blob: b557a16958641d69f037eb9005f71e5c07e5d2b6 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
Sandrine Bailleux7a53a912023-02-08 13:55:51 +010017implementation of variables and functions to fulfill the optional requirements
18in order to ease the porting effort. Each platform port can use them as is or
19provide their own implementation if the default implementation is inadequate.
20
21 .. note::
22
23 TF-A historically provided default implementations of platform interfaces
24 as *weak* functions. This practice is now discouraged and new platform
25 interfaces as they get introduced in the code base should be *strongly*
26 defined. We intend to convert existing weak functions over time. Until
27 then, you will find references to *weak* functions in this document.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010028
Sandrine Bailleux2cea7942023-04-04 16:36:08 +020029Please review the :ref:`Threat Model` documents as part of the porting
30effort. Some platform interfaces play a key role in mitigating against some of
31the threats. Failing to fulfill these expectations could undermine the security
32guarantees offered by TF-A. These platform responsibilities are highlighted in
33the threat assessment section, under the "`Mitigations implemented?`" box for
34each threat.
35
Douglas Raillardd7c21b72017-06-28 15:23:03 +010036Some modifications are common to all Boot Loader (BL) stages. Section 2
37discusses these in detail. The subsequent sections discuss the remaining
38modifications for each BL stage in detail.
39
Sandrine Bailleuxdad35612022-11-08 13:36:42 +010040Please refer to the :ref:`Platform Ports Policy` for the policy regarding
41compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010042
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000043Only Arm development platforms (such as FVP and Juno) may use the
44functions/definitions in ``include/plat/arm/common/`` and the corresponding
45source files in ``plat/arm/common/``. This is done so that there are no
46dependencies between platforms maintained by different people/companies. If you
47want to use any of the functionality present in ``plat/arm`` files, please
Sandrine Bailleux8a1c0d62023-02-08 14:01:18 +010048propose a patch that moves the code to ``plat/common`` so that it can be
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000049discussed.
50
Douglas Raillardd7c21b72017-06-28 15:23:03 +010051Common modifications
52--------------------
53
54This section covers the modifications that should be made by the platform for
55each BL stage to correctly port the firmware stack. They are categorized as
56either mandatory or optional.
57
58Common mandatory modifications
59------------------------------
60
61A platform port must enable the Memory Management Unit (MMU) as well as the
62instruction and data caches for each BL stage. Setting up the translation
63tables is the responsibility of the platform port because memory maps differ
Sandrine Bailleux6d981f72023-02-08 14:02:45 +010064across platforms. A memory translation library (see ``lib/xlat_tables_v2/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010065provided to help in this setup.
66
67Note that although this library supports non-identity mappings, this is intended
68only for re-mapping peripheral physical addresses and allows platforms with high
69I/O addresses to reduce their virtual address space. All other addresses
70corresponding to code and data must currently use an identity mapping.
71
Dan Handley610e7e12018-03-01 18:44:00 +000072Also, the only translation granule size supported in TF-A is 4KB, as various
73parts of the code assume that is the case. It is not possible to switch to
7416 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010075
Dan Handley610e7e12018-03-01 18:44:00 +000076In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010077platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
78an identity mapping for all addresses.
79
80If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
81block of identity mapped secure memory with Device-nGnRE attributes aligned to
82page boundary (4K) for each BL stage. All sections which allocate coherent
Chris Kay33bfc5e2023-02-14 11:30:04 +000083memory are grouped under ``.coherent_ram``. For ex: Bakery locks are placed in a
84section identified by name ``.bakery_lock`` inside ``.coherent_ram`` so that its
Douglas Raillardd7c21b72017-06-28 15:23:03 +010085possible for the firmware to place variables in it using the following C code
86directive:
87
88::
89
Chris Kay33bfc5e2023-02-14 11:30:04 +000090 __section(".bakery_lock")
Douglas Raillardd7c21b72017-06-28 15:23:03 +010091
92Or alternatively the following assembler code directive:
93
94::
95
Chris Kay33bfc5e2023-02-14 11:30:04 +000096 .section .bakery_lock
Douglas Raillardd7c21b72017-06-28 15:23:03 +010097
Chris Kay33bfc5e2023-02-14 11:30:04 +000098The ``.coherent_ram`` section is a sum of all sections like ``.bakery_lock`` which are
Douglas Raillardd7c21b72017-06-28 15:23:03 +010099used to allocate any data structures that are accessed both when a CPU is
100executing with its MMU and caches enabled, and when it's running with its MMU
101and caches disabled. Examples are given below.
102
103The following variables, functions and constants must be defined by the platform
104for the firmware to work correctly.
105
Javier Almansa Sobrino37bf69c2022-04-07 18:26:49 +0100106.. _platform_def_mandatory:
107
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100108File : platform_def.h [mandatory]
109~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100110
111Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +0000112include path with the following constants defined. This will require updating
113the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100114
Paul Beesleyf8640672019-04-12 14:19:42 +0100115Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100116which provides typical values for some of the constants below. These values are
117likely to be suitable for all platform ports.
118
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100119- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
121 Defines the linker format used by the platform, for example
122 ``elf64-littleaarch64``.
123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100124- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100125
126 Defines the processor architecture for the linker by the platform, for
127 example ``aarch64``.
128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100129- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100130
131 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100132 by ``plat/common/aarch64/platform_mp_stack.S`` and
133 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100134
David Horstmann051fd6d2020-11-12 15:19:04 +0000135- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100136
Max Yufa0b4e82022-09-08 23:21:21 +0000137 Defines the size in bytes of the largest cache line across all the cache
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100138 levels in the platform.
139
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100140- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100141
142 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
143 function.
144
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100145- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100146
147 Defines the total number of CPUs implemented by the platform across all
148 clusters in the system.
149
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100150- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100151
152 Defines the total number of nodes in the power domain topology
153 tree at all the power domain levels used by the platform.
154 This macro is used by the PSCI implementation to allocate
155 data structures to represent power domain topology.
156
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100157- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100158
159 Defines the maximum power domain level that the power management operations
160 should apply to. More often, but not always, the power domain level
161 corresponds to affinity level. This macro allows the PSCI implementation
162 to know the highest power domain level that it should consider for power
163 management operations in the system that the platform implements. For
164 example, the Base AEM FVP implements two clusters with a configurable
165 number of CPUs and it reports the maximum power domain level as 1.
166
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100167- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100168
169 Defines the local power state corresponding to the deepest power down
170 possible at every power domain level in the platform. The local power
171 states for each level may be sparsely allocated between 0 and this value
172 with 0 being reserved for the RUN state. The PSCI implementation uses this
173 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100174 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100175
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100176- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100177
178 Defines the local power state corresponding to the deepest retention state
179 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100180 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100181 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100182 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100184- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100185
186 Defines the maximum number of local power states per power domain level
187 that the platform supports. The default value of this macro is 2 since
188 most platforms just support a maximum of two local power states at each
189 power domain level (power-down and retention). If the platform needs to
190 account for more local power states, then it must redefine this macro.
191
192 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100193 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100194
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100195- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100196
197 Defines the base address in secure ROM where BL1 originally lives. Must be
198 aligned on a page-size boundary.
199
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100200- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100201
202 Defines the maximum address in secure ROM that BL1's actual content (i.e.
203 excluding any data section allocated at runtime) can occupy.
204
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100205- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
207 Defines the base address in secure RAM where BL1's read-write data will live
208 at runtime. Must be aligned on a page-size boundary.
209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100210- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100211
212 Defines the maximum address in secure RAM that BL1's read-write data can
213 occupy at runtime.
214
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100215- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100216
217 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000218 Must be aligned on a page-size boundary. This constant is not applicable
219 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100220
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100221- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100222
223 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000224 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
225
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100226- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000227
228 Defines the base address in secure XIP memory where BL2 RO section originally
229 lives. Must be aligned on a page-size boundary. This constant is only needed
230 when BL2_IN_XIP_MEM is set to '1'.
231
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100232- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000233
234 Defines the maximum address in secure XIP memory that BL2's actual content
235 (i.e. excluding any data section allocated at runtime) can occupy. This
236 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
237
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100238- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000239
240 Defines the base address in secure RAM where BL2's read-write data will live
241 at runtime. Must be aligned on a page-size boundary. This constant is only
242 needed when BL2_IN_XIP_MEM is set to '1'.
243
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100244- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000245
246 Defines the maximum address in secure RAM that BL2's read-write data can
247 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
248 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100249
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100250- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100251
252 Defines the base address in secure RAM where BL2 loads the BL31 binary
253 image. Must be aligned on a page-size boundary.
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 Defines the maximum address in secure RAM that the BL31 image can occupy.
258
Tamas Ban1d3354e2022-09-16 14:09:30 +0200259- **#define : PLAT_RSS_COMMS_PAYLOAD_MAX_SIZE**
260
261 Defines the maximum message size between AP and RSS. Need to define if
262 platform supports RSS.
263
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100264For every image, the platform must define individual identifiers that will be
265used by BL1 or BL2 to load the corresponding image into memory from non-volatile
266storage. For the sake of performance, integer numbers will be used as
267identifiers. The platform will use those identifiers to return the relevant
268information about the image to be loaded (file handler, load address,
269authentication information, etc.). The following image identifiers are
270mandatory:
271
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100272- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100273
274 BL2 image identifier, used by BL1 to load BL2.
275
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100276- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100277
278 BL31 image identifier, used by BL2 to load BL31.
279
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100280- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100281
282 BL33 image identifier, used by BL2 to load BL33.
283
284If Trusted Board Boot is enabled, the following certificate identifiers must
285also be defined:
286
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100287- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100288
289 BL2 content certificate identifier, used by BL1 to load the BL2 content
290 certificate.
291
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100292- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100293
294 Trusted key certificate identifier, used by BL2 to load the trusted key
295 certificate.
296
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100297- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100298
299 BL31 key certificate identifier, used by BL2 to load the BL31 key
300 certificate.
301
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100302- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100303
304 BL31 content certificate identifier, used by BL2 to load the BL31 content
305 certificate.
306
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100307- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100308
309 BL33 key certificate identifier, used by BL2 to load the BL33 key
310 certificate.
311
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100312- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100313
314 BL33 content certificate identifier, used by BL2 to load the BL33 content
315 certificate.
316
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100317- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100318
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100319 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100320 FWU content certificate.
321
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100322- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100323
Dan Handley610e7e12018-03-01 18:44:00 +0000324 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100325 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000326 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100327 set.
328
329If the AP Firmware Updater Configuration image, BL2U is used, the following
330must also be defined:
331
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100332- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100333
334 Defines the base address in secure memory where BL1 copies the BL2U binary
335 image. Must be aligned on a page-size boundary.
336
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100337- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100338
339 Defines the maximum address in secure memory that the BL2U image can occupy.
340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342
343 BL2U image identifier, used by BL1 to fetch an image descriptor
344 corresponding to BL2U.
345
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100346If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100347must also be defined:
348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100350
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100351 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
352 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000353
354 .. note::
355 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358also be defined:
359
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100360- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100361
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100362 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100363 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000364
365 .. note::
366 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100368- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100369
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100370 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
371 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100373If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100374be defined:
375
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100376- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100377
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100378 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100379 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000380
381 .. note::
382 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100384- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
387 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100388
389For the the Firmware update capability of TRUSTED BOARD BOOT, the following
390macros may also be defined:
391
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100392- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100393
394 Total number of images that can be loaded simultaneously. If the platform
395 doesn't specify any value, it defaults to 10.
396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100397If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100398also be defined:
399
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100400- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100401
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100402 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000403 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100404
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100405- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100406
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100407 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100408 certificate (mandatory when Trusted Board Boot is enabled).
409
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100410- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100411
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100412 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100413 content certificate (mandatory when Trusted Board Boot is enabled).
414
415If a BL32 image is supported by the platform, the following constants must
416also be defined:
417
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100418- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100419
420 BL32 image identifier, used by BL2 to load BL32.
421
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100422- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100423
424 BL32 key certificate identifier, used by BL2 to load the BL32 key
425 certificate (mandatory when Trusted Board Boot is enabled).
426
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100427- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100428
429 BL32 content certificate identifier, used by BL2 to load the BL32 content
430 certificate (mandatory when Trusted Board Boot is enabled).
431
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100432- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100433
434 Defines the base address in secure memory where BL2 loads the BL32 binary
435 image. Must be aligned on a page-size boundary.
436
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100437- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100438
439 Defines the maximum address that the BL32 image can occupy.
440
441If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
442platform, the following constants must also be defined:
443
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100444- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100445
446 Defines the base address of the secure memory used by the TSP image on the
447 platform. This must be at the same address or below ``BL32_BASE``.
448
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100449- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100450
451 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000452 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
453 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
454 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100455
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100456- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100457
458 Defines the ID of the secure physical generic timer interrupt used by the
459 TSP's interrupt handling code.
460
461If the platform port uses the translation table library code, the following
462constants must also be defined:
463
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100464- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100465
466 Optional flag that can be set per-image to enable the dynamic allocation of
467 regions even when the MMU is enabled. If not defined, only static
468 functionality will be available, if defined and set to 1 it will also
469 include the dynamic functionality.
470
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100471- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100472
473 Defines the maximum number of translation tables that are allocated by the
474 translation table library code. To minimize the amount of runtime memory
475 used, choose the smallest value needed to map the required virtual addresses
476 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
477 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
478 as well.
479
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100480- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100481
482 Defines the maximum number of regions that are allocated by the translation
483 table library code. A region consists of physical base address, virtual base
484 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
485 defined in the ``mmap_region_t`` structure. The platform defines the regions
486 that should be mapped. Then, the translation table library will create the
487 corresponding tables and descriptors at runtime. To minimize the amount of
488 runtime memory used, choose the smallest value needed to register the
489 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
490 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
491 the dynamic regions as well.
492
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100493- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100494
495 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000496 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100497
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100498- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100499
500 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000501 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100502
503If the platform port uses the IO storage framework, the following constants
504must also be defined:
505
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100506- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100507
508 Defines the maximum number of registered IO devices. Attempting to register
509 more devices than this value using ``io_register_device()`` will fail with
510 -ENOMEM.
511
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100512- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100513
514 Defines the maximum number of open IO handles. Attempting to open more IO
515 entities than this value using ``io_open()`` will fail with -ENOMEM.
516
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100517- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100518
519 Defines the maximum number of registered IO block devices. Attempting to
520 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100521 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100522 With this macro, multiple block devices could be supported at the same
523 time.
524
525If the platform needs to allocate data within the per-cpu data framework in
526BL31, it should define the following macro. Currently this is only required if
527the platform decides not to use the coherent memory section by undefining the
528``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
529required memory within the the per-cpu data to minimize wastage.
530
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100531- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100532
533 Defines the memory (in bytes) to be reserved within the per-cpu data
534 structure for use by the platform layer.
535
536The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000537memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100538
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100539- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100540
541 Defines the maximum address in secure RAM that the BL31's progbits sections
542 can occupy.
543
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100544- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100545
546 Defines the maximum address that the TSP's progbits sections can occupy.
547
Wing Li2c556f32022-09-14 13:18:17 -0700548If the platform supports OS-initiated mode, i.e. the build option
549``PSCI_OS_INIT_MODE`` is enabled, and if the platform's maximum power domain
550level for PSCI_CPU_SUSPEND differs from ``PLAT_MAX_PWR_LVL``, the following
551constant must be defined.
552
553- **#define : PLAT_MAX_CPU_SUSPEND_PWR_LVL**
554
555 Defines the maximum power domain level that PSCI_CPU_SUSPEND should apply to.
556
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100557If the platform port uses the PL061 GPIO driver, the following constant may
558optionally be defined:
559
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100560- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100561 Maximum number of GPIOs required by the platform. This allows control how
562 much memory is allocated for PL061 GPIO controllers. The default value is
563
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100564 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100565
566If the platform port uses the partition driver, the following constant may
567optionally be defined:
568
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100569- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100570 Maximum number of partition entries required by the platform. This allows
571 control how much memory is allocated for partition entries. The default
572 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100573 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100574 PLAT_PARTITION_MAX_ENTRIES := 12
575 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100576
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800577- **PLAT_PARTITION_BLOCK_SIZE**
578 The size of partition block. It could be either 512 bytes or 4096 bytes.
579 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000580 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800581 PLAT_PARTITION_BLOCK_SIZE := 4096
582 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
583
Rob Hughes7a354bd2023-02-20 12:03:52 +0000584If the platform port uses the Arm® Ethos™-N NPU driver, the following
585configuration must be performed:
586
587- The NPU SiP service handler must be hooked up. This consists of both the
588 initial setup (``ethosn_smc_setup``) and the handler itself
589 (``ethosn_smc_handler``)
590
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100591If the platform port uses the Arm® Ethos™-N NPU driver with TZMP1 support
Rob Hughes7a354bd2023-02-20 12:03:52 +0000592enabled, the following constants and configuration must also be defined:
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100593
594- **ARM_ETHOSN_NPU_PROT_FW_NSAID**
595
596 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use to
597 access the protected memory that contains the NPU's firmware.
598
Mikael Olsson80b61f52023-03-14 18:29:06 +0100599- **ARM_ETHOSN_NPU_PROT_DATA_RW_NSAID**
600
601 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
602 read/write access to the protected memory that contains inference data.
603
604- **ARM_ETHOSN_NPU_PROT_DATA_RO_NSAID**
605
606 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
607 read-only access to the protected memory that contains inference data.
608
609- **ARM_ETHOSN_NPU_NS_RW_DATA_NSAID**
610
611 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
612 read/write access to the non-protected memory.
613
614- **ARM_ETHOSN_NPU_NS_RO_DATA_NSAID**
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100615
Mikael Olsson80b61f52023-03-14 18:29:06 +0100616 Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
617 read-only access to the non-protected memory.
Rajasekaran Kalidossf8a18b82022-11-16 17:16:44 +0100618
Rob Hughes9a2177a2023-01-17 16:10:26 +0000619- **ARM_ETHOSN_NPU_FW_IMAGE_BASE** and **ARM_ETHOSN_NPU_FW_IMAGE_LIMIT**
620
Rob Hughes7a354bd2023-02-20 12:03:52 +0000621 Defines the physical address range that the NPU's firmware will be loaded
622 into and executed from.
623
624- Configure the platforms TrustZone Controller (TZC) with appropriate regions
625 of protected memory. At minimum this must include a region for the NPU's
626 firmware code and a region for protected inference data, and these must be
627 accessible using the NSAIDs defined above.
628
629- Include the NPU firmware and certificates in the FIP.
630
631- Provide FCONF entries to configure the image source for the NPU firmware
632 and certificates.
Rob Hughes9a2177a2023-01-17 16:10:26 +0000633
634- Add MMU mappings such that:
635
636 - BL2 can write the NPU firmware into the region defined by
637 ``ARM_ETHOSN_NPU_FW_IMAGE_BASE`` and ``ARM_ETHOSN_NPU_FW_IMAGE_LIMIT``
638 - BL31 (SiP service) can read the NPU firmware from the same region
639
Rob Hughes7a354bd2023-02-20 12:03:52 +0000640- Add the firmware image ID ``ARM_ETHOSN_NPU_FW_IMAGE_ID`` to the list of images
641 loaded by BL2.
Rob Hughes9a2177a2023-01-17 16:10:26 +0000642
643Please see the reference implementation code for the Juno platform as an example.
644
645
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100646The following constant is optional. It should be defined to override the default
647behaviour of the ``assert()`` function (for example, to save memory).
648
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100649- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100650 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
651 ``assert()`` prints the name of the file, the line number and the asserted
652 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
653 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
654 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
655 defined, it defaults to ``LOG_LEVEL``.
656
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100657If the platform port uses the DRTM feature, the following constants must be
658defined:
659
660- **#define : PLAT_DRTM_EVENT_LOG_MAX_SIZE**
661
662 Maximum Event Log size used by the platform. Platform can decide the maximum
663 size of the Event Log buffer, depending upon the highest hash algorithm
664 chosen and the number of components selected to measure during the DRTM
665 execution flow.
666
667- **#define : PLAT_DRTM_MMAP_ENTRIES**
668
669 Number of the MMAP entries used by the DRTM implementation to calculate the
670 size of address map region of the platform.
671
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100672File : plat_macros.S [mandatory]
673~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100674
675Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000676the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100677found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
678
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100679- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100680
681 This macro allows the crash reporting routine to print relevant platform
682 registers in case of an unhandled exception in BL31. This aids in debugging
683 and this macro can be defined to be empty in case register reporting is not
684 desired.
685
686 For instance, GIC or interconnect registers may be helpful for
687 troubleshooting.
688
689Handling Reset
690--------------
691
692BL1 by default implements the reset vector where execution starts from a cold
693or warm boot. BL31 can be optionally set as a reset vector using the
694``RESET_TO_BL31`` make variable.
695
696For each CPU, the reset vector code is responsible for the following tasks:
697
698#. Distinguishing between a cold boot and a warm boot.
699
700#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
701 the CPU is placed in a platform-specific state until the primary CPU
702 performs the necessary steps to remove it from this state.
703
704#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
705 specific address in the BL31 image in the same processor mode as it was
706 when released from reset.
707
708The following functions need to be implemented by the platform port to enable
709reset vector code to perform the above tasks.
710
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100711Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
712~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100713
714::
715
716 Argument : void
717 Return : uintptr_t
718
719This function is called with the MMU and caches disabled
720(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
721distinguishing between a warm and cold reset for the current CPU using
722platform-specific means. If it's a warm reset, then it returns the warm
723reset entrypoint point provided to ``plat_setup_psci_ops()`` during
724BL31 initialization. If it's a cold reset then this function must return zero.
725
726This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000727Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100728not assume that callee saved registers are preserved across a call to this
729function.
730
731This function fulfills requirement 1 and 3 listed above.
732
733Note that for platforms that support programming the reset address, it is
734expected that a CPU will start executing code directly at the right address,
735both on a cold and warm reset. In this case, there is no need to identify the
736type of reset nor to query the warm reset entrypoint. Therefore, implementing
737this function is not required on such platforms.
738
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100739Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
740~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100741
742::
743
744 Argument : void
745
746This function is called with the MMU and data caches disabled. It is responsible
747for placing the executing secondary CPU in a platform-specific state until the
748primary CPU performs the necessary actions to bring it out of that state and
749allow entry into the OS. This function must not return.
750
Dan Handley610e7e12018-03-01 18:44:00 +0000751In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100752itself off. The primary CPU is responsible for powering up the secondary CPUs
753when normal world software requires them. When booting an EL3 payload instead,
754they stay powered on and are put in a holding pen until their mailbox gets
755populated.
756
757This function fulfills requirement 2 above.
758
759Note that for platforms that can't release secondary CPUs out of reset, only the
760primary CPU will execute the cold boot code. Therefore, implementing this
761function is not required on such platforms.
762
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100763Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
764~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100765
766::
767
768 Argument : void
769 Return : unsigned int
770
771This function identifies whether the current CPU is the primary CPU or a
772secondary CPU. A return value of zero indicates that the CPU is not the
773primary CPU, while a non-zero return value indicates that the CPU is the
774primary CPU.
775
776Note that for platforms that can't release secondary CPUs out of reset, only the
777primary CPU will execute the cold boot code. Therefore, there is no need to
778distinguish between primary and secondary CPUs and implementing this function is
779not required.
780
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100781Function : platform_mem_init() [mandatory]
782~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100783
784::
785
786 Argument : void
787 Return : void
788
789This function is called before any access to data is made by the firmware, in
790order to carry out any essential memory initialization.
791
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100792Function: plat_get_rotpk_info()
793~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100794
795::
796
797 Argument : void *, void **, unsigned int *, unsigned int *
798 Return : int
799
800This function is mandatory when Trusted Board Boot is enabled. It returns a
801pointer to the ROTPK stored in the platform (or a hash of it) and its length.
802The ROTPK must be encoded in DER format according to the following ASN.1
803structure:
804
805::
806
807 AlgorithmIdentifier ::= SEQUENCE {
808 algorithm OBJECT IDENTIFIER,
809 parameters ANY DEFINED BY algorithm OPTIONAL
810 }
811
812 SubjectPublicKeyInfo ::= SEQUENCE {
813 algorithm AlgorithmIdentifier,
814 subjectPublicKey BIT STRING
815 }
816
817In case the function returns a hash of the key:
818
819::
820
821 DigestInfo ::= SEQUENCE {
822 digestAlgorithm AlgorithmIdentifier,
823 digest OCTET STRING
824 }
825
826The function returns 0 on success. Any other value is treated as error by the
827Trusted Board Boot. The function also reports extra information related
828to the ROTPK in the flags parameter:
829
830::
831
832 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
833 hash.
834 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
835 verification while the platform ROTPK is not deployed.
836 When this flag is set, the function does not need to
837 return a platform ROTPK, and the authentication
838 framework uses the ROTPK in the certificate without
839 verifying it against the platform value. This flag
840 must not be used in a deployed production environment.
841
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100842Function: plat_get_nv_ctr()
843~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100844
845::
846
847 Argument : void *, unsigned int *
848 Return : int
849
850This function is mandatory when Trusted Board Boot is enabled. It returns the
851non-volatile counter value stored in the platform in the second argument. The
852cookie in the first argument may be used to select the counter in case the
853platform provides more than one (for example, on platforms that use the default
854TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100855TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100856
857The function returns 0 on success. Any other value means the counter value could
858not be retrieved from the platform.
859
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100860Function: plat_set_nv_ctr()
861~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100862
863::
864
865 Argument : void *, unsigned int
866 Return : int
867
868This function is mandatory when Trusted Board Boot is enabled. It sets a new
869counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100870select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100871the updated counter value to be written to the NV counter.
872
873The function returns 0 on success. Any other value means the counter value could
874not be updated.
875
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100876Function: plat_set_nv_ctr2()
877~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100878
879::
880
881 Argument : void *, const auth_img_desc_t *, unsigned int
882 Return : int
883
884This function is optional when Trusted Board Boot is enabled. If this
885interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
886first argument passed is a cookie and is typically used to
887differentiate between a Non Trusted NV Counter and a Trusted NV
888Counter. The second argument is a pointer to an authentication image
889descriptor and may be used to decide if the counter is allowed to be
890updated or not. The third argument is the updated counter value to
891be written to the NV counter.
892
893The function returns 0 on success. Any other value means the counter value
894either could not be updated or the authentication image descriptor indicates
895that it is not allowed to be updated.
896
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100897Dynamic Root of Trust for Measurement support (in BL31)
898-------------------------------------------------------
899
900The functions mentioned in this section are mandatory, when platform enables
901DRTM_SUPPORT build flag.
902
903Function : plat_get_addr_mmap()
904~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
905
906::
907
908 Argument : void
909 Return : const mmap_region_t *
910
911This function is used to return the address of the platform *address-map* table,
912which describes the regions of normal memory, memory mapped I/O
913and non-volatile memory.
914
915Function : plat_has_non_host_platforms()
916~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
917
918::
919
920 Argument : void
921 Return : bool
922
923This function returns *true* if the platform has any trusted devices capable of
924DMA, otherwise returns *false*.
925
926Function : plat_has_unmanaged_dma_peripherals()
927~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
928
929::
930
931 Argument : void
932 Return : bool
933
934This function returns *true* if platform uses peripherals whose DMA is not
935managed by an SMMU, otherwise returns *false*.
936
937Note -
938If the platform has peripherals that are not managed by the SMMU, then the
939platform should investigate such peripherals to determine whether they can
940be trusted, and such peripherals should be moved under "Non-host platforms"
941if they can be trusted.
942
943Function : plat_get_total_num_smmus()
944~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
945
946::
947
948 Argument : void
949 Return : unsigned int
950
951This function returns the total number of SMMUs in the platform.
952
953Function : plat_enumerate_smmus()
954~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
955::
956
957
958 Argument : void
959 Return : const uintptr_t *, size_t
960
961This function returns an array of SMMU addresses and the actual number of SMMUs
962reported by the platform.
963
964Function : plat_drtm_get_dma_prot_features()
965~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
966
967::
968
969 Argument : void
970 Return : const plat_drtm_dma_prot_features_t*
971
972This function returns the address of plat_drtm_dma_prot_features_t structure
973containing the maximum number of protected regions and bitmap with the types
974of DMA protection supported by the platform.
975For more details see section 3.3 Table 6 of `DRTM`_ specification.
976
977Function : plat_drtm_dma_prot_get_max_table_bytes()
978~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
979
980::
981
982 Argument : void
983 Return : uint64_t
984
985This function returns the maximum size of DMA protected regions table in
986bytes.
987
988Function : plat_drtm_get_tpm_features()
989~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
990
991::
992
993 Argument : void
994 Return : const plat_drtm_tpm_features_t*
995
996This function returns the address of *plat_drtm_tpm_features_t* structure
997containing PCR usage schema, TPM-based hash, and firmware hash algorithm
998supported by the platform.
999
1000Function : plat_drtm_get_min_size_normal_world_dce()
1001~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1002
1003::
1004
1005 Argument : void
1006 Return : uint64_t
1007
1008This function returns the size normal-world DCE of the platform.
1009
1010Function : plat_drtm_get_imp_def_dlme_region_size()
1011~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1012
1013::
1014
1015 Argument : void
1016 Return : uint64_t
1017
1018This function returns the size of implementation defined DLME region
1019of the platform.
1020
1021Function : plat_drtm_get_tcb_hash_table_size()
1022~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1023
1024::
1025
1026 Argument : void
1027 Return : uint64_t
1028
1029This function returns the size of TCB hash table of the platform.
1030
1031Function : plat_drtm_get_tcb_hash_features()
1032~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1033
1034::
1035
1036 Argument : void
1037 Return : uint64_t
1038
1039This function returns the Maximum number of TCB hashes recorded by the
1040platform.
1041For more details see section 3.3 Table 6 of `DRTM`_ specification.
1042
1043Function : plat_drtm_validate_ns_region()
1044~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1045
1046::
1047
1048 Argument : uintptr_t, uintptr_t
1049 Return : int
1050
1051This function validates that given region is within the Non-Secure region
1052of DRAM. This function takes a region start address and size an input
1053arguments, and returns 0 on success and -1 on failure.
1054
1055Function : plat_set_drtm_error()
1056~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1057
1058::
1059
1060 Argument : uint64_t
1061 Return : int
1062
1063This function writes a 64 bit error code received as input into
1064non-volatile storage and returns 0 on success and -1 on failure.
1065
1066Function : plat_get_drtm_error()
1067~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1068
1069::
1070
1071 Argument : uint64_t*
1072 Return : int
1073
1074This function reads a 64 bit error code from the non-volatile storage
1075into the received address, and returns 0 on success and -1 on failure.
1076
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001077Common mandatory function modifications
1078---------------------------------------
1079
1080The following functions are mandatory functions which need to be implemented
1081by the platform port.
1082
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001083Function : plat_my_core_pos()
1084~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001085
1086::
1087
1088 Argument : void
1089 Return : unsigned int
1090
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001091This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001092CPU-specific linear index into blocks of memory (for example while allocating
1093per-CPU stacks). This function will be invoked very early in the
1094initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001095implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001096runtime environment. This function can clobber x0 - x8 and must preserve
1097x9 - x29.
1098
1099This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +01001100PSCI and details of this can be found in
1101:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001102
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001103Function : plat_core_pos_by_mpidr()
1104~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001105
1106::
1107
1108 Argument : u_register_t
1109 Return : int
1110
1111This function validates the ``MPIDR`` of a CPU and converts it to an index,
1112which can be used as a CPU-specific linear index into blocks of memory. In
1113case the ``MPIDR`` is invalid, this function returns -1. This function will only
1114be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +00001115utilize the C runtime environment. For further details about how TF-A
1116represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +01001117index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001118
Ambroise Vincentd207f562019-04-10 12:50:27 +01001119Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
1120~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1121
1122::
1123
1124 Arguments : void **heap_addr, size_t *heap_size
1125 Return : int
1126
1127This function is invoked during Mbed TLS library initialisation to get a heap,
1128by means of a starting address and a size. This heap will then be used
1129internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
1130must be able to provide a heap to it.
1131
1132A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
1133which a heap is statically reserved during compile time inside every image
1134(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
1135the function simply returns the address and size of this "pre-allocated" heap.
1136For a platform to use this default implementation, only a call to the helper
1137from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
1138
1139However, by writting their own implementation, platforms have the potential to
1140optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
1141shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
1142twice.
1143
1144On success the function should return 0 and a negative error code otherwise.
1145
Sumit Gargc0c369c2019-11-15 18:47:53 +05301146Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
1147~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1148
1149::
1150
1151 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
1152 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
1153 size_t img_id_len
1154 Return : int
1155
1156This function provides a symmetric key (either SSK or BSSK depending on
1157fw_enc_status) which is invoked during runtime decryption of encrypted
1158firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
1159implementation for testing purposes which must be overridden by the platform
1160trying to implement a real world firmware encryption use-case.
1161
1162It also allows the platform to pass symmetric key identifier rather than
1163actual symmetric key which is useful in cases where the crypto backend provides
1164secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
1165flag must be set in ``flags``.
1166
1167In addition to above a platform may also choose to provide an image specific
1168symmetric key/identifier using img_id.
1169
1170On success the function should return 0 and a negative error code otherwise.
1171
Manish Pandey34a305e2021-10-21 21:53:49 +01001172Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
Sumit Gargc0c369c2019-11-15 18:47:53 +05301173
Manish V Badarkheda87af12021-06-20 21:14:46 +01001174Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
1175~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1176
1177::
1178
Sughosh Ganuf40154f2021-11-17 17:08:10 +05301179 Argument : const struct fwu_metadata *metadata
Manish V Badarkheda87af12021-06-20 21:14:46 +01001180 Return : void
1181
1182This function is mandatory when PSA_FWU_SUPPORT is enabled.
1183It provides a means to retrieve image specification (offset in
1184non-volatile storage and length) of active/updated images using the passed
1185FWU metadata, and update I/O policies of active/updated images using retrieved
1186image specification information.
1187Further I/O layer operations such as I/O open, I/O read, etc. on these
1188images rely on this function call.
1189
1190In Arm platforms, this function is used to set an I/O policy of the FIP image,
1191container of all active/updated secure and non-secure images.
1192
1193Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
1194~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1195
1196::
1197
1198 Argument : unsigned int image_id, uintptr_t *dev_handle,
1199 uintptr_t *image_spec
1200 Return : int
1201
1202This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
1203responsible for setting up the platform I/O policy of the requested metadata
1204image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
1205be used to load this image from the platform's non-volatile storage.
1206
1207FWU metadata can not be always stored as a raw image in non-volatile storage
1208to define its image specification (offset in non-volatile storage and length)
1209statically in I/O policy.
1210For example, the FWU metadata image is stored as a partition inside the GUID
1211partition table image. Its specification is defined in the partition table
1212that needs to be parsed dynamically.
1213This function provides a means to retrieve such dynamic information to set
1214the I/O policy of the FWU metadata image.
1215Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
1216image relies on this function call.
1217
1218It returns '0' on success, otherwise a negative error value on error.
1219Alongside, returns device handle and image specification from the I/O policy
1220of the requested FWU metadata image.
1221
Sughosh Ganu4e336a62021-12-01 15:53:32 +05301222Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]
1223~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1224
1225::
1226
1227 Argument : void
1228 Return : uint32_t
1229
1230This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the
1231means to retrieve the boot index value from the platform. The boot index is the
1232bank from which the platform has booted the firmware images.
1233
1234By default, the platform will read the metadata structure and try to boot from
1235the active bank. If the platform fails to boot from the active bank due to
1236reasons like an Authentication failure, or on crossing a set number of watchdog
1237resets while booting from the active bank, the platform can then switch to boot
1238from a different bank. This function then returns the bank that the platform
1239should boot its images from.
1240
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001241Common optional modifications
1242-----------------------------
1243
1244The following are helper functions implemented by the firmware that perform
1245common platform-specific tasks. A platform may choose to override these
1246definitions.
1247
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001248Function : plat_set_my_stack()
1249~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001250
1251::
1252
1253 Argument : void
1254 Return : void
1255
1256This function sets the current stack pointer to the normal memory stack that
1257has been allocated for the current CPU. For BL images that only require a
1258stack for the primary CPU, the UP version of the function is used. The size
1259of the stack allocated to each CPU is specified by the platform defined
1260constant ``PLATFORM_STACK_SIZE``.
1261
1262Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001263provided in ``plat/common/aarch64/platform_up_stack.S`` and
1264``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001266Function : plat_get_my_stack()
1267~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001268
1269::
1270
1271 Argument : void
1272 Return : uintptr_t
1273
1274This function returns the base address of the normal memory stack that
1275has been allocated for the current CPU. For BL images that only require a
1276stack for the primary CPU, the UP version of the function is used. The size
1277of the stack allocated to each CPU is specified by the platform defined
1278constant ``PLATFORM_STACK_SIZE``.
1279
1280Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001281provided in ``plat/common/aarch64/platform_up_stack.S`` and
1282``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001283
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001284Function : plat_report_exception()
1285~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001286
1287::
1288
1289 Argument : unsigned int
1290 Return : void
1291
1292A platform may need to report various information about its status when an
1293exception is taken, for example the current exception level, the CPU security
1294state (secure/non-secure), the exception type, and so on. This function is
1295called in the following circumstances:
1296
1297- In BL1, whenever an exception is taken.
1298- In BL2, whenever an exception is taken.
1299
1300The default implementation doesn't do anything, to avoid making assumptions
1301about the way the platform displays its status information.
1302
1303For AArch64, this function receives the exception type as its argument.
1304Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001305``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001306related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001307
1308For AArch32, this function receives the exception mode as its argument.
1309Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001310``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001311
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001312Function : plat_reset_handler()
1313~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001314
1315::
1316
1317 Argument : void
1318 Return : void
1319
1320A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001321allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001322specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001323preserve the values of callee saved registers x19 to x29.
1324
1325The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001326the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001327guidelines.
1328
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001329Function : plat_disable_acp()
1330~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001331
1332::
1333
1334 Argument : void
1335 Return : void
1336
John Tsichritzis6dda9762018-07-23 09:18:04 +01001337This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001338present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001339doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001340it has restrictions for stack usage and it can use the registers x0 - x17 as
1341scratch registers. It should preserve the value in x18 register as it is used
1342by the caller to store the return address.
1343
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001344Function : plat_error_handler()
1345~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001346
1347::
1348
1349 Argument : int
1350 Return : void
1351
1352This API is called when the generic code encounters an error situation from
1353which it cannot continue. It allows the platform to perform error reporting or
1354recovery actions (for example, reset the system). This function must not return.
1355
1356The parameter indicates the type of error using standard codes from ``errno.h``.
1357Possible errors reported by the generic code are:
1358
1359- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1360 Board Boot is enabled)
1361- ``-ENOENT``: the requested image or certificate could not be found or an IO
1362 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001363- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1364 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001365
1366The default implementation simply spins.
1367
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001368Function : plat_panic_handler()
1369~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001370
1371::
1372
1373 Argument : void
1374 Return : void
1375
1376This API is called when the generic code encounters an unexpected error
1377situation from which it cannot recover. This function must not return,
1378and must be implemented in assembly because it may be called before the C
1379environment is initialized.
1380
Paul Beesleyba3ed402019-03-13 16:20:44 +00001381.. note::
1382 The address from where it was called is stored in x30 (Link Register).
1383 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001384
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01001385Function : plat_system_reset()
1386~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1387
1388::
1389
1390 Argument : void
1391 Return : void
1392
1393This function is used by the platform to resets the system. It can be used
1394in any specific use-case where system needs to be resetted. For example,
1395in case of DRTM implementation this function reset the system after
1396writing the DRTM error code in the non-volatile storage. This function
1397never returns. Failure in reset results in panic.
1398
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001399Function : plat_get_bl_image_load_info()
1400~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001401
1402::
1403
1404 Argument : void
1405 Return : bl_load_info_t *
1406
1407This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001408populated to load. This function is invoked in BL2 to load the
1409BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001411Function : plat_get_next_bl_params()
1412~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001413
1414::
1415
1416 Argument : void
1417 Return : bl_params_t *
1418
1419This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001420kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001421function is invoked in BL2 to pass this information to the next BL
1422image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001423
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001424Function : plat_get_stack_protector_canary()
1425~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001426
1427::
1428
1429 Argument : void
1430 Return : u_register_t
1431
1432This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001433when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001434value will weaken the protection as the attacker could easily write the right
1435value as part of the attack most of the time. Therefore, it should return a
1436true random number.
1437
Paul Beesleyba3ed402019-03-13 16:20:44 +00001438.. warning::
1439 For the protection to be effective, the global data need to be placed at
1440 a lower address than the stack bases. Failure to do so would allow an
1441 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001442
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001443Function : plat_flush_next_bl_params()
1444~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001445
1446::
1447
1448 Argument : void
1449 Return : void
1450
1451This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001452next image. This function is invoked in BL2 to flush this information
1453to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001454
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001455Function : plat_log_get_prefix()
1456~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001457
1458::
1459
1460 Argument : unsigned int
1461 Return : const char *
1462
1463This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001464prepended to all the log output from TF-A. The `log_level` (argument) will
1465correspond to one of the standard log levels defined in debug.h. The platform
1466can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001467the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001468increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001469
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001470Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001471~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001472
1473::
1474
1475 Argument : void
1476 Return : int32_t
1477
1478This function returns soc version which mainly consist of below fields
1479
1480::
1481
1482 soc_version[30:24] = JEP-106 continuation code for the SiP
1483 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001484 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001485
1486Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001487~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001488
1489::
1490
1491 Argument : void
1492 Return : int32_t
1493
1494This function returns soc revision in below format
1495
1496::
1497
1498 soc_revision[0:30] = SOC revision of specific SOC
1499
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001500Function : plat_is_smccc_feature_available()
1501~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1502
1503::
1504
1505 Argument : u_register_t
1506 Return : int32_t
1507
1508This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1509the SMCCC function specified in the argument; otherwise returns
1510SMC_ARCH_CALL_NOT_SUPPORTED.
1511
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001512Function : plat_mboot_measure_image()
1513~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1514
1515::
1516
1517 Argument : unsigned int, image_info_t *
Manish V Badarkhe931c6ef2021-10-21 09:06:18 +01001518 Return : int
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001519
1520When the MEASURED_BOOT flag is enabled:
1521
1522- This function measures the given image and records its measurement using
1523 the measured boot backend driver.
1524- On the Arm FVP port, this function measures the given image using its
1525 passed id and information and then records that measurement in the
1526 Event Log buffer.
Manish V Badarkhe931c6ef2021-10-21 09:06:18 +01001527- This function must return 0 on success, a signed integer error code
1528 otherwise.
1529
1530When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1531
1532Function : plat_mboot_measure_critical_data()
1533~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1534
1535::
1536
1537 Argument : unsigned int, const void *, size_t
1538 Return : int
1539
1540When the MEASURED_BOOT flag is enabled:
1541
1542- This function measures the given critical data structure and records its
1543 measurement using the measured boot backend driver.
1544- This function must return 0 on success, a signed integer error code
1545 otherwise.
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001546
1547When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1548
Okash Khawaja037b56e2022-11-04 12:38:01 +00001549Function : plat_can_cmo()
1550~~~~~~~~~~~~~~~~~~~~~~~~~
1551
1552::
1553
1554 Argument : void
1555 Return : uint64_t
1556
1557When CONDITIONAL_CMO flag is enabled:
1558
1559- This function indicates whether cache management operations should be
1560 performed. It returns 0 if CMOs should be skipped and non-zero
1561 otherwise.
Okash Khawaja94532202022-11-14 12:50:30 +00001562- The function must not clobber x1, x2 and x3. It's also not safe to rely on
1563 stack. Otherwise obey AAPCS.
Okash Khawaja037b56e2022-11-04 12:38:01 +00001564
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001565Modifications specific to a Boot Loader stage
1566---------------------------------------------
1567
1568Boot Loader Stage 1 (BL1)
1569-------------------------
1570
1571BL1 implements the reset vector where execution starts from after a cold or
1572warm boot. For each CPU, BL1 is responsible for the following tasks:
1573
1574#. Handling the reset as described in section 2.2
1575
1576#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1577 only this CPU executes the remaining BL1 code, including loading and passing
1578 control to the BL2 stage.
1579
1580#. Identifying and starting the Firmware Update process (if required).
1581
1582#. Loading the BL2 image from non-volatile storage into secure memory at the
1583 address specified by the platform defined constant ``BL2_BASE``.
1584
1585#. Populating a ``meminfo`` structure with the following information in memory,
1586 accessible by BL2 immediately upon entry.
1587
1588 ::
1589
1590 meminfo.total_base = Base address of secure RAM visible to BL2
1591 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001592
Soby Mathew97b1bff2018-09-27 16:46:41 +01001593 By default, BL1 places this ``meminfo`` structure at the end of secure
1594 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001595
Soby Mathewb1bf0442018-02-16 14:52:52 +00001596 It is possible for the platform to decide where it wants to place the
1597 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1598 BL2 by overriding the weak default implementation of
1599 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001600
1601The following functions need to be implemented by the platform port to enable
1602BL1 to perform the above tasks.
1603
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001604Function : bl1_early_platform_setup() [mandatory]
1605~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001606
1607::
1608
1609 Argument : void
1610 Return : void
1611
1612This function executes with the MMU and data caches disabled. It is only called
1613by the primary CPU.
1614
Dan Handley610e7e12018-03-01 18:44:00 +00001615On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001616
1617- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1618
1619- Initializes a UART (PL011 console), which enables access to the ``printf``
1620 family of functions in BL1.
1621
1622- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1623 the CCI slave interface corresponding to the cluster that includes the
1624 primary CPU.
1625
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001626Function : bl1_plat_arch_setup() [mandatory]
1627~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001628
1629::
1630
1631 Argument : void
1632 Return : void
1633
1634This function performs any platform-specific and architectural setup that the
1635platform requires. Platform-specific setup might include configuration of
1636memory controllers and the interconnect.
1637
Dan Handley610e7e12018-03-01 18:44:00 +00001638In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001639
1640This function helps fulfill requirement 2 above.
1641
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001642Function : bl1_platform_setup() [mandatory]
1643~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001644
1645::
1646
1647 Argument : void
1648 Return : void
1649
1650This function executes with the MMU and data caches enabled. It is responsible
1651for performing any remaining platform-specific setup that can occur after the
1652MMU and data cache have been enabled.
1653
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001654if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001655sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001656
Dan Handley610e7e12018-03-01 18:44:00 +00001657In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001658layer used to load the next bootloader image.
1659
1660This function helps fulfill requirement 4 above.
1661
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001662Function : bl1_plat_sec_mem_layout() [mandatory]
1663~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001664
1665::
1666
1667 Argument : void
1668 Return : meminfo *
1669
1670This function should only be called on the cold boot path. It executes with the
1671MMU and data caches enabled. The pointer returned by this function must point to
1672a ``meminfo`` structure containing the extents and availability of secure RAM for
1673the BL1 stage.
1674
1675::
1676
1677 meminfo.total_base = Base address of secure RAM visible to BL1
1678 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001679
1680This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1681populates a similar structure to tell BL2 the extents of memory available for
1682its own use.
1683
1684This function helps fulfill requirements 4 and 5 above.
1685
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001686Function : bl1_plat_prepare_exit() [optional]
1687~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001688
1689::
1690
1691 Argument : entry_point_info_t *
1692 Return : void
1693
1694This function is called prior to exiting BL1 in response to the
1695``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1696platform specific clean up or bookkeeping operations before transferring
1697control to the next image. It receives the address of the ``entry_point_info_t``
1698structure passed from BL2. This function runs with MMU disabled.
1699
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001700Function : bl1_plat_set_ep_info() [optional]
1701~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001702
1703::
1704
1705 Argument : unsigned int image_id, entry_point_info_t *ep_info
1706 Return : void
1707
1708This function allows platforms to override ``ep_info`` for the given ``image_id``.
1709
1710The default implementation just returns.
1711
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001712Function : bl1_plat_get_next_image_id() [optional]
1713~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001714
1715::
1716
1717 Argument : void
1718 Return : unsigned int
1719
1720This and the following function must be overridden to enable the FWU feature.
1721
1722BL1 calls this function after platform setup to identify the next image to be
1723loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1724with the normal boot sequence, which loads and executes BL2. If the platform
1725returns a different image id, BL1 assumes that Firmware Update is required.
1726
Dan Handley610e7e12018-03-01 18:44:00 +00001727The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001728platforms override this function to detect if firmware update is required, and
1729if so, return the first image in the firmware update process.
1730
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001731Function : bl1_plat_get_image_desc() [optional]
1732~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001733
1734::
1735
1736 Argument : unsigned int image_id
1737 Return : image_desc_t *
1738
1739BL1 calls this function to get the image descriptor information ``image_desc_t``
1740for the provided ``image_id`` from the platform.
1741
Dan Handley610e7e12018-03-01 18:44:00 +00001742The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001743standard platforms return an image descriptor corresponding to BL2 or one of
1744the firmware update images defined in the Trusted Board Boot Requirements
1745specification.
1746
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001747Function : bl1_plat_handle_pre_image_load() [optional]
1748~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001749
1750::
1751
Soby Mathew2f38ce32018-02-08 17:45:12 +00001752 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001753 Return : int
1754
1755This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001756corresponding to ``image_id``. This function is invoked in BL1, both in cold
1757boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001758
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001759Function : bl1_plat_handle_post_image_load() [optional]
1760~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001761
1762::
1763
Soby Mathew2f38ce32018-02-08 17:45:12 +00001764 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001765 Return : int
1766
1767This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001768corresponding to ``image_id``. This function is invoked in BL1, both in cold
1769boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001770
Soby Mathewb1bf0442018-02-16 14:52:52 +00001771The default weak implementation of this function calculates the amount of
1772Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1773structure at the beginning of this free memory and populates it. The address
1774of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1775information to BL2.
1776
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001777Function : bl1_plat_fwu_done() [optional]
1778~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001779
1780::
1781
1782 Argument : unsigned int image_id, uintptr_t image_src,
1783 unsigned int image_size
1784 Return : void
1785
1786BL1 calls this function when the FWU process is complete. It must not return.
1787The platform may override this function to take platform specific action, for
1788example to initiate the normal boot flow.
1789
1790The default implementation spins forever.
1791
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001792Function : bl1_plat_mem_check() [mandatory]
1793~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001794
1795::
1796
1797 Argument : uintptr_t mem_base, unsigned int mem_size,
1798 unsigned int flags
1799 Return : int
1800
1801BL1 calls this function while handling FWU related SMCs, more specifically when
1802copying or authenticating an image. Its responsibility is to ensure that the
1803region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1804that this memory corresponds to either a secure or non-secure memory region as
1805indicated by the security state of the ``flags`` argument.
1806
1807This function can safely assume that the value resulting from the addition of
1808``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1809overflow.
1810
1811This function must return 0 on success, a non-null error code otherwise.
1812
1813The default implementation of this function asserts therefore platforms must
1814override it when using the FWU feature.
1815
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001816Function : bl1_plat_mboot_init() [optional]
1817~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1818
1819::
1820
1821 Argument : void
1822 Return : void
1823
1824When the MEASURED_BOOT flag is enabled:
1825
1826- This function is used to initialize the backend driver(s) of measured boot.
1827- On the Arm FVP port, this function is used to initialize the Event Log
1828 backend driver, and also to write header information in the Event Log buffer.
1829
1830When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1831
1832Function : bl1_plat_mboot_finish() [optional]
1833~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1834
1835::
1836
1837 Argument : void
1838 Return : void
1839
1840When the MEASURED_BOOT flag is enabled:
1841
1842- This function is used to finalize the measured boot backend driver(s),
1843 and also, set the information for the next bootloader component to
1844 extend the measurement if needed.
1845- On the Arm FVP port, this function is used to pass the base address of
1846 the Event Log buffer and its size to BL2 via tb_fw_config to extend the
1847 Event Log buffer with the measurement of various images loaded by BL2.
1848 It results in panic on error.
1849
1850When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1851
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001852Boot Loader Stage 2 (BL2)
1853-------------------------
1854
1855The BL2 stage is executed only by the primary CPU, which is determined in BL1
1856using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001857``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1858``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1859non-volatile storage to secure/non-secure RAM. After all the images are loaded
1860then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1861images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001862
1863The following functions must be implemented by the platform port to enable BL2
1864to perform the above tasks.
1865
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001866Function : bl2_early_platform_setup2() [mandatory]
1867~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001868
1869::
1870
Soby Mathew97b1bff2018-09-27 16:46:41 +01001871 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001872 Return : void
1873
1874This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001875by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1876are platform specific.
1877
1878On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001879
Manish V Badarkhe81414512020-06-24 15:58:38 +01001880 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001881
1882 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1883 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001884
Dan Handley610e7e12018-03-01 18:44:00 +00001885On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001886
1887- Initializes a UART (PL011 console), which enables access to the ``printf``
1888 family of functions in BL2.
1889
1890- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001891 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1892 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001893
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001894Function : bl2_plat_arch_setup() [mandatory]
1895~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001896
1897::
1898
1899 Argument : void
1900 Return : void
1901
1902This function executes with the MMU and data caches disabled. It is only called
1903by the primary CPU.
1904
1905The purpose of this function is to perform any architectural initialization
1906that varies across platforms.
1907
Dan Handley610e7e12018-03-01 18:44:00 +00001908On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001909
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001910Function : bl2_platform_setup() [mandatory]
1911~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001912
1913::
1914
1915 Argument : void
1916 Return : void
1917
1918This function may execute with the MMU and data caches enabled if the platform
1919port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1920called by the primary CPU.
1921
1922The purpose of this function is to perform any platform initialization
1923specific to BL2.
1924
Dan Handley610e7e12018-03-01 18:44:00 +00001925In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001926configuration of the TrustZone controller to allow non-secure masters access
1927to most of DRAM. Part of DRAM is reserved for secure world use.
1928
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001929Function : bl2_plat_handle_pre_image_load() [optional]
1930~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001931
1932::
1933
1934 Argument : unsigned int
1935 Return : int
1936
1937This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001938for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001939loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001940
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001941Function : bl2_plat_handle_post_image_load() [optional]
1942~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001943
1944::
1945
1946 Argument : unsigned int
1947 Return : int
1948
1949This function can be used by the platforms to update/use image information
1950for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001951loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001952
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001953Function : bl2_plat_preload_setup [optional]
1954~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001955
1956::
John Tsichritzisee10e792018-06-06 09:38:10 +01001957
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001958 Argument : void
1959 Return : void
1960
1961This optional function performs any BL2 platform initialization
1962required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001963bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001964boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001965plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001966
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001967Function : plat_try_next_boot_source() [optional]
1968~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001969
1970::
John Tsichritzisee10e792018-06-06 09:38:10 +01001971
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001972 Argument : void
1973 Return : int
1974
1975This optional function passes to the next boot source in the redundancy
1976sequence.
1977
1978This function moves the current boot redundancy source to the next
1979element in the boot sequence. If there are no more boot sources then it
1980must return 0, otherwise it must return 1. The default implementation
1981of this always returns 0.
1982
Sandrine Bailleuxeb5fadc2022-07-13 10:07:54 +02001983Function : bl2_plat_mboot_init() [optional]
1984~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1985
1986::
1987
1988 Argument : void
1989 Return : void
1990
1991When the MEASURED_BOOT flag is enabled:
1992
1993- This function is used to initialize the backend driver(s) of measured boot.
1994- On the Arm FVP port, this function is used to initialize the Event Log
1995 backend driver with the Event Log buffer information (base address and
1996 size) received from BL1. It results in panic on error.
1997
1998When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1999
2000Function : bl2_plat_mboot_finish() [optional]
2001~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2002
2003::
2004
2005 Argument : void
2006 Return : void
2007
2008When the MEASURED_BOOT flag is enabled:
2009
2010- This function is used to finalize the measured boot backend driver(s),
2011 and also, set the information for the next bootloader component to extend
2012 the measurement if needed.
2013- On the Arm FVP port, this function is used to pass the Event Log buffer
2014 information (base address and size) to non-secure(BL33) and trusted OS(BL32)
2015 via nt_fw and tos_fw config respectively. It results in panic on error.
2016
2017When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
2018
Roberto Vargasb1584272017-11-20 13:36:10 +00002019Boot Loader Stage 2 (BL2) at EL3
2020--------------------------------
2021
Dan Handley610e7e12018-03-01 18:44:00 +00002022When the platform has a non-TF-A Boot ROM it is desirable to jump
2023directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01002024execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
2025document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00002026
2027All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002028bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
2029their work is done now by bl2_el3_early_platform_setup and
2030bl2_el3_plat_arch_setup. These functions should generally implement
2031the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00002032
2033
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002034Function : bl2_el3_early_platform_setup() [mandatory]
2035~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00002036
2037::
John Tsichritzisee10e792018-06-06 09:38:10 +01002038
Roberto Vargasb1584272017-11-20 13:36:10 +00002039 Argument : u_register_t, u_register_t, u_register_t, u_register_t
2040 Return : void
2041
2042This function executes with the MMU and data caches disabled. It is only called
2043by the primary CPU. This function receives four parameters which can be used
2044by the platform to pass any needed information from the Boot ROM to BL2.
2045
Dan Handley610e7e12018-03-01 18:44:00 +00002046On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00002047
2048- Initializes a UART (PL011 console), which enables access to the ``printf``
2049 family of functions in BL2.
2050
2051- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002052 images. It is necessary to do this early on platforms with a SCP_BL2 image,
2053 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00002054
2055- Initializes the private variables that define the memory layout used.
2056
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002057Function : bl2_el3_plat_arch_setup() [mandatory]
2058~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00002059
2060::
John Tsichritzisee10e792018-06-06 09:38:10 +01002061
Roberto Vargasb1584272017-11-20 13:36:10 +00002062 Argument : void
2063 Return : void
2064
2065This function executes with the MMU and data caches disabled. It is only called
2066by the primary CPU.
2067
2068The purpose of this function is to perform any architectural initialization
2069that varies across platforms.
2070
Dan Handley610e7e12018-03-01 18:44:00 +00002071On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00002072
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002073Function : bl2_el3_plat_prepare_exit() [optional]
2074~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00002075
2076::
John Tsichritzisee10e792018-06-06 09:38:10 +01002077
Roberto Vargasb1584272017-11-20 13:36:10 +00002078 Argument : void
2079 Return : void
2080
2081This function is called prior to exiting BL2 and run the next image.
2082It should be used to perform platform specific clean up or bookkeeping
2083operations before transferring control to the next image. This function
2084runs with MMU disabled.
2085
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002086FWU Boot Loader Stage 2 (BL2U)
2087------------------------------
2088
2089The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
2090process and is executed only by the primary CPU. BL1 passes control to BL2U at
2091``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
2092
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002093#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
2094 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
2095 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
2096 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002097 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
2098 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
2099
2100#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00002101 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002102 normal world can access DDR memory.
2103
2104The following functions must be implemented by the platform port to enable
2105BL2U to perform the tasks mentioned above.
2106
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002107Function : bl2u_early_platform_setup() [mandatory]
2108~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002109
2110::
2111
2112 Argument : meminfo *mem_info, void *plat_info
2113 Return : void
2114
2115This function executes with the MMU and data caches disabled. It is only
2116called by the primary CPU. The arguments to this function is the address
2117of the ``meminfo`` structure and platform specific info provided by BL1.
2118
2119The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
2120private storage as the original memory may be subsequently overwritten by BL2U.
2121
Dan Handley610e7e12018-03-01 18:44:00 +00002122On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002123to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002124variable.
2125
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002126Function : bl2u_plat_arch_setup() [mandatory]
2127~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002128
2129::
2130
2131 Argument : void
2132 Return : void
2133
2134This function executes with the MMU and data caches disabled. It is only
2135called by the primary CPU.
2136
2137The purpose of this function is to perform any architectural initialization
2138that varies across platforms, for example enabling the MMU (since the memory
2139map differs across platforms).
2140
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002141Function : bl2u_platform_setup() [mandatory]
2142~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002143
2144::
2145
2146 Argument : void
2147 Return : void
2148
2149This function may execute with the MMU and data caches enabled if the platform
2150port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
2151called by the primary CPU.
2152
2153The purpose of this function is to perform any platform initialization
2154specific to BL2U.
2155
Dan Handley610e7e12018-03-01 18:44:00 +00002156In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002157configuration of the TrustZone controller to allow non-secure masters access
2158to most of DRAM. Part of DRAM is reserved for secure world use.
2159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002160Function : bl2u_plat_handle_scp_bl2u() [optional]
2161~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002162
2163::
2164
2165 Argument : void
2166 Return : int
2167
2168This function is used to perform any platform-specific actions required to
2169handle the SCP firmware. Typically it transfers the image into SCP memory using
2170a platform-specific protocol and waits until SCP executes it and signals to the
2171Application Processor (AP) for BL2U execution to continue.
2172
2173This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002174This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002175
2176Boot Loader Stage 3-1 (BL31)
2177----------------------------
2178
2179During cold boot, the BL31 stage is executed only by the primary CPU. This is
2180determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
2181control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
2182CPUs. BL31 executes at EL3 and is responsible for:
2183
2184#. Re-initializing all architectural and platform state. Although BL1 performs
2185 some of this initialization, BL31 remains resident in EL3 and must ensure
2186 that EL3 architectural and platform state is completely initialized. It
2187 should make no assumptions about the system state when it receives control.
2188
2189#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01002190 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
2191 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002192
2193#. Providing runtime firmware services. Currently, BL31 only implements a
2194 subset of the Power State Coordination Interface (PSCI) API as a runtime
Boyan Karatotev907d38b2022-11-22 12:01:09 +00002195 service. See :ref:`psci_in_bl31` below for details of porting the PSCI
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002196 implementation.
2197
2198#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002199 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002200 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01002201 executed and run the corresponding image. On ARM platforms, BL31 uses the
2202 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002203
2204If BL31 is a reset vector, It also needs to handle the reset as specified in
2205section 2.2 before the tasks described above.
2206
2207The following functions must be implemented by the platform port to enable BL31
2208to perform the above tasks.
2209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002210Function : bl31_early_platform_setup2() [mandatory]
2211~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002212
2213::
2214
Soby Mathew97b1bff2018-09-27 16:46:41 +01002215 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002216 Return : void
2217
2218This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01002219by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
2220platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002221
Soby Mathew97b1bff2018-09-27 16:46:41 +01002222In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002223
Soby Mathew97b1bff2018-09-27 16:46:41 +01002224 arg0 - The pointer to the head of `bl_params_t` list
2225 which is list of executable images following BL31,
2226
2227 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01002228 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01002229
Mikael Olsson0232da22021-02-12 17:30:16 +01002230 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01002231 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01002232
2233 arg2 - Points to load address of HW_CONFIG if present
2234
2235 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
2236 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002237
Soby Mathew97b1bff2018-09-27 16:46:41 +01002238The function runs through the `bl_param_t` list and extracts the entry point
2239information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002240
2241- Initialize a UART (PL011 console), which enables access to the ``printf``
2242 family of functions in BL31.
2243
2244- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
2245 CCI slave interface corresponding to the cluster that includes the primary
2246 CPU.
2247
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002248Function : bl31_plat_arch_setup() [mandatory]
2249~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002250
2251::
2252
2253 Argument : void
2254 Return : void
2255
2256This function executes with the MMU and data caches disabled. It is only called
2257by the primary CPU.
2258
2259The purpose of this function is to perform any architectural initialization
2260that varies across platforms.
2261
Dan Handley610e7e12018-03-01 18:44:00 +00002262On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002263
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002264Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002265~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2266
2267::
2268
2269 Argument : void
2270 Return : void
2271
2272This function may execute with the MMU and data caches enabled if the platform
2273port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
2274called by the primary CPU.
2275
2276The purpose of this function is to complete platform initialization so that both
2277BL31 runtime services and normal world software can function correctly.
2278
Dan Handley610e7e12018-03-01 18:44:00 +00002279On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002280
2281- Initialize the generic interrupt controller.
2282
2283 Depending on the GIC driver selected by the platform, the appropriate GICv2
2284 or GICv3 initialization will be done, which mainly consists of:
2285
2286 - Enable secure interrupts in the GIC CPU interface.
2287 - Disable the legacy interrupt bypass mechanism.
2288 - Configure the priority mask register to allow interrupts of all priorities
2289 to be signaled to the CPU interface.
2290 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
2291 - Target all secure SPIs to CPU0.
2292 - Enable these secure interrupts in the GIC distributor.
2293 - Configure all other interrupts as non-secure.
2294 - Enable signaling of secure interrupts in the GIC distributor.
2295
2296- Enable system-level implementation of the generic timer counter through the
2297 memory mapped interface.
2298
2299- Grant access to the system counter timer module
2300
2301- Initialize the power controller device.
2302
2303 In particular, initialise the locks that prevent concurrent accesses to the
2304 power controller device.
2305
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002306Function : bl31_plat_runtime_setup() [optional]
2307~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002308
2309::
2310
2311 Argument : void
2312 Return : void
2313
2314The purpose of this function is allow the platform to perform any BL31 runtime
2315setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07002316implementation of this function will invoke ``console_switch_state()`` to switch
2317console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002318
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002319Function : bl31_plat_get_next_image_ep_info() [mandatory]
2320~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002321
2322::
2323
Sandrine Bailleux842117d2018-05-14 14:25:47 +02002324 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002325 Return : entry_point_info *
2326
2327This function may execute with the MMU and data caches enabled if the platform
2328port does the necessary initializations in ``bl31_plat_arch_setup()``.
2329
2330This function is called by ``bl31_main()`` to retrieve information provided by
2331BL2 for the next image in the security state specified by the argument. BL31
2332uses this information to pass control to that image in the specified security
2333state. This function must return a pointer to the ``entry_point_info`` structure
2334(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
2335should return NULL otherwise.
2336
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002337Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
Soby Mathew294e1cf2022-03-22 16:19:39 +00002338~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2339
2340::
2341
2342 Argument : uintptr_t, size_t *, uintptr_t, size_t
2343 Return : int
2344
2345This function returns the Platform attestation token.
2346
2347The parameters of the function are:
2348
2349 arg0 - A pointer to the buffer where the Platform token should be copied by
2350 this function. The buffer must be big enough to hold the Platform
2351 token.
2352
2353 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2354 function returns the platform token length in this parameter.
2355
2356 arg2 - A pointer to the buffer where the challenge object is stored.
2357
2358 arg3 - The length of the challenge object in bytes. Possible values are 32,
2359 48 and 64.
2360
2361The function returns 0 on success, -EINVAL on failure.
2362
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002363Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
2364~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewf05d93a2022-03-22 16:21:19 +00002365
2366::
2367
2368 Argument : uintptr_t, size_t *, unsigned int
2369 Return : int
2370
2371This function returns the delegated realm attestation key which will be used to
2372sign Realm attestation token. The API currently only supports P-384 ECC curve
2373key.
2374
2375The parameters of the function are:
2376
2377 arg0 - A pointer to the buffer where the attestation key should be copied
2378 by this function. The buffer must be big enough to hold the
2379 attestation key.
2380
2381 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2382 function returns the attestation key length in this parameter.
2383
2384 arg2 - The type of the elliptic curve to which the requested attestation key
2385 belongs.
2386
2387The function returns 0 on success, -EINVAL on failure.
2388
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002389Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
2390~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2391
2392::
2393
2394 Argument : uintptr_t *
2395 Return : size_t
2396
2397This function returns the size of the shared area between EL3 and RMM (or 0 on
2398failure). A pointer to the shared area (or a NULL pointer on failure) is stored
2399in the pointer passed as argument.
2400
Javier Almansa Sobrino4165e842022-04-25 17:18:15 +01002401Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
2402~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2403
2404::
2405
2406 Arguments : rmm_manifest_t *manifest
2407 Return : int
2408
2409When ENABLE_RME is enabled, this function populates a boot manifest for the
2410RMM image and stores it in the area specified by manifest.
2411
2412When ENABLE_RME is disabled, this function is not used.
2413
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002414Function : bl31_plat_enable_mmu [optional]
2415~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2416
2417::
2418
2419 Argument : uint32_t
2420 Return : void
2421
2422This function enables the MMU. The boot code calls this function with MMU and
2423caches disabled. This function should program necessary registers to enable
2424translation, and upon return, the MMU on the calling PE must be enabled.
2425
2426The function must honor flags passed in the first argument. These flags are
2427defined by the translation library, and can be found in the file
2428``include/lib/xlat_tables/xlat_mmu_helpers.h``.
2429
2430On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002431is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002432
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002433Function : plat_init_apkey [optional]
2434~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002435
2436::
2437
2438 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002439 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002440
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002441This function returns the 128-bit value which can be used to program ARMv8.3
2442pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002443
2444The value should be obtained from a reliable source of randomness.
2445
2446This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002447Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002448
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002449Function : plat_get_syscnt_freq2() [mandatory]
2450~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002451
2452::
2453
2454 Argument : void
2455 Return : unsigned int
2456
2457This function is used by the architecture setup code to retrieve the counter
2458frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00002459``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002460of the system counter, which is retrieved from the first entry in the frequency
2461modes table.
2462
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002463#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2464~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002465
2466When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2467bytes) aligned to the cache line boundary that should be allocated per-cpu to
2468accommodate all the bakery locks.
2469
2470If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
Chris Kay33bfc5e2023-02-14 11:30:04 +00002471calculates the size of the ``.bakery_lock`` input section, aligns it to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002472nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2473and stores the result in a linker symbol. This constant prevents a platform
2474from relying on the linker and provide a more efficient mechanism for
2475accessing per-cpu bakery lock information.
2476
2477If this constant is defined and its value is not equal to the value
2478calculated by the linker then a link time assertion is raised. A compile time
2479assertion is raised if the value of the constant is not aligned to the cache
2480line boundary.
2481
Paul Beesleyf8640672019-04-12 14:19:42 +01002482.. _porting_guide_sdei_requirements:
2483
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002484SDEI porting requirements
2485~~~~~~~~~~~~~~~~~~~~~~~~~
2486
Paul Beesley606d8072019-03-13 13:58:02 +00002487The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002488and functions, of which some are optional, and some others mandatory.
2489
2490Macros
2491......
2492
2493Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2495
2496This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002497Normal |SDEI| events on the platform. This must have a higher value
2498(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002499
2500Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2502
2503This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002504Critical |SDEI| events on the platform. This must have a lower value
2505(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002506
Paul Beesley606d8072019-03-13 13:58:02 +00002507**Note**: |SDEI| exception priorities must be the lowest among Secure
2508priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2509be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002510
2511Functions
2512.........
2513
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002514Function: int plat_sdei_validate_entry_point() [optional]
2515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002516
2517::
2518
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002519 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002520 Return: int
2521
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002522This function validates the entry point address of the event handler provided by
2523the client for both event registration and *Complete and Resume* |SDEI| calls.
2524The function ensures that the address is valid in the client translation regime.
2525
2526The second argument is the exception level that the client is executing in. It
2527can be Non-Secure EL1 or Non-Secure EL2.
2528
2529The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002530
Dan Handley610e7e12018-03-01 18:44:00 +00002531The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002532translates the entry point address within the client translation regime and
2533further ensures that the resulting physical address is located in Non-secure
2534DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002535
2536Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2538
2539::
2540
2541 Argument: uint64_t
2542 Argument: unsigned int
2543 Return: void
2544
Paul Beesley606d8072019-03-13 13:58:02 +00002545|SDEI| specification requires that a PE comes out of reset with the events
2546masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2547|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2548time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002549
Paul Beesley606d8072019-03-13 13:58:02 +00002550Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002551events are masked on the PE, the dispatcher implementation invokes the function
2552``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2553interrupt and the interrupt ID are passed as parameters.
2554
2555The default implementation only prints out a warning message.
2556
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002557.. _porting_guide_trng_requirements:
2558
2559TRNG porting requirements
2560~~~~~~~~~~~~~~~~~~~~~~~~~
2561
2562The |TRNG| backend requires the platform to provide the following values
2563and mandatory functions.
2564
2565Values
2566......
2567
2568value: uuid_t plat_trng_uuid [mandatory]
2569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2570
2571This value must be defined to the UUID of the TRNG backend that is specific to
Jayanth Dodderi Chidanand7c7faff2022-10-11 17:16:07 +01002572the hardware after ``plat_entropy_setup`` function is called. This value must
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002573conform to the SMCCC calling convention; The most significant 32 bits of the
2574UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2575w0 indicates failure to get a TRNG source.
2576
2577Functions
2578.........
2579
2580Function: void plat_entropy_setup(void) [mandatory]
2581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2582
2583::
2584
2585 Argument: none
2586 Return: none
2587
2588This function is expected to do platform-specific initialization of any TRNG
2589hardware. This may include generating a UUID from a hardware-specific seed.
2590
2591Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2593
2594::
2595
2596 Argument: uint64_t *
2597 Return: bool
2598 Out : when the return value is true, the entropy has been written into the
2599 storage pointed to
2600
2601This function writes entropy into storage provided by the caller. If no entropy
2602is available, it must return false and the storage must not be written.
2603
Boyan Karatotev907d38b2022-11-22 12:01:09 +00002604.. _psci_in_bl31:
2605
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002606Power State Coordination Interface (in BL31)
2607--------------------------------------------
2608
Dan Handley610e7e12018-03-01 18:44:00 +00002609The TF-A implementation of the PSCI API is based around the concept of a
2610*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2611share some state on which power management operations can be performed as
2612specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2613a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2614*power domains* are arranged in a hierarchical tree structure and each
2615*power domain* can be identified in a system by the cpu index of any CPU that
2616is part of that domain and a *power domain level*. A processing element (for
2617example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2618logical grouping of CPUs that share some state, then level 1 is that group of
2619CPUs (for example, a cluster), and level 2 is a group of clusters (for
2620example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002621organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002622
2623BL31's platform initialization code exports a pointer to the platform-specific
2624power management operations required for the PSCI implementation to function
2625correctly. This information is populated in the ``plat_psci_ops`` structure. The
2626PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2627power management operations on the power domains. For example, the target
2628CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2629handler (if present) is called for the CPU power domain.
2630
2631The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2632describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002633defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002634array of local power states where each index corresponds to a power domain
2635level. Each entry contains the local power state the power domain at that power
2636level could enter. It depends on the ``validate_power_state()`` handler to
2637convert the power-state parameter (possibly encoding a composite power state)
2638passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2639
2640The following functions form part of platform port of PSCI functionality.
2641
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002642Function : plat_psci_stat_accounting_start() [optional]
2643~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002644
2645::
2646
2647 Argument : const psci_power_state_t *
2648 Return : void
2649
2650This is an optional hook that platforms can implement for residency statistics
2651accounting before entering a low power state. The ``pwr_domain_state`` field of
2652``state_info`` (first argument) can be inspected if stat accounting is done
2653differently at CPU level versus higher levels. As an example, if the element at
2654index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2655state, special hardware logic may be programmed in order to keep track of the
2656residency statistics. For higher levels (array indices > 0), the residency
2657statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2658default implementation will use PMF to capture timestamps.
2659
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002660Function : plat_psci_stat_accounting_stop() [optional]
2661~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002662
2663::
2664
2665 Argument : const psci_power_state_t *
2666 Return : void
2667
2668This is an optional hook that platforms can implement for residency statistics
2669accounting after exiting from a low power state. The ``pwr_domain_state`` field
2670of ``state_info`` (first argument) can be inspected if stat accounting is done
2671differently at CPU level versus higher levels. As an example, if the element at
2672index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2673state, special hardware logic may be programmed in order to keep track of the
2674residency statistics. For higher levels (array indices > 0), the residency
2675statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2676default implementation will use PMF to capture timestamps.
2677
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002678Function : plat_psci_stat_get_residency() [optional]
2679~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002680
2681::
2682
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002683 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002684 Return : u_register_t
2685
2686This is an optional interface that is is invoked after resuming from a low power
2687state and provides the time spent resident in that low power state by the power
2688domain at a particular power domain level. When a CPU wakes up from suspend,
2689all its parent power domain levels are also woken up. The generic PSCI code
2690invokes this function for each parent power domain that is resumed and it
2691identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2692argument) describes the low power state that the power domain has resumed from.
2693The current CPU is the first CPU in the power domain to resume from the low
2694power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2695CPU in the power domain to suspend and may be needed to calculate the residency
2696for that power domain.
2697
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002698Function : plat_get_target_pwr_state() [optional]
2699~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002700
2701::
2702
2703 Argument : unsigned int, const plat_local_state_t *, unsigned int
2704 Return : plat_local_state_t
2705
2706The PSCI generic code uses this function to let the platform participate in
2707state coordination during a power management operation. The function is passed
2708a pointer to an array of platform specific local power state ``states`` (second
2709argument) which contains the requested power state for each CPU at a particular
2710power domain level ``lvl`` (first argument) within the power domain. The function
2711is expected to traverse this array of upto ``ncpus`` (third argument) and return
2712a coordinated target power state by the comparing all the requested power
2713states. The target power state should not be deeper than any of the requested
2714power states.
2715
2716A weak definition of this API is provided by default wherein it assumes
2717that the platform assigns a local state value in order of increasing depth
2718of the power state i.e. for two power states X & Y, if X < Y
2719then X represents a shallower power state than Y. As a result, the
2720coordinated target local power state for a power domain will be the minimum
2721of the requested local power state values.
2722
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002723Function : plat_get_power_domain_tree_desc() [mandatory]
2724~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002725
2726::
2727
2728 Argument : void
2729 Return : const unsigned char *
2730
2731This function returns a pointer to the byte array containing the power domain
2732topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002733described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2734initialization code requires this array to be described by the platform, either
2735statically or dynamically, to initialize the power domain topology tree. In case
2736the array is populated dynamically, then plat_core_pos_by_mpidr() and
2737plat_my_core_pos() should also be implemented suitably so that the topology tree
2738description matches the CPU indices returned by these APIs. These APIs together
2739form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002740
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002741Function : plat_setup_psci_ops() [mandatory]
2742~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002743
2744::
2745
2746 Argument : uintptr_t, const plat_psci_ops **
2747 Return : int
2748
2749This function may execute with the MMU and data caches enabled if the platform
2750port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2751called by the primary CPU.
2752
2753This function is called by PSCI initialization code. Its purpose is to let
2754the platform layer know about the warm boot entrypoint through the
2755``sec_entrypoint`` (first argument) and to export handler routines for
2756platform-specific psci power management actions by populating the passed
2757pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2758
2759A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002760the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002761``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002762platform wants to support, the associated operation or operations in this
2763structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002764:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002765function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002766structure instead of providing an empty implementation.
2767
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002768plat_psci_ops.cpu_standby()
2769...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002770
2771Perform the platform-specific actions to enter the standby state for a cpu
2772indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002773wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002774For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2775the suspend state type specified in the ``power-state`` parameter should be
2776STANDBY and the target power domain level specified should be the CPU. The
2777handler should put the CPU into a low power retention state (usually by
2778issuing a wfi instruction) and ensure that it can be woken up from that
2779state by a normal interrupt. The generic code expects the handler to succeed.
2780
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002781plat_psci_ops.pwr_domain_on()
2782.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002783
2784Perform the platform specific actions to power on a CPU, specified
2785by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002786return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002787
Varun Wadekar77dd4f12023-04-25 14:03:27 +01002788plat_psci_ops.pwr_domain_off_early() [optional]
2789...............................................
2790
2791This optional function performs the platform specific actions to check if
2792powering off the calling CPU and its higher parent power domain levels as
2793indicated by the ``target_state`` (first argument) is possible or allowed.
2794
2795The ``target_state`` encodes the platform coordinated target local power states
2796for the CPU power domain and its parent power domain levels.
2797
2798For this handler, the local power state for the CPU power domain will be a
2799power down state where as it could be either power down, retention or run state
2800for the higher power domain levels depending on the result of state
2801coordination. The generic code expects PSCI_E_DENIED return code if the
2802platform thinks that CPU_OFF should not proceed on the calling CPU.
2803
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002804plat_psci_ops.pwr_domain_off()
2805..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002806
2807Perform the platform specific actions to prepare to power off the calling CPU
2808and its higher parent power domain levels as indicated by the ``target_state``
2809(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2810
2811The ``target_state`` encodes the platform coordinated target local power states
2812for the CPU power domain and its parent power domain levels. The handler
2813needs to perform power management operation corresponding to the local state
2814at each power level.
2815
2816For this handler, the local power state for the CPU power domain will be a
2817power down state where as it could be either power down, retention or run state
2818for the higher power domain levels depending on the result of state
2819coordination. The generic code expects the handler to succeed.
2820
Wing Lic0dc6392023-05-04 08:31:19 -07002821plat_psci_ops.pwr_domain_validate_suspend() [optional]
2822......................................................
2823
2824This is an optional function that is only compiled into the build if the build
2825option ``PSCI_OS_INIT_MODE`` is enabled.
2826
2827If implemented, this function allows the platform to perform platform specific
2828validations based on hardware states. The generic code expects this function to
2829return PSCI_E_SUCCESS on success, or either PSCI_E_DENIED or
2830PSCI_E_INVALID_PARAMS as appropriate for any invalid requests.
2831
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002832plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2833...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002834
2835This optional function may be used as a performance optimization to replace
2836or complement pwr_domain_suspend() on some platforms. Its calling semantics
2837are identical to pwr_domain_suspend(), except the PSCI implementation only
2838calls this function when suspending to a power down state, and it guarantees
2839that data caches are enabled.
2840
2841When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2842before calling pwr_domain_suspend(). If the target_state corresponds to a
2843power down state and it is safe to perform some or all of the platform
2844specific actions in that function with data caches enabled, it may be more
2845efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2846= 1, data caches remain enabled throughout, and so there is no advantage to
2847moving platform specific actions to this function.
2848
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002849plat_psci_ops.pwr_domain_suspend()
2850..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002851
2852Perform the platform specific actions to prepare to suspend the calling
2853CPU and its higher parent power domain levels as indicated by the
2854``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2855API implementation.
2856
2857The ``target_state`` has a similar meaning as described in
2858the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2859target local power states for the CPU power domain and its parent
2860power domain levels. The handler needs to perform power management operation
2861corresponding to the local state at each power level. The generic code
2862expects the handler to succeed.
2863
Douglas Raillarda84996b2017-08-02 16:57:32 +01002864The difference between turning a power domain off versus suspending it is that
2865in the former case, the power domain is expected to re-initialize its state
2866when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2867case, the power domain is expected to save enough state so that it can resume
2868execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002869``pwr_domain_suspend_finish()``).
2870
Douglas Raillarda84996b2017-08-02 16:57:32 +01002871When suspending a core, the platform can also choose to power off the GICv3
2872Redistributor and ITS through an implementation-defined sequence. To achieve
2873this safely, the ITS context must be saved first. The architectural part is
2874implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2875sequence is implementation defined and it is therefore the responsibility of
2876the platform code to implement the necessary sequence. Then the GIC
2877Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2878Powering off the Redistributor requires the implementation to support it and it
2879is the responsibility of the platform code to execute the right implementation
2880defined sequence.
2881
2882When a system suspend is requested, the platform can also make use of the
2883``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2884it has saved the context of the Redistributors and ITS of all the cores in the
2885system. The context of the Distributor can be large and may require it to be
2886allocated in a special area if it cannot fit in the platform's global static
2887data, for example in DRAM. The Distributor can then be powered down using an
2888implementation-defined sequence.
2889
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002890plat_psci_ops.pwr_domain_pwr_down_wfi()
2891.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002892
2893This is an optional function and, if implemented, is expected to perform
2894platform specific actions including the ``wfi`` invocation which allows the
2895CPU to powerdown. Since this function is invoked outside the PSCI locks,
2896the actions performed in this hook must be local to the CPU or the platform
2897must ensure that races between multiple CPUs cannot occur.
2898
2899The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2900operation and it encodes the platform coordinated target local power states for
2901the CPU power domain and its parent power domain levels. This function must
Boyan Karatotev43771f32022-10-05 13:41:56 +01002902not return back to the caller (by calling wfi in an infinite loop to ensure
2903some CPUs power down mitigations work properly).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002904
2905If this function is not implemented by the platform, PSCI generic
2906implementation invokes ``psci_power_down_wfi()`` for power down.
2907
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002908plat_psci_ops.pwr_domain_on_finish()
2909....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002910
2911This function is called by the PSCI implementation after the calling CPU is
2912powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2913It performs the platform-specific setup required to initialize enough state for
2914this CPU to enter the normal world and also provide secure runtime firmware
2915services.
2916
2917The ``target_state`` (first argument) is the prior state of the power domains
2918immediately before the CPU was turned on. It indicates which power domains
2919above the CPU might require initialization due to having previously been in
2920low power states. The generic code expects the handler to succeed.
2921
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002922plat_psci_ops.pwr_domain_on_finish_late() [optional]
2923...........................................................
2924
2925This optional function is called by the PSCI implementation after the calling
2926CPU is fully powered on with respective data caches enabled. The calling CPU and
2927the associated cluster are guaranteed to be participating in coherency. This
2928function gives the flexibility to perform any platform-specific actions safely,
2929such as initialization or modification of shared data structures, without the
2930overhead of explicit cache maintainace operations.
2931
2932The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2933operation. The generic code expects the handler to succeed.
2934
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002935plat_psci_ops.pwr_domain_suspend_finish()
2936.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002937
2938This function is called by the PSCI implementation after the calling CPU is
2939powered on and released from reset in response to an asynchronous wakeup
2940event, for example a timer interrupt that was programmed by the CPU during the
2941``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2942setup required to restore the saved state for this CPU to resume execution
2943in the normal world and also provide secure runtime firmware services.
2944
2945The ``target_state`` (first argument) has a similar meaning as described in
2946the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2947to succeed.
2948
Douglas Raillarda84996b2017-08-02 16:57:32 +01002949If the Distributor, Redistributors or ITS have been powered off as part of a
2950suspend, their context must be restored in this function in the reverse order
2951to how they were saved during suspend sequence.
2952
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002953plat_psci_ops.system_off()
2954..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002955
2956This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2957call. It performs the platform-specific system poweroff sequence after
2958notifying the Secure Payload Dispatcher.
2959
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002960plat_psci_ops.system_reset()
2961............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002962
2963This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2964call. It performs the platform-specific system reset sequence after
2965notifying the Secure Payload Dispatcher.
2966
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002967plat_psci_ops.validate_power_state()
2968....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002969
2970This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2971call to validate the ``power_state`` parameter of the PSCI API and if valid,
2972populate it in ``req_state`` (second argument) array as power domain level
2973specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002974return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002975normal world PSCI client.
2976
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002977plat_psci_ops.validate_ns_entrypoint()
2978......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002979
2980This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2981``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2982parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002983the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002984propagated back to the normal world PSCI client.
2985
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002986plat_psci_ops.get_sys_suspend_power_state()
2987...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002988
2989This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2990call to get the ``req_state`` parameter from platform which encodes the power
2991domain level specific local states to suspend to system affinity level. The
2992``req_state`` will be utilized to do the PSCI state coordination and
2993``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2994enter system suspend.
2995
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002996plat_psci_ops.get_pwr_lvl_state_idx()
2997.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002998
2999This is an optional function and, if implemented, is invoked by the PSCI
3000implementation to convert the ``local_state`` (first argument) at a specified
3001``pwr_lvl`` (second argument) to an index between 0 and
3002``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
3003supports more than two local power states at each power domain level, that is
3004``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
3005local power states.
3006
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003007plat_psci_ops.translate_power_state_by_mpidr()
3008..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003009
3010This is an optional function and, if implemented, verifies the ``power_state``
3011(second argument) parameter of the PSCI API corresponding to a target power
3012domain. The target power domain is identified by using both ``MPIDR`` (first
3013argument) and the power domain level encoded in ``power_state``. The power domain
3014level specific local states are to be extracted from ``power_state`` and be
3015populated in the ``output_state`` (third argument) array. The functionality
3016is similar to the ``validate_power_state`` function described above and is
3017envisaged to be used in case the validity of ``power_state`` depend on the
3018targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003019domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003020function is not implemented, then the generic implementation relies on
3021``validate_power_state`` function to translate the ``power_state``.
3022
3023This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003024power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003025APIs as described in Section 5.18 of `PSCI`_.
3026
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003027plat_psci_ops.get_node_hw_state()
3028.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003029
3030This is an optional function. If implemented this function is intended to return
3031the power state of a node (identified by the first parameter, the ``MPIDR``) in
3032the power domain topology (identified by the second parameter, ``power_level``),
3033as retrieved from a power controller or equivalent component on the platform.
3034Upon successful completion, the implementation must map and return the final
3035status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
3036must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
3037appropriate.
3038
3039Implementations are not expected to handle ``power_levels`` greater than
3040``PLAT_MAX_PWR_LVL``.
3041
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003042plat_psci_ops.system_reset2()
3043.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003044
3045This is an optional function. If implemented this function is
3046called during the ``SYSTEM_RESET2`` call to perform a reset
3047based on the first parameter ``reset_type`` as specified in
3048`PSCI`_. The parameter ``cookie`` can be used to pass additional
3049reset information. If the ``reset_type`` is not supported, the
3050function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
3051resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
3052and vendor reset can return other PSCI error codes as defined
3053in `PSCI`_. On success this function will not return.
3054
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003055plat_psci_ops.write_mem_protect()
3056.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003057
3058This is an optional function. If implemented it enables or disables the
3059``MEM_PROTECT`` functionality based on the value of ``val``.
3060A non-zero value enables ``MEM_PROTECT`` and a value of zero
3061disables it. Upon encountering failures it must return a negative value
3062and on success it must return 0.
3063
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003064plat_psci_ops.read_mem_protect()
3065................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003066
3067This is an optional function. If implemented it returns the current
3068state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
3069failures it must return a negative value and on success it must
3070return 0.
3071
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003072plat_psci_ops.mem_protect_chk()
3073...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01003074
3075This is an optional function. If implemented it checks if a memory
3076region defined by a base address ``base`` and with a size of ``length``
3077bytes is protected by ``MEM_PROTECT``. If the region is protected
3078then it must return 0, otherwise it must return a negative number.
3079
Paul Beesleyf8640672019-04-12 14:19:42 +01003080.. _porting_guide_imf_in_bl31:
3081
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003082Interrupt Management framework (in BL31)
3083----------------------------------------
3084
3085BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
3086generated in either security state and targeted to EL1 or EL2 in the non-secure
3087state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01003088described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003089
3090A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00003091text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003092platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00003093present in the platform. Arm standard platform layer supports both
3094`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
3095and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
3096FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003097``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
3098details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003099
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05003100See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01003101
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003102Function : plat_interrupt_type_to_line() [mandatory]
3103~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003104
3105::
3106
3107 Argument : uint32_t, uint32_t
3108 Return : uint32_t
3109
Dan Handley610e7e12018-03-01 18:44:00 +00003110The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003111interrupt line. The specific line that is signaled depends on how the interrupt
3112controller (IC) reports different interrupt types from an execution context in
3113either security state. The IMF uses this API to determine which interrupt line
3114the platform IC uses to signal each type of interrupt supported by the framework
3115from a given security state. This API must be invoked at EL3.
3116
3117The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01003118:ref:`Interrupt Management Framework`) indicating the target type of the
3119interrupt, the second parameter is the security state of the originating
3120execution context. The return result is the bit position in the ``SCR_EL3``
3121register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003122
Dan Handley610e7e12018-03-01 18:44:00 +00003123In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003124configured as FIQs and Non-secure interrupts as IRQs from either security
3125state.
3126
Dan Handley610e7e12018-03-01 18:44:00 +00003127In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003128configured depends on the security state of the execution context when the
3129interrupt is signalled and are as follows:
3130
3131- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
3132 NS-EL0/1/2 context.
3133- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
3134 in the NS-EL0/1/2 context.
3135- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
3136 context.
3137
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003138Function : plat_ic_get_pending_interrupt_type() [mandatory]
3139~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003140
3141::
3142
3143 Argument : void
3144 Return : uint32_t
3145
3146This API returns the type of the highest priority pending interrupt at the
3147platform IC. The IMF uses the interrupt type to retrieve the corresponding
3148handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
3149pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
3150``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
3151
Dan Handley610e7e12018-03-01 18:44:00 +00003152In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003153Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
3154the pending interrupt. The type of interrupt depends upon the id value as
3155follows.
3156
3157#. id < 1022 is reported as a S-EL1 interrupt
3158#. id = 1022 is reported as a Non-secure interrupt.
3159#. id = 1023 is reported as an invalid interrupt type.
3160
Dan Handley610e7e12018-03-01 18:44:00 +00003161In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003162``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
3163is read to determine the id of the pending interrupt. The type of interrupt
3164depends upon the id value as follows.
3165
3166#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
3167#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
3168#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
3169#. All other interrupt id's are reported as EL3 interrupt.
3170
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003171Function : plat_ic_get_pending_interrupt_id() [mandatory]
3172~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003173
3174::
3175
3176 Argument : void
3177 Return : uint32_t
3178
3179This API returns the id of the highest priority pending interrupt at the
3180platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
3181pending.
3182
Dan Handley610e7e12018-03-01 18:44:00 +00003183In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003184Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
3185pending interrupt. The id that is returned by API depends upon the value of
3186the id read from the interrupt controller as follows.
3187
3188#. id < 1022. id is returned as is.
3189#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
3190 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
3191 This id is returned by the API.
3192#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
3193
Dan Handley610e7e12018-03-01 18:44:00 +00003194In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003195EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
3196group 0 Register*, is read to determine the id of the pending interrupt. The id
3197that is returned by API depends upon the value of the id read from the
3198interrupt controller as follows.
3199
3200#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
3201#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
3202 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
3203 Register* is read to determine the id of the group 1 interrupt. This id
3204 is returned by the API as long as it is a valid interrupt id
3205#. If the id is any of the special interrupt identifiers,
3206 ``INTR_ID_UNAVAILABLE`` is returned.
3207
3208When the API invoked from S-EL1 for GICv3 systems, the id read from system
3209register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003210Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003211``INTR_ID_UNAVAILABLE`` is returned.
3212
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003213Function : plat_ic_acknowledge_interrupt() [mandatory]
3214~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003215
3216::
3217
3218 Argument : void
3219 Return : uint32_t
3220
3221This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003222the highest pending interrupt has begun. It should return the raw, unmodified
3223value obtained from the interrupt controller when acknowledging an interrupt.
3224The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05003225`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003226
Dan Handley610e7e12018-03-01 18:44:00 +00003227This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003228Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
3229priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003230It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003231
Dan Handley610e7e12018-03-01 18:44:00 +00003232In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003233from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
3234Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
3235reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
3236group 1*. The read changes the state of the highest pending interrupt from
3237pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003238unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003239
3240The TSP uses this API to start processing of the secure physical timer
3241interrupt.
3242
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003243Function : plat_ic_end_of_interrupt() [mandatory]
3244~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003245
3246::
3247
3248 Argument : uint32_t
3249 Return : void
3250
3251This API is used by the CPU to indicate to the platform IC that processing of
3252the interrupt corresponding to the id (passed as the parameter) has
3253finished. The id should be the same as the id returned by the
3254``plat_ic_acknowledge_interrupt()`` API.
3255
Dan Handley610e7e12018-03-01 18:44:00 +00003256Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003257(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
3258system register in case of GICv3 depending on where the API is invoked from,
3259EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
3260controller.
3261
3262The TSP uses this API to finish processing of the secure physical timer
3263interrupt.
3264
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003265Function : plat_ic_get_interrupt_type() [mandatory]
3266~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003267
3268::
3269
3270 Argument : uint32_t
3271 Return : uint32_t
3272
3273This API returns the type of the interrupt id passed as the parameter.
3274``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
3275interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
3276returned depending upon how the interrupt has been configured by the platform
3277IC. This API must be invoked at EL3.
3278
Dan Handley610e7e12018-03-01 18:44:00 +00003279Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003280and Non-secure interrupts as Group1 interrupts. It reads the group value
3281corresponding to the interrupt id from the relevant *Interrupt Group Register*
3282(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
3283
Dan Handley610e7e12018-03-01 18:44:00 +00003284In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003285Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
3286(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
3287as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
3288
Manish Pandey3161fa52022-11-02 16:30:09 +00003289Common helper functions
3290-----------------------
Govindraj Rajab6709b02023-02-21 17:43:55 +00003291Function : elx_panic()
3292~~~~~~~~~~~~~~~~~~~~~~
Manish Pandey3161fa52022-11-02 16:30:09 +00003293
Govindraj Rajab6709b02023-02-21 17:43:55 +00003294::
3295
3296 Argument : void
3297 Return : void
3298
3299This API is called from assembly files when reporting a critical failure
3300that has occured in lower EL and is been trapped in EL3. This call
3301**must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003302
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003303Function : el3_panic()
3304~~~~~~~~~~~~~~~~~~~~~~
Manish Pandey3161fa52022-11-02 16:30:09 +00003305
3306::
3307
3308 Argument : void
3309 Return : void
3310
3311This API is called from assembly files when encountering a critical failure that
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003312cannot be recovered from. This function assumes that it is invoked from a C
3313runtime environment i.e. valid stack exists. This call **must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003314
3315Function : panic()
3316~~~~~~~~~~~~~~~~~~
3317
3318::
3319
3320 Argument : void
3321 Return : void
3322
3323This API called from C files when encountering a critical failure that cannot
3324be recovered from. This function in turn prints backtrace (if enabled) and calls
Govindraj Rajaa796b1b2023-01-16 17:35:07 +00003325el3_panic(). This call **must not** return.
Manish Pandey3161fa52022-11-02 16:30:09 +00003326
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003327Crash Reporting mechanism (in BL31)
3328-----------------------------------
3329
3330BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003331of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00003332on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003333``plat_crash_console_putc`` and ``plat_crash_console_flush``.
3334
3335The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
3336implementation of all of them. Platforms may include this file to their
3337makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003338output to be routed over the normal console infrastructure and get printed on
3339consoles configured to output in crash state. ``console_set_scope()`` can be
3340used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00003341
3342.. note::
3343 Platforms are responsible for making sure that they only mark consoles for
3344 use in the crash scope that are able to support this, i.e. that are written
3345 in assembly and conform with the register clobber rules for putc()
3346 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003347
Julius Werneraae9bb12017-09-18 16:49:48 -07003348In some cases (such as debugging very early crashes that happen before the
3349normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08003350more explicitly. These platforms may instead provide custom implementations for
3351these. They are executed outside of a C environment and without a stack. Many
3352console drivers provide functions named ``console_xxx_core_init/putc/flush``
3353that are designed to be used by these functions. See Arm platforms (like juno)
3354for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003355
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003356Function : plat_crash_console_init [mandatory]
3357~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003358
3359::
3360
3361 Argument : void
3362 Return : int
3363
3364This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003365console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003366initialization and returns 1 on success.
3367
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003368Function : plat_crash_console_putc [mandatory]
3369~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003370
3371::
3372
3373 Argument : int
3374 Return : int
3375
3376This API is used by the crash reporting mechanism to print a character on the
3377designated crash console. It must only use general purpose registers x1 and
3378x2 to do its work. The parameter and the return value are in general purpose
3379register x0.
3380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003381Function : plat_crash_console_flush [mandatory]
3382~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003383
3384::
3385
3386 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003387 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003388
3389This API is used by the crash reporting mechanism to force write of all buffered
3390data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003391registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003392
Manish Pandey9c9f38a2020-06-30 00:46:08 +01003393.. _External Abort handling and RAS Support:
3394
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01003395External Abort handling and RAS Support
3396---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01003397
3398Function : plat_ea_handler
3399~~~~~~~~~~~~~~~~~~~~~~~~~~
3400
3401::
3402
3403 Argument : int
3404 Argument : uint64_t
3405 Argument : void *
3406 Argument : void *
3407 Argument : uint64_t
3408 Return : void
3409
3410This function is invoked by the RAS framework for the platform to handle an
3411External Abort received at EL3. The intention of the function is to attempt to
3412resolve the cause of External Abort and return; if that's not possible, to
3413initiate orderly shutdown of the system.
3414
3415The first parameter (``int ea_reason``) indicates the reason for External Abort.
3416Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
3417
3418The second parameter (``uint64_t syndrome``) is the respective syndrome
3419presented to EL3 after having received the External Abort. Depending on the
3420nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
3421can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
3422
3423The third parameter (``void *cookie``) is unused for now. The fourth parameter
3424(``void *handle``) is a pointer to the preempted context. The fifth parameter
3425(``uint64_t flags``) indicates the preempted security state. These parameters
3426are received from the top-level exception handler.
3427
Manish Pandeyd419e222023-02-13 12:39:17 +00003428If ``RAS_FFH_SUPPORT`` is set to ``1``, the default implementation of this
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01003429function iterates through RAS handlers registered by the platform. If any of the
3430RAS handlers resolve the External Abort, no further action is taken.
3431
Manish Pandeyd419e222023-02-13 12:39:17 +00003432If ``RAS_FFH_SUPPORT`` is set to ``0``, or if none of the platform RAS handlers
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01003433could resolve the External Abort, the default implementation prints an error
3434message, and panics.
3435
3436Function : plat_handle_uncontainable_ea
3437~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3438
3439::
3440
3441 Argument : int
3442 Argument : uint64_t
3443 Return : void
3444
3445This function is invoked by the RAS framework when an External Abort of
3446Uncontainable type is received at EL3. Due to the critical nature of
3447Uncontainable errors, the intention of this function is to initiate orderly
3448shutdown of the system, and is not expected to return.
3449
3450This function must be implemented in assembly.
3451
3452The first and second parameters are the same as that of ``plat_ea_handler``.
3453
3454The default implementation of this function calls
3455``report_unhandled_exception``.
3456
3457Function : plat_handle_double_fault
3458~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3459
3460::
3461
3462 Argument : int
3463 Argument : uint64_t
3464 Return : void
3465
3466This function is invoked by the RAS framework when another External Abort is
3467received at EL3 while one is already being handled. I.e., a call to
3468``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
3469this function is to initiate orderly shutdown of the system, and is not expected
3470recover or return.
3471
3472This function must be implemented in assembly.
3473
3474The first and second parameters are the same as that of ``plat_ea_handler``.
3475
3476The default implementation of this function calls
3477``report_unhandled_exception``.
3478
3479Function : plat_handle_el3_ea
3480~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3481
3482::
3483
3484 Return : void
3485
3486This function is invoked when an External Abort is received while executing in
3487EL3. Due to its critical nature, the intention of this function is to initiate
3488orderly shutdown of the system, and is not expected recover or return.
3489
3490This function must be implemented in assembly.
3491
3492The default implementation of this function calls
3493``report_unhandled_exception``.
3494
Andre Przywarabdc76f12022-11-21 17:07:25 +00003495Function : plat_handle_rng_trap
3496~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3497
3498::
3499
3500 Argument : uint64_t
3501 Argument : cpu_context_t *
3502 Return : int
3503
3504This function is invoked by BL31's exception handler when there is a synchronous
3505system register trap caused by access to the RNDR or RNDRRS registers. It allows
3506platforms implementing ``FEAT_RNG_TRAP`` and enabling ``ENABLE_FEAT_RNG_TRAP`` to
3507emulate those system registers by returing back some entropy to the lower EL.
3508
3509The first parameter (``uint64_t esr_el3``) contains the content of the ESR_EL3
3510syndrome register, which encodes the instruction that was trapped. The interesting
3511information in there is the target register (``get_sysreg_iss_rt()``).
3512
3513The second parameter (``cpu_context_t *ctx``) represents the CPU state in the
3514lower exception level, at the time when the execution of the ``mrs`` instruction
3515was trapped. Its content can be changed, to put the entropy into the target
3516register.
3517
3518The return value indicates how to proceed:
3519
3520- When returning ``TRAP_RET_UNHANDLED`` (-1), the machine will panic.
3521- When returning ``TRAP_RET_REPEAT`` (0), the exception handler will return
3522 to the same instruction, so its execution will be repeated.
3523- When returning ``TRAP_RET_CONTINUE`` (1), the exception handler will return
3524 to the next instruction.
3525
3526This function needs to be implemented by a platform if it enables FEAT_RNG_TRAP.
3527
Varun Wadekar0a46eb12023-04-13 21:06:18 +01003528Function : plat_handle_impdef_trap
3529~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3530
3531::
3532
3533 Argument : uint64_t
3534 Argument : cpu_context_t *
3535 Return : int
3536
3537This function is invoked by BL31's exception handler when there is a synchronous
3538system register trap caused by access to the implementation defined registers.
3539It allows platforms enabling ``IMPDEF_SYSREG_TRAP`` to emulate those system
3540registers choosing to program bits of their choice.
3541
3542The first parameter (``uint64_t esr_el3``) contains the content of the ESR_EL3
3543syndrome register, which encodes the instruction that was trapped.
3544
3545The second parameter (``cpu_context_t *ctx``) represents the CPU state in the
3546lower exception level, at the time when the execution of the ``mrs`` instruction
3547was trapped.
3548
3549The return value indicates how to proceed:
3550
3551- When returning ``TRAP_RET_UNHANDLED`` (-1), the machine will panic.
3552- When returning ``TRAP_RET_REPEAT`` (0), the exception handler will return
3553 to the same instruction, so its execution will be repeated.
3554- When returning ``TRAP_RET_CONTINUE`` (1), the exception handler will return
3555 to the next instruction.
3556
3557This function needs to be implemented by a platform if it enables
3558IMPDEF_SYSREG_TRAP.
3559
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003560Build flags
3561-----------
3562
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003563There are some build flags which can be defined by the platform to control
3564inclusion or exclusion of certain BL stages from the FIP image. These flags
3565need to be defined in the platform makefile which will get included by the
3566build system.
3567
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003568- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003569 By default, this flag is defined ``yes`` by the build system and ``BL33``
3570 build option should be supplied as a build option. The platform has the
3571 option of excluding the BL33 image in the ``fip`` image by defining this flag
3572 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3573 are used, this flag will be set to ``no`` automatically.
3574
Paul Beesley07f0a312019-05-16 13:33:18 +01003575Platform include paths
3576----------------------
3577
3578Platforms are allowed to add more include paths to be passed to the compiler.
3579The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3580particular for the file ``platform_def.h``.
3581
3582Example:
3583
3584.. code:: c
3585
3586 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3587
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003588C Library
3589---------
3590
3591To avoid subtle toolchain behavioral dependencies, the header files provided
3592by the compiler are not used. The software is built with the ``-nostdinc`` flag
3593to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00003594required headers are included in the TF-A source tree. The library only
3595contains those C library definitions required by the local implementation. If
3596more functionality is required, the needed library functions will need to be
3597added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003598
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003599Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00003600been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003601from `FreeBSD`_, others have been written specifically for TF-A as well. The
3602files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003603
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01003604SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3605can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003606
3607Storage abstraction layer
3608-------------------------
3609
Louis Mayencourtb5469002019-07-15 13:56:03 +01003610In order to improve platform independence and portability a storage abstraction
3611layer is used to load data from non-volatile platform storage. Currently
3612storage access is only required by BL1 and BL2 phases and performed inside the
3613``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003614
Sandrine Bailleuxf17ddaa2023-02-08 14:07:29 +01003615.. uml:: resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003616
Dan Handley610e7e12018-03-01 18:44:00 +00003617It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003618development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003619the default means to load data from storage (see :ref:`firmware_design_fip`).
3620The storage layer is described in the header file
3621``include/drivers/io/io_storage.h``. The implementation of the common library is
3622in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003623``drivers/io/``.
3624
Sandrine Bailleuxf17ddaa2023-02-08 14:07:29 +01003625.. uml:: resources/diagrams/plantuml/io_arm_class_diagram.puml
Louis Mayencourtb5469002019-07-15 13:56:03 +01003626
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003627Each IO driver must provide ``io_dev_*`` structures, as described in
3628``drivers/io/io_driver.h``. These are returned via a mandatory registration
3629function that is called on platform initialization. The semi-hosting driver
3630implementation in ``io_semihosting.c`` can be used as an example.
3631
Louis Mayencourtb5469002019-07-15 13:56:03 +01003632Each platform should register devices and their drivers via the storage
3633abstraction layer. These drivers then need to be initialized by bootloader
3634phases as required in their respective ``blx_platform_setup()`` functions.
3635
Sandrine Bailleuxf17ddaa2023-02-08 14:07:29 +01003636.. uml:: resources/diagrams/plantuml/io_dev_registration.puml
Louis Mayencourtb5469002019-07-15 13:56:03 +01003637
3638The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3639initialize storage devices before IO operations are called.
3640
Sandrine Bailleuxf17ddaa2023-02-08 14:07:29 +01003641.. uml:: resources/diagrams/plantuml/io_dev_init_and_check.puml
Louis Mayencourtb5469002019-07-15 13:56:03 +01003642
3643The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003644include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3645Drivers do not have to implement all operations, but each platform must
3646provide at least one driver for a device capable of supporting generic
3647operations such as loading a bootloader image.
3648
3649The current implementation only allows for known images to be loaded by the
3650firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003651``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003652there). The platform layer (``plat_get_image_source()``) then returns a reference
3653to a device and a driver-specific ``spec`` which will be understood by the driver
3654to allow access to the image data.
3655
3656The layer is designed in such a way that is it possible to chain drivers with
3657other drivers. For example, file-system drivers may be implemented on top of
3658physical block devices, both represented by IO devices with corresponding
3659drivers. In such a case, the file-system "binding" with the block device may
3660be deferred until the file-system device is initialised.
3661
3662The abstraction currently depends on structures being statically allocated
3663by the drivers and callers, as the system does not yet provide a means of
3664dynamically allocating memory. This may also have the affect of limiting the
3665amount of open resources per driver.
3666
3667--------------
3668
Chris Kay33bfc5e2023-02-14 11:30:04 +00003669*Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003670
Manish V Badarkhe9d24e9b2023-06-15 09:14:33 +01003671.. _PSCI: https://developer.arm.com/documentation/den0022/latest/
Dan Handley610e7e12018-03-01 18:44:00 +00003672.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003673.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003674.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003675.. _SCC: http://www.simple-cc.org/
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01003676.. _DRTM: https://developer.arm.com/documentation/den0113/a