blob: 54754fe6e03507eedd68636c1932ad483fae73e2 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Paul Beesleyf8640672019-04-12 14:19:42 +010026Please refer to the :ref:`Platform Compatibility Policy` for the policy
27regarding compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010028
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillardd7c21b72017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley610e7e12018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010061
Dan Handley610e7e12018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010092File : platform_def.h [mandatory]
93~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010094
95Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000096include path with the following constants defined. This will require updating
97the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010098
Paul Beesleyf8640672019-04-12 14:19:42 +010099Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100which provides typical values for some of the constants below. These values are
101likely to be suitable for all platform ports.
102
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100103- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100104
105 Defines the linker format used by the platform, for example
106 ``elf64-littleaarch64``.
107
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100108- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100109
110 Defines the processor architecture for the linker by the platform, for
111 example ``aarch64``.
112
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100113- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100114
115 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100116 by ``plat/common/aarch64/platform_mp_stack.S`` and
117 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
David Horstmann051fd6d2020-11-12 15:19:04 +0000119- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
121 Defines the size in bits of the largest cache line across all the cache
122 levels in the platform.
123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100124- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100125
126 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
127 function.
128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100129- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100130
131 Defines the total number of CPUs implemented by the platform across all
132 clusters in the system.
133
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100134- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100135
136 Defines the total number of nodes in the power domain topology
137 tree at all the power domain levels used by the platform.
138 This macro is used by the PSCI implementation to allocate
139 data structures to represent power domain topology.
140
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100141- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100142
143 Defines the maximum power domain level that the power management operations
144 should apply to. More often, but not always, the power domain level
145 corresponds to affinity level. This macro allows the PSCI implementation
146 to know the highest power domain level that it should consider for power
147 management operations in the system that the platform implements. For
148 example, the Base AEM FVP implements two clusters with a configurable
149 number of CPUs and it reports the maximum power domain level as 1.
150
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100151- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100152
153 Defines the local power state corresponding to the deepest power down
154 possible at every power domain level in the platform. The local power
155 states for each level may be sparsely allocated between 0 and this value
156 with 0 being reserved for the RUN state. The PSCI implementation uses this
157 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100158 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 Defines the local power state corresponding to the deepest retention state
163 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100164 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100165 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
170 Defines the maximum number of local power states per power domain level
171 that the platform supports. The default value of this macro is 2 since
172 most platforms just support a maximum of two local power states at each
173 power domain level (power-down and retention). If the platform needs to
174 account for more local power states, then it must redefine this macro.
175
176 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100177 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100178
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
181 Defines the base address in secure ROM where BL1 originally lives. Must be
182 aligned on a page-size boundary.
183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100184- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100185
186 Defines the maximum address in secure ROM that BL1's actual content (i.e.
187 excluding any data section allocated at runtime) can occupy.
188
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100189- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100190
191 Defines the base address in secure RAM where BL1's read-write data will live
192 at runtime. Must be aligned on a page-size boundary.
193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100194- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100195
196 Defines the maximum address in secure RAM that BL1's read-write data can
197 occupy at runtime.
198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100199- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100200
201 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000202 Must be aligned on a page-size boundary. This constant is not applicable
203 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100205- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
207 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000208 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100210- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000211
212 Defines the base address in secure XIP memory where BL2 RO section originally
213 lives. Must be aligned on a page-size boundary. This constant is only needed
214 when BL2_IN_XIP_MEM is set to '1'.
215
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100216- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000217
218 Defines the maximum address in secure XIP memory that BL2's actual content
219 (i.e. excluding any data section allocated at runtime) can occupy. This
220 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
221
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100222- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000223
224 Defines the base address in secure RAM where BL2's read-write data will live
225 at runtime. Must be aligned on a page-size boundary. This constant is only
226 needed when BL2_IN_XIP_MEM is set to '1'.
227
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100228- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000229
230 Defines the maximum address in secure RAM that BL2's read-write data can
231 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
232 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100233
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100234- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
236 Defines the base address in secure RAM where BL2 loads the BL31 binary
237 image. Must be aligned on a page-size boundary.
238
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100239- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100240
241 Defines the maximum address in secure RAM that the BL31 image can occupy.
242
243For every image, the platform must define individual identifiers that will be
244used by BL1 or BL2 to load the corresponding image into memory from non-volatile
245storage. For the sake of performance, integer numbers will be used as
246identifiers. The platform will use those identifiers to return the relevant
247information about the image to be loaded (file handler, load address,
248authentication information, etc.). The following image identifiers are
249mandatory:
250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100251- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100252
253 BL2 image identifier, used by BL1 to load BL2.
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 BL31 image identifier, used by BL2 to load BL31.
258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100259- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
261 BL33 image identifier, used by BL2 to load BL33.
262
263If Trusted Board Boot is enabled, the following certificate identifiers must
264also be defined:
265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100266- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100267
268 BL2 content certificate identifier, used by BL1 to load the BL2 content
269 certificate.
270
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100271- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100272
273 Trusted key certificate identifier, used by BL2 to load the trusted key
274 certificate.
275
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100276- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100277
278 BL31 key certificate identifier, used by BL2 to load the BL31 key
279 certificate.
280
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100281- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100282
283 BL31 content certificate identifier, used by BL2 to load the BL31 content
284 certificate.
285
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100286- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100287
288 BL33 key certificate identifier, used by BL2 to load the BL33 key
289 certificate.
290
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100291- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100292
293 BL33 content certificate identifier, used by BL2 to load the BL33 content
294 certificate.
295
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100296- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299 FWU content certificate.
300
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100301- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100302
Dan Handley610e7e12018-03-01 18:44:00 +0000303 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000305 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 set.
307
308If the AP Firmware Updater Configuration image, BL2U is used, the following
309must also be defined:
310
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100311- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100312
313 Defines the base address in secure memory where BL1 copies the BL2U binary
314 image. Must be aligned on a page-size boundary.
315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100316- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100317
318 Defines the maximum address in secure memory that the BL2U image can occupy.
319
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100320- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100321
322 BL2U image identifier, used by BL1 to fetch an image descriptor
323 corresponding to BL2U.
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326must also be defined:
327
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100328- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
331 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000332
333 .. note::
334 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100336If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337also be defined:
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000343
344 .. note::
345 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100347- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
350 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100352If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353be defined:
354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000359
360 .. note::
361 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100365 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
366 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367
368For the the Firmware update capability of TRUSTED BOARD BOOT, the following
369macros may also be defined:
370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372
373 Total number of images that can be loaded simultaneously. If the platform
374 doesn't specify any value, it defaults to 10.
375
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100376If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100377also be defined:
378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100381 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000382 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100384- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387 certificate (mandatory when Trusted Board Boot is enabled).
388
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100389- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100391 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392 content certificate (mandatory when Trusted Board Boot is enabled).
393
394If a BL32 image is supported by the platform, the following constants must
395also be defined:
396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100397- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100398
399 BL32 image identifier, used by BL2 to load BL32.
400
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100401- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100402
403 BL32 key certificate identifier, used by BL2 to load the BL32 key
404 certificate (mandatory when Trusted Board Boot is enabled).
405
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100406- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100407
408 BL32 content certificate identifier, used by BL2 to load the BL32 content
409 certificate (mandatory when Trusted Board Boot is enabled).
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 Defines the base address in secure memory where BL2 loads the BL32 binary
414 image. Must be aligned on a page-size boundary.
415
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100416- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100417
418 Defines the maximum address that the BL32 image can occupy.
419
420If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
421platform, the following constants must also be defined:
422
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100423- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100424
425 Defines the base address of the secure memory used by the TSP image on the
426 platform. This must be at the same address or below ``BL32_BASE``.
427
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100428- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100429
430 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000431 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
432 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
433 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100434
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100435- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100436
437 Defines the ID of the secure physical generic timer interrupt used by the
438 TSP's interrupt handling code.
439
440If the platform port uses the translation table library code, the following
441constants must also be defined:
442
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100443- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100444
445 Optional flag that can be set per-image to enable the dynamic allocation of
446 regions even when the MMU is enabled. If not defined, only static
447 functionality will be available, if defined and set to 1 it will also
448 include the dynamic functionality.
449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100450- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100451
452 Defines the maximum number of translation tables that are allocated by the
453 translation table library code. To minimize the amount of runtime memory
454 used, choose the smallest value needed to map the required virtual addresses
455 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
456 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
457 as well.
458
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100459- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100460
461 Defines the maximum number of regions that are allocated by the translation
462 table library code. A region consists of physical base address, virtual base
463 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
464 defined in the ``mmap_region_t`` structure. The platform defines the regions
465 that should be mapped. Then, the translation table library will create the
466 corresponding tables and descriptors at runtime. To minimize the amount of
467 runtime memory used, choose the smallest value needed to register the
468 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
469 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
470 the dynamic regions as well.
471
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100472- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100473
474 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000475 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100476
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100477- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100478
479 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000480 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100481
482If the platform port uses the IO storage framework, the following constants
483must also be defined:
484
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100485- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100486
487 Defines the maximum number of registered IO devices. Attempting to register
488 more devices than this value using ``io_register_device()`` will fail with
489 -ENOMEM.
490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the maximum number of open IO handles. Attempting to open more IO
494 entities than this value using ``io_open()`` will fail with -ENOMEM.
495
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100496- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100497
498 Defines the maximum number of registered IO block devices. Attempting to
499 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100500 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100501 With this macro, multiple block devices could be supported at the same
502 time.
503
504If the platform needs to allocate data within the per-cpu data framework in
505BL31, it should define the following macro. Currently this is only required if
506the platform decides not to use the coherent memory section by undefining the
507``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
508required memory within the the per-cpu data to minimize wastage.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the memory (in bytes) to be reserved within the per-cpu data
513 structure for use by the platform layer.
514
515The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000516memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100517
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100518- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100519
520 Defines the maximum address in secure RAM that the BL31's progbits sections
521 can occupy.
522
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100523- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100524
525 Defines the maximum address that the TSP's progbits sections can occupy.
526
527If the platform port uses the PL061 GPIO driver, the following constant may
528optionally be defined:
529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100530- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531 Maximum number of GPIOs required by the platform. This allows control how
532 much memory is allocated for PL061 GPIO controllers. The default value is
533
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100534 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100535
536If the platform port uses the partition driver, the following constant may
537optionally be defined:
538
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100539- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100540 Maximum number of partition entries required by the platform. This allows
541 control how much memory is allocated for partition entries. The default
542 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100543 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100544 PLAT_PARTITION_MAX_ENTRIES := 12
545 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100546
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800547- **PLAT_PARTITION_BLOCK_SIZE**
548 The size of partition block. It could be either 512 bytes or 4096 bytes.
549 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000550 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800551 PLAT_PARTITION_BLOCK_SIZE := 4096
552 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
553
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554The following constant is optional. It should be defined to override the default
555behaviour of the ``assert()`` function (for example, to save memory).
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
559 ``assert()`` prints the name of the file, the line number and the asserted
560 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
561 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
562 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
563 defined, it defaults to ``LOG_LEVEL``.
564
Alexei Fedorov7e6306b2020-07-14 08:17:56 +0100565If the platform port uses the Activity Monitor Unit, the following constant
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000566may be defined:
567
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100568- **PLAT_AMU_GROUP1_COUNTERS_MASK**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000569 This mask reflects the set of group counters that should be enabled. The
570 maximum number of group 1 counters supported by AMUv1 is 16 so the mask
571 can be at most 0xffff. If the platform does not define this mask, no group 1
Alexei Fedorov7e6306b2020-07-14 08:17:56 +0100572 counters are enabled.
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000573
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100574File : plat_macros.S [mandatory]
575~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100576
577Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000578the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100579found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
580
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100581- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100582
583 This macro allows the crash reporting routine to print relevant platform
584 registers in case of an unhandled exception in BL31. This aids in debugging
585 and this macro can be defined to be empty in case register reporting is not
586 desired.
587
588 For instance, GIC or interconnect registers may be helpful for
589 troubleshooting.
590
591Handling Reset
592--------------
593
594BL1 by default implements the reset vector where execution starts from a cold
595or warm boot. BL31 can be optionally set as a reset vector using the
596``RESET_TO_BL31`` make variable.
597
598For each CPU, the reset vector code is responsible for the following tasks:
599
600#. Distinguishing between a cold boot and a warm boot.
601
602#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
603 the CPU is placed in a platform-specific state until the primary CPU
604 performs the necessary steps to remove it from this state.
605
606#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
607 specific address in the BL31 image in the same processor mode as it was
608 when released from reset.
609
610The following functions need to be implemented by the platform port to enable
611reset vector code to perform the above tasks.
612
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100613Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
614~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100615
616::
617
618 Argument : void
619 Return : uintptr_t
620
621This function is called with the MMU and caches disabled
622(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
623distinguishing between a warm and cold reset for the current CPU using
624platform-specific means. If it's a warm reset, then it returns the warm
625reset entrypoint point provided to ``plat_setup_psci_ops()`` during
626BL31 initialization. If it's a cold reset then this function must return zero.
627
628This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000629Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100630not assume that callee saved registers are preserved across a call to this
631function.
632
633This function fulfills requirement 1 and 3 listed above.
634
635Note that for platforms that support programming the reset address, it is
636expected that a CPU will start executing code directly at the right address,
637both on a cold and warm reset. In this case, there is no need to identify the
638type of reset nor to query the warm reset entrypoint. Therefore, implementing
639this function is not required on such platforms.
640
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100641Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
642~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100643
644::
645
646 Argument : void
647
648This function is called with the MMU and data caches disabled. It is responsible
649for placing the executing secondary CPU in a platform-specific state until the
650primary CPU performs the necessary actions to bring it out of that state and
651allow entry into the OS. This function must not return.
652
Dan Handley610e7e12018-03-01 18:44:00 +0000653In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100654itself off. The primary CPU is responsible for powering up the secondary CPUs
655when normal world software requires them. When booting an EL3 payload instead,
656they stay powered on and are put in a holding pen until their mailbox gets
657populated.
658
659This function fulfills requirement 2 above.
660
661Note that for platforms that can't release secondary CPUs out of reset, only the
662primary CPU will execute the cold boot code. Therefore, implementing this
663function is not required on such platforms.
664
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100665Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
666~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100667
668::
669
670 Argument : void
671 Return : unsigned int
672
673This function identifies whether the current CPU is the primary CPU or a
674secondary CPU. A return value of zero indicates that the CPU is not the
675primary CPU, while a non-zero return value indicates that the CPU is the
676primary CPU.
677
678Note that for platforms that can't release secondary CPUs out of reset, only the
679primary CPU will execute the cold boot code. Therefore, there is no need to
680distinguish between primary and secondary CPUs and implementing this function is
681not required.
682
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100683Function : platform_mem_init() [mandatory]
684~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100685
686::
687
688 Argument : void
689 Return : void
690
691This function is called before any access to data is made by the firmware, in
692order to carry out any essential memory initialization.
693
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100694Function: plat_get_rotpk_info()
695~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100696
697::
698
699 Argument : void *, void **, unsigned int *, unsigned int *
700 Return : int
701
702This function is mandatory when Trusted Board Boot is enabled. It returns a
703pointer to the ROTPK stored in the platform (or a hash of it) and its length.
704The ROTPK must be encoded in DER format according to the following ASN.1
705structure:
706
707::
708
709 AlgorithmIdentifier ::= SEQUENCE {
710 algorithm OBJECT IDENTIFIER,
711 parameters ANY DEFINED BY algorithm OPTIONAL
712 }
713
714 SubjectPublicKeyInfo ::= SEQUENCE {
715 algorithm AlgorithmIdentifier,
716 subjectPublicKey BIT STRING
717 }
718
719In case the function returns a hash of the key:
720
721::
722
723 DigestInfo ::= SEQUENCE {
724 digestAlgorithm AlgorithmIdentifier,
725 digest OCTET STRING
726 }
727
728The function returns 0 on success. Any other value is treated as error by the
729Trusted Board Boot. The function also reports extra information related
730to the ROTPK in the flags parameter:
731
732::
733
734 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
735 hash.
736 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
737 verification while the platform ROTPK is not deployed.
738 When this flag is set, the function does not need to
739 return a platform ROTPK, and the authentication
740 framework uses the ROTPK in the certificate without
741 verifying it against the platform value. This flag
742 must not be used in a deployed production environment.
743
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100744Function: plat_get_nv_ctr()
745~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100746
747::
748
749 Argument : void *, unsigned int *
750 Return : int
751
752This function is mandatory when Trusted Board Boot is enabled. It returns the
753non-volatile counter value stored in the platform in the second argument. The
754cookie in the first argument may be used to select the counter in case the
755platform provides more than one (for example, on platforms that use the default
756TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100757TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100758
759The function returns 0 on success. Any other value means the counter value could
760not be retrieved from the platform.
761
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100762Function: plat_set_nv_ctr()
763~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100764
765::
766
767 Argument : void *, unsigned int
768 Return : int
769
770This function is mandatory when Trusted Board Boot is enabled. It sets a new
771counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100772select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100773the updated counter value to be written to the NV counter.
774
775The function returns 0 on success. Any other value means the counter value could
776not be updated.
777
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100778Function: plat_set_nv_ctr2()
779~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100780
781::
782
783 Argument : void *, const auth_img_desc_t *, unsigned int
784 Return : int
785
786This function is optional when Trusted Board Boot is enabled. If this
787interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
788first argument passed is a cookie and is typically used to
789differentiate between a Non Trusted NV Counter and a Trusted NV
790Counter. The second argument is a pointer to an authentication image
791descriptor and may be used to decide if the counter is allowed to be
792updated or not. The third argument is the updated counter value to
793be written to the NV counter.
794
795The function returns 0 on success. Any other value means the counter value
796either could not be updated or the authentication image descriptor indicates
797that it is not allowed to be updated.
798
799Common mandatory function modifications
800---------------------------------------
801
802The following functions are mandatory functions which need to be implemented
803by the platform port.
804
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100805Function : plat_my_core_pos()
806~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100807
808::
809
810 Argument : void
811 Return : unsigned int
812
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000813This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100814CPU-specific linear index into blocks of memory (for example while allocating
815per-CPU stacks). This function will be invoked very early in the
816initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000817implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100818runtime environment. This function can clobber x0 - x8 and must preserve
819x9 - x29.
820
821This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +0100822PSCI and details of this can be found in
823:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100824
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100825Function : plat_core_pos_by_mpidr()
826~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100827
828::
829
830 Argument : u_register_t
831 Return : int
832
833This function validates the ``MPIDR`` of a CPU and converts it to an index,
834which can be used as a CPU-specific linear index into blocks of memory. In
835case the ``MPIDR`` is invalid, this function returns -1. This function will only
836be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000837utilize the C runtime environment. For further details about how TF-A
838represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +0100839index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100840
Ambroise Vincentd207f562019-04-10 12:50:27 +0100841Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
842~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
843
844::
845
846 Arguments : void **heap_addr, size_t *heap_size
847 Return : int
848
849This function is invoked during Mbed TLS library initialisation to get a heap,
850by means of a starting address and a size. This heap will then be used
851internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
852must be able to provide a heap to it.
853
854A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
855which a heap is statically reserved during compile time inside every image
856(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
857the function simply returns the address and size of this "pre-allocated" heap.
858For a platform to use this default implementation, only a call to the helper
859from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
860
861However, by writting their own implementation, platforms have the potential to
862optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
863shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
864twice.
865
866On success the function should return 0 and a negative error code otherwise.
867
Sumit Gargc0c369c2019-11-15 18:47:53 +0530868Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
869~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
870
871::
872
873 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
874 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
875 size_t img_id_len
876 Return : int
877
878This function provides a symmetric key (either SSK or BSSK depending on
879fw_enc_status) which is invoked during runtime decryption of encrypted
880firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
881implementation for testing purposes which must be overridden by the platform
882trying to implement a real world firmware encryption use-case.
883
884It also allows the platform to pass symmetric key identifier rather than
885actual symmetric key which is useful in cases where the crypto backend provides
886secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
887flag must be set in ``flags``.
888
889In addition to above a platform may also choose to provide an image specific
890symmetric key/identifier using img_id.
891
892On success the function should return 0 and a negative error code otherwise.
893
894Note that this API depends on ``DECRYPTION_SUPPORT`` build flag which is
895marked as experimental.
896
Manish V Badarkheda87af12021-06-20 21:14:46 +0100897Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
898~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
899
900::
901
902 Argument : struct fwu_metadata *metadata
903 Return : void
904
905This function is mandatory when PSA_FWU_SUPPORT is enabled.
906It provides a means to retrieve image specification (offset in
907non-volatile storage and length) of active/updated images using the passed
908FWU metadata, and update I/O policies of active/updated images using retrieved
909image specification information.
910Further I/O layer operations such as I/O open, I/O read, etc. on these
911images rely on this function call.
912
913In Arm platforms, this function is used to set an I/O policy of the FIP image,
914container of all active/updated secure and non-secure images.
915
916Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
917~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
918
919::
920
921 Argument : unsigned int image_id, uintptr_t *dev_handle,
922 uintptr_t *image_spec
923 Return : int
924
925This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
926responsible for setting up the platform I/O policy of the requested metadata
927image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
928be used to load this image from the platform's non-volatile storage.
929
930FWU metadata can not be always stored as a raw image in non-volatile storage
931to define its image specification (offset in non-volatile storage and length)
932statically in I/O policy.
933For example, the FWU metadata image is stored as a partition inside the GUID
934partition table image. Its specification is defined in the partition table
935that needs to be parsed dynamically.
936This function provides a means to retrieve such dynamic information to set
937the I/O policy of the FWU metadata image.
938Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
939image relies on this function call.
940
941It returns '0' on success, otherwise a negative error value on error.
942Alongside, returns device handle and image specification from the I/O policy
943of the requested FWU metadata image.
944
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100945Common optional modifications
946-----------------------------
947
948The following are helper functions implemented by the firmware that perform
949common platform-specific tasks. A platform may choose to override these
950definitions.
951
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100952Function : plat_set_my_stack()
953~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100954
955::
956
957 Argument : void
958 Return : void
959
960This function sets the current stack pointer to the normal memory stack that
961has been allocated for the current CPU. For BL images that only require a
962stack for the primary CPU, the UP version of the function is used. The size
963of the stack allocated to each CPU is specified by the platform defined
964constant ``PLATFORM_STACK_SIZE``.
965
966Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100967provided in ``plat/common/aarch64/platform_up_stack.S`` and
968``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100969
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100970Function : plat_get_my_stack()
971~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100972
973::
974
975 Argument : void
976 Return : uintptr_t
977
978This function returns the base address of the normal memory stack that
979has been allocated for the current CPU. For BL images that only require a
980stack for the primary CPU, the UP version of the function is used. The size
981of the stack allocated to each CPU is specified by the platform defined
982constant ``PLATFORM_STACK_SIZE``.
983
984Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100985provided in ``plat/common/aarch64/platform_up_stack.S`` and
986``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100987
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100988Function : plat_report_exception()
989~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100990
991::
992
993 Argument : unsigned int
994 Return : void
995
996A platform may need to report various information about its status when an
997exception is taken, for example the current exception level, the CPU security
998state (secure/non-secure), the exception type, and so on. This function is
999called in the following circumstances:
1000
1001- In BL1, whenever an exception is taken.
1002- In BL2, whenever an exception is taken.
1003
1004The default implementation doesn't do anything, to avoid making assumptions
1005about the way the platform displays its status information.
1006
1007For AArch64, this function receives the exception type as its argument.
1008Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001009``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001010related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001011
1012For AArch32, this function receives the exception mode as its argument.
1013Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001014``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001015
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001016Function : plat_reset_handler()
1017~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001018
1019::
1020
1021 Argument : void
1022 Return : void
1023
1024A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001025allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001026specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001027preserve the values of callee saved registers x19 to x29.
1028
1029The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001030the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001031guidelines.
1032
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001033Function : plat_disable_acp()
1034~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001035
1036::
1037
1038 Argument : void
1039 Return : void
1040
John Tsichritzis6dda9762018-07-23 09:18:04 +01001041This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001042present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001043doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001044it has restrictions for stack usage and it can use the registers x0 - x17 as
1045scratch registers. It should preserve the value in x18 register as it is used
1046by the caller to store the return address.
1047
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001048Function : plat_error_handler()
1049~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001050
1051::
1052
1053 Argument : int
1054 Return : void
1055
1056This API is called when the generic code encounters an error situation from
1057which it cannot continue. It allows the platform to perform error reporting or
1058recovery actions (for example, reset the system). This function must not return.
1059
1060The parameter indicates the type of error using standard codes from ``errno.h``.
1061Possible errors reported by the generic code are:
1062
1063- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1064 Board Boot is enabled)
1065- ``-ENOENT``: the requested image or certificate could not be found or an IO
1066 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001067- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1068 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001069
1070The default implementation simply spins.
1071
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001072Function : plat_panic_handler()
1073~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001074
1075::
1076
1077 Argument : void
1078 Return : void
1079
1080This API is called when the generic code encounters an unexpected error
1081situation from which it cannot recover. This function must not return,
1082and must be implemented in assembly because it may be called before the C
1083environment is initialized.
1084
Paul Beesleyba3ed402019-03-13 16:20:44 +00001085.. note::
1086 The address from where it was called is stored in x30 (Link Register).
1087 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001088
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001089Function : plat_get_bl_image_load_info()
1090~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001091
1092::
1093
1094 Argument : void
1095 Return : bl_load_info_t *
1096
1097This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001098populated to load. This function is invoked in BL2 to load the
1099BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001100
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001101Function : plat_get_next_bl_params()
1102~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001103
1104::
1105
1106 Argument : void
1107 Return : bl_params_t *
1108
1109This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001110kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001111function is invoked in BL2 to pass this information to the next BL
1112image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001113
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001114Function : plat_get_stack_protector_canary()
1115~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001116
1117::
1118
1119 Argument : void
1120 Return : u_register_t
1121
1122This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001123when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001124value will weaken the protection as the attacker could easily write the right
1125value as part of the attack most of the time. Therefore, it should return a
1126true random number.
1127
Paul Beesleyba3ed402019-03-13 16:20:44 +00001128.. warning::
1129 For the protection to be effective, the global data need to be placed at
1130 a lower address than the stack bases. Failure to do so would allow an
1131 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001132
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001133Function : plat_flush_next_bl_params()
1134~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001135
1136::
1137
1138 Argument : void
1139 Return : void
1140
1141This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001142next image. This function is invoked in BL2 to flush this information
1143to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001144
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001145Function : plat_log_get_prefix()
1146~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001147
1148::
1149
1150 Argument : unsigned int
1151 Return : const char *
1152
1153This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001154prepended to all the log output from TF-A. The `log_level` (argument) will
1155correspond to one of the standard log levels defined in debug.h. The platform
1156can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001157the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001158increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001159
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001160Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001161~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001162
1163::
1164
1165 Argument : void
1166 Return : int32_t
1167
1168This function returns soc version which mainly consist of below fields
1169
1170::
1171
1172 soc_version[30:24] = JEP-106 continuation code for the SiP
1173 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001174 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001175
1176Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001177~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001178
1179::
1180
1181 Argument : void
1182 Return : int32_t
1183
1184This function returns soc revision in below format
1185
1186::
1187
1188 soc_revision[0:30] = SOC revision of specific SOC
1189
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001190Function : plat_is_smccc_feature_available()
1191~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1192
1193::
1194
1195 Argument : u_register_t
1196 Return : int32_t
1197
1198This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1199the SMCCC function specified in the argument; otherwise returns
1200SMC_ARCH_CALL_NOT_SUPPORTED.
1201
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001202Modifications specific to a Boot Loader stage
1203---------------------------------------------
1204
1205Boot Loader Stage 1 (BL1)
1206-------------------------
1207
1208BL1 implements the reset vector where execution starts from after a cold or
1209warm boot. For each CPU, BL1 is responsible for the following tasks:
1210
1211#. Handling the reset as described in section 2.2
1212
1213#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1214 only this CPU executes the remaining BL1 code, including loading and passing
1215 control to the BL2 stage.
1216
1217#. Identifying and starting the Firmware Update process (if required).
1218
1219#. Loading the BL2 image from non-volatile storage into secure memory at the
1220 address specified by the platform defined constant ``BL2_BASE``.
1221
1222#. Populating a ``meminfo`` structure with the following information in memory,
1223 accessible by BL2 immediately upon entry.
1224
1225 ::
1226
1227 meminfo.total_base = Base address of secure RAM visible to BL2
1228 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001229
Soby Mathew97b1bff2018-09-27 16:46:41 +01001230 By default, BL1 places this ``meminfo`` structure at the end of secure
1231 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001232
Soby Mathewb1bf0442018-02-16 14:52:52 +00001233 It is possible for the platform to decide where it wants to place the
1234 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1235 BL2 by overriding the weak default implementation of
1236 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001237
1238The following functions need to be implemented by the platform port to enable
1239BL1 to perform the above tasks.
1240
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001241Function : bl1_early_platform_setup() [mandatory]
1242~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001243
1244::
1245
1246 Argument : void
1247 Return : void
1248
1249This function executes with the MMU and data caches disabled. It is only called
1250by the primary CPU.
1251
Dan Handley610e7e12018-03-01 18:44:00 +00001252On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001253
1254- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1255
1256- Initializes a UART (PL011 console), which enables access to the ``printf``
1257 family of functions in BL1.
1258
1259- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1260 the CCI slave interface corresponding to the cluster that includes the
1261 primary CPU.
1262
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001263Function : bl1_plat_arch_setup() [mandatory]
1264~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001265
1266::
1267
1268 Argument : void
1269 Return : void
1270
1271This function performs any platform-specific and architectural setup that the
1272platform requires. Platform-specific setup might include configuration of
1273memory controllers and the interconnect.
1274
Dan Handley610e7e12018-03-01 18:44:00 +00001275In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001276
1277This function helps fulfill requirement 2 above.
1278
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001279Function : bl1_platform_setup() [mandatory]
1280~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001281
1282::
1283
1284 Argument : void
1285 Return : void
1286
1287This function executes with the MMU and data caches enabled. It is responsible
1288for performing any remaining platform-specific setup that can occur after the
1289MMU and data cache have been enabled.
1290
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001291if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001292sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001293
Dan Handley610e7e12018-03-01 18:44:00 +00001294In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001295layer used to load the next bootloader image.
1296
1297This function helps fulfill requirement 4 above.
1298
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001299Function : bl1_plat_sec_mem_layout() [mandatory]
1300~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001301
1302::
1303
1304 Argument : void
1305 Return : meminfo *
1306
1307This function should only be called on the cold boot path. It executes with the
1308MMU and data caches enabled. The pointer returned by this function must point to
1309a ``meminfo`` structure containing the extents and availability of secure RAM for
1310the BL1 stage.
1311
1312::
1313
1314 meminfo.total_base = Base address of secure RAM visible to BL1
1315 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001316
1317This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1318populates a similar structure to tell BL2 the extents of memory available for
1319its own use.
1320
1321This function helps fulfill requirements 4 and 5 above.
1322
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001323Function : bl1_plat_prepare_exit() [optional]
1324~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001325
1326::
1327
1328 Argument : entry_point_info_t *
1329 Return : void
1330
1331This function is called prior to exiting BL1 in response to the
1332``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1333platform specific clean up or bookkeeping operations before transferring
1334control to the next image. It receives the address of the ``entry_point_info_t``
1335structure passed from BL2. This function runs with MMU disabled.
1336
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001337Function : bl1_plat_set_ep_info() [optional]
1338~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001339
1340::
1341
1342 Argument : unsigned int image_id, entry_point_info_t *ep_info
1343 Return : void
1344
1345This function allows platforms to override ``ep_info`` for the given ``image_id``.
1346
1347The default implementation just returns.
1348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001349Function : bl1_plat_get_next_image_id() [optional]
1350~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001351
1352::
1353
1354 Argument : void
1355 Return : unsigned int
1356
1357This and the following function must be overridden to enable the FWU feature.
1358
1359BL1 calls this function after platform setup to identify the next image to be
1360loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1361with the normal boot sequence, which loads and executes BL2. If the platform
1362returns a different image id, BL1 assumes that Firmware Update is required.
1363
Dan Handley610e7e12018-03-01 18:44:00 +00001364The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001365platforms override this function to detect if firmware update is required, and
1366if so, return the first image in the firmware update process.
1367
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001368Function : bl1_plat_get_image_desc() [optional]
1369~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001370
1371::
1372
1373 Argument : unsigned int image_id
1374 Return : image_desc_t *
1375
1376BL1 calls this function to get the image descriptor information ``image_desc_t``
1377for the provided ``image_id`` from the platform.
1378
Dan Handley610e7e12018-03-01 18:44:00 +00001379The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001380standard platforms return an image descriptor corresponding to BL2 or one of
1381the firmware update images defined in the Trusted Board Boot Requirements
1382specification.
1383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001384Function : bl1_plat_handle_pre_image_load() [optional]
1385~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001386
1387::
1388
Soby Mathew2f38ce32018-02-08 17:45:12 +00001389 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001390 Return : int
1391
1392This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001393corresponding to ``image_id``. This function is invoked in BL1, both in cold
1394boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001395
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001396Function : bl1_plat_handle_post_image_load() [optional]
1397~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001398
1399::
1400
Soby Mathew2f38ce32018-02-08 17:45:12 +00001401 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001402 Return : int
1403
1404This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001405corresponding to ``image_id``. This function is invoked in BL1, both in cold
1406boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001407
Soby Mathewb1bf0442018-02-16 14:52:52 +00001408The default weak implementation of this function calculates the amount of
1409Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1410structure at the beginning of this free memory and populates it. The address
1411of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1412information to BL2.
1413
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001414Function : bl1_plat_fwu_done() [optional]
1415~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001416
1417::
1418
1419 Argument : unsigned int image_id, uintptr_t image_src,
1420 unsigned int image_size
1421 Return : void
1422
1423BL1 calls this function when the FWU process is complete. It must not return.
1424The platform may override this function to take platform specific action, for
1425example to initiate the normal boot flow.
1426
1427The default implementation spins forever.
1428
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001429Function : bl1_plat_mem_check() [mandatory]
1430~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001431
1432::
1433
1434 Argument : uintptr_t mem_base, unsigned int mem_size,
1435 unsigned int flags
1436 Return : int
1437
1438BL1 calls this function while handling FWU related SMCs, more specifically when
1439copying or authenticating an image. Its responsibility is to ensure that the
1440region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1441that this memory corresponds to either a secure or non-secure memory region as
1442indicated by the security state of the ``flags`` argument.
1443
1444This function can safely assume that the value resulting from the addition of
1445``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1446overflow.
1447
1448This function must return 0 on success, a non-null error code otherwise.
1449
1450The default implementation of this function asserts therefore platforms must
1451override it when using the FWU feature.
1452
1453Boot Loader Stage 2 (BL2)
1454-------------------------
1455
1456The BL2 stage is executed only by the primary CPU, which is determined in BL1
1457using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001458``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1459``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1460non-volatile storage to secure/non-secure RAM. After all the images are loaded
1461then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1462images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001463
1464The following functions must be implemented by the platform port to enable BL2
1465to perform the above tasks.
1466
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001467Function : bl2_early_platform_setup2() [mandatory]
1468~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001469
1470::
1471
Soby Mathew97b1bff2018-09-27 16:46:41 +01001472 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001473 Return : void
1474
1475This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001476by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1477are platform specific.
1478
1479On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001480
Manish V Badarkhe81414512020-06-24 15:58:38 +01001481 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001482
1483 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1484 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001485
Dan Handley610e7e12018-03-01 18:44:00 +00001486On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001487
1488- Initializes a UART (PL011 console), which enables access to the ``printf``
1489 family of functions in BL2.
1490
1491- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001492 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1493 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001494
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001495Function : bl2_plat_arch_setup() [mandatory]
1496~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001497
1498::
1499
1500 Argument : void
1501 Return : void
1502
1503This function executes with the MMU and data caches disabled. It is only called
1504by the primary CPU.
1505
1506The purpose of this function is to perform any architectural initialization
1507that varies across platforms.
1508
Dan Handley610e7e12018-03-01 18:44:00 +00001509On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001510
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001511Function : bl2_platform_setup() [mandatory]
1512~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001513
1514::
1515
1516 Argument : void
1517 Return : void
1518
1519This function may execute with the MMU and data caches enabled if the platform
1520port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1521called by the primary CPU.
1522
1523The purpose of this function is to perform any platform initialization
1524specific to BL2.
1525
Dan Handley610e7e12018-03-01 18:44:00 +00001526In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001527configuration of the TrustZone controller to allow non-secure masters access
1528to most of DRAM. Part of DRAM is reserved for secure world use.
1529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001530Function : bl2_plat_handle_pre_image_load() [optional]
1531~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001532
1533::
1534
1535 Argument : unsigned int
1536 Return : int
1537
1538This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001539for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001540loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001541
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001542Function : bl2_plat_handle_post_image_load() [optional]
1543~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001544
1545::
1546
1547 Argument : unsigned int
1548 Return : int
1549
1550This function can be used by the platforms to update/use image information
1551for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001552loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001553
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001554Function : bl2_plat_preload_setup [optional]
1555~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001556
1557::
John Tsichritzisee10e792018-06-06 09:38:10 +01001558
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001559 Argument : void
1560 Return : void
1561
1562This optional function performs any BL2 platform initialization
1563required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001564bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001565boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001566plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001567
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001568Function : plat_try_next_boot_source() [optional]
1569~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001570
1571::
John Tsichritzisee10e792018-06-06 09:38:10 +01001572
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001573 Argument : void
1574 Return : int
1575
1576This optional function passes to the next boot source in the redundancy
1577sequence.
1578
1579This function moves the current boot redundancy source to the next
1580element in the boot sequence. If there are no more boot sources then it
1581must return 0, otherwise it must return 1. The default implementation
1582of this always returns 0.
1583
Roberto Vargasb1584272017-11-20 13:36:10 +00001584Boot Loader Stage 2 (BL2) at EL3
1585--------------------------------
1586
Dan Handley610e7e12018-03-01 18:44:00 +00001587When the platform has a non-TF-A Boot ROM it is desirable to jump
1588directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001589execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1590document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001591
1592All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001593bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1594their work is done now by bl2_el3_early_platform_setup and
1595bl2_el3_plat_arch_setup. These functions should generally implement
1596the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001597
1598
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001599Function : bl2_el3_early_platform_setup() [mandatory]
1600~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001601
1602::
John Tsichritzisee10e792018-06-06 09:38:10 +01001603
Roberto Vargasb1584272017-11-20 13:36:10 +00001604 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1605 Return : void
1606
1607This function executes with the MMU and data caches disabled. It is only called
1608by the primary CPU. This function receives four parameters which can be used
1609by the platform to pass any needed information from the Boot ROM to BL2.
1610
Dan Handley610e7e12018-03-01 18:44:00 +00001611On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001612
1613- Initializes a UART (PL011 console), which enables access to the ``printf``
1614 family of functions in BL2.
1615
1616- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001617 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1618 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001619
1620- Initializes the private variables that define the memory layout used.
1621
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001622Function : bl2_el3_plat_arch_setup() [mandatory]
1623~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001624
1625::
John Tsichritzisee10e792018-06-06 09:38:10 +01001626
Roberto Vargasb1584272017-11-20 13:36:10 +00001627 Argument : void
1628 Return : void
1629
1630This function executes with the MMU and data caches disabled. It is only called
1631by the primary CPU.
1632
1633The purpose of this function is to perform any architectural initialization
1634that varies across platforms.
1635
Dan Handley610e7e12018-03-01 18:44:00 +00001636On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001637
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001638Function : bl2_el3_plat_prepare_exit() [optional]
1639~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001640
1641::
John Tsichritzisee10e792018-06-06 09:38:10 +01001642
Roberto Vargasb1584272017-11-20 13:36:10 +00001643 Argument : void
1644 Return : void
1645
1646This function is called prior to exiting BL2 and run the next image.
1647It should be used to perform platform specific clean up or bookkeeping
1648operations before transferring control to the next image. This function
1649runs with MMU disabled.
1650
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001651FWU Boot Loader Stage 2 (BL2U)
1652------------------------------
1653
1654The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1655process and is executed only by the primary CPU. BL1 passes control to BL2U at
1656``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1657
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001658#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1659 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1660 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1661 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001662 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1663 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1664
1665#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001666 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001667 normal world can access DDR memory.
1668
1669The following functions must be implemented by the platform port to enable
1670BL2U to perform the tasks mentioned above.
1671
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001672Function : bl2u_early_platform_setup() [mandatory]
1673~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001674
1675::
1676
1677 Argument : meminfo *mem_info, void *plat_info
1678 Return : void
1679
1680This function executes with the MMU and data caches disabled. It is only
1681called by the primary CPU. The arguments to this function is the address
1682of the ``meminfo`` structure and platform specific info provided by BL1.
1683
1684The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1685private storage as the original memory may be subsequently overwritten by BL2U.
1686
Dan Handley610e7e12018-03-01 18:44:00 +00001687On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001688to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001689variable.
1690
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001691Function : bl2u_plat_arch_setup() [mandatory]
1692~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001693
1694::
1695
1696 Argument : void
1697 Return : void
1698
1699This function executes with the MMU and data caches disabled. It is only
1700called by the primary CPU.
1701
1702The purpose of this function is to perform any architectural initialization
1703that varies across platforms, for example enabling the MMU (since the memory
1704map differs across platforms).
1705
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001706Function : bl2u_platform_setup() [mandatory]
1707~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001708
1709::
1710
1711 Argument : void
1712 Return : void
1713
1714This function may execute with the MMU and data caches enabled if the platform
1715port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1716called by the primary CPU.
1717
1718The purpose of this function is to perform any platform initialization
1719specific to BL2U.
1720
Dan Handley610e7e12018-03-01 18:44:00 +00001721In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001722configuration of the TrustZone controller to allow non-secure masters access
1723to most of DRAM. Part of DRAM is reserved for secure world use.
1724
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001725Function : bl2u_plat_handle_scp_bl2u() [optional]
1726~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001727
1728::
1729
1730 Argument : void
1731 Return : int
1732
1733This function is used to perform any platform-specific actions required to
1734handle the SCP firmware. Typically it transfers the image into SCP memory using
1735a platform-specific protocol and waits until SCP executes it and signals to the
1736Application Processor (AP) for BL2U execution to continue.
1737
1738This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001739This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001740
1741Boot Loader Stage 3-1 (BL31)
1742----------------------------
1743
1744During cold boot, the BL31 stage is executed only by the primary CPU. This is
1745determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1746control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1747CPUs. BL31 executes at EL3 and is responsible for:
1748
1749#. Re-initializing all architectural and platform state. Although BL1 performs
1750 some of this initialization, BL31 remains resident in EL3 and must ensure
1751 that EL3 architectural and platform state is completely initialized. It
1752 should make no assumptions about the system state when it receives control.
1753
1754#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001755 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1756 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001757
1758#. Providing runtime firmware services. Currently, BL31 only implements a
1759 subset of the Power State Coordination Interface (PSCI) API as a runtime
1760 service. See Section 3.3 below for details of porting the PSCI
1761 implementation.
1762
1763#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001764 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001765 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001766 executed and run the corresponding image. On ARM platforms, BL31 uses the
1767 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001768
1769If BL31 is a reset vector, It also needs to handle the reset as specified in
1770section 2.2 before the tasks described above.
1771
1772The following functions must be implemented by the platform port to enable BL31
1773to perform the above tasks.
1774
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001775Function : bl31_early_platform_setup2() [mandatory]
1776~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001777
1778::
1779
Soby Mathew97b1bff2018-09-27 16:46:41 +01001780 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001781 Return : void
1782
1783This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001784by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1785platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001786
Soby Mathew97b1bff2018-09-27 16:46:41 +01001787In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001788
Soby Mathew97b1bff2018-09-27 16:46:41 +01001789 arg0 - The pointer to the head of `bl_params_t` list
1790 which is list of executable images following BL31,
1791
1792 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01001793 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01001794
Mikael Olsson0232da22021-02-12 17:30:16 +01001795 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01001796 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01001797
1798 arg2 - Points to load address of HW_CONFIG if present
1799
1800 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1801 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001802
Soby Mathew97b1bff2018-09-27 16:46:41 +01001803The function runs through the `bl_param_t` list and extracts the entry point
1804information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001805
1806- Initialize a UART (PL011 console), which enables access to the ``printf``
1807 family of functions in BL31.
1808
1809- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1810 CCI slave interface corresponding to the cluster that includes the primary
1811 CPU.
1812
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001813Function : bl31_plat_arch_setup() [mandatory]
1814~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001815
1816::
1817
1818 Argument : void
1819 Return : void
1820
1821This function executes with the MMU and data caches disabled. It is only called
1822by the primary CPU.
1823
1824The purpose of this function is to perform any architectural initialization
1825that varies across platforms.
1826
Dan Handley610e7e12018-03-01 18:44:00 +00001827On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001828
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001829Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001830~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1831
1832::
1833
1834 Argument : void
1835 Return : void
1836
1837This function may execute with the MMU and data caches enabled if the platform
1838port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1839called by the primary CPU.
1840
1841The purpose of this function is to complete platform initialization so that both
1842BL31 runtime services and normal world software can function correctly.
1843
Dan Handley610e7e12018-03-01 18:44:00 +00001844On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001845
1846- Initialize the generic interrupt controller.
1847
1848 Depending on the GIC driver selected by the platform, the appropriate GICv2
1849 or GICv3 initialization will be done, which mainly consists of:
1850
1851 - Enable secure interrupts in the GIC CPU interface.
1852 - Disable the legacy interrupt bypass mechanism.
1853 - Configure the priority mask register to allow interrupts of all priorities
1854 to be signaled to the CPU interface.
1855 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1856 - Target all secure SPIs to CPU0.
1857 - Enable these secure interrupts in the GIC distributor.
1858 - Configure all other interrupts as non-secure.
1859 - Enable signaling of secure interrupts in the GIC distributor.
1860
1861- Enable system-level implementation of the generic timer counter through the
1862 memory mapped interface.
1863
1864- Grant access to the system counter timer module
1865
1866- Initialize the power controller device.
1867
1868 In particular, initialise the locks that prevent concurrent accesses to the
1869 power controller device.
1870
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001871Function : bl31_plat_runtime_setup() [optional]
1872~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001873
1874::
1875
1876 Argument : void
1877 Return : void
1878
1879The purpose of this function is allow the platform to perform any BL31 runtime
1880setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001881implementation of this function will invoke ``console_switch_state()`` to switch
1882console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001883
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001884Function : bl31_plat_get_next_image_ep_info() [mandatory]
1885~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001886
1887::
1888
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001889 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001890 Return : entry_point_info *
1891
1892This function may execute with the MMU and data caches enabled if the platform
1893port does the necessary initializations in ``bl31_plat_arch_setup()``.
1894
1895This function is called by ``bl31_main()`` to retrieve information provided by
1896BL2 for the next image in the security state specified by the argument. BL31
1897uses this information to pass control to that image in the specified security
1898state. This function must return a pointer to the ``entry_point_info`` structure
1899(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1900should return NULL otherwise.
1901
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001902Function : bl31_plat_enable_mmu [optional]
1903~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1904
1905::
1906
1907 Argument : uint32_t
1908 Return : void
1909
1910This function enables the MMU. The boot code calls this function with MMU and
1911caches disabled. This function should program necessary registers to enable
1912translation, and upon return, the MMU on the calling PE must be enabled.
1913
1914The function must honor flags passed in the first argument. These flags are
1915defined by the translation library, and can be found in the file
1916``include/lib/xlat_tables/xlat_mmu_helpers.h``.
1917
1918On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001919is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001920
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001921Function : plat_init_apkey [optional]
1922~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001923
1924::
1925
1926 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001927 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001928
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001929This function returns the 128-bit value which can be used to program ARMv8.3
1930pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001931
1932The value should be obtained from a reliable source of randomness.
1933
1934This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001935Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001936
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001937Function : plat_get_syscnt_freq2() [mandatory]
1938~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001939
1940::
1941
1942 Argument : void
1943 Return : unsigned int
1944
1945This function is used by the architecture setup code to retrieve the counter
1946frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00001947``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001948of the system counter, which is retrieved from the first entry in the frequency
1949modes table.
1950
johpow013e24c162020-04-22 14:05:13 -05001951Function : plat_arm_set_twedel_scr_el3() [optional]
1952~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1953
1954::
1955
1956 Argument : void
1957 Return : uint32_t
1958
1959This function is used in v8.6+ systems to set the WFE trap delay value in
1960SCR_EL3. If this function returns TWED_DISABLED or is left unimplemented, this
1961feature is not enabled. The only hook provided is to set the TWED fields in
1962SCR_EL3, there are similar fields in HCR_EL2, SCTLR_EL2, and SCTLR_EL1 to adjust
1963the WFE trap delays in lower ELs and these fields should be set by the
1964appropriate EL2 or EL1 code depending on the platform configuration.
1965
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001966#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
1967~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001968
1969When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
1970bytes) aligned to the cache line boundary that should be allocated per-cpu to
1971accommodate all the bakery locks.
1972
1973If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
1974calculates the size of the ``bakery_lock`` input section, aligns it to the
1975nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
1976and stores the result in a linker symbol. This constant prevents a platform
1977from relying on the linker and provide a more efficient mechanism for
1978accessing per-cpu bakery lock information.
1979
1980If this constant is defined and its value is not equal to the value
1981calculated by the linker then a link time assertion is raised. A compile time
1982assertion is raised if the value of the constant is not aligned to the cache
1983line boundary.
1984
Paul Beesleyf8640672019-04-12 14:19:42 +01001985.. _porting_guide_sdei_requirements:
1986
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001987SDEI porting requirements
1988~~~~~~~~~~~~~~~~~~~~~~~~~
1989
Paul Beesley606d8072019-03-13 13:58:02 +00001990The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001991and functions, of which some are optional, and some others mandatory.
1992
1993Macros
1994......
1995
1996Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
1997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1998
1999This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002000Normal |SDEI| events on the platform. This must have a higher value
2001(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002002
2003Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2004^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2005
2006This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002007Critical |SDEI| events on the platform. This must have a lower value
2008(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002009
Paul Beesley606d8072019-03-13 13:58:02 +00002010**Note**: |SDEI| exception priorities must be the lowest among Secure
2011priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2012be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002013
2014Functions
2015.........
2016
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002017Function: int plat_sdei_validate_entry_point() [optional]
2018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002019
2020::
2021
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002022 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002023 Return: int
2024
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002025This function validates the entry point address of the event handler provided by
2026the client for both event registration and *Complete and Resume* |SDEI| calls.
2027The function ensures that the address is valid in the client translation regime.
2028
2029The second argument is the exception level that the client is executing in. It
2030can be Non-Secure EL1 or Non-Secure EL2.
2031
2032The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002033
Dan Handley610e7e12018-03-01 18:44:00 +00002034The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002035translates the entry point address within the client translation regime and
2036further ensures that the resulting physical address is located in Non-secure
2037DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002038
2039Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2041
2042::
2043
2044 Argument: uint64_t
2045 Argument: unsigned int
2046 Return: void
2047
Paul Beesley606d8072019-03-13 13:58:02 +00002048|SDEI| specification requires that a PE comes out of reset with the events
2049masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2050|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2051time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002052
Paul Beesley606d8072019-03-13 13:58:02 +00002053Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002054events are masked on the PE, the dispatcher implementation invokes the function
2055``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2056interrupt and the interrupt ID are passed as parameters.
2057
2058The default implementation only prints out a warning message.
2059
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002060.. _porting_guide_trng_requirements:
2061
2062TRNG porting requirements
2063~~~~~~~~~~~~~~~~~~~~~~~~~
2064
2065The |TRNG| backend requires the platform to provide the following values
2066and mandatory functions.
2067
2068Values
2069......
2070
2071value: uuid_t plat_trng_uuid [mandatory]
2072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2073
2074This value must be defined to the UUID of the TRNG backend that is specific to
2075the hardware after ``plat_trng_setup`` function is called. This value must
2076conform to the SMCCC calling convention; The most significant 32 bits of the
2077UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2078w0 indicates failure to get a TRNG source.
2079
2080Functions
2081.........
2082
2083Function: void plat_entropy_setup(void) [mandatory]
2084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2085
2086::
2087
2088 Argument: none
2089 Return: none
2090
2091This function is expected to do platform-specific initialization of any TRNG
2092hardware. This may include generating a UUID from a hardware-specific seed.
2093
2094Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2096
2097::
2098
2099 Argument: uint64_t *
2100 Return: bool
2101 Out : when the return value is true, the entropy has been written into the
2102 storage pointed to
2103
2104This function writes entropy into storage provided by the caller. If no entropy
2105is available, it must return false and the storage must not be written.
2106
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002107Power State Coordination Interface (in BL31)
2108--------------------------------------------
2109
Dan Handley610e7e12018-03-01 18:44:00 +00002110The TF-A implementation of the PSCI API is based around the concept of a
2111*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2112share some state on which power management operations can be performed as
2113specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2114a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2115*power domains* are arranged in a hierarchical tree structure and each
2116*power domain* can be identified in a system by the cpu index of any CPU that
2117is part of that domain and a *power domain level*. A processing element (for
2118example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2119logical grouping of CPUs that share some state, then level 1 is that group of
2120CPUs (for example, a cluster), and level 2 is a group of clusters (for
2121example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002122organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002123
2124BL31's platform initialization code exports a pointer to the platform-specific
2125power management operations required for the PSCI implementation to function
2126correctly. This information is populated in the ``plat_psci_ops`` structure. The
2127PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2128power management operations on the power domains. For example, the target
2129CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2130handler (if present) is called for the CPU power domain.
2131
2132The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2133describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002134defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002135array of local power states where each index corresponds to a power domain
2136level. Each entry contains the local power state the power domain at that power
2137level could enter. It depends on the ``validate_power_state()`` handler to
2138convert the power-state parameter (possibly encoding a composite power state)
2139passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2140
2141The following functions form part of platform port of PSCI functionality.
2142
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002143Function : plat_psci_stat_accounting_start() [optional]
2144~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002145
2146::
2147
2148 Argument : const psci_power_state_t *
2149 Return : void
2150
2151This is an optional hook that platforms can implement for residency statistics
2152accounting before entering a low power state. The ``pwr_domain_state`` field of
2153``state_info`` (first argument) can be inspected if stat accounting is done
2154differently at CPU level versus higher levels. As an example, if the element at
2155index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2156state, special hardware logic may be programmed in order to keep track of the
2157residency statistics. For higher levels (array indices > 0), the residency
2158statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2159default implementation will use PMF to capture timestamps.
2160
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002161Function : plat_psci_stat_accounting_stop() [optional]
2162~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002163
2164::
2165
2166 Argument : const psci_power_state_t *
2167 Return : void
2168
2169This is an optional hook that platforms can implement for residency statistics
2170accounting after exiting from a low power state. The ``pwr_domain_state`` field
2171of ``state_info`` (first argument) can be inspected if stat accounting is done
2172differently at CPU level versus higher levels. As an example, if the element at
2173index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2174state, special hardware logic may be programmed in order to keep track of the
2175residency statistics. For higher levels (array indices > 0), the residency
2176statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2177default implementation will use PMF to capture timestamps.
2178
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002179Function : plat_psci_stat_get_residency() [optional]
2180~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002181
2182::
2183
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002184 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002185 Return : u_register_t
2186
2187This is an optional interface that is is invoked after resuming from a low power
2188state and provides the time spent resident in that low power state by the power
2189domain at a particular power domain level. When a CPU wakes up from suspend,
2190all its parent power domain levels are also woken up. The generic PSCI code
2191invokes this function for each parent power domain that is resumed and it
2192identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2193argument) describes the low power state that the power domain has resumed from.
2194The current CPU is the first CPU in the power domain to resume from the low
2195power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2196CPU in the power domain to suspend and may be needed to calculate the residency
2197for that power domain.
2198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002199Function : plat_get_target_pwr_state() [optional]
2200~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002201
2202::
2203
2204 Argument : unsigned int, const plat_local_state_t *, unsigned int
2205 Return : plat_local_state_t
2206
2207The PSCI generic code uses this function to let the platform participate in
2208state coordination during a power management operation. The function is passed
2209a pointer to an array of platform specific local power state ``states`` (second
2210argument) which contains the requested power state for each CPU at a particular
2211power domain level ``lvl`` (first argument) within the power domain. The function
2212is expected to traverse this array of upto ``ncpus`` (third argument) and return
2213a coordinated target power state by the comparing all the requested power
2214states. The target power state should not be deeper than any of the requested
2215power states.
2216
2217A weak definition of this API is provided by default wherein it assumes
2218that the platform assigns a local state value in order of increasing depth
2219of the power state i.e. for two power states X & Y, if X < Y
2220then X represents a shallower power state than Y. As a result, the
2221coordinated target local power state for a power domain will be the minimum
2222of the requested local power state values.
2223
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002224Function : plat_get_power_domain_tree_desc() [mandatory]
2225~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002226
2227::
2228
2229 Argument : void
2230 Return : const unsigned char *
2231
2232This function returns a pointer to the byte array containing the power domain
2233topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002234described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2235initialization code requires this array to be described by the platform, either
2236statically or dynamically, to initialize the power domain topology tree. In case
2237the array is populated dynamically, then plat_core_pos_by_mpidr() and
2238plat_my_core_pos() should also be implemented suitably so that the topology tree
2239description matches the CPU indices returned by these APIs. These APIs together
2240form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002241
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002242Function : plat_setup_psci_ops() [mandatory]
2243~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002244
2245::
2246
2247 Argument : uintptr_t, const plat_psci_ops **
2248 Return : int
2249
2250This function may execute with the MMU and data caches enabled if the platform
2251port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2252called by the primary CPU.
2253
2254This function is called by PSCI initialization code. Its purpose is to let
2255the platform layer know about the warm boot entrypoint through the
2256``sec_entrypoint`` (first argument) and to export handler routines for
2257platform-specific psci power management actions by populating the passed
2258pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2259
2260A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002261the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002262``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002263platform wants to support, the associated operation or operations in this
2264structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002265:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002266function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002267structure instead of providing an empty implementation.
2268
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002269plat_psci_ops.cpu_standby()
2270...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002271
2272Perform the platform-specific actions to enter the standby state for a cpu
2273indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002274wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002275For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2276the suspend state type specified in the ``power-state`` parameter should be
2277STANDBY and the target power domain level specified should be the CPU. The
2278handler should put the CPU into a low power retention state (usually by
2279issuing a wfi instruction) and ensure that it can be woken up from that
2280state by a normal interrupt. The generic code expects the handler to succeed.
2281
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002282plat_psci_ops.pwr_domain_on()
2283.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002284
2285Perform the platform specific actions to power on a CPU, specified
2286by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002287return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002288
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002289plat_psci_ops.pwr_domain_off()
2290..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002291
2292Perform the platform specific actions to prepare to power off the calling CPU
2293and its higher parent power domain levels as indicated by the ``target_state``
2294(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2295
2296The ``target_state`` encodes the platform coordinated target local power states
2297for the CPU power domain and its parent power domain levels. The handler
2298needs to perform power management operation corresponding to the local state
2299at each power level.
2300
2301For this handler, the local power state for the CPU power domain will be a
2302power down state where as it could be either power down, retention or run state
2303for the higher power domain levels depending on the result of state
2304coordination. The generic code expects the handler to succeed.
2305
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002306plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2307...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002308
2309This optional function may be used as a performance optimization to replace
2310or complement pwr_domain_suspend() on some platforms. Its calling semantics
2311are identical to pwr_domain_suspend(), except the PSCI implementation only
2312calls this function when suspending to a power down state, and it guarantees
2313that data caches are enabled.
2314
2315When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2316before calling pwr_domain_suspend(). If the target_state corresponds to a
2317power down state and it is safe to perform some or all of the platform
2318specific actions in that function with data caches enabled, it may be more
2319efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2320= 1, data caches remain enabled throughout, and so there is no advantage to
2321moving platform specific actions to this function.
2322
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002323plat_psci_ops.pwr_domain_suspend()
2324..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002325
2326Perform the platform specific actions to prepare to suspend the calling
2327CPU and its higher parent power domain levels as indicated by the
2328``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2329API implementation.
2330
2331The ``target_state`` has a similar meaning as described in
2332the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2333target local power states for the CPU power domain and its parent
2334power domain levels. The handler needs to perform power management operation
2335corresponding to the local state at each power level. The generic code
2336expects the handler to succeed.
2337
Douglas Raillarda84996b2017-08-02 16:57:32 +01002338The difference between turning a power domain off versus suspending it is that
2339in the former case, the power domain is expected to re-initialize its state
2340when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2341case, the power domain is expected to save enough state so that it can resume
2342execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002343``pwr_domain_suspend_finish()``).
2344
Douglas Raillarda84996b2017-08-02 16:57:32 +01002345When suspending a core, the platform can also choose to power off the GICv3
2346Redistributor and ITS through an implementation-defined sequence. To achieve
2347this safely, the ITS context must be saved first. The architectural part is
2348implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2349sequence is implementation defined and it is therefore the responsibility of
2350the platform code to implement the necessary sequence. Then the GIC
2351Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2352Powering off the Redistributor requires the implementation to support it and it
2353is the responsibility of the platform code to execute the right implementation
2354defined sequence.
2355
2356When a system suspend is requested, the platform can also make use of the
2357``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2358it has saved the context of the Redistributors and ITS of all the cores in the
2359system. The context of the Distributor can be large and may require it to be
2360allocated in a special area if it cannot fit in the platform's global static
2361data, for example in DRAM. The Distributor can then be powered down using an
2362implementation-defined sequence.
2363
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002364plat_psci_ops.pwr_domain_pwr_down_wfi()
2365.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002366
2367This is an optional function and, if implemented, is expected to perform
2368platform specific actions including the ``wfi`` invocation which allows the
2369CPU to powerdown. Since this function is invoked outside the PSCI locks,
2370the actions performed in this hook must be local to the CPU or the platform
2371must ensure that races between multiple CPUs cannot occur.
2372
2373The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2374operation and it encodes the platform coordinated target local power states for
2375the CPU power domain and its parent power domain levels. This function must
2376not return back to the caller.
2377
2378If this function is not implemented by the platform, PSCI generic
2379implementation invokes ``psci_power_down_wfi()`` for power down.
2380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002381plat_psci_ops.pwr_domain_on_finish()
2382....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002383
2384This function is called by the PSCI implementation after the calling CPU is
2385powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2386It performs the platform-specific setup required to initialize enough state for
2387this CPU to enter the normal world and also provide secure runtime firmware
2388services.
2389
2390The ``target_state`` (first argument) is the prior state of the power domains
2391immediately before the CPU was turned on. It indicates which power domains
2392above the CPU might require initialization due to having previously been in
2393low power states. The generic code expects the handler to succeed.
2394
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002395plat_psci_ops.pwr_domain_on_finish_late() [optional]
2396...........................................................
2397
2398This optional function is called by the PSCI implementation after the calling
2399CPU is fully powered on with respective data caches enabled. The calling CPU and
2400the associated cluster are guaranteed to be participating in coherency. This
2401function gives the flexibility to perform any platform-specific actions safely,
2402such as initialization or modification of shared data structures, without the
2403overhead of explicit cache maintainace operations.
2404
2405The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2406operation. The generic code expects the handler to succeed.
2407
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002408plat_psci_ops.pwr_domain_suspend_finish()
2409.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002410
2411This function is called by the PSCI implementation after the calling CPU is
2412powered on and released from reset in response to an asynchronous wakeup
2413event, for example a timer interrupt that was programmed by the CPU during the
2414``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2415setup required to restore the saved state for this CPU to resume execution
2416in the normal world and also provide secure runtime firmware services.
2417
2418The ``target_state`` (first argument) has a similar meaning as described in
2419the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2420to succeed.
2421
Douglas Raillarda84996b2017-08-02 16:57:32 +01002422If the Distributor, Redistributors or ITS have been powered off as part of a
2423suspend, their context must be restored in this function in the reverse order
2424to how they were saved during suspend sequence.
2425
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002426plat_psci_ops.system_off()
2427..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002428
2429This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2430call. It performs the platform-specific system poweroff sequence after
2431notifying the Secure Payload Dispatcher.
2432
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002433plat_psci_ops.system_reset()
2434............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002435
2436This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2437call. It performs the platform-specific system reset sequence after
2438notifying the Secure Payload Dispatcher.
2439
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002440plat_psci_ops.validate_power_state()
2441....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002442
2443This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2444call to validate the ``power_state`` parameter of the PSCI API and if valid,
2445populate it in ``req_state`` (second argument) array as power domain level
2446specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002447return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002448normal world PSCI client.
2449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002450plat_psci_ops.validate_ns_entrypoint()
2451......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002452
2453This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2454``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2455parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002456the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002457propagated back to the normal world PSCI client.
2458
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002459plat_psci_ops.get_sys_suspend_power_state()
2460...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002461
2462This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2463call to get the ``req_state`` parameter from platform which encodes the power
2464domain level specific local states to suspend to system affinity level. The
2465``req_state`` will be utilized to do the PSCI state coordination and
2466``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2467enter system suspend.
2468
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002469plat_psci_ops.get_pwr_lvl_state_idx()
2470.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002471
2472This is an optional function and, if implemented, is invoked by the PSCI
2473implementation to convert the ``local_state`` (first argument) at a specified
2474``pwr_lvl`` (second argument) to an index between 0 and
2475``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2476supports more than two local power states at each power domain level, that is
2477``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2478local power states.
2479
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002480plat_psci_ops.translate_power_state_by_mpidr()
2481..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002482
2483This is an optional function and, if implemented, verifies the ``power_state``
2484(second argument) parameter of the PSCI API corresponding to a target power
2485domain. The target power domain is identified by using both ``MPIDR`` (first
2486argument) and the power domain level encoded in ``power_state``. The power domain
2487level specific local states are to be extracted from ``power_state`` and be
2488populated in the ``output_state`` (third argument) array. The functionality
2489is similar to the ``validate_power_state`` function described above and is
2490envisaged to be used in case the validity of ``power_state`` depend on the
2491targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002492domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002493function is not implemented, then the generic implementation relies on
2494``validate_power_state`` function to translate the ``power_state``.
2495
2496This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002497power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002498APIs as described in Section 5.18 of `PSCI`_.
2499
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002500plat_psci_ops.get_node_hw_state()
2501.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002502
2503This is an optional function. If implemented this function is intended to return
2504the power state of a node (identified by the first parameter, the ``MPIDR``) in
2505the power domain topology (identified by the second parameter, ``power_level``),
2506as retrieved from a power controller or equivalent component on the platform.
2507Upon successful completion, the implementation must map and return the final
2508status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2509must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2510appropriate.
2511
2512Implementations are not expected to handle ``power_levels`` greater than
2513``PLAT_MAX_PWR_LVL``.
2514
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002515plat_psci_ops.system_reset2()
2516.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002517
2518This is an optional function. If implemented this function is
2519called during the ``SYSTEM_RESET2`` call to perform a reset
2520based on the first parameter ``reset_type`` as specified in
2521`PSCI`_. The parameter ``cookie`` can be used to pass additional
2522reset information. If the ``reset_type`` is not supported, the
2523function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2524resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2525and vendor reset can return other PSCI error codes as defined
2526in `PSCI`_. On success this function will not return.
2527
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002528plat_psci_ops.write_mem_protect()
2529.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002530
2531This is an optional function. If implemented it enables or disables the
2532``MEM_PROTECT`` functionality based on the value of ``val``.
2533A non-zero value enables ``MEM_PROTECT`` and a value of zero
2534disables it. Upon encountering failures it must return a negative value
2535and on success it must return 0.
2536
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002537plat_psci_ops.read_mem_protect()
2538................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002539
2540This is an optional function. If implemented it returns the current
2541state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2542failures it must return a negative value and on success it must
2543return 0.
2544
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002545plat_psci_ops.mem_protect_chk()
2546...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002547
2548This is an optional function. If implemented it checks if a memory
2549region defined by a base address ``base`` and with a size of ``length``
2550bytes is protected by ``MEM_PROTECT``. If the region is protected
2551then it must return 0, otherwise it must return a negative number.
2552
Paul Beesleyf8640672019-04-12 14:19:42 +01002553.. _porting_guide_imf_in_bl31:
2554
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002555Interrupt Management framework (in BL31)
2556----------------------------------------
2557
2558BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2559generated in either security state and targeted to EL1 or EL2 in the non-secure
2560state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002561described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002562
2563A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002564text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002565platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002566present in the platform. Arm standard platform layer supports both
2567`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2568and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2569FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002570``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2571details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002572
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002573See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002574
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002575Function : plat_interrupt_type_to_line() [mandatory]
2576~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002577
2578::
2579
2580 Argument : uint32_t, uint32_t
2581 Return : uint32_t
2582
Dan Handley610e7e12018-03-01 18:44:00 +00002583The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002584interrupt line. The specific line that is signaled depends on how the interrupt
2585controller (IC) reports different interrupt types from an execution context in
2586either security state. The IMF uses this API to determine which interrupt line
2587the platform IC uses to signal each type of interrupt supported by the framework
2588from a given security state. This API must be invoked at EL3.
2589
2590The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01002591:ref:`Interrupt Management Framework`) indicating the target type of the
2592interrupt, the second parameter is the security state of the originating
2593execution context. The return result is the bit position in the ``SCR_EL3``
2594register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002595
Dan Handley610e7e12018-03-01 18:44:00 +00002596In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002597configured as FIQs and Non-secure interrupts as IRQs from either security
2598state.
2599
Dan Handley610e7e12018-03-01 18:44:00 +00002600In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002601configured depends on the security state of the execution context when the
2602interrupt is signalled and are as follows:
2603
2604- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2605 NS-EL0/1/2 context.
2606- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2607 in the NS-EL0/1/2 context.
2608- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2609 context.
2610
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002611Function : plat_ic_get_pending_interrupt_type() [mandatory]
2612~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002613
2614::
2615
2616 Argument : void
2617 Return : uint32_t
2618
2619This API returns the type of the highest priority pending interrupt at the
2620platform IC. The IMF uses the interrupt type to retrieve the corresponding
2621handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2622pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2623``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2624
Dan Handley610e7e12018-03-01 18:44:00 +00002625In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002626Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2627the pending interrupt. The type of interrupt depends upon the id value as
2628follows.
2629
2630#. id < 1022 is reported as a S-EL1 interrupt
2631#. id = 1022 is reported as a Non-secure interrupt.
2632#. id = 1023 is reported as an invalid interrupt type.
2633
Dan Handley610e7e12018-03-01 18:44:00 +00002634In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002635``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2636is read to determine the id of the pending interrupt. The type of interrupt
2637depends upon the id value as follows.
2638
2639#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2640#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2641#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2642#. All other interrupt id's are reported as EL3 interrupt.
2643
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002644Function : plat_ic_get_pending_interrupt_id() [mandatory]
2645~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002646
2647::
2648
2649 Argument : void
2650 Return : uint32_t
2651
2652This API returns the id of the highest priority pending interrupt at the
2653platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2654pending.
2655
Dan Handley610e7e12018-03-01 18:44:00 +00002656In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002657Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2658pending interrupt. The id that is returned by API depends upon the value of
2659the id read from the interrupt controller as follows.
2660
2661#. id < 1022. id is returned as is.
2662#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2663 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2664 This id is returned by the API.
2665#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2666
Dan Handley610e7e12018-03-01 18:44:00 +00002667In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002668EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2669group 0 Register*, is read to determine the id of the pending interrupt. The id
2670that is returned by API depends upon the value of the id read from the
2671interrupt controller as follows.
2672
2673#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2674#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2675 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2676 Register* is read to determine the id of the group 1 interrupt. This id
2677 is returned by the API as long as it is a valid interrupt id
2678#. If the id is any of the special interrupt identifiers,
2679 ``INTR_ID_UNAVAILABLE`` is returned.
2680
2681When the API invoked from S-EL1 for GICv3 systems, the id read from system
2682register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002683Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002684``INTR_ID_UNAVAILABLE`` is returned.
2685
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002686Function : plat_ic_acknowledge_interrupt() [mandatory]
2687~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002688
2689::
2690
2691 Argument : void
2692 Return : uint32_t
2693
2694This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002695the highest pending interrupt has begun. It should return the raw, unmodified
2696value obtained from the interrupt controller when acknowledging an interrupt.
2697The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002698`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002699
Dan Handley610e7e12018-03-01 18:44:00 +00002700This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002701Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2702priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002703It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002704
Dan Handley610e7e12018-03-01 18:44:00 +00002705In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002706from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2707Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2708reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2709group 1*. The read changes the state of the highest pending interrupt from
2710pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002711unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002712
2713The TSP uses this API to start processing of the secure physical timer
2714interrupt.
2715
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002716Function : plat_ic_end_of_interrupt() [mandatory]
2717~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002718
2719::
2720
2721 Argument : uint32_t
2722 Return : void
2723
2724This API is used by the CPU to indicate to the platform IC that processing of
2725the interrupt corresponding to the id (passed as the parameter) has
2726finished. The id should be the same as the id returned by the
2727``plat_ic_acknowledge_interrupt()`` API.
2728
Dan Handley610e7e12018-03-01 18:44:00 +00002729Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002730(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2731system register in case of GICv3 depending on where the API is invoked from,
2732EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2733controller.
2734
2735The TSP uses this API to finish processing of the secure physical timer
2736interrupt.
2737
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002738Function : plat_ic_get_interrupt_type() [mandatory]
2739~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002740
2741::
2742
2743 Argument : uint32_t
2744 Return : uint32_t
2745
2746This API returns the type of the interrupt id passed as the parameter.
2747``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2748interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2749returned depending upon how the interrupt has been configured by the platform
2750IC. This API must be invoked at EL3.
2751
Dan Handley610e7e12018-03-01 18:44:00 +00002752Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002753and Non-secure interrupts as Group1 interrupts. It reads the group value
2754corresponding to the interrupt id from the relevant *Interrupt Group Register*
2755(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2756
Dan Handley610e7e12018-03-01 18:44:00 +00002757In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002758Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2759(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2760as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2761
2762Crash Reporting mechanism (in BL31)
2763-----------------------------------
2764
2765BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002766of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002767on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002768``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2769
2770The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2771implementation of all of them. Platforms may include this file to their
2772makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002773output to be routed over the normal console infrastructure and get printed on
2774consoles configured to output in crash state. ``console_set_scope()`` can be
2775used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00002776
2777.. note::
2778 Platforms are responsible for making sure that they only mark consoles for
2779 use in the crash scope that are able to support this, i.e. that are written
2780 in assembly and conform with the register clobber rules for putc()
2781 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002782
Julius Werneraae9bb12017-09-18 16:49:48 -07002783In some cases (such as debugging very early crashes that happen before the
2784normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002785more explicitly. These platforms may instead provide custom implementations for
2786these. They are executed outside of a C environment and without a stack. Many
2787console drivers provide functions named ``console_xxx_core_init/putc/flush``
2788that are designed to be used by these functions. See Arm platforms (like juno)
2789for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002790
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002791Function : plat_crash_console_init [mandatory]
2792~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002793
2794::
2795
2796 Argument : void
2797 Return : int
2798
2799This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002800console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002801initialization and returns 1 on success.
2802
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002803Function : plat_crash_console_putc [mandatory]
2804~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002805
2806::
2807
2808 Argument : int
2809 Return : int
2810
2811This API is used by the crash reporting mechanism to print a character on the
2812designated crash console. It must only use general purpose registers x1 and
2813x2 to do its work. The parameter and the return value are in general purpose
2814register x0.
2815
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002816Function : plat_crash_console_flush [mandatory]
2817~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002818
2819::
2820
2821 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05002822 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002823
2824This API is used by the crash reporting mechanism to force write of all buffered
2825data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05002826registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002827
Manish Pandey9c9f38a2020-06-30 00:46:08 +01002828.. _External Abort handling and RAS Support:
2829
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002830External Abort handling and RAS Support
2831---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002832
2833Function : plat_ea_handler
2834~~~~~~~~~~~~~~~~~~~~~~~~~~
2835
2836::
2837
2838 Argument : int
2839 Argument : uint64_t
2840 Argument : void *
2841 Argument : void *
2842 Argument : uint64_t
2843 Return : void
2844
2845This function is invoked by the RAS framework for the platform to handle an
2846External Abort received at EL3. The intention of the function is to attempt to
2847resolve the cause of External Abort and return; if that's not possible, to
2848initiate orderly shutdown of the system.
2849
2850The first parameter (``int ea_reason``) indicates the reason for External Abort.
2851Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2852
2853The second parameter (``uint64_t syndrome``) is the respective syndrome
2854presented to EL3 after having received the External Abort. Depending on the
2855nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2856can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2857
2858The third parameter (``void *cookie``) is unused for now. The fourth parameter
2859(``void *handle``) is a pointer to the preempted context. The fifth parameter
2860(``uint64_t flags``) indicates the preempted security state. These parameters
2861are received from the top-level exception handler.
2862
2863If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2864function iterates through RAS handlers registered by the platform. If any of the
2865RAS handlers resolve the External Abort, no further action is taken.
2866
2867If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2868could resolve the External Abort, the default implementation prints an error
2869message, and panics.
2870
2871Function : plat_handle_uncontainable_ea
2872~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2873
2874::
2875
2876 Argument : int
2877 Argument : uint64_t
2878 Return : void
2879
2880This function is invoked by the RAS framework when an External Abort of
2881Uncontainable type is received at EL3. Due to the critical nature of
2882Uncontainable errors, the intention of this function is to initiate orderly
2883shutdown of the system, and is not expected to return.
2884
2885This function must be implemented in assembly.
2886
2887The first and second parameters are the same as that of ``plat_ea_handler``.
2888
2889The default implementation of this function calls
2890``report_unhandled_exception``.
2891
2892Function : plat_handle_double_fault
2893~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2894
2895::
2896
2897 Argument : int
2898 Argument : uint64_t
2899 Return : void
2900
2901This function is invoked by the RAS framework when another External Abort is
2902received at EL3 while one is already being handled. I.e., a call to
2903``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2904this function is to initiate orderly shutdown of the system, and is not expected
2905recover or return.
2906
2907This function must be implemented in assembly.
2908
2909The first and second parameters are the same as that of ``plat_ea_handler``.
2910
2911The default implementation of this function calls
2912``report_unhandled_exception``.
2913
2914Function : plat_handle_el3_ea
2915~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2916
2917::
2918
2919 Return : void
2920
2921This function is invoked when an External Abort is received while executing in
2922EL3. Due to its critical nature, the intention of this function is to initiate
2923orderly shutdown of the system, and is not expected recover or return.
2924
2925This function must be implemented in assembly.
2926
2927The default implementation of this function calls
2928``report_unhandled_exception``.
2929
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002930Build flags
2931-----------
2932
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002933There are some build flags which can be defined by the platform to control
2934inclusion or exclusion of certain BL stages from the FIP image. These flags
2935need to be defined in the platform makefile which will get included by the
2936build system.
2937
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002938- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002939 By default, this flag is defined ``yes`` by the build system and ``BL33``
2940 build option should be supplied as a build option. The platform has the
2941 option of excluding the BL33 image in the ``fip`` image by defining this flag
2942 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
2943 are used, this flag will be set to ``no`` automatically.
2944
Paul Beesley07f0a312019-05-16 13:33:18 +01002945Platform include paths
2946----------------------
2947
2948Platforms are allowed to add more include paths to be passed to the compiler.
2949The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
2950particular for the file ``platform_def.h``.
2951
2952Example:
2953
2954.. code:: c
2955
2956 PLAT_INCLUDES += -Iinclude/plat/myplat/include
2957
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002958C Library
2959---------
2960
2961To avoid subtle toolchain behavioral dependencies, the header files provided
2962by the compiler are not used. The software is built with the ``-nostdinc`` flag
2963to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00002964required headers are included in the TF-A source tree. The library only
2965contains those C library definitions required by the local implementation. If
2966more functionality is required, the needed library functions will need to be
2967added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002968
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002969Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00002970been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002971from `FreeBSD`_, others have been written specifically for TF-A as well. The
2972files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002973
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01002974SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
2975can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002976
2977Storage abstraction layer
2978-------------------------
2979
Louis Mayencourtb5469002019-07-15 13:56:03 +01002980In order to improve platform independence and portability a storage abstraction
2981layer is used to load data from non-volatile platform storage. Currently
2982storage access is only required by BL1 and BL2 phases and performed inside the
2983``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002984
Louis Mayencourtb5469002019-07-15 13:56:03 +01002985.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002986
Dan Handley610e7e12018-03-01 18:44:00 +00002987It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002988development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002989the default means to load data from storage (see :ref:`firmware_design_fip`).
2990The storage layer is described in the header file
2991``include/drivers/io/io_storage.h``. The implementation of the common library is
2992in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002993``drivers/io/``.
2994
Louis Mayencourtb5469002019-07-15 13:56:03 +01002995.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
2996
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002997Each IO driver must provide ``io_dev_*`` structures, as described in
2998``drivers/io/io_driver.h``. These are returned via a mandatory registration
2999function that is called on platform initialization. The semi-hosting driver
3000implementation in ``io_semihosting.c`` can be used as an example.
3001
Louis Mayencourtb5469002019-07-15 13:56:03 +01003002Each platform should register devices and their drivers via the storage
3003abstraction layer. These drivers then need to be initialized by bootloader
3004phases as required in their respective ``blx_platform_setup()`` functions.
3005
3006.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
3007
3008The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3009initialize storage devices before IO operations are called.
3010
3011.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
3012
3013The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003014include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3015Drivers do not have to implement all operations, but each platform must
3016provide at least one driver for a device capable of supporting generic
3017operations such as loading a bootloader image.
3018
3019The current implementation only allows for known images to be loaded by the
3020firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003021``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003022there). The platform layer (``plat_get_image_source()``) then returns a reference
3023to a device and a driver-specific ``spec`` which will be understood by the driver
3024to allow access to the image data.
3025
3026The layer is designed in such a way that is it possible to chain drivers with
3027other drivers. For example, file-system drivers may be implemented on top of
3028physical block devices, both represented by IO devices with corresponding
3029drivers. In such a case, the file-system "binding" with the block device may
3030be deferred until the file-system device is initialised.
3031
3032The abstraction currently depends on structures being statically allocated
3033by the drivers and callers, as the system does not yet provide a means of
3034dynamically allocating memory. This may also have the affect of limiting the
3035amount of open resources per driver.
3036
3037--------------
3038
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05003039*Copyright (c) 2013-2021, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003040
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003041.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00003042.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003043.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003044.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003045.. _SCC: http://www.simple-cc.org/