blob: b3092c790b345b87df972bdbafd46eb2e026f7a6 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
Sandrine Bailleux7a53a912023-02-08 13:55:51 +010017implementation of variables and functions to fulfill the optional requirements
18in order to ease the porting effort. Each platform port can use them as is or
19provide their own implementation if the default implementation is inadequate.
20
21 .. note::
22
23 TF-A historically provided default implementations of platform interfaces
24 as *weak* functions. This practice is now discouraged and new platform
25 interfaces as they get introduced in the code base should be *strongly*
26 defined. We intend to convert existing weak functions over time. Until
27 then, you will find references to *weak* functions in this document.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010028
Douglas Raillardd7c21b72017-06-28 15:23:03 +010029Some modifications are common to all Boot Loader (BL) stages. Section 2
30discusses these in detail. The subsequent sections discuss the remaining
31modifications for each BL stage in detail.
32
Sandrine Bailleuxdad35612022-11-08 13:36:42 +010033Please refer to the :ref:`Platform Ports Policy` for the policy regarding
34compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010035
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000036Only Arm development platforms (such as FVP and Juno) may use the
37functions/definitions in ``include/plat/arm/common/`` and the corresponding
38source files in ``plat/arm/common/``. This is done so that there are no
39dependencies between platforms maintained by different people/companies. If you
40want to use any of the functionality present in ``plat/arm`` files, please
41create a pull request that moves the code to ``plat/common`` so that it can be
42discussed.
43
Douglas Raillardd7c21b72017-06-28 15:23:03 +010044Common modifications
45--------------------
46
47This section covers the modifications that should be made by the platform for
48each BL stage to correctly port the firmware stack. They are categorized as
49either mandatory or optional.
50
51Common mandatory modifications
52------------------------------
53
54A platform port must enable the Memory Management Unit (MMU) as well as the
55instruction and data caches for each BL stage. Setting up the translation
56tables is the responsibility of the platform port because memory maps differ
57across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010058provided to help in this setup.
59
60Note that although this library supports non-identity mappings, this is intended
61only for re-mapping peripheral physical addresses and allows platforms with high
62I/O addresses to reduce their virtual address space. All other addresses
63corresponding to code and data must currently use an identity mapping.
64
Dan Handley610e7e12018-03-01 18:44:00 +000065Also, the only translation granule size supported in TF-A is 4KB, as various
66parts of the code assume that is the case. It is not possible to switch to
6716 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010068
Dan Handley610e7e12018-03-01 18:44:00 +000069In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010070platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
71an identity mapping for all addresses.
72
73If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
74block of identity mapped secure memory with Device-nGnRE attributes aligned to
75page boundary (4K) for each BL stage. All sections which allocate coherent
Chris Kay33bfc5e2023-02-14 11:30:04 +000076memory are grouped under ``.coherent_ram``. For ex: Bakery locks are placed in a
77section identified by name ``.bakery_lock`` inside ``.coherent_ram`` so that its
Douglas Raillardd7c21b72017-06-28 15:23:03 +010078possible for the firmware to place variables in it using the following C code
79directive:
80
81::
82
Chris Kay33bfc5e2023-02-14 11:30:04 +000083 __section(".bakery_lock")
Douglas Raillardd7c21b72017-06-28 15:23:03 +010084
85Or alternatively the following assembler code directive:
86
87::
88
Chris Kay33bfc5e2023-02-14 11:30:04 +000089 .section .bakery_lock
Douglas Raillardd7c21b72017-06-28 15:23:03 +010090
Chris Kay33bfc5e2023-02-14 11:30:04 +000091The ``.coherent_ram`` section is a sum of all sections like ``.bakery_lock`` which are
Douglas Raillardd7c21b72017-06-28 15:23:03 +010092used to allocate any data structures that are accessed both when a CPU is
93executing with its MMU and caches enabled, and when it's running with its MMU
94and caches disabled. Examples are given below.
95
96The following variables, functions and constants must be defined by the platform
97for the firmware to work correctly.
98
Javier Almansa Sobrino37bf69c2022-04-07 18:26:49 +010099.. _platform_def_mandatory:
100
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100101File : platform_def.h [mandatory]
102~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100103
104Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +0000105include path with the following constants defined. This will require updating
106the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100107
Paul Beesleyf8640672019-04-12 14:19:42 +0100108Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100109which provides typical values for some of the constants below. These values are
110likely to be suitable for all platform ports.
111
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100112- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100113
114 Defines the linker format used by the platform, for example
115 ``elf64-littleaarch64``.
116
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100117- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
119 Defines the processor architecture for the linker by the platform, for
120 example ``aarch64``.
121
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100122- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100123
124 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100125 by ``plat/common/aarch64/platform_mp_stack.S`` and
126 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100127
David Horstmann051fd6d2020-11-12 15:19:04 +0000128- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100129
Max Yufa0b4e82022-09-08 23:21:21 +0000130 Defines the size in bytes of the largest cache line across all the cache
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100131 levels in the platform.
132
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100133- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100134
135 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
136 function.
137
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100138- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100139
140 Defines the total number of CPUs implemented by the platform across all
141 clusters in the system.
142
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100143- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100144
145 Defines the total number of nodes in the power domain topology
146 tree at all the power domain levels used by the platform.
147 This macro is used by the PSCI implementation to allocate
148 data structures to represent power domain topology.
149
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100150- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100151
152 Defines the maximum power domain level that the power management operations
153 should apply to. More often, but not always, the power domain level
154 corresponds to affinity level. This macro allows the PSCI implementation
155 to know the highest power domain level that it should consider for power
156 management operations in the system that the platform implements. For
157 example, the Base AEM FVP implements two clusters with a configurable
158 number of CPUs and it reports the maximum power domain level as 1.
159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 Defines the local power state corresponding to the deepest power down
163 possible at every power domain level in the platform. The local power
164 states for each level may be sparsely allocated between 0 and this value
165 with 0 being reserved for the RUN state. The PSCI implementation uses this
166 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100167 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100168
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100169- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100170
171 Defines the local power state corresponding to the deepest retention state
172 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100173 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100174 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100175 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100176
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100177- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100178
179 Defines the maximum number of local power states per power domain level
180 that the platform supports. The default value of this macro is 2 since
181 most platforms just support a maximum of two local power states at each
182 power domain level (power-down and retention). If the platform needs to
183 account for more local power states, then it must redefine this macro.
184
185 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100186 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100187
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100188- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100189
190 Defines the base address in secure ROM where BL1 originally lives. Must be
191 aligned on a page-size boundary.
192
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100193- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100194
195 Defines the maximum address in secure ROM that BL1's actual content (i.e.
196 excluding any data section allocated at runtime) can occupy.
197
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100198- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100199
200 Defines the base address in secure RAM where BL1's read-write data will live
201 at runtime. Must be aligned on a page-size boundary.
202
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100203- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
205 Defines the maximum address in secure RAM that BL1's read-write data can
206 occupy at runtime.
207
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100208- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100209
210 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000211 Must be aligned on a page-size boundary. This constant is not applicable
212 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100213
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100214- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100215
216 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000217 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
218
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100219- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000220
221 Defines the base address in secure XIP memory where BL2 RO section originally
222 lives. Must be aligned on a page-size boundary. This constant is only needed
223 when BL2_IN_XIP_MEM is set to '1'.
224
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100225- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000226
227 Defines the maximum address in secure XIP memory that BL2's actual content
228 (i.e. excluding any data section allocated at runtime) can occupy. This
229 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
230
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100231- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000232
233 Defines the base address in secure RAM where BL2's read-write data will live
234 at runtime. Must be aligned on a page-size boundary. This constant is only
235 needed when BL2_IN_XIP_MEM is set to '1'.
236
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100237- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000238
239 Defines the maximum address in secure RAM that BL2's read-write data can
240 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
241 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100242
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100243- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100244
245 Defines the base address in secure RAM where BL2 loads the BL31 binary
246 image. Must be aligned on a page-size boundary.
247
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100248- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100249
250 Defines the maximum address in secure RAM that the BL31 image can occupy.
251
Tamas Ban1d3354e2022-09-16 14:09:30 +0200252- **#define : PLAT_RSS_COMMS_PAYLOAD_MAX_SIZE**
253
254 Defines the maximum message size between AP and RSS. Need to define if
255 platform supports RSS.
256
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100257For every image, the platform must define individual identifiers that will be
258used by BL1 or BL2 to load the corresponding image into memory from non-volatile
259storage. For the sake of performance, integer numbers will be used as
260identifiers. The platform will use those identifiers to return the relevant
261information about the image to be loaded (file handler, load address,
262authentication information, etc.). The following image identifiers are
263mandatory:
264
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100265- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100266
267 BL2 image identifier, used by BL1 to load BL2.
268
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100269- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100270
271 BL31 image identifier, used by BL2 to load BL31.
272
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100273- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100274
275 BL33 image identifier, used by BL2 to load BL33.
276
277If Trusted Board Boot is enabled, the following certificate identifiers must
278also be defined:
279
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100280- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100281
282 BL2 content certificate identifier, used by BL1 to load the BL2 content
283 certificate.
284
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100285- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100286
287 Trusted key certificate identifier, used by BL2 to load the trusted key
288 certificate.
289
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100290- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100291
292 BL31 key certificate identifier, used by BL2 to load the BL31 key
293 certificate.
294
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100295- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100296
297 BL31 content certificate identifier, used by BL2 to load the BL31 content
298 certificate.
299
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100300- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100301
302 BL33 key certificate identifier, used by BL2 to load the BL33 key
303 certificate.
304
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100305- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306
307 BL33 content certificate identifier, used by BL2 to load the BL33 content
308 certificate.
309
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100310- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100311
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100312 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100313 FWU content certificate.
314
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100315- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100316
Dan Handley610e7e12018-03-01 18:44:00 +0000317 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100318 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000319 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100320 set.
321
322If the AP Firmware Updater Configuration image, BL2U is used, the following
323must also be defined:
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326
327 Defines the base address in secure memory where BL1 copies the BL2U binary
328 image. Must be aligned on a page-size boundary.
329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100331
332 Defines the maximum address in secure memory that the BL2U image can occupy.
333
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100334- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
336 BL2U image identifier, used by BL1 to fetch an image descriptor
337 corresponding to BL2U.
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340must also be defined:
341
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100342- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100343
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100344 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
345 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000346
347 .. note::
348 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100349
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100350If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351also be defined:
352
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100353- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000357
358 .. note::
359 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100360
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100361- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
364 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100365
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100366If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367be defined:
368
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100369- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000373
374 .. note::
375 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100376
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100377- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
380 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100381
382For the the Firmware update capability of TRUSTED BOARD BOOT, the following
383macros may also be defined:
384
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100385- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100386
387 Total number of images that can be loaded simultaneously. If the platform
388 doesn't specify any value, it defaults to 10.
389
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100390If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100391also be defined:
392
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100393- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100394
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100395 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000396 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100397
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100398- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100399
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100400 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100401 certificate (mandatory when Trusted Board Boot is enabled).
402
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100403- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100404
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100405 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100406 content certificate (mandatory when Trusted Board Boot is enabled).
407
408If a BL32 image is supported by the platform, the following constants must
409also be defined:
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 BL32 image identifier, used by BL2 to load BL32.
414
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100415- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100416
417 BL32 key certificate identifier, used by BL2 to load the BL32 key
418 certificate (mandatory when Trusted Board Boot is enabled).
419
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100420- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100421
422 BL32 content certificate identifier, used by BL2 to load the BL32 content
423 certificate (mandatory when Trusted Board Boot is enabled).
424
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100425- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100426
427 Defines the base address in secure memory where BL2 loads the BL32 binary
428 image. Must be aligned on a page-size boundary.
429
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100430- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100431
432 Defines the maximum address that the BL32 image can occupy.
433
434If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
435platform, the following constants must also be defined:
436
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100437- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100438
439 Defines the base address of the secure memory used by the TSP image on the
440 platform. This must be at the same address or below ``BL32_BASE``.
441
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100442- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100443
444 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000445 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
446 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
447 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100448
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100449- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100450
451 Defines the ID of the secure physical generic timer interrupt used by the
452 TSP's interrupt handling code.
453
454If the platform port uses the translation table library code, the following
455constants must also be defined:
456
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100457- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100458
459 Optional flag that can be set per-image to enable the dynamic allocation of
460 regions even when the MMU is enabled. If not defined, only static
461 functionality will be available, if defined and set to 1 it will also
462 include the dynamic functionality.
463
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100464- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100465
466 Defines the maximum number of translation tables that are allocated by the
467 translation table library code. To minimize the amount of runtime memory
468 used, choose the smallest value needed to map the required virtual addresses
469 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
470 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
471 as well.
472
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100473- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100474
475 Defines the maximum number of regions that are allocated by the translation
476 table library code. A region consists of physical base address, virtual base
477 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
478 defined in the ``mmap_region_t`` structure. The platform defines the regions
479 that should be mapped. Then, the translation table library will create the
480 corresponding tables and descriptors at runtime. To minimize the amount of
481 runtime memory used, choose the smallest value needed to register the
482 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
483 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
484 the dynamic regions as well.
485
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100486- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100487
488 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000489 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000494 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100495
496If the platform port uses the IO storage framework, the following constants
497must also be defined:
498
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100499- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100500
501 Defines the maximum number of registered IO devices. Attempting to register
502 more devices than this value using ``io_register_device()`` will fail with
503 -ENOMEM.
504
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100505- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100506
507 Defines the maximum number of open IO handles. Attempting to open more IO
508 entities than this value using ``io_open()`` will fail with -ENOMEM.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the maximum number of registered IO block devices. Attempting to
513 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100514 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100515 With this macro, multiple block devices could be supported at the same
516 time.
517
518If the platform needs to allocate data within the per-cpu data framework in
519BL31, it should define the following macro. Currently this is only required if
520the platform decides not to use the coherent memory section by undefining the
521``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
522required memory within the the per-cpu data to minimize wastage.
523
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100524- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100525
526 Defines the memory (in bytes) to be reserved within the per-cpu data
527 structure for use by the platform layer.
528
529The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000530memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100532- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100533
534 Defines the maximum address in secure RAM that the BL31's progbits sections
535 can occupy.
536
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100537- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100538
539 Defines the maximum address that the TSP's progbits sections can occupy.
540
Wing Li2c556f32022-09-14 13:18:17 -0700541If the platform supports OS-initiated mode, i.e. the build option
542``PSCI_OS_INIT_MODE`` is enabled, and if the platform's maximum power domain
543level for PSCI_CPU_SUSPEND differs from ``PLAT_MAX_PWR_LVL``, the following
544constant must be defined.
545
546- **#define : PLAT_MAX_CPU_SUSPEND_PWR_LVL**
547
548 Defines the maximum power domain level that PSCI_CPU_SUSPEND should apply to.
549
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100550If the platform port uses the PL061 GPIO driver, the following constant may
551optionally be defined:
552
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100553- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554 Maximum number of GPIOs required by the platform. This allows control how
555 much memory is allocated for PL061 GPIO controllers. The default value is
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558
559If the platform port uses the partition driver, the following constant may
560optionally be defined:
561
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100562- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100563 Maximum number of partition entries required by the platform. This allows
564 control how much memory is allocated for partition entries. The default
565 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100566 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100567 PLAT_PARTITION_MAX_ENTRIES := 12
568 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100569
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800570- **PLAT_PARTITION_BLOCK_SIZE**
571 The size of partition block. It could be either 512 bytes or 4096 bytes.
572 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000573 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800574 PLAT_PARTITION_BLOCK_SIZE := 4096
575 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
576
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100577If the platform port uses the Arm® Ethos™-N NPU driver with TZMP1 support
578enabled, the following constants must also be defined.
579
580- **ARM_ETHOSN_NPU_PROT_FW_NSAID**
581
582 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use to
583 access the protected memory that contains the NPU's firmware.
584
585- **ARM_ETHOSN_NPU_PROT_DATA_NSAID**
586
587 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use to
588 access the protected memory that contains inference data.
589
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100590The following constant is optional. It should be defined to override the default
591behaviour of the ``assert()`` function (for example, to save memory).
592
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100593- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100594 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
595 ``assert()`` prints the name of the file, the line number and the asserted
596 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
597 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
598 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
599 defined, it defaults to ``LOG_LEVEL``.
600
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100601If the platform port uses the DRTM feature, the following constants must be
602defined:
603
604- **#define : PLAT_DRTM_EVENT_LOG_MAX_SIZE**
605
606 Maximum Event Log size used by the platform. Platform can decide the maximum
607 size of the Event Log buffer, depending upon the highest hash algorithm
608 chosen and the number of components selected to measure during the DRTM
609 execution flow.
610
611- **#define : PLAT_DRTM_MMAP_ENTRIES**
612
613 Number of the MMAP entries used by the DRTM implementation to calculate the
614 size of address map region of the platform.
615
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100616File : plat_macros.S [mandatory]
617~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100618
619Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000620the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100621found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
622
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100623- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100624
625 This macro allows the crash reporting routine to print relevant platform
626 registers in case of an unhandled exception in BL31. This aids in debugging
627 and this macro can be defined to be empty in case register reporting is not
628 desired.
629
630 For instance, GIC or interconnect registers may be helpful for
631 troubleshooting.
632
633Handling Reset
634--------------
635
636BL1 by default implements the reset vector where execution starts from a cold
637or warm boot. BL31 can be optionally set as a reset vector using the
638``RESET_TO_BL31`` make variable.
639
640For each CPU, the reset vector code is responsible for the following tasks:
641
642#. Distinguishing between a cold boot and a warm boot.
643
644#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
645 the CPU is placed in a platform-specific state until the primary CPU
646 performs the necessary steps to remove it from this state.
647
648#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
649 specific address in the BL31 image in the same processor mode as it was
650 when released from reset.
651
652The following functions need to be implemented by the platform port to enable
653reset vector code to perform the above tasks.
654
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100655Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
656~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100657
658::
659
660 Argument : void
661 Return : uintptr_t
662
663This function is called with the MMU and caches disabled
664(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
665distinguishing between a warm and cold reset for the current CPU using
666platform-specific means. If it's a warm reset, then it returns the warm
667reset entrypoint point provided to ``plat_setup_psci_ops()`` during
668BL31 initialization. If it's a cold reset then this function must return zero.
669
670This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000671Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100672not assume that callee saved registers are preserved across a call to this
673function.
674
675This function fulfills requirement 1 and 3 listed above.
676
677Note that for platforms that support programming the reset address, it is
678expected that a CPU will start executing code directly at the right address,
679both on a cold and warm reset. In this case, there is no need to identify the
680type of reset nor to query the warm reset entrypoint. Therefore, implementing
681this function is not required on such platforms.
682
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100683Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
684~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100685
686::
687
688 Argument : void
689
690This function is called with the MMU and data caches disabled. It is responsible
691for placing the executing secondary CPU in a platform-specific state until the
692primary CPU performs the necessary actions to bring it out of that state and
693allow entry into the OS. This function must not return.
694
Dan Handley610e7e12018-03-01 18:44:00 +0000695In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100696itself off. The primary CPU is responsible for powering up the secondary CPUs
697when normal world software requires them. When booting an EL3 payload instead,
698they stay powered on and are put in a holding pen until their mailbox gets
699populated.
700
701This function fulfills requirement 2 above.
702
703Note that for platforms that can't release secondary CPUs out of reset, only the
704primary CPU will execute the cold boot code. Therefore, implementing this
705function is not required on such platforms.
706
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100707Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
708~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100709
710::
711
712 Argument : void
713 Return : unsigned int
714
715This function identifies whether the current CPU is the primary CPU or a
716secondary CPU. A return value of zero indicates that the CPU is not the
717primary CPU, while a non-zero return value indicates that the CPU is the
718primary CPU.
719
720Note that for platforms that can't release secondary CPUs out of reset, only the
721primary CPU will execute the cold boot code. Therefore, there is no need to
722distinguish between primary and secondary CPUs and implementing this function is
723not required.
724
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100725Function : platform_mem_init() [mandatory]
726~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100727
728::
729
730 Argument : void
731 Return : void
732
733This function is called before any access to data is made by the firmware, in
734order to carry out any essential memory initialization.
735
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100736Function: plat_get_rotpk_info()
737~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100738
739::
740
741 Argument : void *, void **, unsigned int *, unsigned int *
742 Return : int
743
744This function is mandatory when Trusted Board Boot is enabled. It returns a
745pointer to the ROTPK stored in the platform (or a hash of it) and its length.
746The ROTPK must be encoded in DER format according to the following ASN.1
747structure:
748
749::
750
751 AlgorithmIdentifier ::= SEQUENCE {
752 algorithm OBJECT IDENTIFIER,
753 parameters ANY DEFINED BY algorithm OPTIONAL
754 }
755
756 SubjectPublicKeyInfo ::= SEQUENCE {
757 algorithm AlgorithmIdentifier,
758 subjectPublicKey BIT STRING
759 }
760
761In case the function returns a hash of the key:
762
763::
764
765 DigestInfo ::= SEQUENCE {
766 digestAlgorithm AlgorithmIdentifier,
767 digest OCTET STRING
768 }
769
770The function returns 0 on success. Any other value is treated as error by the
771Trusted Board Boot. The function also reports extra information related
772to the ROTPK in the flags parameter:
773
774::
775
776 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
777 hash.
778 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
779 verification while the platform ROTPK is not deployed.
780 When this flag is set, the function does not need to
781 return a platform ROTPK, and the authentication
782 framework uses the ROTPK in the certificate without
783 verifying it against the platform value. This flag
784 must not be used in a deployed production environment.
785
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100786Function: plat_get_nv_ctr()
787~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100788
789::
790
791 Argument : void *, unsigned int *
792 Return : int
793
794This function is mandatory when Trusted Board Boot is enabled. It returns the
795non-volatile counter value stored in the platform in the second argument. The
796cookie in the first argument may be used to select the counter in case the
797platform provides more than one (for example, on platforms that use the default
798TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100799TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100800
801The function returns 0 on success. Any other value means the counter value could
802not be retrieved from the platform.
803
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100804Function: plat_set_nv_ctr()
805~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100806
807::
808
809 Argument : void *, unsigned int
810 Return : int
811
812This function is mandatory when Trusted Board Boot is enabled. It sets a new
813counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100814select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100815the updated counter value to be written to the NV counter.
816
817The function returns 0 on success. Any other value means the counter value could
818not be updated.
819
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100820Function: plat_set_nv_ctr2()
821~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100822
823::
824
825 Argument : void *, const auth_img_desc_t *, unsigned int
826 Return : int
827
828This function is optional when Trusted Board Boot is enabled. If this
829interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
830first argument passed is a cookie and is typically used to
831differentiate between a Non Trusted NV Counter and a Trusted NV
832Counter. The second argument is a pointer to an authentication image
833descriptor and may be used to decide if the counter is allowed to be
834updated or not. The third argument is the updated counter value to
835be written to the NV counter.
836
837The function returns 0 on success. Any other value means the counter value
838either could not be updated or the authentication image descriptor indicates
839that it is not allowed to be updated.
840
Nicolas Toromanoff7f95ac82020-11-09 12:14:52 +0100841Function: plat_convert_pk()
842~~~~~~~~~~~~~~~~~~~~~~~~~~~
843
844::
845
846 Argument : void *, unsigned int, void **, unsigned int *
847 Return : int
848
849This function is optional when Trusted Board Boot is enabled, and only
850used if the platform saves a hash of the ROTPK.
851First argument is the Distinguished Encoding Rules (DER) ROTPK.
852Second argument is its size.
853Third argument is used to return a pointer to a buffer, which hash should
854be the one saved in OTP.
855Fourth argument is a pointer to return its size.
856
857Most platforms save the hash of the ROTPK, but some may save slightly different
858information - e.g the hash of the ROTPK plus some related information.
859Defining this function allows to transform the ROTPK used to verify
860the signature to the buffer (a platform specific public key) which
861hash is saved in OTP.
862
863The default implementation copies the input key and length to the output without
864modification.
865
866The function returns 0 on success. Any other value means the expected
867public key buffer cannot be extracted.
868
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100869Dynamic Root of Trust for Measurement support (in BL31)
870-------------------------------------------------------
871
872The functions mentioned in this section are mandatory, when platform enables
873DRTM_SUPPORT build flag.
874
875Function : plat_get_addr_mmap()
876~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
877
878::
879
880 Argument : void
881 Return : const mmap_region_t *
882
883This function is used to return the address of the platform *address-map* table,
884which describes the regions of normal memory, memory mapped I/O
885and non-volatile memory.
886
887Function : plat_has_non_host_platforms()
888~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
889
890::
891
892 Argument : void
893 Return : bool
894
895This function returns *true* if the platform has any trusted devices capable of
896DMA, otherwise returns *false*.
897
898Function : plat_has_unmanaged_dma_peripherals()
899~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
900
901::
902
903 Argument : void
904 Return : bool
905
906This function returns *true* if platform uses peripherals whose DMA is not
907managed by an SMMU, otherwise returns *false*.
908
909Note -
910If the platform has peripherals that are not managed by the SMMU, then the
911platform should investigate such peripherals to determine whether they can
912be trusted, and such peripherals should be moved under "Non-host platforms"
913if they can be trusted.
914
915Function : plat_get_total_num_smmus()
916~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
917
918::
919
920 Argument : void
921 Return : unsigned int
922
923This function returns the total number of SMMUs in the platform.
924
925Function : plat_enumerate_smmus()
926~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
927::
928
929
930 Argument : void
931 Return : const uintptr_t *, size_t
932
933This function returns an array of SMMU addresses and the actual number of SMMUs
934reported by the platform.
935
936Function : plat_drtm_get_dma_prot_features()
937~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
938
939::
940
941 Argument : void
942 Return : const plat_drtm_dma_prot_features_t*
943
944This function returns the address of plat_drtm_dma_prot_features_t structure
945containing the maximum number of protected regions and bitmap with the types
946of DMA protection supported by the platform.
947For more details see section 3.3 Table 6 of `DRTM`_ specification.
948
949Function : plat_drtm_dma_prot_get_max_table_bytes()
950~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
951
952::
953
954 Argument : void
955 Return : uint64_t
956
957This function returns the maximum size of DMA protected regions table in
958bytes.
959
960Function : plat_drtm_get_tpm_features()
961~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
962
963::
964
965 Argument : void
966 Return : const plat_drtm_tpm_features_t*
967
968This function returns the address of *plat_drtm_tpm_features_t* structure
969containing PCR usage schema, TPM-based hash, and firmware hash algorithm
970supported by the platform.
971
972Function : plat_drtm_get_min_size_normal_world_dce()
973~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
974
975::
976
977 Argument : void
978 Return : uint64_t
979
980This function returns the size normal-world DCE of the platform.
981
982Function : plat_drtm_get_imp_def_dlme_region_size()
983~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
984
985::
986
987 Argument : void
988 Return : uint64_t
989
990This function returns the size of implementation defined DLME region
991of the platform.
992
993Function : plat_drtm_get_tcb_hash_table_size()
994~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
995
996::
997
998 Argument : void
999 Return : uint64_t
1000
1001This function returns the size of TCB hash table of the platform.
1002
1003Function : plat_drtm_get_tcb_hash_features()
1004~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1005
1006::
1007
1008 Argument : void
1009 Return : uint64_t
1010
1011This function returns the Maximum number of TCB hashes recorded by the
1012platform.
1013For more details see section 3.3 Table 6 of `DRTM`_ specification.
1014
1015Function : plat_drtm_validate_ns_region()
1016~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1017
1018::
1019
1020 Argument : uintptr_t, uintptr_t
1021 Return : int
1022
1023This function validates that given region is within the Non-Secure region
1024of DRAM. This function takes a region start address and size an input
1025arguments, and returns 0 on success and -1 on failure.
1026
1027Function : plat_set_drtm_error()
1028~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1029
1030::
1031
1032 Argument : uint64_t
1033 Return : int
1034
1035This function writes a 64 bit error code received as input into
1036non-volatile storage and returns 0 on success and -1 on failure.
1037
1038Function : plat_get_drtm_error()
1039~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1040
1041::
1042
1043 Argument : uint64_t*
1044 Return : int
1045
1046This function reads a 64 bit error code from the non-volatile storage
1047into the received address, and returns 0 on success and -1 on failure.
1048
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001049Common mandatory function modifications
1050---------------------------------------
1051
1052The following functions are mandatory functions which need to be implemented
1053by the platform port.
1054
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001055Function : plat_my_core_pos()
1056~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001057
1058::
1059
1060 Argument : void
1061 Return : unsigned int
1062
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001063This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001064CPU-specific linear index into blocks of memory (for example while allocating
1065per-CPU stacks). This function will be invoked very early in the
1066initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001067implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001068runtime environment. This function can clobber x0 - x8 and must preserve
1069x9 - x29.
1070
1071This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +01001072PSCI and details of this can be found in
1073:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001074
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001075Function : plat_core_pos_by_mpidr()
1076~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001077
1078::
1079
1080 Argument : u_register_t
1081 Return : int
1082
1083This function validates the ``MPIDR`` of a CPU and converts it to an index,
1084which can be used as a CPU-specific linear index into blocks of memory. In
1085case the ``MPIDR`` is invalid, this function returns -1. This function will only
1086be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +00001087utilize the C runtime environment. For further details about how TF-A
1088represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +01001089index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001090
Ambroise Vincentd207f562019-04-10 12:50:27 +01001091Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
1092~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1093
1094::
1095
1096 Arguments : void **heap_addr, size_t *heap_size
1097 Return : int
1098
1099This function is invoked during Mbed TLS library initialisation to get a heap,
1100by means of a starting address and a size. This heap will then be used
1101internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
1102must be able to provide a heap to it.
1103
1104A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
1105which a heap is statically reserved during compile time inside every image
1106(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
1107the function simply returns the address and size of this "pre-allocated" heap.
1108For a platform to use this default implementation, only a call to the helper
1109from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
1110
1111However, by writting their own implementation, platforms have the potential to
1112optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
1113shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
1114twice.
1115
1116On success the function should return 0 and a negative error code otherwise.
1117
Sumit Gargc0c369c2019-11-15 18:47:53 +05301118Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
1119~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1120
1121::
1122
1123 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
1124 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
1125 size_t img_id_len
1126 Return : int
1127
1128This function provides a symmetric key (either SSK or BSSK depending on
1129fw_enc_status) which is invoked during runtime decryption of encrypted
1130firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
1131implementation for testing purposes which must be overridden by the platform
1132trying to implement a real world firmware encryption use-case.
1133
1134It also allows the platform to pass symmetric key identifier rather than
1135actual symmetric key which is useful in cases where the crypto backend provides
1136secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
1137flag must be set in ``flags``.
1138
1139In addition to above a platform may also choose to provide an image specific
1140symmetric key/identifier using img_id.
1141
1142On success the function should return 0 and a negative error code otherwise.
1143
Manish Pandey34a305e2021-10-21 21:53:49 +01001144Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
Sumit Gargc0c369c2019-11-15 18:47:53 +05301145
Manish V Badarkheda87af12021-06-20 21:14:46 +01001146Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
1147~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1148
1149::
1150
Sughosh Ganuf40154f2021-11-17 17:08:10 +05301151 Argument : const struct fwu_metadata *metadata
Manish V Badarkheda87af12021-06-20 21:14:46 +01001152 Return : void
1153
1154This function is mandatory when PSA_FWU_SUPPORT is enabled.
1155It provides a means to retrieve image specification (offset in
1156non-volatile storage and length) of active/updated images using the passed
1157FWU metadata, and update I/O policies of active/updated images using retrieved
1158image specification information.
1159Further I/O layer operations such as I/O open, I/O read, etc. on these
1160images rely on this function call.
1161
1162In Arm platforms, this function is used to set an I/O policy of the FIP image,
1163container of all active/updated secure and non-secure images.
1164
1165Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
1166~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1167
1168::
1169
1170 Argument : unsigned int image_id, uintptr_t *dev_handle,
1171 uintptr_t *image_spec
1172 Return : int
1173
1174This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
1175responsible for setting up the platform I/O policy of the requested metadata
1176image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
1177be used to load this image from the platform's non-volatile storage.
1178
1179FWU metadata can not be always stored as a raw image in non-volatile storage
1180to define its image specification (offset in non-volatile storage and length)
1181statically in I/O policy.
1182For example, the FWU metadata image is stored as a partition inside the GUID
1183partition table image. Its specification is defined in the partition table
1184that needs to be parsed dynamically.
1185This function provides a means to retrieve such dynamic information to set
1186the I/O policy of the FWU metadata image.
1187Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
1188image relies on this function call.
1189
1190It returns '0' on success, otherwise a negative error value on error.
1191Alongside, returns device handle and image specification from the I/O policy
1192of the requested FWU metadata image.
1193
Sughosh Ganu4e336a62021-12-01 15:53:32 +05301194Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]
1195~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1196
1197::
1198
1199 Argument : void
1200 Return : uint32_t
1201
1202This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the
1203means to retrieve the boot index value from the platform. The boot index is the
1204bank from which the platform has booted the firmware images.
1205
1206By default, the platform will read the metadata structure and try to boot from
1207the active bank. If the platform fails to boot from the active bank due to
1208reasons like an Authentication failure, or on crossing a set number of watchdog
1209resets while booting from the active bank, the platform can then switch to boot
1210from a different bank. This function then returns the bank that the platform
1211should boot its images from.
1212
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001213Common optional modifications
1214-----------------------------
1215
1216The following are helper functions implemented by the firmware that perform
1217common platform-specific tasks. A platform may choose to override these
1218definitions.
1219
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001220Function : plat_set_my_stack()
1221~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001222
1223::
1224
1225 Argument : void
1226 Return : void
1227
1228This function sets the current stack pointer to the normal memory stack that
1229has been allocated for the current CPU. For BL images that only require a
1230stack for the primary CPU, the UP version of the function is used. The size
1231of the stack allocated to each CPU is specified by the platform defined
1232constant ``PLATFORM_STACK_SIZE``.
1233
1234Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001235provided in ``plat/common/aarch64/platform_up_stack.S`` and
1236``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001237
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001238Function : plat_get_my_stack()
1239~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001240
1241::
1242
1243 Argument : void
1244 Return : uintptr_t
1245
1246This function returns the base address of the normal memory stack that
1247has been allocated for the current CPU. For BL images that only require a
1248stack for the primary CPU, the UP version of the function is used. The size
1249of the stack allocated to each CPU is specified by the platform defined
1250constant ``PLATFORM_STACK_SIZE``.
1251
1252Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001253provided in ``plat/common/aarch64/platform_up_stack.S`` and
1254``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001255
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001256Function : plat_report_exception()
1257~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001258
1259::
1260
1261 Argument : unsigned int
1262 Return : void
1263
1264A platform may need to report various information about its status when an
1265exception is taken, for example the current exception level, the CPU security
1266state (secure/non-secure), the exception type, and so on. This function is
1267called in the following circumstances:
1268
1269- In BL1, whenever an exception is taken.
1270- In BL2, whenever an exception is taken.
1271
1272The default implementation doesn't do anything, to avoid making assumptions
1273about the way the platform displays its status information.
1274
1275For AArch64, this function receives the exception type as its argument.
1276Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001277``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001278related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001279
1280For AArch32, this function receives the exception mode as its argument.
1281Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001282``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001283
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001284Function : plat_reset_handler()
1285~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001286
1287::
1288
1289 Argument : void
1290 Return : void
1291
1292A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001293allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001294specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001295preserve the values of callee saved registers x19 to x29.
1296
1297The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001298the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001299guidelines.
1300
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001301Function : plat_disable_acp()
1302~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001303
1304::
1305
1306 Argument : void
1307 Return : void
1308
John Tsichritzis6dda9762018-07-23 09:18:04 +01001309This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001310present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001311doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001312it has restrictions for stack usage and it can use the registers x0 - x17 as
1313scratch registers. It should preserve the value in x18 register as it is used
1314by the caller to store the return address.
1315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001316Function : plat_error_handler()
1317~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001318
1319::
1320
1321 Argument : int
1322 Return : void
1323
1324This API is called when the generic code encounters an error situation from
1325which it cannot continue. It allows the platform to perform error reporting or
1326recovery actions (for example, reset the system). This function must not return.
1327
1328The parameter indicates the type of error using standard codes from ``errno.h``.
1329Possible errors reported by the generic code are:
1330
1331- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1332 Board Boot is enabled)
1333- ``-ENOENT``: the requested image or certificate could not be found or an IO
1334 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001335- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1336 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001337
1338The default implementation simply spins.
1339
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001340Function : plat_panic_handler()
1341~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001342
1343::
1344
1345 Argument : void
1346 Return : void
1347
1348This API is called when the generic code encounters an unexpected error
1349situation from which it cannot recover. This function must not return,
1350and must be implemented in assembly because it may be called before the C
1351environment is initialized.
1352
Paul Beesleyba3ed402019-03-13 16:20:44 +00001353.. note::
1354 The address from where it was called is stored in x30 (Link Register).
1355 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001356
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01001357Function : plat_system_reset()
1358~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1359
1360::
1361
1362 Argument : void
1363 Return : void
1364
1365This function is used by the platform to resets the system. It can be used
1366in any specific use-case where system needs to be resetted. For example,
1367in case of DRTM implementation this function reset the system after
1368writing the DRTM error code in the non-volatile storage. This function
1369never returns. Failure in reset results in panic.
1370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001371Function : plat_get_bl_image_load_info()
1372~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001373
1374::
1375
1376 Argument : void
1377 Return : bl_load_info_t *
1378
1379This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001380populated to load. This function is invoked in BL2 to load the
1381BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001382
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001383Function : plat_get_next_bl_params()
1384~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001385
1386::
1387
1388 Argument : void
1389 Return : bl_params_t *
1390
1391This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001392kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001393function is invoked in BL2 to pass this information to the next BL
1394image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001395
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001396Function : plat_get_stack_protector_canary()
1397~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001398
1399::
1400
1401 Argument : void
1402 Return : u_register_t
1403
1404This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001405when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001406value will weaken the protection as the attacker could easily write the right
1407value as part of the attack most of the time. Therefore, it should return a
1408true random number.
1409
Paul Beesleyba3ed402019-03-13 16:20:44 +00001410.. warning::
1411 For the protection to be effective, the global data need to be placed at
1412 a lower address than the stack bases. Failure to do so would allow an
1413 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001414
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001415Function : plat_flush_next_bl_params()
1416~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001417
1418::
1419
1420 Argument : void
1421 Return : void
1422
1423This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001424next image. This function is invoked in BL2 to flush this information
1425to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001426
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001427Function : plat_log_get_prefix()
1428~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001429
1430::
1431
1432 Argument : unsigned int
1433 Return : const char *
1434
1435This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001436prepended to all the log output from TF-A. The `log_level` (argument) will
1437correspond to one of the standard log levels defined in debug.h. The platform
1438can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001439the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001440increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001441
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001442Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001443~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001444
1445::
1446
1447 Argument : void
1448 Return : int32_t
1449
1450This function returns soc version which mainly consist of below fields
1451
1452::
1453
1454 soc_version[30:24] = JEP-106 continuation code for the SiP
1455 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001456 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001457
1458Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001459~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001460
1461::
1462
1463 Argument : void
1464 Return : int32_t
1465
1466This function returns soc revision in below format
1467
1468::
1469
1470 soc_revision[0:30] = SOC revision of specific SOC
1471
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001472Function : plat_is_smccc_feature_available()
1473~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1474
1475::
1476
1477 Argument : u_register_t
1478 Return : int32_t
1479
1480This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1481the SMCCC function specified in the argument; otherwise returns
1482SMC_ARCH_CALL_NOT_SUPPORTED.
1483
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001484Function : plat_mboot_measure_image()
1485~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1486
1487::
1488
1489 Argument : unsigned int, image_info_t *
Manish V Badarkhe931c6ef2021-10-21 09:06:18 +01001490 Return : int
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001491
1492When the MEASURED_BOOT flag is enabled:
1493
1494- This function measures the given image and records its measurement using
1495 the measured boot backend driver.
1496- On the Arm FVP port, this function measures the given image using its
1497 passed id and information and then records that measurement in the
1498 Event Log buffer.
Manish V Badarkhe931c6ef2021-10-21 09:06:18 +01001499- This function must return 0 on success, a signed integer error code
1500 otherwise.
1501
1502When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1503
1504Function : plat_mboot_measure_critical_data()
1505~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1506
1507::
1508
1509 Argument : unsigned int, const void *, size_t
1510 Return : int
1511
1512When the MEASURED_BOOT flag is enabled:
1513
1514- This function measures the given critical data structure and records its
1515 measurement using the measured boot backend driver.
1516- This function must return 0 on success, a signed integer error code
1517 otherwise.
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001518
1519When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1520
Okash Khawaja037b56e2022-11-04 12:38:01 +00001521Function : plat_can_cmo()
1522~~~~~~~~~~~~~~~~~~~~~~~~~
1523
1524::
1525
1526 Argument : void
1527 Return : uint64_t
1528
1529When CONDITIONAL_CMO flag is enabled:
1530
1531- This function indicates whether cache management operations should be
1532 performed. It returns 0 if CMOs should be skipped and non-zero
1533 otherwise.
Okash Khawaja94532202022-11-14 12:50:30 +00001534- The function must not clobber x1, x2 and x3. It's also not safe to rely on
1535 stack. Otherwise obey AAPCS.
Okash Khawaja037b56e2022-11-04 12:38:01 +00001536
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001537Modifications specific to a Boot Loader stage
1538---------------------------------------------
1539
1540Boot Loader Stage 1 (BL1)
1541-------------------------
1542
1543BL1 implements the reset vector where execution starts from after a cold or
1544warm boot. For each CPU, BL1 is responsible for the following tasks:
1545
1546#. Handling the reset as described in section 2.2
1547
1548#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1549 only this CPU executes the remaining BL1 code, including loading and passing
1550 control to the BL2 stage.
1551
1552#. Identifying and starting the Firmware Update process (if required).
1553
1554#. Loading the BL2 image from non-volatile storage into secure memory at the
1555 address specified by the platform defined constant ``BL2_BASE``.
1556
1557#. Populating a ``meminfo`` structure with the following information in memory,
1558 accessible by BL2 immediately upon entry.
1559
1560 ::
1561
1562 meminfo.total_base = Base address of secure RAM visible to BL2
1563 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001564
Soby Mathew97b1bff2018-09-27 16:46:41 +01001565 By default, BL1 places this ``meminfo`` structure at the end of secure
1566 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001567
Soby Mathewb1bf0442018-02-16 14:52:52 +00001568 It is possible for the platform to decide where it wants to place the
1569 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1570 BL2 by overriding the weak default implementation of
1571 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001572
1573The following functions need to be implemented by the platform port to enable
1574BL1 to perform the above tasks.
1575
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001576Function : bl1_early_platform_setup() [mandatory]
1577~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001578
1579::
1580
1581 Argument : void
1582 Return : void
1583
1584This function executes with the MMU and data caches disabled. It is only called
1585by the primary CPU.
1586
Dan Handley610e7e12018-03-01 18:44:00 +00001587On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001588
1589- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1590
1591- Initializes a UART (PL011 console), which enables access to the ``printf``
1592 family of functions in BL1.
1593
1594- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1595 the CCI slave interface corresponding to the cluster that includes the
1596 primary CPU.
1597
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001598Function : bl1_plat_arch_setup() [mandatory]
1599~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001600
1601::
1602
1603 Argument : void
1604 Return : void
1605
1606This function performs any platform-specific and architectural setup that the
1607platform requires. Platform-specific setup might include configuration of
1608memory controllers and the interconnect.
1609
Dan Handley610e7e12018-03-01 18:44:00 +00001610In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001611
1612This function helps fulfill requirement 2 above.
1613
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001614Function : bl1_platform_setup() [mandatory]
1615~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001616
1617::
1618
1619 Argument : void
1620 Return : void
1621
1622This function executes with the MMU and data caches enabled. It is responsible
1623for performing any remaining platform-specific setup that can occur after the
1624MMU and data cache have been enabled.
1625
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001626if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001627sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001628
Dan Handley610e7e12018-03-01 18:44:00 +00001629In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001630layer used to load the next bootloader image.
1631
1632This function helps fulfill requirement 4 above.
1633
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001634Function : bl1_plat_sec_mem_layout() [mandatory]
1635~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001636
1637::
1638
1639 Argument : void
1640 Return : meminfo *
1641
1642This function should only be called on the cold boot path. It executes with the
1643MMU and data caches enabled. The pointer returned by this function must point to
1644a ``meminfo`` structure containing the extents and availability of secure RAM for
1645the BL1 stage.
1646
1647::
1648
1649 meminfo.total_base = Base address of secure RAM visible to BL1
1650 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001651
1652This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1653populates a similar structure to tell BL2 the extents of memory available for
1654its own use.
1655
1656This function helps fulfill requirements 4 and 5 above.
1657
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001658Function : bl1_plat_prepare_exit() [optional]
1659~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001660
1661::
1662
1663 Argument : entry_point_info_t *
1664 Return : void
1665
1666This function is called prior to exiting BL1 in response to the
1667``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1668platform specific clean up or bookkeeping operations before transferring
1669control to the next image. It receives the address of the ``entry_point_info_t``
1670structure passed from BL2. This function runs with MMU disabled.
1671
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001672Function : bl1_plat_set_ep_info() [optional]
1673~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001674
1675::
1676
1677 Argument : unsigned int image_id, entry_point_info_t *ep_info
1678 Return : void
1679
1680This function allows platforms to override ``ep_info`` for the given ``image_id``.
1681
1682The default implementation just returns.
1683
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001684Function : bl1_plat_get_next_image_id() [optional]
1685~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001686
1687::
1688
1689 Argument : void
1690 Return : unsigned int
1691
1692This and the following function must be overridden to enable the FWU feature.
1693
1694BL1 calls this function after platform setup to identify the next image to be
1695loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1696with the normal boot sequence, which loads and executes BL2. If the platform
1697returns a different image id, BL1 assumes that Firmware Update is required.
1698
Dan Handley610e7e12018-03-01 18:44:00 +00001699The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001700platforms override this function to detect if firmware update is required, and
1701if so, return the first image in the firmware update process.
1702
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001703Function : bl1_plat_get_image_desc() [optional]
1704~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001705
1706::
1707
1708 Argument : unsigned int image_id
1709 Return : image_desc_t *
1710
1711BL1 calls this function to get the image descriptor information ``image_desc_t``
1712for the provided ``image_id`` from the platform.
1713
Dan Handley610e7e12018-03-01 18:44:00 +00001714The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001715standard platforms return an image descriptor corresponding to BL2 or one of
1716the firmware update images defined in the Trusted Board Boot Requirements
1717specification.
1718
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001719Function : bl1_plat_handle_pre_image_load() [optional]
1720~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001721
1722::
1723
Soby Mathew2f38ce32018-02-08 17:45:12 +00001724 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001725 Return : int
1726
1727This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001728corresponding to ``image_id``. This function is invoked in BL1, both in cold
1729boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001730
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001731Function : bl1_plat_handle_post_image_load() [optional]
1732~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001733
1734::
1735
Soby Mathew2f38ce32018-02-08 17:45:12 +00001736 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001737 Return : int
1738
1739This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001740corresponding to ``image_id``. This function is invoked in BL1, both in cold
1741boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001742
Soby Mathewb1bf0442018-02-16 14:52:52 +00001743The default weak implementation of this function calculates the amount of
1744Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1745structure at the beginning of this free memory and populates it. The address
1746of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1747information to BL2.
1748
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001749Function : bl1_plat_fwu_done() [optional]
1750~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001751
1752::
1753
1754 Argument : unsigned int image_id, uintptr_t image_src,
1755 unsigned int image_size
1756 Return : void
1757
1758BL1 calls this function when the FWU process is complete. It must not return.
1759The platform may override this function to take platform specific action, for
1760example to initiate the normal boot flow.
1761
1762The default implementation spins forever.
1763
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001764Function : bl1_plat_mem_check() [mandatory]
1765~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001766
1767::
1768
1769 Argument : uintptr_t mem_base, unsigned int mem_size,
1770 unsigned int flags
1771 Return : int
1772
1773BL1 calls this function while handling FWU related SMCs, more specifically when
1774copying or authenticating an image. Its responsibility is to ensure that the
1775region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1776that this memory corresponds to either a secure or non-secure memory region as
1777indicated by the security state of the ``flags`` argument.
1778
1779This function can safely assume that the value resulting from the addition of
1780``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1781overflow.
1782
1783This function must return 0 on success, a non-null error code otherwise.
1784
1785The default implementation of this function asserts therefore platforms must
1786override it when using the FWU feature.
1787
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001788Function : bl1_plat_mboot_init() [optional]
1789~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1790
1791::
1792
1793 Argument : void
1794 Return : void
1795
1796When the MEASURED_BOOT flag is enabled:
1797
1798- This function is used to initialize the backend driver(s) of measured boot.
1799- On the Arm FVP port, this function is used to initialize the Event Log
1800 backend driver, and also to write header information in the Event Log buffer.
1801
1802When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1803
1804Function : bl1_plat_mboot_finish() [optional]
1805~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1806
1807::
1808
1809 Argument : void
1810 Return : void
1811
1812When the MEASURED_BOOT flag is enabled:
1813
1814- This function is used to finalize the measured boot backend driver(s),
1815 and also, set the information for the next bootloader component to
1816 extend the measurement if needed.
1817- On the Arm FVP port, this function is used to pass the base address of
1818 the Event Log buffer and its size to BL2 via tb_fw_config to extend the
1819 Event Log buffer with the measurement of various images loaded by BL2.
1820 It results in panic on error.
1821
1822When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1823
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001824Boot Loader Stage 2 (BL2)
1825-------------------------
1826
1827The BL2 stage is executed only by the primary CPU, which is determined in BL1
1828using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001829``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1830``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1831non-volatile storage to secure/non-secure RAM. After all the images are loaded
1832then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1833images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001834
1835The following functions must be implemented by the platform port to enable BL2
1836to perform the above tasks.
1837
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001838Function : bl2_early_platform_setup2() [mandatory]
1839~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001840
1841::
1842
Soby Mathew97b1bff2018-09-27 16:46:41 +01001843 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001844 Return : void
1845
1846This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001847by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1848are platform specific.
1849
1850On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001851
Manish V Badarkhe81414512020-06-24 15:58:38 +01001852 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001853
1854 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1855 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001856
Dan Handley610e7e12018-03-01 18:44:00 +00001857On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001858
1859- Initializes a UART (PL011 console), which enables access to the ``printf``
1860 family of functions in BL2.
1861
1862- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001863 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1864 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001865
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001866Function : bl2_plat_arch_setup() [mandatory]
1867~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001868
1869::
1870
1871 Argument : void
1872 Return : void
1873
1874This function executes with the MMU and data caches disabled. It is only called
1875by the primary CPU.
1876
1877The purpose of this function is to perform any architectural initialization
1878that varies across platforms.
1879
Dan Handley610e7e12018-03-01 18:44:00 +00001880On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001881
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001882Function : bl2_platform_setup() [mandatory]
1883~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001884
1885::
1886
1887 Argument : void
1888 Return : void
1889
1890This function may execute with the MMU and data caches enabled if the platform
1891port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1892called by the primary CPU.
1893
1894The purpose of this function is to perform any platform initialization
1895specific to BL2.
1896
Dan Handley610e7e12018-03-01 18:44:00 +00001897In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001898configuration of the TrustZone controller to allow non-secure masters access
1899to most of DRAM. Part of DRAM is reserved for secure world use.
1900
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001901Function : bl2_plat_handle_pre_image_load() [optional]
1902~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001903
1904::
1905
1906 Argument : unsigned int
1907 Return : int
1908
1909This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001910for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001911loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001912
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001913Function : bl2_plat_handle_post_image_load() [optional]
1914~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001915
1916::
1917
1918 Argument : unsigned int
1919 Return : int
1920
1921This function can be used by the platforms to update/use image information
1922for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001923loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001924
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001925Function : bl2_plat_preload_setup [optional]
1926~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001927
1928::
John Tsichritzisee10e792018-06-06 09:38:10 +01001929
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001930 Argument : void
1931 Return : void
1932
1933This optional function performs any BL2 platform initialization
1934required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001935bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001936boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001937plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001938
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001939Function : plat_try_next_boot_source() [optional]
1940~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001941
1942::
John Tsichritzisee10e792018-06-06 09:38:10 +01001943
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001944 Argument : void
1945 Return : int
1946
1947This optional function passes to the next boot source in the redundancy
1948sequence.
1949
1950This function moves the current boot redundancy source to the next
1951element in the boot sequence. If there are no more boot sources then it
1952must return 0, otherwise it must return 1. The default implementation
1953of this always returns 0.
1954
Sandrine Bailleuxeb5fadc2022-07-13 10:07:54 +02001955Function : bl2_plat_mboot_init() [optional]
1956~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1957
1958::
1959
1960 Argument : void
1961 Return : void
1962
1963When the MEASURED_BOOT flag is enabled:
1964
1965- This function is used to initialize the backend driver(s) of measured boot.
1966- On the Arm FVP port, this function is used to initialize the Event Log
1967 backend driver with the Event Log buffer information (base address and
1968 size) received from BL1. It results in panic on error.
1969
1970When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1971
1972Function : bl2_plat_mboot_finish() [optional]
1973~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1974
1975::
1976
1977 Argument : void
1978 Return : void
1979
1980When the MEASURED_BOOT flag is enabled:
1981
1982- This function is used to finalize the measured boot backend driver(s),
1983 and also, set the information for the next bootloader component to extend
1984 the measurement if needed.
1985- On the Arm FVP port, this function is used to pass the Event Log buffer
1986 information (base address and size) to non-secure(BL33) and trusted OS(BL32)
1987 via nt_fw and tos_fw config respectively. It results in panic on error.
1988
1989When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1990
Roberto Vargasb1584272017-11-20 13:36:10 +00001991Boot Loader Stage 2 (BL2) at EL3
1992--------------------------------
1993
Dan Handley610e7e12018-03-01 18:44:00 +00001994When the platform has a non-TF-A Boot ROM it is desirable to jump
1995directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001996execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1997document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001998
1999All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002000bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
2001their work is done now by bl2_el3_early_platform_setup and
2002bl2_el3_plat_arch_setup. These functions should generally implement
2003the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00002004
2005
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002006Function : bl2_el3_early_platform_setup() [mandatory]
2007~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00002008
2009::
John Tsichritzisee10e792018-06-06 09:38:10 +01002010
Roberto Vargasb1584272017-11-20 13:36:10 +00002011 Argument : u_register_t, u_register_t, u_register_t, u_register_t
2012 Return : void
2013
2014This function executes with the MMU and data caches disabled. It is only called
2015by the primary CPU. This function receives four parameters which can be used
2016by the platform to pass any needed information from the Boot ROM to BL2.
2017
Dan Handley610e7e12018-03-01 18:44:00 +00002018On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00002019
2020- Initializes a UART (PL011 console), which enables access to the ``printf``
2021 family of functions in BL2.
2022
2023- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002024 images. It is necessary to do this early on platforms with a SCP_BL2 image,
2025 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00002026
2027- Initializes the private variables that define the memory layout used.
2028
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002029Function : bl2_el3_plat_arch_setup() [mandatory]
2030~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00002031
2032::
John Tsichritzisee10e792018-06-06 09:38:10 +01002033
Roberto Vargasb1584272017-11-20 13:36:10 +00002034 Argument : void
2035 Return : void
2036
2037This function executes with the MMU and data caches disabled. It is only called
2038by the primary CPU.
2039
2040The purpose of this function is to perform any architectural initialization
2041that varies across platforms.
2042
Dan Handley610e7e12018-03-01 18:44:00 +00002043On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00002044
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002045Function : bl2_el3_plat_prepare_exit() [optional]
2046~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00002047
2048::
John Tsichritzisee10e792018-06-06 09:38:10 +01002049
Roberto Vargasb1584272017-11-20 13:36:10 +00002050 Argument : void
2051 Return : void
2052
2053This function is called prior to exiting BL2 and run the next image.
2054It should be used to perform platform specific clean up or bookkeeping
2055operations before transferring control to the next image. This function
2056runs with MMU disabled.
2057
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002058FWU Boot Loader Stage 2 (BL2U)
2059------------------------------
2060
2061The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
2062process and is executed only by the primary CPU. BL1 passes control to BL2U at
2063``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
2064
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002065#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
2066 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
2067 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
2068 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002069 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
2070 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
2071
2072#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00002073 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002074 normal world can access DDR memory.
2075
2076The following functions must be implemented by the platform port to enable
2077BL2U to perform the tasks mentioned above.
2078
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002079Function : bl2u_early_platform_setup() [mandatory]
2080~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002081
2082::
2083
2084 Argument : meminfo *mem_info, void *plat_info
2085 Return : void
2086
2087This function executes with the MMU and data caches disabled. It is only
2088called by the primary CPU. The arguments to this function is the address
2089of the ``meminfo`` structure and platform specific info provided by BL1.
2090
2091The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
2092private storage as the original memory may be subsequently overwritten by BL2U.
2093
Dan Handley610e7e12018-03-01 18:44:00 +00002094On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002095to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002096variable.
2097
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002098Function : bl2u_plat_arch_setup() [mandatory]
2099~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002100
2101::
2102
2103 Argument : void
2104 Return : void
2105
2106This function executes with the MMU and data caches disabled. It is only
2107called by the primary CPU.
2108
2109The purpose of this function is to perform any architectural initialization
2110that varies across platforms, for example enabling the MMU (since the memory
2111map differs across platforms).
2112
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002113Function : bl2u_platform_setup() [mandatory]
2114~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002115
2116::
2117
2118 Argument : void
2119 Return : void
2120
2121This function may execute with the MMU and data caches enabled if the platform
2122port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
2123called by the primary CPU.
2124
2125The purpose of this function is to perform any platform initialization
2126specific to BL2U.
2127
Dan Handley610e7e12018-03-01 18:44:00 +00002128In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002129configuration of the TrustZone controller to allow non-secure masters access
2130to most of DRAM. Part of DRAM is reserved for secure world use.
2131
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002132Function : bl2u_plat_handle_scp_bl2u() [optional]
2133~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002134
2135::
2136
2137 Argument : void
2138 Return : int
2139
2140This function is used to perform any platform-specific actions required to
2141handle the SCP firmware. Typically it transfers the image into SCP memory using
2142a platform-specific protocol and waits until SCP executes it and signals to the
2143Application Processor (AP) for BL2U execution to continue.
2144
2145This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002146This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002147
2148Boot Loader Stage 3-1 (BL31)
2149----------------------------
2150
2151During cold boot, the BL31 stage is executed only by the primary CPU. This is
2152determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
2153control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
2154CPUs. BL31 executes at EL3 and is responsible for:
2155
2156#. Re-initializing all architectural and platform state. Although BL1 performs
2157 some of this initialization, BL31 remains resident in EL3 and must ensure
2158 that EL3 architectural and platform state is completely initialized. It
2159 should make no assumptions about the system state when it receives control.
2160
2161#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01002162 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
2163 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002164
2165#. Providing runtime firmware services. Currently, BL31 only implements a
2166 subset of the Power State Coordination Interface (PSCI) API as a runtime
Boyan Karatotev907d38b2022-11-22 12:01:09 +00002167 service. See :ref:`psci_in_bl31` below for details of porting the PSCI
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002168 implementation.
2169
2170#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002171 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002172 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01002173 executed and run the corresponding image. On ARM platforms, BL31 uses the
2174 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002175
2176If BL31 is a reset vector, It also needs to handle the reset as specified in
2177section 2.2 before the tasks described above.
2178
2179The following functions must be implemented by the platform port to enable BL31
2180to perform the above tasks.
2181
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002182Function : bl31_early_platform_setup2() [mandatory]
2183~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002184
2185::
2186
Soby Mathew97b1bff2018-09-27 16:46:41 +01002187 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002188 Return : void
2189
2190This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01002191by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
2192platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002193
Soby Mathew97b1bff2018-09-27 16:46:41 +01002194In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002195
Soby Mathew97b1bff2018-09-27 16:46:41 +01002196 arg0 - The pointer to the head of `bl_params_t` list
2197 which is list of executable images following BL31,
2198
2199 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01002200 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01002201
Mikael Olsson0232da22021-02-12 17:30:16 +01002202 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01002203 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01002204
2205 arg2 - Points to load address of HW_CONFIG if present
2206
2207 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
2208 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002209
Soby Mathew97b1bff2018-09-27 16:46:41 +01002210The function runs through the `bl_param_t` list and extracts the entry point
2211information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002212
2213- Initialize a UART (PL011 console), which enables access to the ``printf``
2214 family of functions in BL31.
2215
2216- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
2217 CCI slave interface corresponding to the cluster that includes the primary
2218 CPU.
2219
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002220Function : bl31_plat_arch_setup() [mandatory]
2221~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002222
2223::
2224
2225 Argument : void
2226 Return : void
2227
2228This function executes with the MMU and data caches disabled. It is only called
2229by the primary CPU.
2230
2231The purpose of this function is to perform any architectural initialization
2232that varies across platforms.
2233
Dan Handley610e7e12018-03-01 18:44:00 +00002234On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002235
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002236Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002237~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2238
2239::
2240
2241 Argument : void
2242 Return : void
2243
2244This function may execute with the MMU and data caches enabled if the platform
2245port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
2246called by the primary CPU.
2247
2248The purpose of this function is to complete platform initialization so that both
2249BL31 runtime services and normal world software can function correctly.
2250
Dan Handley610e7e12018-03-01 18:44:00 +00002251On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002252
2253- Initialize the generic interrupt controller.
2254
2255 Depending on the GIC driver selected by the platform, the appropriate GICv2
2256 or GICv3 initialization will be done, which mainly consists of:
2257
2258 - Enable secure interrupts in the GIC CPU interface.
2259 - Disable the legacy interrupt bypass mechanism.
2260 - Configure the priority mask register to allow interrupts of all priorities
2261 to be signaled to the CPU interface.
2262 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
2263 - Target all secure SPIs to CPU0.
2264 - Enable these secure interrupts in the GIC distributor.
2265 - Configure all other interrupts as non-secure.
2266 - Enable signaling of secure interrupts in the GIC distributor.
2267
2268- Enable system-level implementation of the generic timer counter through the
2269 memory mapped interface.
2270
2271- Grant access to the system counter timer module
2272
2273- Initialize the power controller device.
2274
2275 In particular, initialise the locks that prevent concurrent accesses to the
2276 power controller device.
2277
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002278Function : bl31_plat_runtime_setup() [optional]
2279~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002280
2281::
2282
2283 Argument : void
2284 Return : void
2285
2286The purpose of this function is allow the platform to perform any BL31 runtime
2287setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07002288implementation of this function will invoke ``console_switch_state()`` to switch
2289console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002290
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002291Function : bl31_plat_get_next_image_ep_info() [mandatory]
2292~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002293
2294::
2295
Sandrine Bailleux842117d2018-05-14 14:25:47 +02002296 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002297 Return : entry_point_info *
2298
2299This function may execute with the MMU and data caches enabled if the platform
2300port does the necessary initializations in ``bl31_plat_arch_setup()``.
2301
2302This function is called by ``bl31_main()`` to retrieve information provided by
2303BL2 for the next image in the security state specified by the argument. BL31
2304uses this information to pass control to that image in the specified security
2305state. This function must return a pointer to the ``entry_point_info`` structure
2306(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
2307should return NULL otherwise.
2308
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002309Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
Soby Mathew294e1cf2022-03-22 16:19:39 +00002310~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2311
2312::
2313
2314 Argument : uintptr_t, size_t *, uintptr_t, size_t
2315 Return : int
2316
2317This function returns the Platform attestation token.
2318
2319The parameters of the function are:
2320
2321 arg0 - A pointer to the buffer where the Platform token should be copied by
2322 this function. The buffer must be big enough to hold the Platform
2323 token.
2324
2325 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2326 function returns the platform token length in this parameter.
2327
2328 arg2 - A pointer to the buffer where the challenge object is stored.
2329
2330 arg3 - The length of the challenge object in bytes. Possible values are 32,
2331 48 and 64.
2332
2333The function returns 0 on success, -EINVAL on failure.
2334
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002335Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
2336~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewf05d93a2022-03-22 16:21:19 +00002337
2338::
2339
2340 Argument : uintptr_t, size_t *, unsigned int
2341 Return : int
2342
2343This function returns the delegated realm attestation key which will be used to
2344sign Realm attestation token. The API currently only supports P-384 ECC curve
2345key.
2346
2347The parameters of the function are:
2348
2349 arg0 - A pointer to the buffer where the attestation key should be copied
2350 by this function. The buffer must be big enough to hold the
2351 attestation key.
2352
2353 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2354 function returns the attestation key length in this parameter.
2355
2356 arg2 - The type of the elliptic curve to which the requested attestation key
2357 belongs.
2358
2359The function returns 0 on success, -EINVAL on failure.
2360
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002361Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
2362~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2363
2364::
2365
2366 Argument : uintptr_t *
2367 Return : size_t
2368
2369This function returns the size of the shared area between EL3 and RMM (or 0 on
2370failure). A pointer to the shared area (or a NULL pointer on failure) is stored
2371in the pointer passed as argument.
2372
Javier Almansa Sobrino4165e842022-04-25 17:18:15 +01002373Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
2374~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2375
2376::
2377
2378 Arguments : rmm_manifest_t *manifest
2379 Return : int
2380
2381When ENABLE_RME is enabled, this function populates a boot manifest for the
2382RMM image and stores it in the area specified by manifest.
2383
2384When ENABLE_RME is disabled, this function is not used.
2385
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002386Function : bl31_plat_enable_mmu [optional]
2387~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2388
2389::
2390
2391 Argument : uint32_t
2392 Return : void
2393
2394This function enables the MMU. The boot code calls this function with MMU and
2395caches disabled. This function should program necessary registers to enable
2396translation, and upon return, the MMU on the calling PE must be enabled.
2397
2398The function must honor flags passed in the first argument. These flags are
2399defined by the translation library, and can be found in the file
2400``include/lib/xlat_tables/xlat_mmu_helpers.h``.
2401
2402On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002403is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002404
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002405Function : plat_init_apkey [optional]
2406~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002407
2408::
2409
2410 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002411 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002412
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002413This function returns the 128-bit value which can be used to program ARMv8.3
2414pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002415
2416The value should be obtained from a reliable source of randomness.
2417
2418This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002419Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002420
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002421Function : plat_get_syscnt_freq2() [mandatory]
2422~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002423
2424::
2425
2426 Argument : void
2427 Return : unsigned int
2428
2429This function is used by the architecture setup code to retrieve the counter
2430frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00002431``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002432of the system counter, which is retrieved from the first entry in the frequency
2433modes table.
2434
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002435#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2436~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002437
2438When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2439bytes) aligned to the cache line boundary that should be allocated per-cpu to
2440accommodate all the bakery locks.
2441
2442If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
Chris Kay33bfc5e2023-02-14 11:30:04 +00002443calculates the size of the ``.bakery_lock`` input section, aligns it to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002444nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2445and stores the result in a linker symbol. This constant prevents a platform
2446from relying on the linker and provide a more efficient mechanism for
2447accessing per-cpu bakery lock information.
2448
2449If this constant is defined and its value is not equal to the value
2450calculated by the linker then a link time assertion is raised. A compile time
2451assertion is raised if the value of the constant is not aligned to the cache
2452line boundary.
2453
Paul Beesleyf8640672019-04-12 14:19:42 +01002454.. _porting_guide_sdei_requirements:
2455
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002456SDEI porting requirements
2457~~~~~~~~~~~~~~~~~~~~~~~~~
2458
Paul Beesley606d8072019-03-13 13:58:02 +00002459The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002460and functions, of which some are optional, and some others mandatory.
2461
2462Macros
2463......
2464
2465Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2467
2468This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002469Normal |SDEI| events on the platform. This must have a higher value
2470(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002471
2472Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2474
2475This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002476Critical |SDEI| events on the platform. This must have a lower value
2477(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002478
Paul Beesley606d8072019-03-13 13:58:02 +00002479**Note**: |SDEI| exception priorities must be the lowest among Secure
2480priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2481be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002482
2483Functions
2484.........
2485
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002486Function: int plat_sdei_validate_entry_point() [optional]
2487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002488
2489::
2490
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002491 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002492 Return: int
2493
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002494This function validates the entry point address of the event handler provided by
2495the client for both event registration and *Complete and Resume* |SDEI| calls.
2496The function ensures that the address is valid in the client translation regime.
2497
2498The second argument is the exception level that the client is executing in. It
2499can be Non-Secure EL1 or Non-Secure EL2.
2500
2501The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002502
Dan Handley610e7e12018-03-01 18:44:00 +00002503The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002504translates the entry point address within the client translation regime and
2505further ensures that the resulting physical address is located in Non-secure
2506DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002507
2508Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2510
2511::
2512
2513 Argument: uint64_t
2514 Argument: unsigned int
2515 Return: void
2516
Paul Beesley606d8072019-03-13 13:58:02 +00002517|SDEI| specification requires that a PE comes out of reset with the events
2518masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2519|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2520time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002521
Paul Beesley606d8072019-03-13 13:58:02 +00002522Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002523events are masked on the PE, the dispatcher implementation invokes the function
2524``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2525interrupt and the interrupt ID are passed as parameters.
2526
2527The default implementation only prints out a warning message.
2528
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002529.. _porting_guide_trng_requirements:
2530
2531TRNG porting requirements
2532~~~~~~~~~~~~~~~~~~~~~~~~~
2533
2534The |TRNG| backend requires the platform to provide the following values
2535and mandatory functions.
2536
2537Values
2538......
2539
2540value: uuid_t plat_trng_uuid [mandatory]
2541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2542
2543This value must be defined to the UUID of the TRNG backend that is specific to
Jayanth Dodderi Chidanand7c7faff2022-10-11 17:16:07 +01002544the hardware after ``plat_entropy_setup`` function is called. This value must
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002545conform to the SMCCC calling convention; The most significant 32 bits of the
2546UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2547w0 indicates failure to get a TRNG source.
2548
2549Functions
2550.........
2551
2552Function: void plat_entropy_setup(void) [mandatory]
2553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2554
2555::
2556
2557 Argument: none
2558 Return: none
2559
2560This function is expected to do platform-specific initialization of any TRNG
2561hardware. This may include generating a UUID from a hardware-specific seed.
2562
2563Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2565
2566::
2567
2568 Argument: uint64_t *
2569 Return: bool
2570 Out : when the return value is true, the entropy has been written into the
2571 storage pointed to
2572
2573This function writes entropy into storage provided by the caller. If no entropy
2574is available, it must return false and the storage must not be written.
2575
Boyan Karatotev907d38b2022-11-22 12:01:09 +00002576.. _psci_in_bl31:
2577
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002578Power State Coordination Interface (in BL31)
2579--------------------------------------------
2580
Dan Handley610e7e12018-03-01 18:44:00 +00002581The TF-A implementation of the PSCI API is based around the concept of a
2582*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2583share some state on which power management operations can be performed as
2584specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2585a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2586*power domains* are arranged in a hierarchical tree structure and each
2587*power domain* can be identified in a system by the cpu index of any CPU that
2588is part of that domain and a *power domain level*. A processing element (for
2589example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2590logical grouping of CPUs that share some state, then level 1 is that group of
2591CPUs (for example, a cluster), and level 2 is a group of clusters (for
2592example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002593organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002594
2595BL31's platform initialization code exports a pointer to the platform-specific
2596power management operations required for the PSCI implementation to function
2597correctly. This information is populated in the ``plat_psci_ops`` structure. The
2598PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2599power management operations on the power domains. For example, the target
2600CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2601handler (if present) is called for the CPU power domain.
2602
2603The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2604describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002605defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002606array of local power states where each index corresponds to a power domain
2607level. Each entry contains the local power state the power domain at that power
2608level could enter. It depends on the ``validate_power_state()`` handler to
2609convert the power-state parameter (possibly encoding a composite power state)
2610passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2611
2612The following functions form part of platform port of PSCI functionality.
2613
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002614Function : plat_psci_stat_accounting_start() [optional]
2615~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002616
2617::
2618
2619 Argument : const psci_power_state_t *
2620 Return : void
2621
2622This is an optional hook that platforms can implement for residency statistics
2623accounting before entering a low power state. The ``pwr_domain_state`` field of
2624``state_info`` (first argument) can be inspected if stat accounting is done
2625differently at CPU level versus higher levels. As an example, if the element at
2626index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2627state, special hardware logic may be programmed in order to keep track of the
2628residency statistics. For higher levels (array indices > 0), the residency
2629statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2630default implementation will use PMF to capture timestamps.
2631
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002632Function : plat_psci_stat_accounting_stop() [optional]
2633~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002634
2635::
2636
2637 Argument : const psci_power_state_t *
2638 Return : void
2639
2640This is an optional hook that platforms can implement for residency statistics
2641accounting after exiting from a low power state. The ``pwr_domain_state`` field
2642of ``state_info`` (first argument) can be inspected if stat accounting is done
2643differently at CPU level versus higher levels. As an example, if the element at
2644index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2645state, special hardware logic may be programmed in order to keep track of the
2646residency statistics. For higher levels (array indices > 0), the residency
2647statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2648default implementation will use PMF to capture timestamps.
2649
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002650Function : plat_psci_stat_get_residency() [optional]
2651~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002652
2653::
2654
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002655 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002656 Return : u_register_t
2657
2658This is an optional interface that is is invoked after resuming from a low power
2659state and provides the time spent resident in that low power state by the power
2660domain at a particular power domain level. When a CPU wakes up from suspend,
2661all its parent power domain levels are also woken up. The generic PSCI code
2662invokes this function for each parent power domain that is resumed and it
2663identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2664argument) describes the low power state that the power domain has resumed from.
2665The current CPU is the first CPU in the power domain to resume from the low
2666power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2667CPU in the power domain to suspend and may be needed to calculate the residency
2668for that power domain.
2669
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002670Function : plat_get_target_pwr_state() [optional]
2671~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002672
2673::
2674
2675 Argument : unsigned int, const plat_local_state_t *, unsigned int
2676 Return : plat_local_state_t
2677
2678The PSCI generic code uses this function to let the platform participate in
2679state coordination during a power management operation. The function is passed
2680a pointer to an array of platform specific local power state ``states`` (second
2681argument) which contains the requested power state for each CPU at a particular
2682power domain level ``lvl`` (first argument) within the power domain. The function
2683is expected to traverse this array of upto ``ncpus`` (third argument) and return
2684a coordinated target power state by the comparing all the requested power
2685states. The target power state should not be deeper than any of the requested
2686power states.
2687
2688A weak definition of this API is provided by default wherein it assumes
2689that the platform assigns a local state value in order of increasing depth
2690of the power state i.e. for two power states X & Y, if X < Y
2691then X represents a shallower power state than Y. As a result, the
2692coordinated target local power state for a power domain will be the minimum
2693of the requested local power state values.
2694
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002695Function : plat_get_power_domain_tree_desc() [mandatory]
2696~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002697
2698::
2699
2700 Argument : void
2701 Return : const unsigned char *
2702
2703This function returns a pointer to the byte array containing the power domain
2704topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002705described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2706initialization code requires this array to be described by the platform, either
2707statically or dynamically, to initialize the power domain topology tree. In case
2708the array is populated dynamically, then plat_core_pos_by_mpidr() and
2709plat_my_core_pos() should also be implemented suitably so that the topology tree
2710description matches the CPU indices returned by these APIs. These APIs together
2711form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002712
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002713Function : plat_setup_psci_ops() [mandatory]
2714~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002715
2716::
2717
2718 Argument : uintptr_t, const plat_psci_ops **
2719 Return : int
2720
2721This function may execute with the MMU and data caches enabled if the platform
2722port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2723called by the primary CPU.
2724
2725This function is called by PSCI initialization code. Its purpose is to let
2726the platform layer know about the warm boot entrypoint through the
2727``sec_entrypoint`` (first argument) and to export handler routines for
2728platform-specific psci power management actions by populating the passed
2729pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2730
2731A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002732the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002733``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002734platform wants to support, the associated operation or operations in this
2735structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002736:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002737function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002738structure instead of providing an empty implementation.
2739
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002740plat_psci_ops.cpu_standby()
2741...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002742
2743Perform the platform-specific actions to enter the standby state for a cpu
2744indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002745wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002746For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2747the suspend state type specified in the ``power-state`` parameter should be
2748STANDBY and the target power domain level specified should be the CPU. The
2749handler should put the CPU into a low power retention state (usually by
2750issuing a wfi instruction) and ensure that it can be woken up from that
2751state by a normal interrupt. The generic code expects the handler to succeed.
2752
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002753plat_psci_ops.pwr_domain_on()
2754.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002755
2756Perform the platform specific actions to power on a CPU, specified
2757by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002758return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002759
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002760plat_psci_ops.pwr_domain_off()
2761..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002762
2763Perform the platform specific actions to prepare to power off the calling CPU
2764and its higher parent power domain levels as indicated by the ``target_state``
2765(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2766
2767The ``target_state`` encodes the platform coordinated target local power states
2768for the CPU power domain and its parent power domain levels. The handler
2769needs to perform power management operation corresponding to the local state
2770at each power level.
2771
2772For this handler, the local power state for the CPU power domain will be a
2773power down state where as it could be either power down, retention or run state
2774for the higher power domain levels depending on the result of state
2775coordination. The generic code expects the handler to succeed.
2776
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002777plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2778...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002779
2780This optional function may be used as a performance optimization to replace
2781or complement pwr_domain_suspend() on some platforms. Its calling semantics
2782are identical to pwr_domain_suspend(), except the PSCI implementation only
2783calls this function when suspending to a power down state, and it guarantees
2784that data caches are enabled.
2785
2786When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2787before calling pwr_domain_suspend(). If the target_state corresponds to a
2788power down state and it is safe to perform some or all of the platform
2789specific actions in that function with data caches enabled, it may be more
2790efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2791= 1, data caches remain enabled throughout, and so there is no advantage to
2792moving platform specific actions to this function.
2793
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002794plat_psci_ops.pwr_domain_suspend()
2795..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002796
2797Perform the platform specific actions to prepare to suspend the calling
2798CPU and its higher parent power domain levels as indicated by the
2799``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2800API implementation.
2801
2802The ``target_state`` has a similar meaning as described in
2803the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2804target local power states for the CPU power domain and its parent
2805power domain levels. The handler needs to perform power management operation
2806corresponding to the local state at each power level. The generic code
2807expects the handler to succeed.
2808
Douglas Raillarda84996b2017-08-02 16:57:32 +01002809The difference between turning a power domain off versus suspending it is that
2810in the former case, the power domain is expected to re-initialize its state
2811when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2812case, the power domain is expected to save enough state so that it can resume
2813execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002814``pwr_domain_suspend_finish()``).
2815
Douglas Raillarda84996b2017-08-02 16:57:32 +01002816When suspending a core, the platform can also choose to power off the GICv3
2817Redistributor and ITS through an implementation-defined sequence. To achieve
2818this safely, the ITS context must be saved first. The architectural part is
2819implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2820sequence is implementation defined and it is therefore the responsibility of
2821the platform code to implement the necessary sequence. Then the GIC
2822Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2823Powering off the Redistributor requires the implementation to support it and it
2824is the responsibility of the platform code to execute the right implementation
2825defined sequence.
2826
2827When a system suspend is requested, the platform can also make use of the
2828``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2829it has saved the context of the Redistributors and ITS of all the cores in the
2830system. The context of the Distributor can be large and may require it to be
2831allocated in a special area if it cannot fit in the platform's global static
2832data, for example in DRAM. The Distributor can then be powered down using an
2833implementation-defined sequence.
2834
Wing Li2c556f32022-09-14 13:18:17 -07002835If the build option ``PSCI_OS_INIT_MODE`` is enabled, the generic code expects
2836the platform to return PSCI_E_SUCCESS on success, or either PSCI_E_DENIED or
2837PSCI_E_INVALID_PARAMS as appropriate for any invalid requests.
2838
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002839plat_psci_ops.pwr_domain_pwr_down_wfi()
2840.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002841
2842This is an optional function and, if implemented, is expected to perform
2843platform specific actions including the ``wfi`` invocation which allows the
2844CPU to powerdown. Since this function is invoked outside the PSCI locks,
2845the actions performed in this hook must be local to the CPU or the platform
2846must ensure that races between multiple CPUs cannot occur.
2847
2848The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2849operation and it encodes the platform coordinated target local power states for
2850the CPU power domain and its parent power domain levels. This function must
Boyan Karatotev43771f32022-10-05 13:41:56 +01002851not return back to the caller (by calling wfi in an infinite loop to ensure
2852some CPUs power down mitigations work properly).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002853
2854If this function is not implemented by the platform, PSCI generic
2855implementation invokes ``psci_power_down_wfi()`` for power down.
2856
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002857plat_psci_ops.pwr_domain_on_finish()
2858....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002859
2860This function is called by the PSCI implementation after the calling CPU is
2861powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2862It performs the platform-specific setup required to initialize enough state for
2863this CPU to enter the normal world and also provide secure runtime firmware
2864services.
2865
2866The ``target_state`` (first argument) is the prior state of the power domains
2867immediately before the CPU was turned on. It indicates which power domains
2868above the CPU might require initialization due to having previously been in
2869low power states. The generic code expects the handler to succeed.
2870
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002871plat_psci_ops.pwr_domain_on_finish_late() [optional]
2872...........................................................
2873
2874This optional function is called by the PSCI implementation after the calling
2875CPU is fully powered on with respective data caches enabled. The calling CPU and
2876the associated cluster are guaranteed to be participating in coherency. This
2877function gives the flexibility to perform any platform-specific actions safely,
2878such as initialization or modification of shared data structures, without the
2879overhead of explicit cache maintainace operations.
2880
2881The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2882operation. The generic code expects the handler to succeed.
2883
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002884plat_psci_ops.pwr_domain_suspend_finish()
2885.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002886
2887This function is called by the PSCI implementation after the calling CPU is
2888powered on and released from reset in response to an asynchronous wakeup
2889event, for example a timer interrupt that was programmed by the CPU during the
2890``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2891setup required to restore the saved state for this CPU to resume execution
2892in the normal world and also provide secure runtime firmware services.
2893
2894The ``target_state`` (first argument) has a similar meaning as described in
2895the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2896to succeed.
2897
Douglas Raillarda84996b2017-08-02 16:57:32 +01002898If the Distributor, Redistributors or ITS have been powered off as part of a
2899suspend, their context must be restored in this function in the reverse order
2900to how they were saved during suspend sequence.
2901
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002902plat_psci_ops.system_off()
2903..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002904
2905This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2906call. It performs the platform-specific system poweroff sequence after
2907notifying the Secure Payload Dispatcher.
2908
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002909plat_psci_ops.system_reset()
2910............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002911
2912This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2913call. It performs the platform-specific system reset sequence after
2914notifying the Secure Payload Dispatcher.
2915
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002916plat_psci_ops.validate_power_state()
2917....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002918
2919This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2920call to validate the ``power_state`` parameter of the PSCI API and if valid,
2921populate it in ``req_state`` (second argument) array as power domain level
2922specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002923return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002924normal world PSCI client.
2925
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002926plat_psci_ops.validate_ns_entrypoint()
2927......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002928
2929This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2930``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2931parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002932the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002933propagated back to the normal world PSCI client.
2934
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002935plat_psci_ops.get_sys_suspend_power_state()
2936...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002937
2938This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2939call to get the ``req_state`` parameter from platform which encodes the power
2940domain level specific local states to suspend to system affinity level. The
2941``req_state`` will be utilized to do the PSCI state coordination and
2942``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2943enter system suspend.
2944
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002945plat_psci_ops.get_pwr_lvl_state_idx()
2946.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002947
2948This is an optional function and, if implemented, is invoked by the PSCI
2949implementation to convert the ``local_state`` (first argument) at a specified
2950``pwr_lvl`` (second argument) to an index between 0 and
2951``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2952supports more than two local power states at each power domain level, that is
2953``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2954local power states.
2955
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002956plat_psci_ops.translate_power_state_by_mpidr()
2957..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002958
2959This is an optional function and, if implemented, verifies the ``power_state``
2960(second argument) parameter of the PSCI API corresponding to a target power
2961domain. The target power domain is identified by using both ``MPIDR`` (first
2962argument) and the power domain level encoded in ``power_state``. The power domain
2963level specific local states are to be extracted from ``power_state`` and be
2964populated in the ``output_state`` (third argument) array. The functionality
2965is similar to the ``validate_power_state`` function described above and is
2966envisaged to be used in case the validity of ``power_state`` depend on the
2967targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002968domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002969function is not implemented, then the generic implementation relies on
2970``validate_power_state`` function to translate the ``power_state``.
2971
2972This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002973power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002974APIs as described in Section 5.18 of `PSCI`_.
2975
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002976plat_psci_ops.get_node_hw_state()
2977.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002978
2979This is an optional function. If implemented this function is intended to return
2980the power state of a node (identified by the first parameter, the ``MPIDR``) in
2981the power domain topology (identified by the second parameter, ``power_level``),
2982as retrieved from a power controller or equivalent component on the platform.
2983Upon successful completion, the implementation must map and return the final
2984status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2985must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2986appropriate.
2987
2988Implementations are not expected to handle ``power_levels`` greater than
2989``PLAT_MAX_PWR_LVL``.
2990
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002991plat_psci_ops.system_reset2()
2992.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002993
2994This is an optional function. If implemented this function is
2995called during the ``SYSTEM_RESET2`` call to perform a reset
2996based on the first parameter ``reset_type`` as specified in
2997`PSCI`_. The parameter ``cookie`` can be used to pass additional
2998reset information. If the ``reset_type`` is not supported, the
2999function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
3000resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
3001and vendor reset can return other PSCI error codes as defined
3002in `PSCI`_. On success this function will not return.
3003
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003004plat_psci_ops.write_mem_protect()
3005.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003006
3007This is an optional function. If implemented it enables or disables the
3008``MEM_PROTECT`` functionality based on the value of ``val``.
3009A non-zero value enables ``MEM_PROTECT`` and a value of zero
3010disables it. Upon encountering failures it must return a negative value
3011and on success it must return 0.
3012
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003013plat_psci_ops.read_mem_protect()
3014................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003015
3016This is an optional function. If implemented it returns the current
3017state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
3018failures it must return a negative value and on success it must
3019return 0.
3020
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003021plat_psci_ops.mem_protect_chk()
3022...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003023
3024This is an optional function. If implemented it checks if a memory
3025region defined by a base address ``base`` and with a size of ``length``
3026bytes is protected by ``MEM_PROTECT``. If the region is protected
3027then it must return 0, otherwise it must return a negative number.
3028
Paul Beesleyf8640672019-04-12 14:19:42 +01003029.. _porting_guide_imf_in_bl31:
3030
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003031Interrupt Management framework (in BL31)
3032----------------------------------------
3033
3034BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
3035generated in either security state and targeted to EL1 or EL2 in the non-secure
3036state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01003037described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003038
3039A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00003040text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003041platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00003042present in the platform. Arm standard platform layer supports both
3043`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
3044and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
3045FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003046``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
3047details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003048
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05003049See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01003050
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003051Function : plat_interrupt_type_to_line() [mandatory]
3052~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003053
3054::
3055
3056 Argument : uint32_t, uint32_t
3057 Return : uint32_t
3058
Dan Handley610e7e12018-03-01 18:44:00 +00003059The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003060interrupt line. The specific line that is signaled depends on how the interrupt
3061controller (IC) reports different interrupt types from an execution context in
3062either security state. The IMF uses this API to determine which interrupt line
3063the platform IC uses to signal each type of interrupt supported by the framework
3064from a given security state. This API must be invoked at EL3.
3065
3066The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01003067:ref:`Interrupt Management Framework`) indicating the target type of the
3068interrupt, the second parameter is the security state of the originating
3069execution context. The return result is the bit position in the ``SCR_EL3``
3070register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003071
Dan Handley610e7e12018-03-01 18:44:00 +00003072In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003073configured as FIQs and Non-secure interrupts as IRQs from either security
3074state.
3075
Dan Handley610e7e12018-03-01 18:44:00 +00003076In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003077configured depends on the security state of the execution context when the
3078interrupt is signalled and are as follows:
3079
3080- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
3081 NS-EL0/1/2 context.
3082- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
3083 in the NS-EL0/1/2 context.
3084- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
3085 context.
3086
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003087Function : plat_ic_get_pending_interrupt_type() [mandatory]
3088~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003089
3090::
3091
3092 Argument : void
3093 Return : uint32_t
3094
3095This API returns the type of the highest priority pending interrupt at the
3096platform IC. The IMF uses the interrupt type to retrieve the corresponding
3097handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
3098pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
3099``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
3100
Dan Handley610e7e12018-03-01 18:44:00 +00003101In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003102Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
3103the pending interrupt. The type of interrupt depends upon the id value as
3104follows.
3105
3106#. id < 1022 is reported as a S-EL1 interrupt
3107#. id = 1022 is reported as a Non-secure interrupt.
3108#. id = 1023 is reported as an invalid interrupt type.
3109
Dan Handley610e7e12018-03-01 18:44:00 +00003110In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003111``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
3112is read to determine the id of the pending interrupt. The type of interrupt
3113depends upon the id value as follows.
3114
3115#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
3116#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
3117#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
3118#. All other interrupt id's are reported as EL3 interrupt.
3119
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003120Function : plat_ic_get_pending_interrupt_id() [mandatory]
3121~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003122
3123::
3124
3125 Argument : void
3126 Return : uint32_t
3127
3128This API returns the id of the highest priority pending interrupt at the
3129platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
3130pending.
3131
Dan Handley610e7e12018-03-01 18:44:00 +00003132In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003133Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
3134pending interrupt. The id that is returned by API depends upon the value of
3135the id read from the interrupt controller as follows.
3136
3137#. id < 1022. id is returned as is.
3138#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
3139 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
3140 This id is returned by the API.
3141#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
3142
Dan Handley610e7e12018-03-01 18:44:00 +00003143In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003144EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
3145group 0 Register*, is read to determine the id of the pending interrupt. The id
3146that is returned by API depends upon the value of the id read from the
3147interrupt controller as follows.
3148
3149#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
3150#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
3151 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
3152 Register* is read to determine the id of the group 1 interrupt. This id
3153 is returned by the API as long as it is a valid interrupt id
3154#. If the id is any of the special interrupt identifiers,
3155 ``INTR_ID_UNAVAILABLE`` is returned.
3156
3157When the API invoked from S-EL1 for GICv3 systems, the id read from system
3158register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003159Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003160``INTR_ID_UNAVAILABLE`` is returned.
3161
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003162Function : plat_ic_acknowledge_interrupt() [mandatory]
3163~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003164
3165::
3166
3167 Argument : void
3168 Return : uint32_t
3169
3170This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003171the highest pending interrupt has begun. It should return the raw, unmodified
3172value obtained from the interrupt controller when acknowledging an interrupt.
3173The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05003174`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003175
Dan Handley610e7e12018-03-01 18:44:00 +00003176This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003177Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
3178priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003179It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003180
Dan Handley610e7e12018-03-01 18:44:00 +00003181In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003182from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
3183Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
3184reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
3185group 1*. The read changes the state of the highest pending interrupt from
3186pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003187unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003188
3189The TSP uses this API to start processing of the secure physical timer
3190interrupt.
3191
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003192Function : plat_ic_end_of_interrupt() [mandatory]
3193~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003194
3195::
3196
3197 Argument : uint32_t
3198 Return : void
3199
3200This API is used by the CPU to indicate to the platform IC that processing of
3201the interrupt corresponding to the id (passed as the parameter) has
3202finished. The id should be the same as the id returned by the
3203``plat_ic_acknowledge_interrupt()`` API.
3204
Dan Handley610e7e12018-03-01 18:44:00 +00003205Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003206(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
3207system register in case of GICv3 depending on where the API is invoked from,
3208EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
3209controller.
3210
3211The TSP uses this API to finish processing of the secure physical timer
3212interrupt.
3213
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003214Function : plat_ic_get_interrupt_type() [mandatory]
3215~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003216
3217::
3218
3219 Argument : uint32_t
3220 Return : uint32_t
3221
3222This API returns the type of the interrupt id passed as the parameter.
3223``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
3224interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
3225returned depending upon how the interrupt has been configured by the platform
3226IC. This API must be invoked at EL3.
3227
Dan Handley610e7e12018-03-01 18:44:00 +00003228Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003229and Non-secure interrupts as Group1 interrupts. It reads the group value
3230corresponding to the interrupt id from the relevant *Interrupt Group Register*
3231(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
3232
Dan Handley610e7e12018-03-01 18:44:00 +00003233In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003234Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
3235(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
3236as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
3237
Manish Pandey3161fa52022-11-02 16:30:09 +00003238Common helper functions
3239-----------------------
Govindraj Rajab6709b02023-02-21 17:43:55 +00003240Function : elx_panic()
3241~~~~~~~~~~~~~~~~~~~~~~
Manish Pandey3161fa52022-11-02 16:30:09 +00003242
Govindraj Rajab6709b02023-02-21 17:43:55 +00003243::
3244
3245 Argument : void
3246 Return : void
3247
3248This API is called from assembly files when reporting a critical failure
3249that has occured in lower EL and is been trapped in EL3. This call
3250**must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003251
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003252Function : el3_panic()
3253~~~~~~~~~~~~~~~~~~~~~~
Manish Pandey3161fa52022-11-02 16:30:09 +00003254
3255::
3256
3257 Argument : void
3258 Return : void
3259
3260This API is called from assembly files when encountering a critical failure that
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003261cannot be recovered from. This function assumes that it is invoked from a C
3262runtime environment i.e. valid stack exists. This call **must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003263
3264Function : panic()
3265~~~~~~~~~~~~~~~~~~
3266
3267::
3268
3269 Argument : void
3270 Return : void
3271
3272This API called from C files when encountering a critical failure that cannot
3273be recovered from. This function in turn prints backtrace (if enabled) and calls
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003274el3_panic(). This call **must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003275
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003276Crash Reporting mechanism (in BL31)
3277-----------------------------------
3278
3279BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003280of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00003281on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003282``plat_crash_console_putc`` and ``plat_crash_console_flush``.
3283
3284The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
3285implementation of all of them. Platforms may include this file to their
3286makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003287output to be routed over the normal console infrastructure and get printed on
3288consoles configured to output in crash state. ``console_set_scope()`` can be
3289used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00003290
3291.. note::
3292 Platforms are responsible for making sure that they only mark consoles for
3293 use in the crash scope that are able to support this, i.e. that are written
3294 in assembly and conform with the register clobber rules for putc()
3295 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003296
Julius Werneraae9bb12017-09-18 16:49:48 -07003297In some cases (such as debugging very early crashes that happen before the
3298normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08003299more explicitly. These platforms may instead provide custom implementations for
3300these. They are executed outside of a C environment and without a stack. Many
3301console drivers provide functions named ``console_xxx_core_init/putc/flush``
3302that are designed to be used by these functions. See Arm platforms (like juno)
3303for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003304
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003305Function : plat_crash_console_init [mandatory]
3306~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003307
3308::
3309
3310 Argument : void
3311 Return : int
3312
3313This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003314console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003315initialization and returns 1 on success.
3316
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003317Function : plat_crash_console_putc [mandatory]
3318~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003319
3320::
3321
3322 Argument : int
3323 Return : int
3324
3325This API is used by the crash reporting mechanism to print a character on the
3326designated crash console. It must only use general purpose registers x1 and
3327x2 to do its work. The parameter and the return value are in general purpose
3328register x0.
3329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003330Function : plat_crash_console_flush [mandatory]
3331~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003332
3333::
3334
3335 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003336 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003337
3338This API is used by the crash reporting mechanism to force write of all buffered
3339data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003340registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003341
Manish Pandey9c9f38a2020-06-30 00:46:08 +01003342.. _External Abort handling and RAS Support:
3343
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01003344External Abort handling and RAS Support
3345---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01003346
3347Function : plat_ea_handler
3348~~~~~~~~~~~~~~~~~~~~~~~~~~
3349
3350::
3351
3352 Argument : int
3353 Argument : uint64_t
3354 Argument : void *
3355 Argument : void *
3356 Argument : uint64_t
3357 Return : void
3358
3359This function is invoked by the RAS framework for the platform to handle an
3360External Abort received at EL3. The intention of the function is to attempt to
3361resolve the cause of External Abort and return; if that's not possible, to
3362initiate orderly shutdown of the system.
3363
3364The first parameter (``int ea_reason``) indicates the reason for External Abort.
3365Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
3366
3367The second parameter (``uint64_t syndrome``) is the respective syndrome
3368presented to EL3 after having received the External Abort. Depending on the
3369nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
3370can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
3371
3372The third parameter (``void *cookie``) is unused for now. The fourth parameter
3373(``void *handle``) is a pointer to the preempted context. The fifth parameter
3374(``uint64_t flags``) indicates the preempted security state. These parameters
3375are received from the top-level exception handler.
3376
3377If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
3378function iterates through RAS handlers registered by the platform. If any of the
3379RAS handlers resolve the External Abort, no further action is taken.
3380
3381If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
3382could resolve the External Abort, the default implementation prints an error
3383message, and panics.
3384
3385Function : plat_handle_uncontainable_ea
3386~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3387
3388::
3389
3390 Argument : int
3391 Argument : uint64_t
3392 Return : void
3393
3394This function is invoked by the RAS framework when an External Abort of
3395Uncontainable type is received at EL3. Due to the critical nature of
3396Uncontainable errors, the intention of this function is to initiate orderly
3397shutdown of the system, and is not expected to return.
3398
3399This function must be implemented in assembly.
3400
3401The first and second parameters are the same as that of ``plat_ea_handler``.
3402
3403The default implementation of this function calls
3404``report_unhandled_exception``.
3405
3406Function : plat_handle_double_fault
3407~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3408
3409::
3410
3411 Argument : int
3412 Argument : uint64_t
3413 Return : void
3414
3415This function is invoked by the RAS framework when another External Abort is
3416received at EL3 while one is already being handled. I.e., a call to
3417``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
3418this function is to initiate orderly shutdown of the system, and is not expected
3419recover or return.
3420
3421This function must be implemented in assembly.
3422
3423The first and second parameters are the same as that of ``plat_ea_handler``.
3424
3425The default implementation of this function calls
3426``report_unhandled_exception``.
3427
3428Function : plat_handle_el3_ea
3429~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3430
3431::
3432
3433 Return : void
3434
3435This function is invoked when an External Abort is received while executing in
3436EL3. Due to its critical nature, the intention of this function is to initiate
3437orderly shutdown of the system, and is not expected recover or return.
3438
3439This function must be implemented in assembly.
3440
3441The default implementation of this function calls
3442``report_unhandled_exception``.
3443
Andre Przywarabdc76f12022-11-21 17:07:25 +00003444Function : plat_handle_rng_trap
3445~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3446
3447::
3448
3449 Argument : uint64_t
3450 Argument : cpu_context_t *
3451 Return : int
3452
3453This function is invoked by BL31's exception handler when there is a synchronous
3454system register trap caused by access to the RNDR or RNDRRS registers. It allows
3455platforms implementing ``FEAT_RNG_TRAP`` and enabling ``ENABLE_FEAT_RNG_TRAP`` to
3456emulate those system registers by returing back some entropy to the lower EL.
3457
3458The first parameter (``uint64_t esr_el3``) contains the content of the ESR_EL3
3459syndrome register, which encodes the instruction that was trapped. The interesting
3460information in there is the target register (``get_sysreg_iss_rt()``).
3461
3462The second parameter (``cpu_context_t *ctx``) represents the CPU state in the
3463lower exception level, at the time when the execution of the ``mrs`` instruction
3464was trapped. Its content can be changed, to put the entropy into the target
3465register.
3466
3467The return value indicates how to proceed:
3468
3469- When returning ``TRAP_RET_UNHANDLED`` (-1), the machine will panic.
3470- When returning ``TRAP_RET_REPEAT`` (0), the exception handler will return
3471 to the same instruction, so its execution will be repeated.
3472- When returning ``TRAP_RET_CONTINUE`` (1), the exception handler will return
3473 to the next instruction.
3474
3475This function needs to be implemented by a platform if it enables FEAT_RNG_TRAP.
3476
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003477Build flags
3478-----------
3479
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003480There are some build flags which can be defined by the platform to control
3481inclusion or exclusion of certain BL stages from the FIP image. These flags
3482need to be defined in the platform makefile which will get included by the
3483build system.
3484
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003485- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003486 By default, this flag is defined ``yes`` by the build system and ``BL33``
3487 build option should be supplied as a build option. The platform has the
3488 option of excluding the BL33 image in the ``fip`` image by defining this flag
3489 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3490 are used, this flag will be set to ``no`` automatically.
3491
Paul Beesley07f0a312019-05-16 13:33:18 +01003492Platform include paths
3493----------------------
3494
3495Platforms are allowed to add more include paths to be passed to the compiler.
3496The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3497particular for the file ``platform_def.h``.
3498
3499Example:
3500
3501.. code:: c
3502
3503 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3504
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003505C Library
3506---------
3507
3508To avoid subtle toolchain behavioral dependencies, the header files provided
3509by the compiler are not used. The software is built with the ``-nostdinc`` flag
3510to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00003511required headers are included in the TF-A source tree. The library only
3512contains those C library definitions required by the local implementation. If
3513more functionality is required, the needed library functions will need to be
3514added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003515
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003516Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00003517been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003518from `FreeBSD`_, others have been written specifically for TF-A as well. The
3519files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003520
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01003521SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3522can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003523
3524Storage abstraction layer
3525-------------------------
3526
Louis Mayencourtb5469002019-07-15 13:56:03 +01003527In order to improve platform independence and portability a storage abstraction
3528layer is used to load data from non-volatile platform storage. Currently
3529storage access is only required by BL1 and BL2 phases and performed inside the
3530``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003531
Louis Mayencourtb5469002019-07-15 13:56:03 +01003532.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003533
Dan Handley610e7e12018-03-01 18:44:00 +00003534It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003535development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003536the default means to load data from storage (see :ref:`firmware_design_fip`).
3537The storage layer is described in the header file
3538``include/drivers/io/io_storage.h``. The implementation of the common library is
3539in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003540``drivers/io/``.
3541
Louis Mayencourtb5469002019-07-15 13:56:03 +01003542.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
3543
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003544Each IO driver must provide ``io_dev_*`` structures, as described in
3545``drivers/io/io_driver.h``. These are returned via a mandatory registration
3546function that is called on platform initialization. The semi-hosting driver
3547implementation in ``io_semihosting.c`` can be used as an example.
3548
Louis Mayencourtb5469002019-07-15 13:56:03 +01003549Each platform should register devices and their drivers via the storage
3550abstraction layer. These drivers then need to be initialized by bootloader
3551phases as required in their respective ``blx_platform_setup()`` functions.
3552
3553.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
3554
3555The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3556initialize storage devices before IO operations are called.
3557
3558.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
3559
3560The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003561include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3562Drivers do not have to implement all operations, but each platform must
3563provide at least one driver for a device capable of supporting generic
3564operations such as loading a bootloader image.
3565
3566The current implementation only allows for known images to be loaded by the
3567firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003568``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003569there). The platform layer (``plat_get_image_source()``) then returns a reference
3570to a device and a driver-specific ``spec`` which will be understood by the driver
3571to allow access to the image data.
3572
3573The layer is designed in such a way that is it possible to chain drivers with
3574other drivers. For example, file-system drivers may be implemented on top of
3575physical block devices, both represented by IO devices with corresponding
3576drivers. In such a case, the file-system "binding" with the block device may
3577be deferred until the file-system device is initialised.
3578
3579The abstraction currently depends on structures being statically allocated
3580by the drivers and callers, as the system does not yet provide a means of
3581dynamically allocating memory. This may also have the affect of limiting the
3582amount of open resources per driver.
3583
3584--------------
3585
Chris Kay33bfc5e2023-02-14 11:30:04 +00003586*Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003587
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003588.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00003589.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003590.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003591.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003592.. _SCC: http://www.simple-cc.org/
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01003593.. _DRTM: https://developer.arm.com/documentation/den0113/a