blob: f3316164bb0023220105f254adaa180ea3b835d5 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Paul Beesleyf8640672019-04-12 14:19:42 +010026Please refer to the :ref:`Platform Compatibility Policy` for the policy
27regarding compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010028
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillardd7c21b72017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley610e7e12018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010061
Dan Handley610e7e12018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010092File : platform_def.h [mandatory]
93~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010094
95Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000096include path with the following constants defined. This will require updating
97the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010098
Paul Beesleyf8640672019-04-12 14:19:42 +010099Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100which provides typical values for some of the constants below. These values are
101likely to be suitable for all platform ports.
102
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100103- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100104
105 Defines the linker format used by the platform, for example
106 ``elf64-littleaarch64``.
107
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100108- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100109
110 Defines the processor architecture for the linker by the platform, for
111 example ``aarch64``.
112
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100113- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100114
115 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100116 by ``plat/common/aarch64/platform_mp_stack.S`` and
117 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100119- **define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
121 Defines the size in bits of the largest cache line across all the cache
122 levels in the platform.
123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100124- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100125
126 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
127 function.
128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100129- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100130
131 Defines the total number of CPUs implemented by the platform across all
132 clusters in the system.
133
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100134- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100135
136 Defines the total number of nodes in the power domain topology
137 tree at all the power domain levels used by the platform.
138 This macro is used by the PSCI implementation to allocate
139 data structures to represent power domain topology.
140
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100141- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100142
143 Defines the maximum power domain level that the power management operations
144 should apply to. More often, but not always, the power domain level
145 corresponds to affinity level. This macro allows the PSCI implementation
146 to know the highest power domain level that it should consider for power
147 management operations in the system that the platform implements. For
148 example, the Base AEM FVP implements two clusters with a configurable
149 number of CPUs and it reports the maximum power domain level as 1.
150
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100151- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100152
153 Defines the local power state corresponding to the deepest power down
154 possible at every power domain level in the platform. The local power
155 states for each level may be sparsely allocated between 0 and this value
156 with 0 being reserved for the RUN state. The PSCI implementation uses this
157 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100158 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 Defines the local power state corresponding to the deepest retention state
163 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100164 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100165 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
170 Defines the maximum number of local power states per power domain level
171 that the platform supports. The default value of this macro is 2 since
172 most platforms just support a maximum of two local power states at each
173 power domain level (power-down and retention). If the platform needs to
174 account for more local power states, then it must redefine this macro.
175
176 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100177 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100178
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
181 Defines the base address in secure ROM where BL1 originally lives. Must be
182 aligned on a page-size boundary.
183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100184- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100185
186 Defines the maximum address in secure ROM that BL1's actual content (i.e.
187 excluding any data section allocated at runtime) can occupy.
188
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100189- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100190
191 Defines the base address in secure RAM where BL1's read-write data will live
192 at runtime. Must be aligned on a page-size boundary.
193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100194- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100195
196 Defines the maximum address in secure RAM that BL1's read-write data can
197 occupy at runtime.
198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100199- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100200
201 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000202 Must be aligned on a page-size boundary. This constant is not applicable
203 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100205- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
207 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000208 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100210- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000211
212 Defines the base address in secure XIP memory where BL2 RO section originally
213 lives. Must be aligned on a page-size boundary. This constant is only needed
214 when BL2_IN_XIP_MEM is set to '1'.
215
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100216- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000217
218 Defines the maximum address in secure XIP memory that BL2's actual content
219 (i.e. excluding any data section allocated at runtime) can occupy. This
220 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
221
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100222- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000223
224 Defines the base address in secure RAM where BL2's read-write data will live
225 at runtime. Must be aligned on a page-size boundary. This constant is only
226 needed when BL2_IN_XIP_MEM is set to '1'.
227
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100228- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000229
230 Defines the maximum address in secure RAM that BL2's read-write data can
231 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
232 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100233
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100234- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
236 Defines the base address in secure RAM where BL2 loads the BL31 binary
237 image. Must be aligned on a page-size boundary.
238
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100239- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100240
241 Defines the maximum address in secure RAM that the BL31 image can occupy.
242
243For every image, the platform must define individual identifiers that will be
244used by BL1 or BL2 to load the corresponding image into memory from non-volatile
245storage. For the sake of performance, integer numbers will be used as
246identifiers. The platform will use those identifiers to return the relevant
247information about the image to be loaded (file handler, load address,
248authentication information, etc.). The following image identifiers are
249mandatory:
250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100251- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100252
253 BL2 image identifier, used by BL1 to load BL2.
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 BL31 image identifier, used by BL2 to load BL31.
258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100259- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
261 BL33 image identifier, used by BL2 to load BL33.
262
263If Trusted Board Boot is enabled, the following certificate identifiers must
264also be defined:
265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100266- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100267
268 BL2 content certificate identifier, used by BL1 to load the BL2 content
269 certificate.
270
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100271- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100272
273 Trusted key certificate identifier, used by BL2 to load the trusted key
274 certificate.
275
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100276- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100277
278 BL31 key certificate identifier, used by BL2 to load the BL31 key
279 certificate.
280
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100281- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100282
283 BL31 content certificate identifier, used by BL2 to load the BL31 content
284 certificate.
285
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100286- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100287
288 BL33 key certificate identifier, used by BL2 to load the BL33 key
289 certificate.
290
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100291- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100292
293 BL33 content certificate identifier, used by BL2 to load the BL33 content
294 certificate.
295
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100296- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299 FWU content certificate.
300
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100301- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100302
Dan Handley610e7e12018-03-01 18:44:00 +0000303 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000305 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 set.
307
308If the AP Firmware Updater Configuration image, BL2U is used, the following
309must also be defined:
310
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100311- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100312
313 Defines the base address in secure memory where BL1 copies the BL2U binary
314 image. Must be aligned on a page-size boundary.
315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100316- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100317
318 Defines the maximum address in secure memory that the BL2U image can occupy.
319
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100320- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100321
322 BL2U image identifier, used by BL1 to fetch an image descriptor
323 corresponding to BL2U.
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326must also be defined:
327
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100328- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
331 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000332
333 .. note::
334 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100336If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337also be defined:
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000343
344 .. note::
345 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100347- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
350 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100352If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353be defined:
354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000359
360 .. note::
361 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100365 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
366 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367
368For the the Firmware update capability of TRUSTED BOARD BOOT, the following
369macros may also be defined:
370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372
373 Total number of images that can be loaded simultaneously. If the platform
374 doesn't specify any value, it defaults to 10.
375
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100376If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100377also be defined:
378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100381 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000382 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100384- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387 certificate (mandatory when Trusted Board Boot is enabled).
388
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100389- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100391 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392 content certificate (mandatory when Trusted Board Boot is enabled).
393
394If a BL32 image is supported by the platform, the following constants must
395also be defined:
396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100397- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100398
399 BL32 image identifier, used by BL2 to load BL32.
400
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100401- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100402
403 BL32 key certificate identifier, used by BL2 to load the BL32 key
404 certificate (mandatory when Trusted Board Boot is enabled).
405
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100406- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100407
408 BL32 content certificate identifier, used by BL2 to load the BL32 content
409 certificate (mandatory when Trusted Board Boot is enabled).
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 Defines the base address in secure memory where BL2 loads the BL32 binary
414 image. Must be aligned on a page-size boundary.
415
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100416- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100417
418 Defines the maximum address that the BL32 image can occupy.
419
420If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
421platform, the following constants must also be defined:
422
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100423- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100424
425 Defines the base address of the secure memory used by the TSP image on the
426 platform. This must be at the same address or below ``BL32_BASE``.
427
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100428- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100429
430 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000431 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
432 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
433 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100434
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100435- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100436
437 Defines the ID of the secure physical generic timer interrupt used by the
438 TSP's interrupt handling code.
439
440If the platform port uses the translation table library code, the following
441constants must also be defined:
442
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100443- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100444
445 Optional flag that can be set per-image to enable the dynamic allocation of
446 regions even when the MMU is enabled. If not defined, only static
447 functionality will be available, if defined and set to 1 it will also
448 include the dynamic functionality.
449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100450- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100451
452 Defines the maximum number of translation tables that are allocated by the
453 translation table library code. To minimize the amount of runtime memory
454 used, choose the smallest value needed to map the required virtual addresses
455 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
456 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
457 as well.
458
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100459- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100460
461 Defines the maximum number of regions that are allocated by the translation
462 table library code. A region consists of physical base address, virtual base
463 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
464 defined in the ``mmap_region_t`` structure. The platform defines the regions
465 that should be mapped. Then, the translation table library will create the
466 corresponding tables and descriptors at runtime. To minimize the amount of
467 runtime memory used, choose the smallest value needed to register the
468 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
469 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
470 the dynamic regions as well.
471
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100472- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100473
474 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000475 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100476
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100477- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100478
479 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000480 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100481
482If the platform port uses the IO storage framework, the following constants
483must also be defined:
484
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100485- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100486
487 Defines the maximum number of registered IO devices. Attempting to register
488 more devices than this value using ``io_register_device()`` will fail with
489 -ENOMEM.
490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the maximum number of open IO handles. Attempting to open more IO
494 entities than this value using ``io_open()`` will fail with -ENOMEM.
495
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100496- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100497
498 Defines the maximum number of registered IO block devices. Attempting to
499 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100500 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100501 With this macro, multiple block devices could be supported at the same
502 time.
503
504If the platform needs to allocate data within the per-cpu data framework in
505BL31, it should define the following macro. Currently this is only required if
506the platform decides not to use the coherent memory section by undefining the
507``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
508required memory within the the per-cpu data to minimize wastage.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the memory (in bytes) to be reserved within the per-cpu data
513 structure for use by the platform layer.
514
515The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000516memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100517
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100518- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100519
520 Defines the maximum address in secure RAM that the BL31's progbits sections
521 can occupy.
522
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100523- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100524
525 Defines the maximum address that the TSP's progbits sections can occupy.
526
527If the platform port uses the PL061 GPIO driver, the following constant may
528optionally be defined:
529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100530- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531 Maximum number of GPIOs required by the platform. This allows control how
532 much memory is allocated for PL061 GPIO controllers. The default value is
533
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100534 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100535
536If the platform port uses the partition driver, the following constant may
537optionally be defined:
538
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100539- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100540 Maximum number of partition entries required by the platform. This allows
541 control how much memory is allocated for partition entries. The default
542 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100543 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100544 PLAT_PARTITION_MAX_ENTRIES := 12
545 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100546
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800547- **PLAT_PARTITION_BLOCK_SIZE**
548 The size of partition block. It could be either 512 bytes or 4096 bytes.
549 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000550 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800551 PLAT_PARTITION_BLOCK_SIZE := 4096
552 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
553
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554The following constant is optional. It should be defined to override the default
555behaviour of the ``assert()`` function (for example, to save memory).
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
559 ``assert()`` prints the name of the file, the line number and the asserted
560 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
561 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
562 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
563 defined, it defaults to ``LOG_LEVEL``.
564
Alexei Fedorov7e6306b2020-07-14 08:17:56 +0100565If the platform port uses the Activity Monitor Unit, the following constant
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000566may be defined:
567
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100568- **PLAT_AMU_GROUP1_COUNTERS_MASK**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000569 This mask reflects the set of group counters that should be enabled. The
570 maximum number of group 1 counters supported by AMUv1 is 16 so the mask
571 can be at most 0xffff. If the platform does not define this mask, no group 1
Alexei Fedorov7e6306b2020-07-14 08:17:56 +0100572 counters are enabled.
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000573
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100574File : plat_macros.S [mandatory]
575~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100576
577Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000578the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100579found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
580
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100581- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100582
583 This macro allows the crash reporting routine to print relevant platform
584 registers in case of an unhandled exception in BL31. This aids in debugging
585 and this macro can be defined to be empty in case register reporting is not
586 desired.
587
588 For instance, GIC or interconnect registers may be helpful for
589 troubleshooting.
590
591Handling Reset
592--------------
593
594BL1 by default implements the reset vector where execution starts from a cold
595or warm boot. BL31 can be optionally set as a reset vector using the
596``RESET_TO_BL31`` make variable.
597
598For each CPU, the reset vector code is responsible for the following tasks:
599
600#. Distinguishing between a cold boot and a warm boot.
601
602#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
603 the CPU is placed in a platform-specific state until the primary CPU
604 performs the necessary steps to remove it from this state.
605
606#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
607 specific address in the BL31 image in the same processor mode as it was
608 when released from reset.
609
610The following functions need to be implemented by the platform port to enable
611reset vector code to perform the above tasks.
612
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100613Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
614~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100615
616::
617
618 Argument : void
619 Return : uintptr_t
620
621This function is called with the MMU and caches disabled
622(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
623distinguishing between a warm and cold reset for the current CPU using
624platform-specific means. If it's a warm reset, then it returns the warm
625reset entrypoint point provided to ``plat_setup_psci_ops()`` during
626BL31 initialization. If it's a cold reset then this function must return zero.
627
628This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000629Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100630not assume that callee saved registers are preserved across a call to this
631function.
632
633This function fulfills requirement 1 and 3 listed above.
634
635Note that for platforms that support programming the reset address, it is
636expected that a CPU will start executing code directly at the right address,
637both on a cold and warm reset. In this case, there is no need to identify the
638type of reset nor to query the warm reset entrypoint. Therefore, implementing
639this function is not required on such platforms.
640
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100641Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
642~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100643
644::
645
646 Argument : void
647
648This function is called with the MMU and data caches disabled. It is responsible
649for placing the executing secondary CPU in a platform-specific state until the
650primary CPU performs the necessary actions to bring it out of that state and
651allow entry into the OS. This function must not return.
652
Dan Handley610e7e12018-03-01 18:44:00 +0000653In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100654itself off. The primary CPU is responsible for powering up the secondary CPUs
655when normal world software requires them. When booting an EL3 payload instead,
656they stay powered on and are put in a holding pen until their mailbox gets
657populated.
658
659This function fulfills requirement 2 above.
660
661Note that for platforms that can't release secondary CPUs out of reset, only the
662primary CPU will execute the cold boot code. Therefore, implementing this
663function is not required on such platforms.
664
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100665Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
666~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100667
668::
669
670 Argument : void
671 Return : unsigned int
672
673This function identifies whether the current CPU is the primary CPU or a
674secondary CPU. A return value of zero indicates that the CPU is not the
675primary CPU, while a non-zero return value indicates that the CPU is the
676primary CPU.
677
678Note that for platforms that can't release secondary CPUs out of reset, only the
679primary CPU will execute the cold boot code. Therefore, there is no need to
680distinguish between primary and secondary CPUs and implementing this function is
681not required.
682
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100683Function : platform_mem_init() [mandatory]
684~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100685
686::
687
688 Argument : void
689 Return : void
690
691This function is called before any access to data is made by the firmware, in
692order to carry out any essential memory initialization.
693
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100694Function: plat_get_rotpk_info()
695~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100696
697::
698
699 Argument : void *, void **, unsigned int *, unsigned int *
700 Return : int
701
702This function is mandatory when Trusted Board Boot is enabled. It returns a
703pointer to the ROTPK stored in the platform (or a hash of it) and its length.
704The ROTPK must be encoded in DER format according to the following ASN.1
705structure:
706
707::
708
709 AlgorithmIdentifier ::= SEQUENCE {
710 algorithm OBJECT IDENTIFIER,
711 parameters ANY DEFINED BY algorithm OPTIONAL
712 }
713
714 SubjectPublicKeyInfo ::= SEQUENCE {
715 algorithm AlgorithmIdentifier,
716 subjectPublicKey BIT STRING
717 }
718
719In case the function returns a hash of the key:
720
721::
722
723 DigestInfo ::= SEQUENCE {
724 digestAlgorithm AlgorithmIdentifier,
725 digest OCTET STRING
726 }
727
728The function returns 0 on success. Any other value is treated as error by the
729Trusted Board Boot. The function also reports extra information related
730to the ROTPK in the flags parameter:
731
732::
733
734 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
735 hash.
736 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
737 verification while the platform ROTPK is not deployed.
738 When this flag is set, the function does not need to
739 return a platform ROTPK, and the authentication
740 framework uses the ROTPK in the certificate without
741 verifying it against the platform value. This flag
742 must not be used in a deployed production environment.
743
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100744Function: plat_get_nv_ctr()
745~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100746
747::
748
749 Argument : void *, unsigned int *
750 Return : int
751
752This function is mandatory when Trusted Board Boot is enabled. It returns the
753non-volatile counter value stored in the platform in the second argument. The
754cookie in the first argument may be used to select the counter in case the
755platform provides more than one (for example, on platforms that use the default
756TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100757TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100758
759The function returns 0 on success. Any other value means the counter value could
760not be retrieved from the platform.
761
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100762Function: plat_set_nv_ctr()
763~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100764
765::
766
767 Argument : void *, unsigned int
768 Return : int
769
770This function is mandatory when Trusted Board Boot is enabled. It sets a new
771counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100772select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100773the updated counter value to be written to the NV counter.
774
775The function returns 0 on success. Any other value means the counter value could
776not be updated.
777
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100778Function: plat_set_nv_ctr2()
779~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100780
781::
782
783 Argument : void *, const auth_img_desc_t *, unsigned int
784 Return : int
785
786This function is optional when Trusted Board Boot is enabled. If this
787interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
788first argument passed is a cookie and is typically used to
789differentiate between a Non Trusted NV Counter and a Trusted NV
790Counter. The second argument is a pointer to an authentication image
791descriptor and may be used to decide if the counter is allowed to be
792updated or not. The third argument is the updated counter value to
793be written to the NV counter.
794
795The function returns 0 on success. Any other value means the counter value
796either could not be updated or the authentication image descriptor indicates
797that it is not allowed to be updated.
798
799Common mandatory function modifications
800---------------------------------------
801
802The following functions are mandatory functions which need to be implemented
803by the platform port.
804
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100805Function : plat_my_core_pos()
806~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100807
808::
809
810 Argument : void
811 Return : unsigned int
812
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000813This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100814CPU-specific linear index into blocks of memory (for example while allocating
815per-CPU stacks). This function will be invoked very early in the
816initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000817implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100818runtime environment. This function can clobber x0 - x8 and must preserve
819x9 - x29.
820
821This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +0100822PSCI and details of this can be found in
823:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100824
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100825Function : plat_core_pos_by_mpidr()
826~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100827
828::
829
830 Argument : u_register_t
831 Return : int
832
833This function validates the ``MPIDR`` of a CPU and converts it to an index,
834which can be used as a CPU-specific linear index into blocks of memory. In
835case the ``MPIDR`` is invalid, this function returns -1. This function will only
836be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000837utilize the C runtime environment. For further details about how TF-A
838represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +0100839index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100840
Ambroise Vincentd207f562019-04-10 12:50:27 +0100841Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
842~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
843
844::
845
846 Arguments : void **heap_addr, size_t *heap_size
847 Return : int
848
849This function is invoked during Mbed TLS library initialisation to get a heap,
850by means of a starting address and a size. This heap will then be used
851internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
852must be able to provide a heap to it.
853
854A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
855which a heap is statically reserved during compile time inside every image
856(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
857the function simply returns the address and size of this "pre-allocated" heap.
858For a platform to use this default implementation, only a call to the helper
859from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
860
861However, by writting their own implementation, platforms have the potential to
862optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
863shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
864twice.
865
866On success the function should return 0 and a negative error code otherwise.
867
Sumit Gargc0c369c2019-11-15 18:47:53 +0530868Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
869~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
870
871::
872
873 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
874 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
875 size_t img_id_len
876 Return : int
877
878This function provides a symmetric key (either SSK or BSSK depending on
879fw_enc_status) which is invoked during runtime decryption of encrypted
880firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
881implementation for testing purposes which must be overridden by the platform
882trying to implement a real world firmware encryption use-case.
883
884It also allows the platform to pass symmetric key identifier rather than
885actual symmetric key which is useful in cases where the crypto backend provides
886secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
887flag must be set in ``flags``.
888
889In addition to above a platform may also choose to provide an image specific
890symmetric key/identifier using img_id.
891
892On success the function should return 0 and a negative error code otherwise.
893
894Note that this API depends on ``DECRYPTION_SUPPORT`` build flag which is
895marked as experimental.
896
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100897Common optional modifications
898-----------------------------
899
900The following are helper functions implemented by the firmware that perform
901common platform-specific tasks. A platform may choose to override these
902definitions.
903
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100904Function : plat_set_my_stack()
905~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100906
907::
908
909 Argument : void
910 Return : void
911
912This function sets the current stack pointer to the normal memory stack that
913has been allocated for the current CPU. For BL images that only require a
914stack for the primary CPU, the UP version of the function is used. The size
915of the stack allocated to each CPU is specified by the platform defined
916constant ``PLATFORM_STACK_SIZE``.
917
918Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100919provided in ``plat/common/aarch64/platform_up_stack.S`` and
920``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100921
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100922Function : plat_get_my_stack()
923~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100924
925::
926
927 Argument : void
928 Return : uintptr_t
929
930This function returns the base address of the normal memory stack that
931has been allocated for the current CPU. For BL images that only require a
932stack for the primary CPU, the UP version of the function is used. The size
933of the stack allocated to each CPU is specified by the platform defined
934constant ``PLATFORM_STACK_SIZE``.
935
936Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100937provided in ``plat/common/aarch64/platform_up_stack.S`` and
938``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100939
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100940Function : plat_report_exception()
941~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100942
943::
944
945 Argument : unsigned int
946 Return : void
947
948A platform may need to report various information about its status when an
949exception is taken, for example the current exception level, the CPU security
950state (secure/non-secure), the exception type, and so on. This function is
951called in the following circumstances:
952
953- In BL1, whenever an exception is taken.
954- In BL2, whenever an exception is taken.
955
956The default implementation doesn't do anything, to avoid making assumptions
957about the way the platform displays its status information.
958
959For AArch64, this function receives the exception type as its argument.
960Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +0100961``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +0000962related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100963
964For AArch32, this function receives the exception mode as its argument.
965Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +0100966``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100967
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100968Function : plat_reset_handler()
969~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100970
971::
972
973 Argument : void
974 Return : void
975
976A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000977allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000978specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100979preserve the values of callee saved registers x19 to x29.
980
981The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +0100982the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100983guidelines.
984
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100985Function : plat_disable_acp()
986~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100987
988::
989
990 Argument : void
991 Return : void
992
John Tsichritzis6dda9762018-07-23 09:18:04 +0100993This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100994present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +0100995doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100996it has restrictions for stack usage and it can use the registers x0 - x17 as
997scratch registers. It should preserve the value in x18 register as it is used
998by the caller to store the return address.
999
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001000Function : plat_error_handler()
1001~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001002
1003::
1004
1005 Argument : int
1006 Return : void
1007
1008This API is called when the generic code encounters an error situation from
1009which it cannot continue. It allows the platform to perform error reporting or
1010recovery actions (for example, reset the system). This function must not return.
1011
1012The parameter indicates the type of error using standard codes from ``errno.h``.
1013Possible errors reported by the generic code are:
1014
1015- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1016 Board Boot is enabled)
1017- ``-ENOENT``: the requested image or certificate could not be found or an IO
1018 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001019- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1020 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001021
1022The default implementation simply spins.
1023
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001024Function : plat_panic_handler()
1025~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001026
1027::
1028
1029 Argument : void
1030 Return : void
1031
1032This API is called when the generic code encounters an unexpected error
1033situation from which it cannot recover. This function must not return,
1034and must be implemented in assembly because it may be called before the C
1035environment is initialized.
1036
Paul Beesleyba3ed402019-03-13 16:20:44 +00001037.. note::
1038 The address from where it was called is stored in x30 (Link Register).
1039 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001040
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001041Function : plat_get_bl_image_load_info()
1042~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001043
1044::
1045
1046 Argument : void
1047 Return : bl_load_info_t *
1048
1049This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001050populated to load. This function is invoked in BL2 to load the
1051BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001052
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001053Function : plat_get_next_bl_params()
1054~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001055
1056::
1057
1058 Argument : void
1059 Return : bl_params_t *
1060
1061This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001062kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001063function is invoked in BL2 to pass this information to the next BL
1064image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001065
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001066Function : plat_get_stack_protector_canary()
1067~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001068
1069::
1070
1071 Argument : void
1072 Return : u_register_t
1073
1074This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001075when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001076value will weaken the protection as the attacker could easily write the right
1077value as part of the attack most of the time. Therefore, it should return a
1078true random number.
1079
Paul Beesleyba3ed402019-03-13 16:20:44 +00001080.. warning::
1081 For the protection to be effective, the global data need to be placed at
1082 a lower address than the stack bases. Failure to do so would allow an
1083 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001084
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001085Function : plat_flush_next_bl_params()
1086~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001087
1088::
1089
1090 Argument : void
1091 Return : void
1092
1093This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001094next image. This function is invoked in BL2 to flush this information
1095to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001096
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001097Function : plat_log_get_prefix()
1098~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001099
1100::
1101
1102 Argument : unsigned int
1103 Return : const char *
1104
1105This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001106prepended to all the log output from TF-A. The `log_level` (argument) will
1107correspond to one of the standard log levels defined in debug.h. The platform
1108can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001109the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001110increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001111
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001112Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001113~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001114
1115::
1116
1117 Argument : void
1118 Return : int32_t
1119
1120This function returns soc version which mainly consist of below fields
1121
1122::
1123
1124 soc_version[30:24] = JEP-106 continuation code for the SiP
1125 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001126 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001127
1128Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001129~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001130
1131::
1132
1133 Argument : void
1134 Return : int32_t
1135
1136This function returns soc revision in below format
1137
1138::
1139
1140 soc_revision[0:30] = SOC revision of specific SOC
1141
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001142Function : plat_is_smccc_feature_available()
1143~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1144
1145::
1146
1147 Argument : u_register_t
1148 Return : int32_t
1149
1150This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1151the SMCCC function specified in the argument; otherwise returns
1152SMC_ARCH_CALL_NOT_SUPPORTED.
1153
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001154Modifications specific to a Boot Loader stage
1155---------------------------------------------
1156
1157Boot Loader Stage 1 (BL1)
1158-------------------------
1159
1160BL1 implements the reset vector where execution starts from after a cold or
1161warm boot. For each CPU, BL1 is responsible for the following tasks:
1162
1163#. Handling the reset as described in section 2.2
1164
1165#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1166 only this CPU executes the remaining BL1 code, including loading and passing
1167 control to the BL2 stage.
1168
1169#. Identifying and starting the Firmware Update process (if required).
1170
1171#. Loading the BL2 image from non-volatile storage into secure memory at the
1172 address specified by the platform defined constant ``BL2_BASE``.
1173
1174#. Populating a ``meminfo`` structure with the following information in memory,
1175 accessible by BL2 immediately upon entry.
1176
1177 ::
1178
1179 meminfo.total_base = Base address of secure RAM visible to BL2
1180 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001181
Soby Mathew97b1bff2018-09-27 16:46:41 +01001182 By default, BL1 places this ``meminfo`` structure at the end of secure
1183 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001184
Soby Mathewb1bf0442018-02-16 14:52:52 +00001185 It is possible for the platform to decide where it wants to place the
1186 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1187 BL2 by overriding the weak default implementation of
1188 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001189
1190The following functions need to be implemented by the platform port to enable
1191BL1 to perform the above tasks.
1192
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001193Function : bl1_early_platform_setup() [mandatory]
1194~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001195
1196::
1197
1198 Argument : void
1199 Return : void
1200
1201This function executes with the MMU and data caches disabled. It is only called
1202by the primary CPU.
1203
Dan Handley610e7e12018-03-01 18:44:00 +00001204On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001205
1206- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1207
1208- Initializes a UART (PL011 console), which enables access to the ``printf``
1209 family of functions in BL1.
1210
1211- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1212 the CCI slave interface corresponding to the cluster that includes the
1213 primary CPU.
1214
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001215Function : bl1_plat_arch_setup() [mandatory]
1216~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001217
1218::
1219
1220 Argument : void
1221 Return : void
1222
1223This function performs any platform-specific and architectural setup that the
1224platform requires. Platform-specific setup might include configuration of
1225memory controllers and the interconnect.
1226
Dan Handley610e7e12018-03-01 18:44:00 +00001227In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001228
1229This function helps fulfill requirement 2 above.
1230
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001231Function : bl1_platform_setup() [mandatory]
1232~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001233
1234::
1235
1236 Argument : void
1237 Return : void
1238
1239This function executes with the MMU and data caches enabled. It is responsible
1240for performing any remaining platform-specific setup that can occur after the
1241MMU and data cache have been enabled.
1242
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001243if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001244sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001245
Dan Handley610e7e12018-03-01 18:44:00 +00001246In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001247layer used to load the next bootloader image.
1248
1249This function helps fulfill requirement 4 above.
1250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001251Function : bl1_plat_sec_mem_layout() [mandatory]
1252~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001253
1254::
1255
1256 Argument : void
1257 Return : meminfo *
1258
1259This function should only be called on the cold boot path. It executes with the
1260MMU and data caches enabled. The pointer returned by this function must point to
1261a ``meminfo`` structure containing the extents and availability of secure RAM for
1262the BL1 stage.
1263
1264::
1265
1266 meminfo.total_base = Base address of secure RAM visible to BL1
1267 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001268
1269This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1270populates a similar structure to tell BL2 the extents of memory available for
1271its own use.
1272
1273This function helps fulfill requirements 4 and 5 above.
1274
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001275Function : bl1_plat_prepare_exit() [optional]
1276~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001277
1278::
1279
1280 Argument : entry_point_info_t *
1281 Return : void
1282
1283This function is called prior to exiting BL1 in response to the
1284``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1285platform specific clean up or bookkeeping operations before transferring
1286control to the next image. It receives the address of the ``entry_point_info_t``
1287structure passed from BL2. This function runs with MMU disabled.
1288
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001289Function : bl1_plat_set_ep_info() [optional]
1290~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001291
1292::
1293
1294 Argument : unsigned int image_id, entry_point_info_t *ep_info
1295 Return : void
1296
1297This function allows platforms to override ``ep_info`` for the given ``image_id``.
1298
1299The default implementation just returns.
1300
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001301Function : bl1_plat_get_next_image_id() [optional]
1302~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001303
1304::
1305
1306 Argument : void
1307 Return : unsigned int
1308
1309This and the following function must be overridden to enable the FWU feature.
1310
1311BL1 calls this function after platform setup to identify the next image to be
1312loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1313with the normal boot sequence, which loads and executes BL2. If the platform
1314returns a different image id, BL1 assumes that Firmware Update is required.
1315
Dan Handley610e7e12018-03-01 18:44:00 +00001316The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001317platforms override this function to detect if firmware update is required, and
1318if so, return the first image in the firmware update process.
1319
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001320Function : bl1_plat_get_image_desc() [optional]
1321~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001322
1323::
1324
1325 Argument : unsigned int image_id
1326 Return : image_desc_t *
1327
1328BL1 calls this function to get the image descriptor information ``image_desc_t``
1329for the provided ``image_id`` from the platform.
1330
Dan Handley610e7e12018-03-01 18:44:00 +00001331The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001332standard platforms return an image descriptor corresponding to BL2 or one of
1333the firmware update images defined in the Trusted Board Boot Requirements
1334specification.
1335
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001336Function : bl1_plat_handle_pre_image_load() [optional]
1337~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001338
1339::
1340
Soby Mathew2f38ce32018-02-08 17:45:12 +00001341 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001342 Return : int
1343
1344This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001345corresponding to ``image_id``. This function is invoked in BL1, both in cold
1346boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001347
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001348Function : bl1_plat_handle_post_image_load() [optional]
1349~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001350
1351::
1352
Soby Mathew2f38ce32018-02-08 17:45:12 +00001353 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001354 Return : int
1355
1356This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001357corresponding to ``image_id``. This function is invoked in BL1, both in cold
1358boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001359
Soby Mathewb1bf0442018-02-16 14:52:52 +00001360The default weak implementation of this function calculates the amount of
1361Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1362structure at the beginning of this free memory and populates it. The address
1363of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1364information to BL2.
1365
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001366Function : bl1_plat_fwu_done() [optional]
1367~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001368
1369::
1370
1371 Argument : unsigned int image_id, uintptr_t image_src,
1372 unsigned int image_size
1373 Return : void
1374
1375BL1 calls this function when the FWU process is complete. It must not return.
1376The platform may override this function to take platform specific action, for
1377example to initiate the normal boot flow.
1378
1379The default implementation spins forever.
1380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001381Function : bl1_plat_mem_check() [mandatory]
1382~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001383
1384::
1385
1386 Argument : uintptr_t mem_base, unsigned int mem_size,
1387 unsigned int flags
1388 Return : int
1389
1390BL1 calls this function while handling FWU related SMCs, more specifically when
1391copying or authenticating an image. Its responsibility is to ensure that the
1392region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1393that this memory corresponds to either a secure or non-secure memory region as
1394indicated by the security state of the ``flags`` argument.
1395
1396This function can safely assume that the value resulting from the addition of
1397``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1398overflow.
1399
1400This function must return 0 on success, a non-null error code otherwise.
1401
1402The default implementation of this function asserts therefore platforms must
1403override it when using the FWU feature.
1404
1405Boot Loader Stage 2 (BL2)
1406-------------------------
1407
1408The BL2 stage is executed only by the primary CPU, which is determined in BL1
1409using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001410``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1411``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1412non-volatile storage to secure/non-secure RAM. After all the images are loaded
1413then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1414images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001415
1416The following functions must be implemented by the platform port to enable BL2
1417to perform the above tasks.
1418
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001419Function : bl2_early_platform_setup2() [mandatory]
1420~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001421
1422::
1423
Soby Mathew97b1bff2018-09-27 16:46:41 +01001424 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001425 Return : void
1426
1427This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001428by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1429are platform specific.
1430
1431On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001432
Manish V Badarkhe81414512020-06-24 15:58:38 +01001433 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001434
1435 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1436 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001437
Dan Handley610e7e12018-03-01 18:44:00 +00001438On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001439
1440- Initializes a UART (PL011 console), which enables access to the ``printf``
1441 family of functions in BL2.
1442
1443- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001444 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1445 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001446
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001447Function : bl2_plat_arch_setup() [mandatory]
1448~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001449
1450::
1451
1452 Argument : void
1453 Return : void
1454
1455This function executes with the MMU and data caches disabled. It is only called
1456by the primary CPU.
1457
1458The purpose of this function is to perform any architectural initialization
1459that varies across platforms.
1460
Dan Handley610e7e12018-03-01 18:44:00 +00001461On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001462
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001463Function : bl2_platform_setup() [mandatory]
1464~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001465
1466::
1467
1468 Argument : void
1469 Return : void
1470
1471This function may execute with the MMU and data caches enabled if the platform
1472port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1473called by the primary CPU.
1474
1475The purpose of this function is to perform any platform initialization
1476specific to BL2.
1477
Dan Handley610e7e12018-03-01 18:44:00 +00001478In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001479configuration of the TrustZone controller to allow non-secure masters access
1480to most of DRAM. Part of DRAM is reserved for secure world use.
1481
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001482Function : bl2_plat_handle_pre_image_load() [optional]
1483~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001484
1485::
1486
1487 Argument : unsigned int
1488 Return : int
1489
1490This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001491for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001492loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001493
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001494Function : bl2_plat_handle_post_image_load() [optional]
1495~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001496
1497::
1498
1499 Argument : unsigned int
1500 Return : int
1501
1502This function can be used by the platforms to update/use image information
1503for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001504loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001505
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001506Function : bl2_plat_preload_setup [optional]
1507~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001508
1509::
John Tsichritzisee10e792018-06-06 09:38:10 +01001510
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001511 Argument : void
1512 Return : void
1513
1514This optional function performs any BL2 platform initialization
1515required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001516bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001517boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001518plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001519
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001520Function : plat_try_next_boot_source() [optional]
1521~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001522
1523::
John Tsichritzisee10e792018-06-06 09:38:10 +01001524
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001525 Argument : void
1526 Return : int
1527
1528This optional function passes to the next boot source in the redundancy
1529sequence.
1530
1531This function moves the current boot redundancy source to the next
1532element in the boot sequence. If there are no more boot sources then it
1533must return 0, otherwise it must return 1. The default implementation
1534of this always returns 0.
1535
Roberto Vargasb1584272017-11-20 13:36:10 +00001536Boot Loader Stage 2 (BL2) at EL3
1537--------------------------------
1538
Dan Handley610e7e12018-03-01 18:44:00 +00001539When the platform has a non-TF-A Boot ROM it is desirable to jump
1540directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001541execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1542document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001543
1544All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001545bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1546their work is done now by bl2_el3_early_platform_setup and
1547bl2_el3_plat_arch_setup. These functions should generally implement
1548the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001549
1550
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001551Function : bl2_el3_early_platform_setup() [mandatory]
1552~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001553
1554::
John Tsichritzisee10e792018-06-06 09:38:10 +01001555
Roberto Vargasb1584272017-11-20 13:36:10 +00001556 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1557 Return : void
1558
1559This function executes with the MMU and data caches disabled. It is only called
1560by the primary CPU. This function receives four parameters which can be used
1561by the platform to pass any needed information from the Boot ROM to BL2.
1562
Dan Handley610e7e12018-03-01 18:44:00 +00001563On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001564
1565- Initializes a UART (PL011 console), which enables access to the ``printf``
1566 family of functions in BL2.
1567
1568- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001569 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1570 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001571
1572- Initializes the private variables that define the memory layout used.
1573
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001574Function : bl2_el3_plat_arch_setup() [mandatory]
1575~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001576
1577::
John Tsichritzisee10e792018-06-06 09:38:10 +01001578
Roberto Vargasb1584272017-11-20 13:36:10 +00001579 Argument : void
1580 Return : void
1581
1582This function executes with the MMU and data caches disabled. It is only called
1583by the primary CPU.
1584
1585The purpose of this function is to perform any architectural initialization
1586that varies across platforms.
1587
Dan Handley610e7e12018-03-01 18:44:00 +00001588On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001589
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001590Function : bl2_el3_plat_prepare_exit() [optional]
1591~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001592
1593::
John Tsichritzisee10e792018-06-06 09:38:10 +01001594
Roberto Vargasb1584272017-11-20 13:36:10 +00001595 Argument : void
1596 Return : void
1597
1598This function is called prior to exiting BL2 and run the next image.
1599It should be used to perform platform specific clean up or bookkeeping
1600operations before transferring control to the next image. This function
1601runs with MMU disabled.
1602
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001603FWU Boot Loader Stage 2 (BL2U)
1604------------------------------
1605
1606The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1607process and is executed only by the primary CPU. BL1 passes control to BL2U at
1608``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1609
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001610#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1611 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1612 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1613 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001614 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1615 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1616
1617#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001618 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001619 normal world can access DDR memory.
1620
1621The following functions must be implemented by the platform port to enable
1622BL2U to perform the tasks mentioned above.
1623
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001624Function : bl2u_early_platform_setup() [mandatory]
1625~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001626
1627::
1628
1629 Argument : meminfo *mem_info, void *plat_info
1630 Return : void
1631
1632This function executes with the MMU and data caches disabled. It is only
1633called by the primary CPU. The arguments to this function is the address
1634of the ``meminfo`` structure and platform specific info provided by BL1.
1635
1636The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1637private storage as the original memory may be subsequently overwritten by BL2U.
1638
Dan Handley610e7e12018-03-01 18:44:00 +00001639On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001640to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001641variable.
1642
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001643Function : bl2u_plat_arch_setup() [mandatory]
1644~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001645
1646::
1647
1648 Argument : void
1649 Return : void
1650
1651This function executes with the MMU and data caches disabled. It is only
1652called by the primary CPU.
1653
1654The purpose of this function is to perform any architectural initialization
1655that varies across platforms, for example enabling the MMU (since the memory
1656map differs across platforms).
1657
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001658Function : bl2u_platform_setup() [mandatory]
1659~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001660
1661::
1662
1663 Argument : void
1664 Return : void
1665
1666This function may execute with the MMU and data caches enabled if the platform
1667port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1668called by the primary CPU.
1669
1670The purpose of this function is to perform any platform initialization
1671specific to BL2U.
1672
Dan Handley610e7e12018-03-01 18:44:00 +00001673In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001674configuration of the TrustZone controller to allow non-secure masters access
1675to most of DRAM. Part of DRAM is reserved for secure world use.
1676
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001677Function : bl2u_plat_handle_scp_bl2u() [optional]
1678~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001679
1680::
1681
1682 Argument : void
1683 Return : int
1684
1685This function is used to perform any platform-specific actions required to
1686handle the SCP firmware. Typically it transfers the image into SCP memory using
1687a platform-specific protocol and waits until SCP executes it and signals to the
1688Application Processor (AP) for BL2U execution to continue.
1689
1690This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001691This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001692
1693Boot Loader Stage 3-1 (BL31)
1694----------------------------
1695
1696During cold boot, the BL31 stage is executed only by the primary CPU. This is
1697determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1698control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1699CPUs. BL31 executes at EL3 and is responsible for:
1700
1701#. Re-initializing all architectural and platform state. Although BL1 performs
1702 some of this initialization, BL31 remains resident in EL3 and must ensure
1703 that EL3 architectural and platform state is completely initialized. It
1704 should make no assumptions about the system state when it receives control.
1705
1706#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001707 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1708 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001709
1710#. Providing runtime firmware services. Currently, BL31 only implements a
1711 subset of the Power State Coordination Interface (PSCI) API as a runtime
1712 service. See Section 3.3 below for details of porting the PSCI
1713 implementation.
1714
1715#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001716 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001717 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001718 executed and run the corresponding image. On ARM platforms, BL31 uses the
1719 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001720
1721If BL31 is a reset vector, It also needs to handle the reset as specified in
1722section 2.2 before the tasks described above.
1723
1724The following functions must be implemented by the platform port to enable BL31
1725to perform the above tasks.
1726
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001727Function : bl31_early_platform_setup2() [mandatory]
1728~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001729
1730::
1731
Soby Mathew97b1bff2018-09-27 16:46:41 +01001732 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001733 Return : void
1734
1735This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001736by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1737platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001738
Soby Mathew97b1bff2018-09-27 16:46:41 +01001739In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001740
Soby Mathew97b1bff2018-09-27 16:46:41 +01001741 arg0 - The pointer to the head of `bl_params_t` list
1742 which is list of executable images following BL31,
1743
1744 arg1 - Points to load address of SOC_FW_CONFIG if present
Manish V Badarkhe81414512020-06-24 15:58:38 +01001745 except in case of Arm FVP platform.
1746
1747 In case of Arm FVP platform, Points to load address
1748 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01001749
1750 arg2 - Points to load address of HW_CONFIG if present
1751
1752 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1753 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001754
Soby Mathew97b1bff2018-09-27 16:46:41 +01001755The function runs through the `bl_param_t` list and extracts the entry point
1756information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001757
1758- Initialize a UART (PL011 console), which enables access to the ``printf``
1759 family of functions in BL31.
1760
1761- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1762 CCI slave interface corresponding to the cluster that includes the primary
1763 CPU.
1764
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001765Function : bl31_plat_arch_setup() [mandatory]
1766~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001767
1768::
1769
1770 Argument : void
1771 Return : void
1772
1773This function executes with the MMU and data caches disabled. It is only called
1774by the primary CPU.
1775
1776The purpose of this function is to perform any architectural initialization
1777that varies across platforms.
1778
Dan Handley610e7e12018-03-01 18:44:00 +00001779On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001780
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001781Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001782~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1783
1784::
1785
1786 Argument : void
1787 Return : void
1788
1789This function may execute with the MMU and data caches enabled if the platform
1790port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1791called by the primary CPU.
1792
1793The purpose of this function is to complete platform initialization so that both
1794BL31 runtime services and normal world software can function correctly.
1795
Dan Handley610e7e12018-03-01 18:44:00 +00001796On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001797
1798- Initialize the generic interrupt controller.
1799
1800 Depending on the GIC driver selected by the platform, the appropriate GICv2
1801 or GICv3 initialization will be done, which mainly consists of:
1802
1803 - Enable secure interrupts in the GIC CPU interface.
1804 - Disable the legacy interrupt bypass mechanism.
1805 - Configure the priority mask register to allow interrupts of all priorities
1806 to be signaled to the CPU interface.
1807 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1808 - Target all secure SPIs to CPU0.
1809 - Enable these secure interrupts in the GIC distributor.
1810 - Configure all other interrupts as non-secure.
1811 - Enable signaling of secure interrupts in the GIC distributor.
1812
1813- Enable system-level implementation of the generic timer counter through the
1814 memory mapped interface.
1815
1816- Grant access to the system counter timer module
1817
1818- Initialize the power controller device.
1819
1820 In particular, initialise the locks that prevent concurrent accesses to the
1821 power controller device.
1822
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001823Function : bl31_plat_runtime_setup() [optional]
1824~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001825
1826::
1827
1828 Argument : void
1829 Return : void
1830
1831The purpose of this function is allow the platform to perform any BL31 runtime
1832setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001833implementation of this function will invoke ``console_switch_state()`` to switch
1834console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001835
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001836Function : bl31_plat_get_next_image_ep_info() [mandatory]
1837~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001838
1839::
1840
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001841 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001842 Return : entry_point_info *
1843
1844This function may execute with the MMU and data caches enabled if the platform
1845port does the necessary initializations in ``bl31_plat_arch_setup()``.
1846
1847This function is called by ``bl31_main()`` to retrieve information provided by
1848BL2 for the next image in the security state specified by the argument. BL31
1849uses this information to pass control to that image in the specified security
1850state. This function must return a pointer to the ``entry_point_info`` structure
1851(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1852should return NULL otherwise.
1853
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001854Function : bl31_plat_enable_mmu [optional]
1855~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1856
1857::
1858
1859 Argument : uint32_t
1860 Return : void
1861
1862This function enables the MMU. The boot code calls this function with MMU and
1863caches disabled. This function should program necessary registers to enable
1864translation, and upon return, the MMU on the calling PE must be enabled.
1865
1866The function must honor flags passed in the first argument. These flags are
1867defined by the translation library, and can be found in the file
1868``include/lib/xlat_tables/xlat_mmu_helpers.h``.
1869
1870On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001871is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001872
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001873Function : plat_init_apkey [optional]
1874~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001875
1876::
1877
1878 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001879 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001880
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001881This function returns the 128-bit value which can be used to program ARMv8.3
1882pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001883
1884The value should be obtained from a reliable source of randomness.
1885
1886This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001887Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001888
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001889Function : plat_get_syscnt_freq2() [mandatory]
1890~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001891
1892::
1893
1894 Argument : void
1895 Return : unsigned int
1896
1897This function is used by the architecture setup code to retrieve the counter
1898frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00001899``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001900of the system counter, which is retrieved from the first entry in the frequency
1901modes table.
1902
johpow013e24c162020-04-22 14:05:13 -05001903Function : plat_arm_set_twedel_scr_el3() [optional]
1904~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1905
1906::
1907
1908 Argument : void
1909 Return : uint32_t
1910
1911This function is used in v8.6+ systems to set the WFE trap delay value in
1912SCR_EL3. If this function returns TWED_DISABLED or is left unimplemented, this
1913feature is not enabled. The only hook provided is to set the TWED fields in
1914SCR_EL3, there are similar fields in HCR_EL2, SCTLR_EL2, and SCTLR_EL1 to adjust
1915the WFE trap delays in lower ELs and these fields should be set by the
1916appropriate EL2 or EL1 code depending on the platform configuration.
1917
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001918#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
1919~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001920
1921When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
1922bytes) aligned to the cache line boundary that should be allocated per-cpu to
1923accommodate all the bakery locks.
1924
1925If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
1926calculates the size of the ``bakery_lock`` input section, aligns it to the
1927nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
1928and stores the result in a linker symbol. This constant prevents a platform
1929from relying on the linker and provide a more efficient mechanism for
1930accessing per-cpu bakery lock information.
1931
1932If this constant is defined and its value is not equal to the value
1933calculated by the linker then a link time assertion is raised. A compile time
1934assertion is raised if the value of the constant is not aligned to the cache
1935line boundary.
1936
Paul Beesleyf8640672019-04-12 14:19:42 +01001937.. _porting_guide_sdei_requirements:
1938
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001939SDEI porting requirements
1940~~~~~~~~~~~~~~~~~~~~~~~~~
1941
Paul Beesley606d8072019-03-13 13:58:02 +00001942The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001943and functions, of which some are optional, and some others mandatory.
1944
1945Macros
1946......
1947
1948Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
1949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1950
1951This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00001952Normal |SDEI| events on the platform. This must have a higher value
1953(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001954
1955Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
1956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1957
1958This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00001959Critical |SDEI| events on the platform. This must have a lower value
1960(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001961
Paul Beesley606d8072019-03-13 13:58:02 +00001962**Note**: |SDEI| exception priorities must be the lowest among Secure
1963priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
1964be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001965
1966Functions
1967.........
1968
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02001969Function: int plat_sdei_validate_entry_point() [optional]
1970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001971
1972::
1973
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02001974 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001975 Return: int
1976
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02001977This function validates the entry point address of the event handler provided by
1978the client for both event registration and *Complete and Resume* |SDEI| calls.
1979The function ensures that the address is valid in the client translation regime.
1980
1981The second argument is the exception level that the client is executing in. It
1982can be Non-Secure EL1 or Non-Secure EL2.
1983
1984The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001985
Dan Handley610e7e12018-03-01 18:44:00 +00001986The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02001987translates the entry point address within the client translation regime and
1988further ensures that the resulting physical address is located in Non-secure
1989DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001990
1991Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
1992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1993
1994::
1995
1996 Argument: uint64_t
1997 Argument: unsigned int
1998 Return: void
1999
Paul Beesley606d8072019-03-13 13:58:02 +00002000|SDEI| specification requires that a PE comes out of reset with the events
2001masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2002|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2003time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002004
Paul Beesley606d8072019-03-13 13:58:02 +00002005Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002006events are masked on the PE, the dispatcher implementation invokes the function
2007``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2008interrupt and the interrupt ID are passed as parameters.
2009
2010The default implementation only prints out a warning message.
2011
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002012Power State Coordination Interface (in BL31)
2013--------------------------------------------
2014
Dan Handley610e7e12018-03-01 18:44:00 +00002015The TF-A implementation of the PSCI API is based around the concept of a
2016*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2017share some state on which power management operations can be performed as
2018specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2019a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2020*power domains* are arranged in a hierarchical tree structure and each
2021*power domain* can be identified in a system by the cpu index of any CPU that
2022is part of that domain and a *power domain level*. A processing element (for
2023example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2024logical grouping of CPUs that share some state, then level 1 is that group of
2025CPUs (for example, a cluster), and level 2 is a group of clusters (for
2026example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002027organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002028
2029BL31's platform initialization code exports a pointer to the platform-specific
2030power management operations required for the PSCI implementation to function
2031correctly. This information is populated in the ``plat_psci_ops`` structure. The
2032PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2033power management operations on the power domains. For example, the target
2034CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2035handler (if present) is called for the CPU power domain.
2036
2037The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2038describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002039defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002040array of local power states where each index corresponds to a power domain
2041level. Each entry contains the local power state the power domain at that power
2042level could enter. It depends on the ``validate_power_state()`` handler to
2043convert the power-state parameter (possibly encoding a composite power state)
2044passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2045
2046The following functions form part of platform port of PSCI functionality.
2047
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002048Function : plat_psci_stat_accounting_start() [optional]
2049~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002050
2051::
2052
2053 Argument : const psci_power_state_t *
2054 Return : void
2055
2056This is an optional hook that platforms can implement for residency statistics
2057accounting before entering a low power state. The ``pwr_domain_state`` field of
2058``state_info`` (first argument) can be inspected if stat accounting is done
2059differently at CPU level versus higher levels. As an example, if the element at
2060index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2061state, special hardware logic may be programmed in order to keep track of the
2062residency statistics. For higher levels (array indices > 0), the residency
2063statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2064default implementation will use PMF to capture timestamps.
2065
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002066Function : plat_psci_stat_accounting_stop() [optional]
2067~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002068
2069::
2070
2071 Argument : const psci_power_state_t *
2072 Return : void
2073
2074This is an optional hook that platforms can implement for residency statistics
2075accounting after exiting from a low power state. The ``pwr_domain_state`` field
2076of ``state_info`` (first argument) can be inspected if stat accounting is done
2077differently at CPU level versus higher levels. As an example, if the element at
2078index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2079state, special hardware logic may be programmed in order to keep track of the
2080residency statistics. For higher levels (array indices > 0), the residency
2081statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2082default implementation will use PMF to capture timestamps.
2083
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002084Function : plat_psci_stat_get_residency() [optional]
2085~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002086
2087::
2088
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002089 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002090 Return : u_register_t
2091
2092This is an optional interface that is is invoked after resuming from a low power
2093state and provides the time spent resident in that low power state by the power
2094domain at a particular power domain level. When a CPU wakes up from suspend,
2095all its parent power domain levels are also woken up. The generic PSCI code
2096invokes this function for each parent power domain that is resumed and it
2097identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2098argument) describes the low power state that the power domain has resumed from.
2099The current CPU is the first CPU in the power domain to resume from the low
2100power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2101CPU in the power domain to suspend and may be needed to calculate the residency
2102for that power domain.
2103
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002104Function : plat_get_target_pwr_state() [optional]
2105~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002106
2107::
2108
2109 Argument : unsigned int, const plat_local_state_t *, unsigned int
2110 Return : plat_local_state_t
2111
2112The PSCI generic code uses this function to let the platform participate in
2113state coordination during a power management operation. The function is passed
2114a pointer to an array of platform specific local power state ``states`` (second
2115argument) which contains the requested power state for each CPU at a particular
2116power domain level ``lvl`` (first argument) within the power domain. The function
2117is expected to traverse this array of upto ``ncpus`` (third argument) and return
2118a coordinated target power state by the comparing all the requested power
2119states. The target power state should not be deeper than any of the requested
2120power states.
2121
2122A weak definition of this API is provided by default wherein it assumes
2123that the platform assigns a local state value in order of increasing depth
2124of the power state i.e. for two power states X & Y, if X < Y
2125then X represents a shallower power state than Y. As a result, the
2126coordinated target local power state for a power domain will be the minimum
2127of the requested local power state values.
2128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002129Function : plat_get_power_domain_tree_desc() [mandatory]
2130~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002131
2132::
2133
2134 Argument : void
2135 Return : const unsigned char *
2136
2137This function returns a pointer to the byte array containing the power domain
2138topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002139described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2140initialization code requires this array to be described by the platform, either
2141statically or dynamically, to initialize the power domain topology tree. In case
2142the array is populated dynamically, then plat_core_pos_by_mpidr() and
2143plat_my_core_pos() should also be implemented suitably so that the topology tree
2144description matches the CPU indices returned by these APIs. These APIs together
2145form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002146
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002147Function : plat_setup_psci_ops() [mandatory]
2148~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002149
2150::
2151
2152 Argument : uintptr_t, const plat_psci_ops **
2153 Return : int
2154
2155This function may execute with the MMU and data caches enabled if the platform
2156port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2157called by the primary CPU.
2158
2159This function is called by PSCI initialization code. Its purpose is to let
2160the platform layer know about the warm boot entrypoint through the
2161``sec_entrypoint`` (first argument) and to export handler routines for
2162platform-specific psci power management actions by populating the passed
2163pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2164
2165A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002166the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002167``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002168platform wants to support, the associated operation or operations in this
2169structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002170:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002171function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002172structure instead of providing an empty implementation.
2173
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002174plat_psci_ops.cpu_standby()
2175...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002176
2177Perform the platform-specific actions to enter the standby state for a cpu
2178indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002179wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002180For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2181the suspend state type specified in the ``power-state`` parameter should be
2182STANDBY and the target power domain level specified should be the CPU. The
2183handler should put the CPU into a low power retention state (usually by
2184issuing a wfi instruction) and ensure that it can be woken up from that
2185state by a normal interrupt. The generic code expects the handler to succeed.
2186
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002187plat_psci_ops.pwr_domain_on()
2188.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002189
2190Perform the platform specific actions to power on a CPU, specified
2191by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002192return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002194plat_psci_ops.pwr_domain_off()
2195..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002196
2197Perform the platform specific actions to prepare to power off the calling CPU
2198and its higher parent power domain levels as indicated by the ``target_state``
2199(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2200
2201The ``target_state`` encodes the platform coordinated target local power states
2202for the CPU power domain and its parent power domain levels. The handler
2203needs to perform power management operation corresponding to the local state
2204at each power level.
2205
2206For this handler, the local power state for the CPU power domain will be a
2207power down state where as it could be either power down, retention or run state
2208for the higher power domain levels depending on the result of state
2209coordination. The generic code expects the handler to succeed.
2210
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002211plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2212...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002213
2214This optional function may be used as a performance optimization to replace
2215or complement pwr_domain_suspend() on some platforms. Its calling semantics
2216are identical to pwr_domain_suspend(), except the PSCI implementation only
2217calls this function when suspending to a power down state, and it guarantees
2218that data caches are enabled.
2219
2220When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2221before calling pwr_domain_suspend(). If the target_state corresponds to a
2222power down state and it is safe to perform some or all of the platform
2223specific actions in that function with data caches enabled, it may be more
2224efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2225= 1, data caches remain enabled throughout, and so there is no advantage to
2226moving platform specific actions to this function.
2227
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002228plat_psci_ops.pwr_domain_suspend()
2229..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002230
2231Perform the platform specific actions to prepare to suspend the calling
2232CPU and its higher parent power domain levels as indicated by the
2233``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2234API implementation.
2235
2236The ``target_state`` has a similar meaning as described in
2237the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2238target local power states for the CPU power domain and its parent
2239power domain levels. The handler needs to perform power management operation
2240corresponding to the local state at each power level. The generic code
2241expects the handler to succeed.
2242
Douglas Raillarda84996b2017-08-02 16:57:32 +01002243The difference between turning a power domain off versus suspending it is that
2244in the former case, the power domain is expected to re-initialize its state
2245when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2246case, the power domain is expected to save enough state so that it can resume
2247execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002248``pwr_domain_suspend_finish()``).
2249
Douglas Raillarda84996b2017-08-02 16:57:32 +01002250When suspending a core, the platform can also choose to power off the GICv3
2251Redistributor and ITS through an implementation-defined sequence. To achieve
2252this safely, the ITS context must be saved first. The architectural part is
2253implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2254sequence is implementation defined and it is therefore the responsibility of
2255the platform code to implement the necessary sequence. Then the GIC
2256Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2257Powering off the Redistributor requires the implementation to support it and it
2258is the responsibility of the platform code to execute the right implementation
2259defined sequence.
2260
2261When a system suspend is requested, the platform can also make use of the
2262``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2263it has saved the context of the Redistributors and ITS of all the cores in the
2264system. The context of the Distributor can be large and may require it to be
2265allocated in a special area if it cannot fit in the platform's global static
2266data, for example in DRAM. The Distributor can then be powered down using an
2267implementation-defined sequence.
2268
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002269plat_psci_ops.pwr_domain_pwr_down_wfi()
2270.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002271
2272This is an optional function and, if implemented, is expected to perform
2273platform specific actions including the ``wfi`` invocation which allows the
2274CPU to powerdown. Since this function is invoked outside the PSCI locks,
2275the actions performed in this hook must be local to the CPU or the platform
2276must ensure that races between multiple CPUs cannot occur.
2277
2278The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2279operation and it encodes the platform coordinated target local power states for
2280the CPU power domain and its parent power domain levels. This function must
2281not return back to the caller.
2282
2283If this function is not implemented by the platform, PSCI generic
2284implementation invokes ``psci_power_down_wfi()`` for power down.
2285
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002286plat_psci_ops.pwr_domain_on_finish()
2287....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002288
2289This function is called by the PSCI implementation after the calling CPU is
2290powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2291It performs the platform-specific setup required to initialize enough state for
2292this CPU to enter the normal world and also provide secure runtime firmware
2293services.
2294
2295The ``target_state`` (first argument) is the prior state of the power domains
2296immediately before the CPU was turned on. It indicates which power domains
2297above the CPU might require initialization due to having previously been in
2298low power states. The generic code expects the handler to succeed.
2299
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002300plat_psci_ops.pwr_domain_on_finish_late() [optional]
2301...........................................................
2302
2303This optional function is called by the PSCI implementation after the calling
2304CPU is fully powered on with respective data caches enabled. The calling CPU and
2305the associated cluster are guaranteed to be participating in coherency. This
2306function gives the flexibility to perform any platform-specific actions safely,
2307such as initialization or modification of shared data structures, without the
2308overhead of explicit cache maintainace operations.
2309
2310The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2311operation. The generic code expects the handler to succeed.
2312
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002313plat_psci_ops.pwr_domain_suspend_finish()
2314.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002315
2316This function is called by the PSCI implementation after the calling CPU is
2317powered on and released from reset in response to an asynchronous wakeup
2318event, for example a timer interrupt that was programmed by the CPU during the
2319``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2320setup required to restore the saved state for this CPU to resume execution
2321in the normal world and also provide secure runtime firmware services.
2322
2323The ``target_state`` (first argument) has a similar meaning as described in
2324the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2325to succeed.
2326
Douglas Raillarda84996b2017-08-02 16:57:32 +01002327If the Distributor, Redistributors or ITS have been powered off as part of a
2328suspend, their context must be restored in this function in the reverse order
2329to how they were saved during suspend sequence.
2330
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002331plat_psci_ops.system_off()
2332..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002333
2334This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2335call. It performs the platform-specific system poweroff sequence after
2336notifying the Secure Payload Dispatcher.
2337
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002338plat_psci_ops.system_reset()
2339............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002340
2341This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2342call. It performs the platform-specific system reset sequence after
2343notifying the Secure Payload Dispatcher.
2344
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002345plat_psci_ops.validate_power_state()
2346....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002347
2348This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2349call to validate the ``power_state`` parameter of the PSCI API and if valid,
2350populate it in ``req_state`` (second argument) array as power domain level
2351specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002352return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002353normal world PSCI client.
2354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002355plat_psci_ops.validate_ns_entrypoint()
2356......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002357
2358This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2359``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2360parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002361the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002362propagated back to the normal world PSCI client.
2363
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002364plat_psci_ops.get_sys_suspend_power_state()
2365...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002366
2367This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2368call to get the ``req_state`` parameter from platform which encodes the power
2369domain level specific local states to suspend to system affinity level. The
2370``req_state`` will be utilized to do the PSCI state coordination and
2371``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2372enter system suspend.
2373
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002374plat_psci_ops.get_pwr_lvl_state_idx()
2375.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002376
2377This is an optional function and, if implemented, is invoked by the PSCI
2378implementation to convert the ``local_state`` (first argument) at a specified
2379``pwr_lvl`` (second argument) to an index between 0 and
2380``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2381supports more than two local power states at each power domain level, that is
2382``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2383local power states.
2384
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002385plat_psci_ops.translate_power_state_by_mpidr()
2386..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002387
2388This is an optional function and, if implemented, verifies the ``power_state``
2389(second argument) parameter of the PSCI API corresponding to a target power
2390domain. The target power domain is identified by using both ``MPIDR`` (first
2391argument) and the power domain level encoded in ``power_state``. The power domain
2392level specific local states are to be extracted from ``power_state`` and be
2393populated in the ``output_state`` (third argument) array. The functionality
2394is similar to the ``validate_power_state`` function described above and is
2395envisaged to be used in case the validity of ``power_state`` depend on the
2396targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002397domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002398function is not implemented, then the generic implementation relies on
2399``validate_power_state`` function to translate the ``power_state``.
2400
2401This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002402power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002403APIs as described in Section 5.18 of `PSCI`_.
2404
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002405plat_psci_ops.get_node_hw_state()
2406.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002407
2408This is an optional function. If implemented this function is intended to return
2409the power state of a node (identified by the first parameter, the ``MPIDR``) in
2410the power domain topology (identified by the second parameter, ``power_level``),
2411as retrieved from a power controller or equivalent component on the platform.
2412Upon successful completion, the implementation must map and return the final
2413status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2414must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2415appropriate.
2416
2417Implementations are not expected to handle ``power_levels`` greater than
2418``PLAT_MAX_PWR_LVL``.
2419
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002420plat_psci_ops.system_reset2()
2421.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002422
2423This is an optional function. If implemented this function is
2424called during the ``SYSTEM_RESET2`` call to perform a reset
2425based on the first parameter ``reset_type`` as specified in
2426`PSCI`_. The parameter ``cookie`` can be used to pass additional
2427reset information. If the ``reset_type`` is not supported, the
2428function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2429resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2430and vendor reset can return other PSCI error codes as defined
2431in `PSCI`_. On success this function will not return.
2432
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002433plat_psci_ops.write_mem_protect()
2434.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002435
2436This is an optional function. If implemented it enables or disables the
2437``MEM_PROTECT`` functionality based on the value of ``val``.
2438A non-zero value enables ``MEM_PROTECT`` and a value of zero
2439disables it. Upon encountering failures it must return a negative value
2440and on success it must return 0.
2441
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002442plat_psci_ops.read_mem_protect()
2443................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002444
2445This is an optional function. If implemented it returns the current
2446state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2447failures it must return a negative value and on success it must
2448return 0.
2449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002450plat_psci_ops.mem_protect_chk()
2451...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002452
2453This is an optional function. If implemented it checks if a memory
2454region defined by a base address ``base`` and with a size of ``length``
2455bytes is protected by ``MEM_PROTECT``. If the region is protected
2456then it must return 0, otherwise it must return a negative number.
2457
Paul Beesleyf8640672019-04-12 14:19:42 +01002458.. _porting_guide_imf_in_bl31:
2459
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002460Interrupt Management framework (in BL31)
2461----------------------------------------
2462
2463BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2464generated in either security state and targeted to EL1 or EL2 in the non-secure
2465state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002466described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002467
2468A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002469text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002470platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002471present in the platform. Arm standard platform layer supports both
2472`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2473and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2474FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002475``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2476details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002477
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002478See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002479
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002480Function : plat_interrupt_type_to_line() [mandatory]
2481~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002482
2483::
2484
2485 Argument : uint32_t, uint32_t
2486 Return : uint32_t
2487
Dan Handley610e7e12018-03-01 18:44:00 +00002488The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002489interrupt line. The specific line that is signaled depends on how the interrupt
2490controller (IC) reports different interrupt types from an execution context in
2491either security state. The IMF uses this API to determine which interrupt line
2492the platform IC uses to signal each type of interrupt supported by the framework
2493from a given security state. This API must be invoked at EL3.
2494
2495The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01002496:ref:`Interrupt Management Framework`) indicating the target type of the
2497interrupt, the second parameter is the security state of the originating
2498execution context. The return result is the bit position in the ``SCR_EL3``
2499register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002500
Dan Handley610e7e12018-03-01 18:44:00 +00002501In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002502configured as FIQs and Non-secure interrupts as IRQs from either security
2503state.
2504
Dan Handley610e7e12018-03-01 18:44:00 +00002505In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002506configured depends on the security state of the execution context when the
2507interrupt is signalled and are as follows:
2508
2509- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2510 NS-EL0/1/2 context.
2511- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2512 in the NS-EL0/1/2 context.
2513- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2514 context.
2515
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002516Function : plat_ic_get_pending_interrupt_type() [mandatory]
2517~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002518
2519::
2520
2521 Argument : void
2522 Return : uint32_t
2523
2524This API returns the type of the highest priority pending interrupt at the
2525platform IC. The IMF uses the interrupt type to retrieve the corresponding
2526handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2527pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2528``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2529
Dan Handley610e7e12018-03-01 18:44:00 +00002530In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002531Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2532the pending interrupt. The type of interrupt depends upon the id value as
2533follows.
2534
2535#. id < 1022 is reported as a S-EL1 interrupt
2536#. id = 1022 is reported as a Non-secure interrupt.
2537#. id = 1023 is reported as an invalid interrupt type.
2538
Dan Handley610e7e12018-03-01 18:44:00 +00002539In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002540``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2541is read to determine the id of the pending interrupt. The type of interrupt
2542depends upon the id value as follows.
2543
2544#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2545#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2546#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2547#. All other interrupt id's are reported as EL3 interrupt.
2548
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002549Function : plat_ic_get_pending_interrupt_id() [mandatory]
2550~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002551
2552::
2553
2554 Argument : void
2555 Return : uint32_t
2556
2557This API returns the id of the highest priority pending interrupt at the
2558platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2559pending.
2560
Dan Handley610e7e12018-03-01 18:44:00 +00002561In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002562Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2563pending interrupt. The id that is returned by API depends upon the value of
2564the id read from the interrupt controller as follows.
2565
2566#. id < 1022. id is returned as is.
2567#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2568 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2569 This id is returned by the API.
2570#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2571
Dan Handley610e7e12018-03-01 18:44:00 +00002572In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002573EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2574group 0 Register*, is read to determine the id of the pending interrupt. The id
2575that is returned by API depends upon the value of the id read from the
2576interrupt controller as follows.
2577
2578#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2579#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2580 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2581 Register* is read to determine the id of the group 1 interrupt. This id
2582 is returned by the API as long as it is a valid interrupt id
2583#. If the id is any of the special interrupt identifiers,
2584 ``INTR_ID_UNAVAILABLE`` is returned.
2585
2586When the API invoked from S-EL1 for GICv3 systems, the id read from system
2587register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002588Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002589``INTR_ID_UNAVAILABLE`` is returned.
2590
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002591Function : plat_ic_acknowledge_interrupt() [mandatory]
2592~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002593
2594::
2595
2596 Argument : void
2597 Return : uint32_t
2598
2599This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002600the highest pending interrupt has begun. It should return the raw, unmodified
2601value obtained from the interrupt controller when acknowledging an interrupt.
2602The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002603`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002604
Dan Handley610e7e12018-03-01 18:44:00 +00002605This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002606Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2607priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002608It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002609
Dan Handley610e7e12018-03-01 18:44:00 +00002610In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002611from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2612Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2613reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2614group 1*. The read changes the state of the highest pending interrupt from
2615pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002616unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002617
2618The TSP uses this API to start processing of the secure physical timer
2619interrupt.
2620
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002621Function : plat_ic_end_of_interrupt() [mandatory]
2622~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002623
2624::
2625
2626 Argument : uint32_t
2627 Return : void
2628
2629This API is used by the CPU to indicate to the platform IC that processing of
2630the interrupt corresponding to the id (passed as the parameter) has
2631finished. The id should be the same as the id returned by the
2632``plat_ic_acknowledge_interrupt()`` API.
2633
Dan Handley610e7e12018-03-01 18:44:00 +00002634Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002635(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2636system register in case of GICv3 depending on where the API is invoked from,
2637EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2638controller.
2639
2640The TSP uses this API to finish processing of the secure physical timer
2641interrupt.
2642
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002643Function : plat_ic_get_interrupt_type() [mandatory]
2644~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002645
2646::
2647
2648 Argument : uint32_t
2649 Return : uint32_t
2650
2651This API returns the type of the interrupt id passed as the parameter.
2652``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2653interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2654returned depending upon how the interrupt has been configured by the platform
2655IC. This API must be invoked at EL3.
2656
Dan Handley610e7e12018-03-01 18:44:00 +00002657Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002658and Non-secure interrupts as Group1 interrupts. It reads the group value
2659corresponding to the interrupt id from the relevant *Interrupt Group Register*
2660(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2661
Dan Handley610e7e12018-03-01 18:44:00 +00002662In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002663Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2664(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2665as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2666
2667Crash Reporting mechanism (in BL31)
2668-----------------------------------
2669
2670BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002671of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002672on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002673``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2674
2675The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2676implementation of all of them. Platforms may include this file to their
2677makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002678output to be routed over the normal console infrastructure and get printed on
2679consoles configured to output in crash state. ``console_set_scope()`` can be
2680used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00002681
2682.. note::
2683 Platforms are responsible for making sure that they only mark consoles for
2684 use in the crash scope that are able to support this, i.e. that are written
2685 in assembly and conform with the register clobber rules for putc()
2686 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002687
Julius Werneraae9bb12017-09-18 16:49:48 -07002688In some cases (such as debugging very early crashes that happen before the
2689normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002690more explicitly. These platforms may instead provide custom implementations for
2691these. They are executed outside of a C environment and without a stack. Many
2692console drivers provide functions named ``console_xxx_core_init/putc/flush``
2693that are designed to be used by these functions. See Arm platforms (like juno)
2694for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002695
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002696Function : plat_crash_console_init [mandatory]
2697~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002698
2699::
2700
2701 Argument : void
2702 Return : int
2703
2704This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002705console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002706initialization and returns 1 on success.
2707
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002708Function : plat_crash_console_putc [mandatory]
2709~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002710
2711::
2712
2713 Argument : int
2714 Return : int
2715
2716This API is used by the crash reporting mechanism to print a character on the
2717designated crash console. It must only use general purpose registers x1 and
2718x2 to do its work. The parameter and the return value are in general purpose
2719register x0.
2720
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002721Function : plat_crash_console_flush [mandatory]
2722~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002723
2724::
2725
2726 Argument : void
2727 Return : int
2728
2729This API is used by the crash reporting mechanism to force write of all buffered
2730data on the designated crash console. It should only use general purpose
Julius Werneraae9bb12017-09-18 16:49:48 -07002731registers x0 through x5 to do its work. The return value is 0 on successful
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002732completion; otherwise the return value is -1.
2733
Manish Pandey9c9f38a2020-06-30 00:46:08 +01002734.. _External Abort handling and RAS Support:
2735
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002736External Abort handling and RAS Support
2737---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002738
2739Function : plat_ea_handler
2740~~~~~~~~~~~~~~~~~~~~~~~~~~
2741
2742::
2743
2744 Argument : int
2745 Argument : uint64_t
2746 Argument : void *
2747 Argument : void *
2748 Argument : uint64_t
2749 Return : void
2750
2751This function is invoked by the RAS framework for the platform to handle an
2752External Abort received at EL3. The intention of the function is to attempt to
2753resolve the cause of External Abort and return; if that's not possible, to
2754initiate orderly shutdown of the system.
2755
2756The first parameter (``int ea_reason``) indicates the reason for External Abort.
2757Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2758
2759The second parameter (``uint64_t syndrome``) is the respective syndrome
2760presented to EL3 after having received the External Abort. Depending on the
2761nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2762can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2763
2764The third parameter (``void *cookie``) is unused for now. The fourth parameter
2765(``void *handle``) is a pointer to the preempted context. The fifth parameter
2766(``uint64_t flags``) indicates the preempted security state. These parameters
2767are received from the top-level exception handler.
2768
2769If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2770function iterates through RAS handlers registered by the platform. If any of the
2771RAS handlers resolve the External Abort, no further action is taken.
2772
2773If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2774could resolve the External Abort, the default implementation prints an error
2775message, and panics.
2776
2777Function : plat_handle_uncontainable_ea
2778~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2779
2780::
2781
2782 Argument : int
2783 Argument : uint64_t
2784 Return : void
2785
2786This function is invoked by the RAS framework when an External Abort of
2787Uncontainable type is received at EL3. Due to the critical nature of
2788Uncontainable errors, the intention of this function is to initiate orderly
2789shutdown of the system, and is not expected to return.
2790
2791This function must be implemented in assembly.
2792
2793The first and second parameters are the same as that of ``plat_ea_handler``.
2794
2795The default implementation of this function calls
2796``report_unhandled_exception``.
2797
2798Function : plat_handle_double_fault
2799~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2800
2801::
2802
2803 Argument : int
2804 Argument : uint64_t
2805 Return : void
2806
2807This function is invoked by the RAS framework when another External Abort is
2808received at EL3 while one is already being handled. I.e., a call to
2809``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2810this function is to initiate orderly shutdown of the system, and is not expected
2811recover or return.
2812
2813This function must be implemented in assembly.
2814
2815The first and second parameters are the same as that of ``plat_ea_handler``.
2816
2817The default implementation of this function calls
2818``report_unhandled_exception``.
2819
2820Function : plat_handle_el3_ea
2821~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2822
2823::
2824
2825 Return : void
2826
2827This function is invoked when an External Abort is received while executing in
2828EL3. Due to its critical nature, the intention of this function is to initiate
2829orderly shutdown of the system, and is not expected recover or return.
2830
2831This function must be implemented in assembly.
2832
2833The default implementation of this function calls
2834``report_unhandled_exception``.
2835
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002836Build flags
2837-----------
2838
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002839There are some build flags which can be defined by the platform to control
2840inclusion or exclusion of certain BL stages from the FIP image. These flags
2841need to be defined in the platform makefile which will get included by the
2842build system.
2843
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002844- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002845 By default, this flag is defined ``yes`` by the build system and ``BL33``
2846 build option should be supplied as a build option. The platform has the
2847 option of excluding the BL33 image in the ``fip`` image by defining this flag
2848 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
2849 are used, this flag will be set to ``no`` automatically.
2850
Paul Beesley07f0a312019-05-16 13:33:18 +01002851Platform include paths
2852----------------------
2853
2854Platforms are allowed to add more include paths to be passed to the compiler.
2855The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
2856particular for the file ``platform_def.h``.
2857
2858Example:
2859
2860.. code:: c
2861
2862 PLAT_INCLUDES += -Iinclude/plat/myplat/include
2863
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002864C Library
2865---------
2866
2867To avoid subtle toolchain behavioral dependencies, the header files provided
2868by the compiler are not used. The software is built with the ``-nostdinc`` flag
2869to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00002870required headers are included in the TF-A source tree. The library only
2871contains those C library definitions required by the local implementation. If
2872more functionality is required, the needed library functions will need to be
2873added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002874
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002875Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00002876been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002877from `FreeBSD`_, others have been written specifically for TF-A as well. The
2878files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002879
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01002880SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
2881can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002882
2883Storage abstraction layer
2884-------------------------
2885
Louis Mayencourtb5469002019-07-15 13:56:03 +01002886In order to improve platform independence and portability a storage abstraction
2887layer is used to load data from non-volatile platform storage. Currently
2888storage access is only required by BL1 and BL2 phases and performed inside the
2889``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002890
Louis Mayencourtb5469002019-07-15 13:56:03 +01002891.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002892
Dan Handley610e7e12018-03-01 18:44:00 +00002893It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002894development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002895the default means to load data from storage (see :ref:`firmware_design_fip`).
2896The storage layer is described in the header file
2897``include/drivers/io/io_storage.h``. The implementation of the common library is
2898in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002899``drivers/io/``.
2900
Louis Mayencourtb5469002019-07-15 13:56:03 +01002901.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
2902
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002903Each IO driver must provide ``io_dev_*`` structures, as described in
2904``drivers/io/io_driver.h``. These are returned via a mandatory registration
2905function that is called on platform initialization. The semi-hosting driver
2906implementation in ``io_semihosting.c`` can be used as an example.
2907
Louis Mayencourtb5469002019-07-15 13:56:03 +01002908Each platform should register devices and their drivers via the storage
2909abstraction layer. These drivers then need to be initialized by bootloader
2910phases as required in their respective ``blx_platform_setup()`` functions.
2911
2912.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
2913
2914The storage abstraction layer provides mechanisms (``io_dev_init()``) to
2915initialize storage devices before IO operations are called.
2916
2917.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
2918
2919The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002920include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
2921Drivers do not have to implement all operations, but each platform must
2922provide at least one driver for a device capable of supporting generic
2923operations such as loading a bootloader image.
2924
2925The current implementation only allows for known images to be loaded by the
2926firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00002927``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002928there). The platform layer (``plat_get_image_source()``) then returns a reference
2929to a device and a driver-specific ``spec`` which will be understood by the driver
2930to allow access to the image data.
2931
2932The layer is designed in such a way that is it possible to chain drivers with
2933other drivers. For example, file-system drivers may be implemented on top of
2934physical block devices, both represented by IO devices with corresponding
2935drivers. In such a case, the file-system "binding" with the block device may
2936be deferred until the file-system device is initialised.
2937
2938The abstraction currently depends on structures being statically allocated
2939by the drivers and callers, as the system does not yet provide a means of
2940dynamically allocating memory. This may also have the affect of limiting the
2941amount of open resources per driver.
2942
2943--------------
2944
Paul Beesley07f0a312019-05-16 13:33:18 +01002945*Copyright (c) 2013-2020, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002946
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002947.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00002948.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002949.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00002950.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002951.. _SCC: http://www.simple-cc.org/