_config to extend the
1502 Event Log buffer with the measurement of various images loaded by BL2.
1503 It results in panic on error.
1504
1505When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1506
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001507Boot Loader Stage 2 (BL2)
1508-------------------------
1509
1510The BL2 stage is executed only by the primary CPU, which is determined in BL1
1511using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001512``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1513``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1514non-volatile storage to secure/non-secure RAM. After all the images are loaded
1515then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1516images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001517
1518The following functions must be implemented by the platform port to enable BL2
1519to perform the above tasks.
1520
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001521Function : bl2_early_platform_setup2() [mandatory]
1522~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001523
1524::
1525
Soby Mathew97b1bff2018-09-27 16:46:41 +01001526 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001527 Return : void
1528
1529This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001530by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1531are platform specific.
1532
1533On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001534
Manish V Badarkhe81414512020-06-24 15:58:38 +01001535 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001536
1537 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1538 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001539
Dan Handley610e7e12018-03-01 18:44:00 +00001540On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001541
1542- Initializes a UART (PL011 console), which enables access to the ``printf``
1543 family of functions in BL2.
1544
1545- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001546 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1547 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001548
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001549Function : bl2_plat_arch_setup() [mandatory]
1550~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001551
1552::
1553
1554 Argument : void
1555 Return : void
1556
1557This function executes with the MMU and data caches disabled. It is only called
1558by the primary CPU.
1559
1560The purpose of this function is to perform any architectural initialization
1561that varies across platforms.
1562
Dan Handley610e7e12018-03-01 18:44:00 +00001563On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001564
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001565Function : bl2_platform_setup() [mandatory]
1566~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001567
1568::
1569
1570 Argument : void
1571 Return : void
1572
1573This function may execute with the MMU and data caches enabled if the platform
1574port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1575called by the primary CPU.
1576
1577The purpose of this function is to perform any platform initialization
1578specific to BL2.
1579
Dan Handley610e7e12018-03-01 18:44:00 +00001580In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001581configuration of the TrustZone controller to allow non-secure masters access
1582to most of DRAM. Part of DRAM is reserved for secure world use.
1583
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001584Function : bl2_plat_handle_pre_image_load() [optional]
1585~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001586
1587::
1588
1589 Argument : unsigned int
1590 Return : int
1591
1592This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001593for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001594loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001595
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001596Function : bl2_plat_handle_post_image_load() [optional]
1597~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001598
1599::
1600
1601 Argument : unsigned int
1602 Return : int
1603
1604This function can be used by the platforms to update/use image information
1605for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001606loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001607
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001608Function : bl2_plat_preload_setup [optional]
1609~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001610
1611::
John Tsichritzisee10e792018-06-06 09:38:10 +01001612
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001613 Argument : void
1614 Return : void
1615
1616This optional function performs any BL2 platform initialization
1617required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001618bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001619boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001620plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001621
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001622Function : plat_try_next_boot_source() [optional]
1623~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001624
1625::
John Tsichritzisee10e792018-06-06 09:38:10 +01001626
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001627 Argument : void
1628 Return : int
1629
1630This optional function passes to the next boot source in the redundancy
1631sequence.
1632
1633This function moves the current boot redundancy source to the next
1634element in the boot sequence. If there are no more boot sources then it
1635must return 0, otherwise it must return 1. The default implementation
1636of this always returns 0.
1637
Roberto Vargasb1584272017-11-20 13:36:10 +00001638Boot Loader Stage 2 (BL2) at EL3
1639--------------------------------
1640
Dan Handley610e7e12018-03-01 18:44:00 +00001641When the platform has a non-TF-A Boot ROM it is desirable to jump
1642directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001643execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1644document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001645
1646All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001647bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1648their work is done now by bl2_el3_early_platform_setup and
1649bl2_el3_plat_arch_setup. These functions should generally implement
1650the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001651
1652
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001653Function : bl2_el3_early_platform_setup() [mandatory]
1654~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001655
1656::
John Tsichritzisee10e792018-06-06 09:38:10 +01001657
Roberto Vargasb1584272017-11-20 13:36:10 +00001658 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1659 Return : void
1660
1661This function executes with the MMU and data caches disabled. It is only called
1662by the primary CPU. This function receives four parameters which can be used
1663by the platform to pass any needed information from the Boot ROM to BL2.
1664
Dan Handley610e7e12018-03-01 18:44:00 +00001665On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001666
1667- Initializes a UART (PL011 console), which enables access to the ``printf``
1668 family of functions in BL2.
1669
1670- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001671 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1672 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001673
1674- Initializes the private variables that define the memory layout used.
1675
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001676Function : bl2_el3_plat_arch_setup() [mandatory]
1677~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001678
1679::
John Tsichritzisee10e792018-06-06 09:38:10 +01001680
Roberto Vargasb1584272017-11-20 13:36:10 +00001681 Argument : void
1682 Return : void
1683
1684This function executes with the MMU and data caches disabled. It is only called
1685by the primary CPU.
1686
1687The purpose of this function is to perform any architectural initialization
1688that varies across platforms.
1689
Dan Handley610e7e12018-03-01 18:44:00 +00001690On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001691
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001692Function : bl2_el3_plat_prepare_exit() [optional]
1693~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001694
1695::
John Tsichritzisee10e792018-06-06 09:38:10 +01001696
Roberto Vargasb1584272017-11-20 13:36:10 +00001697 Argument : void
1698 Return : void
1699
1700This function is called prior to exiting BL2 and run the next image.
1701It should be used to perform platform specific clean up or bookkeeping
1702operations before transferring control to the next image. This function
1703runs with MMU disabled.
1704
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001705FWU Boot Loader Stage 2 (BL2U)
1706------------------------------
1707
1708The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1709process and is executed only by the primary CPU. BL1 passes control to BL2U at
1710``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1711
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001712#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1713 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1714 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1715 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001716 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1717 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1718
1719#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001720 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001721 normal world can access DDR memory.
1722
1723The following functions must be implemented by the platform port to enable
1724BL2U to perform the tasks mentioned above.
1725
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001726Function : bl2u_early_platform_setup() [mandatory]
1727~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001728
1729::
1730
1731 Argument : meminfo *mem_info, void *plat_info
1732 Return : void
1733
1734This function executes with the MMU and data caches disabled. It is only
1735called by the primary CPU. The arguments to this function is the address
1736of the ``meminfo`` structure and platform specific info provided by BL1.
1737
1738The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1739private storage as the original memory may be subsequently overwritten by BL2U.
1740
Dan Handley610e7e12018-03-01 18:44:00 +00001741On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001742to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001743variable.
1744
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001745Function : bl2u_plat_arch_setup() [mandatory]
1746~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001747
1748::
1749
1750 Argument : void
1751 Return : void
1752
1753This function executes with the MMU and data caches disabled. It is only
1754called by the primary CPU.
1755
1756The purpose of this function is to perform any architectural initialization
1757that varies across platforms, for example enabling the MMU (since the memory
1758map differs across platforms).
1759
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001760Function : bl2u_platform_setup() [mandatory]
1761~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001762
1763::
1764
1765 Argument : void
1766 Return : void
1767
1768This function may execute with the MMU and data caches enabled if the platform
1769port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1770called by the primary CPU.
1771
1772The purpose of this function is to perform any platform initialization
1773specific to BL2U.
1774
Dan Handley610e7e12018-03-01 18:44:00 +00001775In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001776configuration of the TrustZone controller to allow non-secure masters access
1777to most of DRAM. Part of DRAM is reserved for secure world use.
1778
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001779Function : bl2u_plat_handle_scp_bl2u() [optional]
1780~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001781
1782::
1783
1784 Argument : void
1785 Return : int
1786
1787This function is used to perform any platform-specific actions required to
1788handle the SCP firmware. Typically it transfers the image into SCP memory using
1789a platform-specific protocol and waits until SCP executes it and signals to the
1790Application Processor (AP) for BL2U execution to continue.
1791
1792This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001793This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001794
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001795Function : bl2_plat_mboot_init() [optional]
1796~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1797
1798::
1799
1800 Argument : void
1801 Return : void
1802
1803When the MEASURED_BOOT flag is enabled:
1804
1805- This function is used to initialize the backend driver(s) of measured boot.
1806- On the Arm FVP port, this function is used to initialize the Event Log
1807 backend driver with the Event Log buffer information (base address and
1808 size) received from BL1. It results in panic on error.
1809
1810When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1811
1812Function : bl2_plat_mboot_finish() [optional]
1813~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1814
1815::
1816
1817 Argument : void
1818 Return : void
1819
1820When the MEASURED_BOOT flag is enabled:
1821
1822- This function is used to finalize the measured boot backend driver(s),
1823 and also, set the information for the next bootloader component to extend
1824 the measurement if needed.
1825- On the Arm FVP port, this function is used to pass the Event Log buffer
1826 information (base address and size) to non-secure(BL33) and trusted OS(BL32)
1827 via nt_fw and tos_fw config respectively. It results in panic on error.
1828
1829When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1830
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001831Boot Loader Stage 3-1 (BL31)
1832----------------------------
1833
1834During cold boot, the BL31 stage is executed only by the primary CPU. This is
1835determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1836control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1837CPUs. BL31 executes at EL3 and is responsible for:
1838
1839#. Re-initializing all architectural and platform state. Although BL1 performs
1840 some of this initialization, BL31 remains resident in EL3 and must ensure
1841 that EL3 architectural and platform state is completely initialized. It
1842 should make no assumptions about the system state when it receives control.
1843
1844#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001845 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1846 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001847
1848#. Providing runtime firmware services. Currently, BL31 only implements a
1849 subset of the Power State Coordination Interface (PSCI) API as a runtime
1850 service. See Section 3.3 below for details of porting the PSCI
1851 implementation.
1852
1853#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001854 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001855 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001856 executed and run the corresponding image. On ARM platforms, BL31 uses the
1857 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001858
1859If BL31 is a reset vector, It also needs to handle the reset as specified in
1860section 2.2 before the tasks described above.
1861
1862The following functions must be implemented by the platform port to enable BL31
1863to perform the above tasks.
1864
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001865Function : bl31_early_platform_setup2() [mandatory]
1866~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001867
1868::
1869
Soby Mathew97b1bff2018-09-27 16:46:41 +01001870 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001871 Return : void
1872
1873This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001874by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1875platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001876
Soby Mathew97b1bff2018-09-27 16:46:41 +01001877In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001878
Soby Mathew97b1bff2018-09-27 16:46:41 +01001879 arg0 - The pointer to the head of `bl_params_t` list
1880 which is list of executable images following BL31,
1881
1882 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01001883 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01001884
Mikael Olsson0232da22021-02-12 17:30:16 +01001885 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01001886 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01001887
1888 arg2 - Points to load address of HW_CONFIG if present
1889
1890 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1891 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001892
Soby Mathew97b1bff2018-09-27 16:46:41 +01001893The function runs through the `bl_param_t` list and extracts the entry point
1894information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001895
1896- Initialize a UART (PL011 console), which enables access to the ``printf``
1897 family of functions in BL31.
1898
1899- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1900 CCI slave interface corresponding to the cluster that includes the primary
1901 CPU.
1902
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001903Function : bl31_plat_arch_setup() [mandatory]
1904~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001905
1906::
1907
1908 Argument : void
1909 Return : void
1910
1911This function executes with the MMU and data caches disabled. It is only called
1912by the primary CPU.
1913
1914The purpose of this function is to perform any architectural initialization
1915that varies across platforms.
1916
Dan Handley610e7e12018-03-01 18:44:00 +00001917On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001918
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001919Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001920~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1921
1922::
1923
1924 Argument : void
1925 Return : void
1926
1927This function may execute with the MMU and data caches enabled if the platform
1928port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1929called by the primary CPU.
1930
1931The purpose of this function is to complete platform initialization so that both
1932BL31 runtime services and normal world software can function correctly.
1933
Dan Handley610e7e12018-03-01 18:44:00 +00001934On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001935
1936- Initialize the generic interrupt controller.
1937
1938 Depending on the GIC driver selected by the platform, the appropriate GICv2
1939 or GICv3 initialization will be done, which mainly consists of:
1940
1941 - Enable secure interrupts in the GIC CPU interface.
1942 - Disable the legacy interrupt bypass mechanism.
1943 - Configure the priority mask register to allow interrupts of all priorities
1944 to be signaled to the CPU interface.
1945 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1946 - Target all secure SPIs to CPU0.
1947 - Enable these secure interrupts in the GIC distributor.
1948 - Configure all other interrupts as non-secure.
1949 - Enable signaling of secure interrupts in the GIC distributor.
1950
1951- Enable system-level implementation of the generic timer counter through the
1952 memory mapped interface.
1953
1954- Grant access to the system counter timer module
1955
1956- Initialize the power controller device.
1957
1958 In particular, initialise the locks that prevent concurrent accesses to the
1959 power controller device.
1960
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001961Function : bl31_plat_runtime_setup() [optional]
1962~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001963
1964::
1965
1966 Argument : void
1967 Return : void
1968
1969The purpose of this function is allow the platform to perform any BL31 runtime
1970setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001971implementation of this function will invoke ``console_switch_state()`` to switch
1972console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001973
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001974Function : bl31_plat_get_next_image_ep_info() [mandatory]
1975~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001976
1977::
1978
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001979 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001980 Return : entry_point_info *
1981
1982This function may execute with the MMU and data caches enabled if the platform
1983port does the necessary initializations in ``bl31_plat_arch_setup()``.
1984
1985This function is called by ``bl31_main()`` to retrieve information provided by
1986BL2 for the next image in the security state specified by the argument. BL31
1987uses this information to pass control to that image in the specified security
1988state. This function must return a pointer to the ``entry_point_info`` structure
1989(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1990should return NULL otherwise.
1991
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001992Function : bl31_plat_enable_mmu [optional]
1993~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1994
1995::
1996
1997 Argument : uint32_t
1998 Return : void
1999
2000This function enables the MMU. The boot code calls this function with MMU and
2001caches disabled. This function should program necessary registers to enable
2002translation, and upon return, the MMU on the calling PE must be enabled.
2003
2004The function must honor flags passed in the first argument. These flags are
2005defined by the translation library, and can be found in the file
2006``include/lib/xlat_tables/xlat_mmu_helpers.h``.
2007
2008On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002009is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002010
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002011Function : plat_init_apkey [optional]
2012~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002013
2014::
2015
2016 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002017 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002018
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002019This function returns the 128-bit value which can be used to program ARMv8.3
2020pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002021
2022The value should be obtained from a reliable source of randomness.
2023
2024This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002025Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002026
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002027Function : plat_get_syscnt_freq2() [mandatory]
2028~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002029
2030::
2031
2032 Argument : void
2033 Return : unsigned int
2034
2035This function is used by the architecture setup code to retrieve the counter
2036frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00002037``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002038of the system counter, which is retrieved from the first entry in the frequency
2039modes table.
2040
johpow013e24c162020-04-22 14:05:13 -05002041Function : plat_arm_set_twedel_scr_el3() [optional]
2042~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2043
2044::
2045
2046 Argument : void
2047 Return : uint32_t
2048
2049This function is used in v8.6+ systems to set the WFE trap delay value in
2050SCR_EL3. If this function returns TWED_DISABLED or is left unimplemented, this
2051feature is not enabled. The only hook provided is to set the TWED fields in
2052SCR_EL3, there are similar fields in HCR_EL2, SCTLR_EL2, and SCTLR_EL1 to adjust
2053the WFE trap delays in lower ELs and these fields should be set by the
2054appropriate EL2 or EL1 code depending on the platform configuration.
2055
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002056#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2057~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002058
2059When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2060bytes) aligned to the cache line boundary that should be allocated per-cpu to
2061accommodate all the bakery locks.
2062
2063If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
2064calculates the size of the ``bakery_lock`` input section, aligns it to the
2065nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2066and stores the result in a linker symbol. This constant prevents a platform
2067from relying on the linker and provide a more efficient mechanism for
2068accessing per-cpu bakery lock information.
2069
2070If this constant is defined and its value is not equal to the value
2071calculated by the linker then a link time assertion is raised. A compile time
2072assertion is raised if the value of the constant is not aligned to the cache
2073line boundary.
2074
Paul Beesleyf8640672019-04-12 14:19:42 +01002075.. _porting_guide_sdei_requirements:
2076
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002077SDEI porting requirements
2078~~~~~~~~~~~~~~~~~~~~~~~~~
2079
Paul Beesley606d8072019-03-13 13:58:02 +00002080The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002081and functions, of which some are optional, and some others mandatory.
2082
2083Macros
2084......
2085
2086Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2088
2089This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002090Normal |SDEI| events on the platform. This must have a higher value
2091(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002092
2093Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2095
2096This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002097Critical |SDEI| events on the platform. This must have a lower value
2098(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002099
Paul Beesley606d8072019-03-13 13:58:02 +00002100**Note**: |SDEI| exception priorities must be the lowest among Secure
2101priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2102be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002103
2104Functions
2105.........
2106
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002107Function: int plat_sdei_validate_entry_point() [optional]
2108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002109
2110::
2111
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002112 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002113 Return: int
2114
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002115This function validates the entry point address of the event handler provided by
2116the client for both event registration and *Complete and Resume* |SDEI| calls.
2117The function ensures that the address is valid in the client translation regime.
2118
2119The second argument is the exception level that the client is executing in. It
2120can be Non-Secure EL1 or Non-Secure EL2.
2121
2122The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002123
Dan Handley610e7e12018-03-01 18:44:00 +00002124The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002125translates the entry point address within the client translation regime and
2126further ensures that the resulting physical address is located in Non-secure
2127DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002128
2129Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2131
2132::
2133
2134 Argument: uint64_t
2135 Argument: unsigned int
2136 Return: void
2137
Paul Beesley606d8072019-03-13 13:58:02 +00002138|SDEI| specification requires that a PE comes out of reset with the events
2139masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2140|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2141time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002142
Paul Beesley606d8072019-03-13 13:58:02 +00002143Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002144events are masked on the PE, the dispatcher implementation invokes the function
2145``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2146interrupt and the interrupt ID are passed as parameters.
2147
2148The default implementation only prints out a warning message.
2149
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002150.. _porting_guide_trng_requirements:
2151
2152TRNG porting requirements
2153~~~~~~~~~~~~~~~~~~~~~~~~~
2154
2155The |TRNG| backend requires the platform to provide the following values
2156and mandatory functions.
2157
2158Values
2159......
2160
2161value: uuid_t plat_trng_uuid [mandatory]
2162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2163
2164This value must be defined to the UUID of the TRNG backend that is specific to
2165the hardware after ``plat_trng_setup`` function is called. This value must
2166conform to the SMCCC calling convention; The most significant 32 bits of the
2167UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2168w0 indicates failure to get a TRNG source.
2169
2170Functions
2171.........
2172
2173Function: void plat_entropy_setup(void) [mandatory]
2174^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2175
2176::
2177
2178 Argument: none
2179 Return: none
2180
2181This function is expected to do platform-specific initialization of any TRNG
2182hardware. This may include generating a UUID from a hardware-specific seed.
2183
2184Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2186
2187::
2188
2189 Argument: uint64_t *
2190 Return: bool
2191 Out : when the return value is true, the entropy has been written into the
2192 storage pointed to
2193
2194This function writes entropy into storage provided by the caller. If no entropy
2195is available, it must return false and the storage must not be written.
2196
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002197Power State Coordination Interface (in BL31)
2198--------------------------------------------
2199
Dan Handley610e7e12018-03-01 18:44:00 +00002200The TF-A implementation of the PSCI API is based around the concept of a
2201*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2202share some state on which power management operations can be performed as
2203specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2204a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2205*power domains* are arranged in a hierarchical tree structure and each
2206*power domain* can be identified in a system by the cpu index of any CPU that
2207is part of that domain and a *power domain level*. A processing element (for
2208example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2209logical grouping of CPUs that share some state, then level 1 is that group of
2210CPUs (for example, a cluster), and level 2 is a group of clusters (for
2211example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002212organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002213
2214BL31's platform initialization code exports a pointer to the platform-specific
2215power management operations required for the PSCI implementation to function
2216correctly. This information is populated in the ``plat_psci_ops`` structure. The
2217PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2218power management operations on the power domains. For example, the target
2219CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2220handler (if present) is called for the CPU power domain.
2221
2222The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2223describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002224defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002225array of local power states where each index corresponds to a power domain
2226level. Each entry contains the local power state the power domain at that power
2227level could enter. It depends on the ``validate_power_state()`` handler to
2228convert the power-state parameter (possibly encoding a composite power state)
2229passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2230
2231The following functions form part of platform port of PSCI functionality.
2232
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002233Function : plat_psci_stat_accounting_start() [optional]
2234~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002235
2236::
2237
2238 Argument : const psci_power_state_t *
2239 Return : void
2240
2241This is an optional hook that platforms can implement for residency statistics
2242accounting before entering a low power state. The ``pwr_domain_state`` field of
2243``state_info`` (first argument) can be inspected if stat accounting is done
2244differently at CPU level versus higher levels. As an example, if the element at
2245index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2246state, special hardware logic may be programmed in order to keep track of the
2247residency statistics. For higher levels (array indices > 0), the residency
2248statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2249default implementation will use PMF to capture timestamps.
2250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002251Function : plat_psci_stat_accounting_stop() [optional]
2252~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002253
2254::
2255
2256 Argument : const psci_power_state_t *
2257 Return : void
2258
2259This is an optional hook that platforms can implement for residency statistics
2260accounting after exiting from a low power state. The ``pwr_domain_state`` field
2261of ``state_info`` (first argument) can be inspected if stat accounting is done
2262differently at CPU level versus higher levels. As an example, if the element at
2263index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2264state, special hardware logic may be programmed in order to keep track of the
2265residency statistics. For higher levels (array indices > 0), the residency
2266statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2267default implementation will use PMF to capture timestamps.
2268
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002269Function : plat_psci_stat_get_residency() [optional]
2270~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002271
2272::
2273
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002274 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002275 Return : u_register_t
2276
2277This is an optional interface that is is invoked after resuming from a low power
2278state and provides the time spent resident in that low power state by the power
2279domain at a particular power domain level. When a CPU wakes up from suspend,
2280all its parent power domain levels are also woken up. The generic PSCI code
2281invokes this function for each parent power domain that is resumed and it
2282identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2283argument) describes the low power state that the power domain has resumed from.
2284The current CPU is the first CPU in the power domain to resume from the low
2285power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2286CPU in the power domain to suspend and may be needed to calculate the residency
2287for that power domain.
2288
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002289Function : plat_get_target_pwr_state() [optional]
2290~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002291
2292::
2293
2294 Argument : unsigned int, const plat_local_state_t *, unsigned int
2295 Return : plat_local_state_t
2296
2297The PSCI generic code uses this function to let the platform participate in
2298state coordination during a power management operation. The function is passed
2299a pointer to an array of platform specific local power state ``states`` (second
2300argument) which contains the requested power state for each CPU at a particular
2301power domain level ``lvl`` (first argument) within the power domain. The function
2302is expected to traverse this array of upto ``ncpus`` (third argument) and return
2303a coordinated target power state by the comparing all the requested power
2304states. The target power state should not be deeper than any of the requested
2305power states.
2306
2307A weak definition of this API is provided by default wherein it assumes
2308that the platform assigns a local state value in order of increasing depth
2309of the power state i.e. for two power states X & Y, if X < Y
2310then X represents a shallower power state than Y. As a result, the
2311coordinated target local power state for a power domain will be the minimum
2312of the requested local power state values.
2313
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002314Function : plat_get_power_domain_tree_desc() [mandatory]
2315~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002316
2317::
2318
2319 Argument : void
2320 Return : const unsigned char *
2321
2322This function returns a pointer to the byte array containing the power domain
2323topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002324described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2325initialization code requires this array to be described by the platform, either
2326statically or dynamically, to initialize the power domain topology tree. In case
2327the array is populated dynamically, then plat_core_pos_by_mpidr() and
2328plat_my_core_pos() should also be implemented suitably so that the topology tree
2329description matches the CPU indices returned by these APIs. These APIs together
2330form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002331
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002332Function : plat_setup_psci_ops() [mandatory]
2333~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002334
2335::
2336
2337 Argument : uintptr_t, const plat_psci_ops **
2338 Return : int
2339
2340This function may execute with the MMU and data caches enabled if the platform
2341port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2342called by the primary CPU.
2343
2344This function is called by PSCI initialization code. Its purpose is to let
2345the platform layer know about the warm boot entrypoint through the
2346``sec_entrypoint`` (first argument) and to export handler routines for
2347platform-specific psci power management actions by populating the passed
2348pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2349
2350A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002351the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002352``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002353platform wants to support, the associated operation or operations in this
2354structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002355:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002356function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002357structure instead of providing an empty implementation.
2358
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002359plat_psci_ops.cpu_standby()
2360...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002361
2362Perform the platform-specific actions to enter the standby state for a cpu
2363indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002364wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002365For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2366the suspend state type specified in the ``power-state`` parameter should be
2367STANDBY and the target power domain level specified should be the CPU. The
2368handler should put the CPU into a low power retention state (usually by
2369issuing a wfi instruction) and ensure that it can be woken up from that
2370state by a normal interrupt. The generic code expects the handler to succeed.
2371
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002372plat_psci_ops.pwr_domain_on()
2373.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002374
2375Perform the platform specific actions to power on a CPU, specified
2376by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002377return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002379plat_psci_ops.pwr_domain_off()
2380..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002381
2382Perform the platform specific actions to prepare to power off the calling CPU
2383and its higher parent power domain levels as indicated by the ``target_state``
2384(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2385
2386The ``target_state`` encodes the platform coordinated target local power states
2387for the CPU power domain and its parent power domain levels. The handler
2388needs to perform power management operation corresponding to the local state
2389at each power level.
2390
2391For this handler, the local power state for the CPU power domain will be a
2392power down state where as it could be either power down, retention or run state
2393for the higher power domain levels depending on the result of state
2394coordination. The generic code expects the handler to succeed.
2395
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002396plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2397...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002398
2399This optional function may be used as a performance optimization to replace
2400or complement pwr_domain_suspend() on some platforms. Its calling semantics
2401are identical to pwr_domain_suspend(), except the PSCI implementation only
2402calls this function when suspending to a power down state, and it guarantees
2403that data caches are enabled.
2404
2405When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2406before calling pwr_domain_suspend(). If the target_state corresponds to a
2407power down state and it is safe to perform some or all of the platform
2408specific actions in that function with data caches enabled, it may be more
2409efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2410= 1, data caches remain enabled throughout, and so there is no advantage to
2411moving platform specific actions to this function.
2412
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002413plat_psci_ops.pwr_domain_suspend()
2414..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002415
2416Perform the platform specific actions to prepare to suspend the calling
2417CPU and its higher parent power domain levels as indicated by the
2418``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2419API implementation.
2420
2421The ``target_state`` has a similar meaning as described in
2422the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2423target local power states for the CPU power domain and its parent
2424power domain levels. The handler needs to perform power management operation
2425corresponding to the local state at each power level. The generic code
2426expects the handler to succeed.
2427
Douglas Raillarda84996b2017-08-02 16:57:32 +01002428The difference between turning a power domain off versus suspending it is that
2429in the former case, the power domain is expected to re-initialize its state
2430when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2431case, the power domain is expected to save enough state so that it can resume
2432execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002433``pwr_domain_suspend_finish()``).
2434
Douglas Raillarda84996b2017-08-02 16:57:32 +01002435When suspending a core, the platform can also choose to power off the GICv3
2436Redistributor and ITS through an implementation-defined sequence. To achieve
2437this safely, the ITS context must be saved first. The architectural part is
2438implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2439sequence is implementation defined and it is therefore the responsibility of
2440the platform code to implement the necessary sequence. Then the GIC
2441Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2442Powering off the Redistributor requires the implementation to support it and it
2443is the responsibility of the platform code to execute the right implementation
2444defined sequence.
2445
2446When a system suspend is requested, the platform can also make use of the
2447``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2448it has saved the context of the Redistributors and ITS of all the cores in the
2449system. The context of the Distributor can be large and may require it to be
2450allocated in a special area if it cannot fit in the platform's global static
2451data, for example in DRAM. The Distributor can then be powered down using an
2452implementation-defined sequence.
2453
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002454plat_psci_ops.pwr_domain_pwr_down_wfi()
2455.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002456
2457This is an optional function and, if implemented, is expected to perform
2458platform specific actions including the ``wfi`` invocation which allows the
2459CPU to powerdown. Since this function is invoked outside the PSCI locks,
2460the actions performed in this hook must be local to the CPU or the platform
2461must ensure that races between multiple CPUs cannot occur.
2462
2463The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2464operation and it encodes the platform coordinated target local power states for
2465the CPU power domain and its parent power domain levels. This function must
2466not return back to the caller.
2467
2468If this function is not implemented by the platform, PSCI generic
2469implementation invokes ``psci_power_down_wfi()`` for power down.
2470
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002471plat_psci_ops.pwr_domain_on_finish()
2472....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002473
2474This function is called by the PSCI implementation after the calling CPU is
2475powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2476It performs the platform-specific setup required to initialize enough state for
2477this CPU to enter the normal world and also provide secure runtime firmware
2478services.
2479
2480The ``target_state`` (first argument) is the prior state of the power domains
2481immediately before the CPU was turned on. It indicates which power domains
2482above the CPU might require initialization due to having previously been in
2483low power states. The generic code expects the handler to succeed.
2484
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002485plat_psci_ops.pwr_domain_on_finish_late() [optional]
2486...........................................................
2487
2488This optional function is called by the PSCI implementation after the calling
2489CPU is fully powered on with respective data caches enabled. The calling CPU and
2490the associated cluster are guaranteed to be participating in coherency. This
2491function gives the flexibility to perform any platform-specific actions safely,
2492such as initialization or modification of shared data structures, without the
2493overhead of explicit cache maintainace operations.
2494
2495The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2496operation. The generic code expects the handler to succeed.
2497
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002498plat_psci_ops.pwr_domain_suspend_finish()
2499.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002500
2501This function is called by the PSCI implementation after the calling CPU is
2502powered on and released from reset in response to an asynchronous wakeup
2503event, for example a timer interrupt that was programmed by the CPU during the
2504``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2505setup required to restore the saved state for this CPU to resume execution
2506in the normal world and also provide secure runtime firmware services.
2507
2508The ``target_state`` (first argument) has a similar meaning as described in
2509the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2510to succeed.
2511
Douglas Raillarda84996b2017-08-02 16:57:32 +01002512If the Distributor, Redistributors or ITS have been powered off as part of a
2513suspend, their context must be restored in this function in the reverse order
2514to how they were saved during suspend sequence.
2515
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002516plat_psci_ops.system_off()
2517..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002518
2519This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2520call. It performs the platform-specific system poweroff sequence after
2521notifying the Secure Payload Dispatcher.
2522
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002523plat_psci_ops.system_reset()
2524............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002525
2526This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2527call. It performs the platform-specific system reset sequence after
2528notifying the Secure Payload Dispatcher.
2529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002530plat_psci_ops.validate_power_state()
2531....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002532
2533This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2534call to validate the ``power_state`` parameter of the PSCI API and if valid,
2535populate it in ``req_state`` (second argument) array as power domain level
2536specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002537return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002538normal world PSCI client.
2539
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002540plat_psci_ops.validate_ns_entrypoint()
2541......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002542
2543This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2544``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2545parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002546the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002547propagated back to the normal world PSCI client.
2548
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002549plat_psci_ops.get_sys_suspend_power_state()
2550...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002551
2552This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2553call to get the ``req_state`` parameter from platform which encodes the power
2554domain level specific local states to suspend to system affinity level. The
2555``req_state`` will be utilized to do the PSCI state coordination and
2556``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2557enter system suspend.
2558
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002559plat_psci_ops.get_pwr_lvl_state_idx()
2560.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002561
2562This is an optional function and, if implemented, is invoked by the PSCI
2563implementation to convert the ``local_state`` (first argument) at a specified
2564``pwr_lvl`` (second argument) to an index between 0 and
2565``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2566supports more than two local power states at each power domain level, that is
2567``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2568local power states.
2569
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002570plat_psci_ops.translate_power_state_by_mpidr()
2571..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002572
2573This is an optional function and, if implemented, verifies the ``power_state``
2574(second argument) parameter of the PSCI API corresponding to a target power
2575domain. The target power domain is identified by using both ``MPIDR`` (first
2576argument) and the power domain level encoded in ``power_state``. The power domain
2577level specific local states are to be extracted from ``power_state`` and be
2578populated in the ``output_state`` (third argument) array. The functionality
2579is similar to the ``validate_power_state`` function described above and is
2580envisaged to be used in case the validity of ``power_state`` depend on the
2581targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002582domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002583function is not implemented, then the generic implementation relies on
2584``validate_power_state`` function to translate the ``power_state``.
2585
2586This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002587power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002588APIs as described in Section 5.18 of `PSCI`_.
2589
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002590plat_psci_ops.get_node_hw_state()
2591.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002592
2593This is an optional function. If implemented this function is intended to return
2594the power state of a node (identified by the first parameter, the ``MPIDR``) in
2595the power domain topology (identified by the second parameter, ``power_level``),
2596as retrieved from a power controller or equivalent component on the platform.
2597Upon successful completion, the implementation must map and return the final
2598status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2599must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2600appropriate.
2601
2602Implementations are not expected to handle ``power_levels`` greater than
2603``PLAT_MAX_PWR_LVL``.
2604
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002605plat_psci_ops.system_reset2()
2606.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002607
2608This is an optional function. If implemented this function is
2609called during the ``SYSTEM_RESET2`` call to perform a reset
2610based on the first parameter ``reset_type`` as specified in
2611`PSCI`_. The parameter ``cookie`` can be used to pass additional
2612reset information. If the ``reset_type`` is not supported, the
2613function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2614resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2615and vendor reset can return other PSCI error codes as defined
2616in `PSCI`_. On success this function will not return.
2617
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002618plat_psci_ops.write_mem_protect()
2619.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002620
2621This is an optional function. If implemented it enables or disables the
2622``MEM_PROTECT`` functionality based on the value of ``val``.
2623A non-zero value enables ``MEM_PROTECT`` and a value of zero
2624disables it. Upon encountering failures it must return a negative value
2625and on success it must return 0.
2626
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002627plat_psci_ops.read_mem_protect()
2628................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002629
2630This is an optional function. If implemented it returns the current
2631state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2632failures it must return a negative value and on success it must
2633return 0.
2634
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002635plat_psci_ops.mem_protect_chk()
2636...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002637
2638This is an optional function. If implemented it checks if a memory
2639region defined by a base address ``base`` and with a size of ``length``
2640bytes is protected by ``MEM_PROTECT``. If the region is protected
2641then it must return 0, otherwise it must return a negative number.
2642
Paul Beesleyf8640672019-04-12 14:19:42 +01002643.. _porting_guide_imf_in_bl31:
2644
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002645Interrupt Management framework (in BL31)
2646----------------------------------------
2647
2648BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2649generated in either security state and targeted to EL1 or EL2 in the non-secure
2650state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002651described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002652
2653A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002654text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002655platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002656present in the platform. Arm standard platform layer supports both
2657`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2658and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2659FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002660``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2661details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002662
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002663See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002664
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002665Function : plat_interrupt_type_to_line() [mandatory]
2666~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002667
2668::
2669
2670 Argument : uint32_t, uint32_t
2671 Return : uint32_t
2672
Dan Handley610e7e12018-03-01 18:44:00 +00002673The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002674interrupt line. The specific line that is signaled depends on how the interrupt
2675controller (IC) reports different interrupt types from an execution context in
2676either security state. The IMF uses this API to determine which interrupt line
2677the platform IC uses to signal each type of interrupt supported by the framework
2678from a given security state. This API must be invoked at EL3.
2679
2680The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01002681:ref:`Interrupt Management Framework`) indicating the target type of the
2682interrupt, the second parameter is the security state of the originating
2683execution context. The return result is the bit position in the ``SCR_EL3``
2684register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002685
Dan Handley610e7e12018-03-01 18:44:00 +00002686In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002687configured as FIQs and Non-secure interrupts as IRQs from either security
2688state.
2689
Dan Handley610e7e12018-03-01 18:44:00 +00002690In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002691configured depends on the security state of the execution context when the
2692interrupt is signalled and are as follows:
2693
2694- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2695 NS-EL0/1/2 context.
2696- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2697 in the NS-EL0/1/2 context.
2698- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2699 context.
2700
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002701Function : plat_ic_get_pending_interrupt_type() [mandatory]
2702~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002703
2704::
2705
2706 Argument : void
2707 Return : uint32_t
2708
2709This API returns the type of the highest priority pending interrupt at the
2710platform IC. The IMF uses the interrupt type to retrieve the corresponding
2711handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2712pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2713``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2714
Dan Handley610e7e12018-03-01 18:44:00 +00002715In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002716Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2717the pending interrupt. The type of interrupt depends upon the id value as
2718follows.
2719
2720#. id < 1022 is reported as a S-EL1 interrupt
2721#. id = 1022 is reported as a Non-secure interrupt.
2722#. id = 1023 is reported as an invalid interrupt type.
2723
Dan Handley610e7e12018-03-01 18:44:00 +00002724In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002725``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2726is read to determine the id of the pending interrupt. The type of interrupt
2727depends upon the id value as follows.
2728
2729#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2730#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2731#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2732#. All other interrupt id's are reported as EL3 interrupt.
2733
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002734Function : plat_ic_get_pending_interrupt_id() [mandatory]
2735~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002736
2737::
2738
2739 Argument : void
2740 Return : uint32_t
2741
2742This API returns the id of the highest priority pending interrupt at the
2743platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2744pending.
2745
Dan Handley610e7e12018-03-01 18:44:00 +00002746In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002747Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2748pending interrupt. The id that is returned by API depends upon the value of
2749the id read from the interrupt controller as follows.
2750
2751#. id < 1022. id is returned as is.
2752#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2753 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2754 This id is returned by the API.
2755#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2756
Dan Handley610e7e12018-03-01 18:44:00 +00002757In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002758EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2759group 0 Register*, is read to determine the id of the pending interrupt. The id
2760that is returned by API depends upon the value of the id read from the
2761interrupt controller as follows.
2762
2763#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2764#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2765 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2766 Register* is read to determine the id of the group 1 interrupt. This id
2767 is returned by the API as long as it is a valid interrupt id
2768#. If the id is any of the special interrupt identifiers,
2769 ``INTR_ID_UNAVAILABLE`` is returned.
2770
2771When the API invoked from S-EL1 for GICv3 systems, the id read from system
2772register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002773Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002774``INTR_ID_UNAVAILABLE`` is returned.
2775
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002776Function : plat_ic_acknowledge_interrupt() [mandatory]
2777~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002778
2779::
2780
2781 Argument : void
2782 Return : uint32_t
2783
2784This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002785the highest pending interrupt has begun. It should return the raw, unmodified
2786value obtained from the interrupt controller when acknowledging an interrupt.
2787The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002788`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002789
Dan Handley610e7e12018-03-01 18:44:00 +00002790This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002791Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2792priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002793It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002794
Dan Handley610e7e12018-03-01 18:44:00 +00002795In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002796from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2797Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2798reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2799group 1*. The read changes the state of the highest pending interrupt from
2800pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002801unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002802
2803The TSP uses this API to start processing of the secure physical timer
2804interrupt.
2805
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002806Function : plat_ic_end_of_interrupt() [mandatory]
2807~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002808
2809::
2810
2811 Argument : uint32_t
2812 Return : void
2813
2814This API is used by the CPU to indicate to the platform IC that processing of
2815the interrupt corresponding to the id (passed as the parameter) has
2816finished. The id should be the same as the id returned by the
2817``plat_ic_acknowledge_interrupt()`` API.
2818
Dan Handley610e7e12018-03-01 18:44:00 +00002819Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002820(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2821system register in case of GICv3 depending on where the API is invoked from,
2822EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2823controller.
2824
2825The TSP uses this API to finish processing of the secure physical timer
2826interrupt.
2827
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002828Function : plat_ic_get_interrupt_type() [mandatory]
2829~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002830
2831::
2832
2833 Argument : uint32_t
2834 Return : uint32_t
2835
2836This API returns the type of the interrupt id passed as the parameter.
2837``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2838interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2839returned depending upon how the interrupt has been configured by the platform
2840IC. This API must be invoked at EL3.
2841
Dan Handley610e7e12018-03-01 18:44:00 +00002842Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002843and Non-secure interrupts as Group1 interrupts. It reads the group value
2844corresponding to the interrupt id from the relevant *Interrupt Group Register*
2845(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2846
Dan Handley610e7e12018-03-01 18:44:00 +00002847In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002848Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2849(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2850as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2851
2852Crash Reporting mechanism (in BL31)
2853-----------------------------------
2854
2855BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002856of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002857on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002858``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2859
2860The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2861implementation of all of them. Platforms may include this file to their
2862makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002863output to be routed over the normal console infrastructure and get printed on
2864consoles configured to output in crash state. ``console_set_scope()`` can be
2865used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00002866
2867.. note::
2868 Platforms are responsible for making sure that they only mark consoles for
2869 use in the crash scope that are able to support this, i.e. that are written
2870 in assembly and conform with the register clobber rules for putc()
2871 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002872
Julius Werneraae9bb12017-09-18 16:49:48 -07002873In some cases (such as debugging very early crashes that happen before the
2874normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002875more explicitly. These platforms may instead provide custom implementations for
2876these. They are executed outside of a C environment and without a stack. Many
2877console drivers provide functions named ``console_xxx_core_init/putc/flush``
2878that are designed to be used by these functions. See Arm platforms (like juno)
2879for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002880
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002881Function : plat_crash_console_init [mandatory]
2882~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002883
2884::
2885
2886 Argument : void
2887 Return : int
2888
2889This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002890console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002891initialization and returns 1 on success.
2892
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002893Function : plat_crash_console_putc [mandatory]
2894~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002895
2896::
2897
2898 Argument : int
2899 Return : int
2900
2901This API is used by the crash reporting mechanism to print a character on the
2902designated crash console. It must only use general purpose registers x1 and
2903x2 to do its work. The parameter and the return value are in general purpose
2904register x0.
2905
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002906Function : plat_crash_console_flush [mandatory]
2907~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002908
2909::
2910
2911 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05002912 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002913
2914This API is used by the crash reporting mechanism to force write of all buffered
2915data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05002916registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002917
Manish Pandey9c9f38a2020-06-30 00:46:08 +01002918.. _External Abort handling and RAS Support:
2919
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002920External Abort handling and RAS Support
2921---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002922
2923Function : plat_ea_handler
2924~~~~~~~~~~~~~~~~~~~~~~~~~~
2925
2926::
2927
2928 Argument : int
2929 Argument : uint64_t
2930 Argument : void *
2931 Argument : void *
2932 Argument : uint64_t
2933 Return : void
2934
2935This function is invoked by the RAS framework for the platform to handle an
2936External Abort received at EL3. The intention of the function is to attempt to
2937resolve the cause of External Abort and return; if that's not possible, to
2938initiate orderly shutdown of the system.
2939
2940The first parameter (``int ea_reason``) indicates the reason for External Abort.
2941Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2942
2943The second parameter (``uint64_t syndrome``) is the respective syndrome
2944presented to EL3 after having received the External Abort. Depending on the
2945nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2946can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2947
2948The third parameter (``void *cookie``) is unused for now. The fourth parameter
2949(``void *handle``) is a pointer to the preempted context. The fifth parameter
2950(``uint64_t flags``) indicates the preempted security state. These parameters
2951are received from the top-level exception handler.
2952
2953If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2954function iterates through RAS handlers registered by the platform. If any of the
2955RAS handlers resolve the External Abort, no further action is taken.
2956
2957If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2958could resolve the External Abort, the default implementation prints an error
2959message, and panics.
2960
2961Function : plat_handle_uncontainable_ea
2962~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2963
2964::
2965
2966 Argument : int
2967 Argument : uint64_t
2968 Return : void
2969
2970This function is invoked by the RAS framework when an External Abort of
2971Uncontainable type is received at EL3. Due to the critical nature of
2972Uncontainable errors, the intention of this function is to initiate orderly
2973shutdown of the system, and is not expected to return.
2974
2975This function must be implemented in assembly.
2976
2977The first and second parameters are the same as that of ``plat_ea_handler``.
2978
2979The default implementation of this function calls
2980``report_unhandled_exception``.
2981
2982Function : plat_handle_double_fault
2983~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2984
2985::
2986
2987 Argument : int
2988 Argument : uint64_t
2989 Return : void
2990
2991This function is invoked by the RAS framework when another External Abort is
2992received at EL3 while one is already being handled. I.e., a call to
2993``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2994this function is to initiate orderly shutdown of the system, and is not expected
2995recover or return.
2996
2997This function must be implemented in assembly.
2998
2999The first and second parameters are the same as that of ``plat_ea_handler``.
3000
3001The default implementation of this function calls
3002``report_unhandled_exception``.
3003
3004Function : plat_handle_el3_ea
3005~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3006
3007::
3008
3009 Return : void
3010
3011This function is invoked when an External Abort is received while executing in
3012EL3. Due to its critical nature, the intention of this function is to initiate
3013orderly shutdown of the system, and is not expected recover or return.
3014
3015This function must be implemented in assembly.
3016
3017The default implementation of this function calls
3018``report_unhandled_exception``.
3019
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003020Build flags
3021-----------
3022
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003023There are some build flags which can be defined by the platform to control
3024inclusion or exclusion of certain BL stages from the FIP image. These flags
3025need to be defined in the platform makefile which will get included by the
3026build system.
3027
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003028- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003029 By default, this flag is defined ``yes`` by the build system and ``BL33``
3030 build option should be supplied as a build option. The platform has the
3031 option of excluding the BL33 image in the ``fip`` image by defining this flag
3032 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3033 are used, this flag will be set to ``no`` automatically.
3034
Paul Beesley07f0a312019-05-16 13:33:18 +01003035Platform include paths
3036----------------------
3037
3038Platforms are allowed to add more include paths to be passed to the compiler.
3039The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3040particular for the file ``platform_def.h``.
3041
3042Example:
3043
3044.. code:: c
3045
3046 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3047
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003048C Library
3049---------
3050
3051To avoid subtle toolchain behavioral dependencies, the header files provided
3052by the compiler are not used. The software is built with the ``-nostdinc`` flag
3053to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00003054required headers are included in the TF-A source tree. The library only
3055contains those C library definitions required by the local implementation. If
3056more functionality is required, the needed library functions will need to be
3057added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003058
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003059Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00003060been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003061from `FreeBSD`_, others have been written specifically for TF-A as well. The
3062files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003063
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01003064SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3065can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003066
3067Storage abstraction layer
3068-------------------------
3069
Louis Mayencourtb5469002019-07-15 13:56:03 +01003070In order to improve platform independence and portability a storage abstraction
3071layer is used to load data from non-volatile platform storage. Currently
3072storage access is only required by BL1 and BL2 phases and performed inside the
3073``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003074
Louis Mayencourtb5469002019-07-15 13:56:03 +01003075.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003076
Dan Handley610e7e12018-03-01 18:44:00 +00003077It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003078development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003079the default means to load data from storage (see :ref:`firmware_design_fip`).
3080The storage layer is described in the header file
3081``include/drivers/io/io_storage.h``. The implementation of the common library is
3082in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003083``drivers/io/``.
3084
Louis Mayencourtb5469002019-07-15 13:56:03 +01003085.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
3086
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003087Each IO driver must provide ``io_dev_*`` structures, as described in
3088``drivers/io/io_driver.h``. These are returned via a mandatory registration
3089function that is called on platform initialization. The semi-hosting driver
3090implementation in ``io_semihosting.c`` can be used as an example.
3091
Louis Mayencourtb5469002019-07-15 13:56:03 +01003092Each platform should register devices and their drivers via the storage
3093abstraction layer. These drivers then need to be initialized by bootloader
3094phases as required in their respective ``blx_platform_setup()`` functions.
3095
3096.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
3097
3098The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3099initialize storage devices before IO operations are called.
3100
3101.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
3102
3103The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003104include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3105Drivers do not have to implement all operations, but each platform must
3106provide at least one driver for a device capable of supporting generic
3107operations such as loading a bootloader image.
3108
3109The current implementation only allows for known images to be loaded by the
3110firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003111``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003112there). The platform layer (``plat_get_image_source()``) then returns a reference
3113to a device and a driver-specific ``spec`` which will be understood by the driver
3114to allow access to the image data.
3115
3116The layer is designed in such a way that is it possible to chain drivers with
3117other drivers. For example, file-system drivers may be implemented on top of
3118physical block devices, both represented by IO devices with corresponding
3119drivers. In such a case, the file-system "binding" with the block device may
3120be deferred until the file-system device is initialised.
3121
3122The abstraction currently depends on structures being statically allocated
3123by the drivers and callers, as the system does not yet provide a means of
3124dynamically allocating memory. This may also have the affect of limiting the
3125amount of open resources per driver.
3126
3127--------------
3128
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05003129*Copyright (c) 2013-2021, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003130
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003131.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00003132.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003133.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003134.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003135.. _SCC: http://www.simple-cc.org/