blob: c4686f6f1572aa8e86b41bb86c8364567750aebc [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Paul Beesleyf8640672019-04-12 14:19:42 +010026Please refer to the :ref:`Platform Compatibility Policy` for the policy
27regarding compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010028
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillardd7c21b72017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley610e7e12018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010061
Dan Handley610e7e12018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Javier Almansa Sobrino37bf69c2022-04-07 18:26:49 +010092.. _platform_def_mandatory:
93
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010094File : platform_def.h [mandatory]
95~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010096
97Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000098include path with the following constants defined. This will require updating
99the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100
Paul Beesleyf8640672019-04-12 14:19:42 +0100101Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100102which provides typical values for some of the constants below. These values are
103likely to be suitable for all platform ports.
104
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100105- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100106
107 Defines the linker format used by the platform, for example
108 ``elf64-littleaarch64``.
109
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100110- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100111
112 Defines the processor architecture for the linker by the platform, for
113 example ``aarch64``.
114
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100115- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100116
117 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100118 by ``plat/common/aarch64/platform_mp_stack.S`` and
119 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
David Horstmann051fd6d2020-11-12 15:19:04 +0000121- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100122
Max Yufa0b4e82022-09-08 23:21:21 +0000123 Defines the size in bytes of the largest cache line across all the cache
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100124 levels in the platform.
125
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100126- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100127
128 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
129 function.
130
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100131- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100132
133 Defines the total number of CPUs implemented by the platform across all
134 clusters in the system.
135
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100136- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100137
138 Defines the total number of nodes in the power domain topology
139 tree at all the power domain levels used by the platform.
140 This macro is used by the PSCI implementation to allocate
141 data structures to represent power domain topology.
142
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100143- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100144
145 Defines the maximum power domain level that the power management operations
146 should apply to. More often, but not always, the power domain level
147 corresponds to affinity level. This macro allows the PSCI implementation
148 to know the highest power domain level that it should consider for power
149 management operations in the system that the platform implements. For
150 example, the Base AEM FVP implements two clusters with a configurable
151 number of CPUs and it reports the maximum power domain level as 1.
152
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100153- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100154
155 Defines the local power state corresponding to the deepest power down
156 possible at every power domain level in the platform. The local power
157 states for each level may be sparsely allocated between 0 and this value
158 with 0 being reserved for the RUN state. The PSCI implementation uses this
159 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100162- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100163
164 Defines the local power state corresponding to the deepest retention state
165 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100170- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100171
172 Defines the maximum number of local power states per power domain level
173 that the platform supports. The default value of this macro is 2 since
174 most platforms just support a maximum of two local power states at each
175 power domain level (power-down and retention). If the platform needs to
176 account for more local power states, then it must redefine this macro.
177
178 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100181- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100182
183 Defines the base address in secure ROM where BL1 originally lives. Must be
184 aligned on a page-size boundary.
185
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100186- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100187
188 Defines the maximum address in secure ROM that BL1's actual content (i.e.
189 excluding any data section allocated at runtime) can occupy.
190
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100191- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100192
193 Defines the base address in secure RAM where BL1's read-write data will live
194 at runtime. Must be aligned on a page-size boundary.
195
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100196- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100197
198 Defines the maximum address in secure RAM that BL1's read-write data can
199 occupy at runtime.
200
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100201- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100202
203 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000204 Must be aligned on a page-size boundary. This constant is not applicable
205 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100207- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100208
209 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000210 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
211
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100212- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000213
214 Defines the base address in secure XIP memory where BL2 RO section originally
215 lives. Must be aligned on a page-size boundary. This constant is only needed
216 when BL2_IN_XIP_MEM is set to '1'.
217
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100218- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000219
220 Defines the maximum address in secure XIP memory that BL2's actual content
221 (i.e. excluding any data section allocated at runtime) can occupy. This
222 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
223
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100224- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000225
226 Defines the base address in secure RAM where BL2's read-write data will live
227 at runtime. Must be aligned on a page-size boundary. This constant is only
228 needed when BL2_IN_XIP_MEM is set to '1'.
229
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100230- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000231
232 Defines the maximum address in secure RAM that BL2's read-write data can
233 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
234 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100236- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100237
238 Defines the base address in secure RAM where BL2 loads the BL31 binary
239 image. Must be aligned on a page-size boundary.
240
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100241- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100242
243 Defines the maximum address in secure RAM that the BL31 image can occupy.
244
245For every image, the platform must define individual identifiers that will be
246used by BL1 or BL2 to load the corresponding image into memory from non-volatile
247storage. For the sake of performance, integer numbers will be used as
248identifiers. The platform will use those identifiers to return the relevant
249information about the image to be loaded (file handler, load address,
250authentication information, etc.). The following image identifiers are
251mandatory:
252
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100253- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100254
255 BL2 image identifier, used by BL1 to load BL2.
256
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100257- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100258
259 BL31 image identifier, used by BL2 to load BL31.
260
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100261- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100262
263 BL33 image identifier, used by BL2 to load BL33.
264
265If Trusted Board Boot is enabled, the following certificate identifiers must
266also be defined:
267
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100268- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100269
270 BL2 content certificate identifier, used by BL1 to load the BL2 content
271 certificate.
272
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100273- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100274
275 Trusted key certificate identifier, used by BL2 to load the trusted key
276 certificate.
277
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100278- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100279
280 BL31 key certificate identifier, used by BL2 to load the BL31 key
281 certificate.
282
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100283- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100284
285 BL31 content certificate identifier, used by BL2 to load the BL31 content
286 certificate.
287
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100288- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100289
290 BL33 key certificate identifier, used by BL2 to load the BL33 key
291 certificate.
292
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100293- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100294
295 BL33 content certificate identifier, used by BL2 to load the BL33 content
296 certificate.
297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100300 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100301 FWU content certificate.
302
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100303- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304
Dan Handley610e7e12018-03-01 18:44:00 +0000305 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000307 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100308 set.
309
310If the AP Firmware Updater Configuration image, BL2U is used, the following
311must also be defined:
312
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100313- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100314
315 Defines the base address in secure memory where BL1 copies the BL2U binary
316 image. Must be aligned on a page-size boundary.
317
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100318- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100319
320 Defines the maximum address in secure memory that the BL2U image can occupy.
321
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100322- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100323
324 BL2U image identifier, used by BL1 to fetch an image descriptor
325 corresponding to BL2U.
326
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100327If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100328must also be defined:
329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100331
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100332 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
333 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000334
335 .. note::
336 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100338If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100339also be defined:
340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100343 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100344 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000345
346 .. note::
347 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100350
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100351 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
352 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100354If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100355be defined:
356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100359 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100360 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000361
362 .. note::
363 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100365- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100366
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100367 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
368 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100369
370For the the Firmware update capability of TRUSTED BOARD BOOT, the following
371macros may also be defined:
372
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100373- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100374
375 Total number of images that can be loaded simultaneously. If the platform
376 doesn't specify any value, it defaults to 10.
377
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100378If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100379also be defined:
380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100381- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100382
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100383 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000384 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100388 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100389 certificate (mandatory when Trusted Board Boot is enabled).
390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100391- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100393 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100394 content certificate (mandatory when Trusted Board Boot is enabled).
395
396If a BL32 image is supported by the platform, the following constants must
397also be defined:
398
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100399- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100400
401 BL32 image identifier, used by BL2 to load BL32.
402
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100403- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100404
405 BL32 key certificate identifier, used by BL2 to load the BL32 key
406 certificate (mandatory when Trusted Board Boot is enabled).
407
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100408- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100409
410 BL32 content certificate identifier, used by BL2 to load the BL32 content
411 certificate (mandatory when Trusted Board Boot is enabled).
412
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100413- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100414
415 Defines the base address in secure memory where BL2 loads the BL32 binary
416 image. Must be aligned on a page-size boundary.
417
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100418- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100419
420 Defines the maximum address that the BL32 image can occupy.
421
422If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
423platform, the following constants must also be defined:
424
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100425- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100426
427 Defines the base address of the secure memory used by the TSP image on the
428 platform. This must be at the same address or below ``BL32_BASE``.
429
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100430- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100431
432 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000433 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
434 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
435 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100436
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100437- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100438
439 Defines the ID of the secure physical generic timer interrupt used by the
440 TSP's interrupt handling code.
441
442If the platform port uses the translation table library code, the following
443constants must also be defined:
444
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100445- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100446
447 Optional flag that can be set per-image to enable the dynamic allocation of
448 regions even when the MMU is enabled. If not defined, only static
449 functionality will be available, if defined and set to 1 it will also
450 include the dynamic functionality.
451
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100452- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100453
454 Defines the maximum number of translation tables that are allocated by the
455 translation table library code. To minimize the amount of runtime memory
456 used, choose the smallest value needed to map the required virtual addresses
457 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
458 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
459 as well.
460
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100461- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100462
463 Defines the maximum number of regions that are allocated by the translation
464 table library code. A region consists of physical base address, virtual base
465 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
466 defined in the ``mmap_region_t`` structure. The platform defines the regions
467 that should be mapped. Then, the translation table library will create the
468 corresponding tables and descriptors at runtime. To minimize the amount of
469 runtime memory used, choose the smallest value needed to register the
470 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
471 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
472 the dynamic regions as well.
473
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100474- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100475
476 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000477 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100478
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100479- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100480
481 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000482 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100483
484If the platform port uses the IO storage framework, the following constants
485must also be defined:
486
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100487- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100488
489 Defines the maximum number of registered IO devices. Attempting to register
490 more devices than this value using ``io_register_device()`` will fail with
491 -ENOMEM.
492
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100493- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100494
495 Defines the maximum number of open IO handles. Attempting to open more IO
496 entities than this value using ``io_open()`` will fail with -ENOMEM.
497
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100498- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100499
500 Defines the maximum number of registered IO block devices. Attempting to
501 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100502 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100503 With this macro, multiple block devices could be supported at the same
504 time.
505
506If the platform needs to allocate data within the per-cpu data framework in
507BL31, it should define the following macro. Currently this is only required if
508the platform decides not to use the coherent memory section by undefining the
509``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
510required memory within the the per-cpu data to minimize wastage.
511
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100512- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100513
514 Defines the memory (in bytes) to be reserved within the per-cpu data
515 structure for use by the platform layer.
516
517The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000518memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100519
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100520- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100521
522 Defines the maximum address in secure RAM that the BL31's progbits sections
523 can occupy.
524
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100525- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100526
527 Defines the maximum address that the TSP's progbits sections can occupy.
528
529If the platform port uses the PL061 GPIO driver, the following constant may
530optionally be defined:
531
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100532- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100533 Maximum number of GPIOs required by the platform. This allows control how
534 much memory is allocated for PL061 GPIO controllers. The default value is
535
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100536 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100537
538If the platform port uses the partition driver, the following constant may
539optionally be defined:
540
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100541- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100542 Maximum number of partition entries required by the platform. This allows
543 control how much memory is allocated for partition entries. The default
544 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100545 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100546 PLAT_PARTITION_MAX_ENTRIES := 12
547 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100548
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800549- **PLAT_PARTITION_BLOCK_SIZE**
550 The size of partition block. It could be either 512 bytes or 4096 bytes.
551 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000552 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800553 PLAT_PARTITION_BLOCK_SIZE := 4096
554 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
555
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100556The following constant is optional. It should be defined to override the default
557behaviour of the ``assert()`` function (for example, to save memory).
558
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100559- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100560 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
561 ``assert()`` prints the name of the file, the line number and the asserted
562 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
563 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
564 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
565 defined, it defaults to ``LOG_LEVEL``.
566
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100567If the platform port uses the DRTM feature, the following constants must be
568defined:
569
570- **#define : PLAT_DRTM_EVENT_LOG_MAX_SIZE**
571
572 Maximum Event Log size used by the platform. Platform can decide the maximum
573 size of the Event Log buffer, depending upon the highest hash algorithm
574 chosen and the number of components selected to measure during the DRTM
575 execution flow.
576
577- **#define : PLAT_DRTM_MMAP_ENTRIES**
578
579 Number of the MMAP entries used by the DRTM implementation to calculate the
580 size of address map region of the platform.
581
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100582File : plat_macros.S [mandatory]
583~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100584
585Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000586the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100587found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
588
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100589- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100590
591 This macro allows the crash reporting routine to print relevant platform
592 registers in case of an unhandled exception in BL31. This aids in debugging
593 and this macro can be defined to be empty in case register reporting is not
594 desired.
595
596 For instance, GIC or interconnect registers may be helpful for
597 troubleshooting.
598
599Handling Reset
600--------------
601
602BL1 by default implements the reset vector where execution starts from a cold
603or warm boot. BL31 can be optionally set as a reset vector using the
604``RESET_TO_BL31`` make variable.
605
606For each CPU, the reset vector code is responsible for the following tasks:
607
608#. Distinguishing between a cold boot and a warm boot.
609
610#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
611 the CPU is placed in a platform-specific state until the primary CPU
612 performs the necessary steps to remove it from this state.
613
614#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
615 specific address in the BL31 image in the same processor mode as it was
616 when released from reset.
617
618The following functions need to be implemented by the platform port to enable
619reset vector code to perform the above tasks.
620
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100621Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
622~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100623
624::
625
626 Argument : void
627 Return : uintptr_t
628
629This function is called with the MMU and caches disabled
630(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
631distinguishing between a warm and cold reset for the current CPU using
632platform-specific means. If it's a warm reset, then it returns the warm
633reset entrypoint point provided to ``plat_setup_psci_ops()`` during
634BL31 initialization. If it's a cold reset then this function must return zero.
635
636This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000637Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100638not assume that callee saved registers are preserved across a call to this
639function.
640
641This function fulfills requirement 1 and 3 listed above.
642
643Note that for platforms that support programming the reset address, it is
644expected that a CPU will start executing code directly at the right address,
645both on a cold and warm reset. In this case, there is no need to identify the
646type of reset nor to query the warm reset entrypoint. Therefore, implementing
647this function is not required on such platforms.
648
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100649Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
650~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100651
652::
653
654 Argument : void
655
656This function is called with the MMU and data caches disabled. It is responsible
657for placing the executing secondary CPU in a platform-specific state until the
658primary CPU performs the necessary actions to bring it out of that state and
659allow entry into the OS. This function must not return.
660
Dan Handley610e7e12018-03-01 18:44:00 +0000661In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100662itself off. The primary CPU is responsible for powering up the secondary CPUs
663when normal world software requires them. When booting an EL3 payload instead,
664they stay powered on and are put in a holding pen until their mailbox gets
665populated.
666
667This function fulfills requirement 2 above.
668
669Note that for platforms that can't release secondary CPUs out of reset, only the
670primary CPU will execute the cold boot code. Therefore, implementing this
671function is not required on such platforms.
672
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100673Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
674~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100675
676::
677
678 Argument : void
679 Return : unsigned int
680
681This function identifies whether the current CPU is the primary CPU or a
682secondary CPU. A return value of zero indicates that the CPU is not the
683primary CPU, while a non-zero return value indicates that the CPU is the
684primary CPU.
685
686Note that for platforms that can't release secondary CPUs out of reset, only the
687primary CPU will execute the cold boot code. Therefore, there is no need to
688distinguish between primary and secondary CPUs and implementing this function is
689not required.
690
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100691Function : platform_mem_init() [mandatory]
692~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100693
694::
695
696 Argument : void
697 Return : void
698
699This function is called before any access to data is made by the firmware, in
700order to carry out any essential memory initialization.
701
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100702Function: plat_get_rotpk_info()
703~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100704
705::
706
707 Argument : void *, void **, unsigned int *, unsigned int *
708 Return : int
709
710This function is mandatory when Trusted Board Boot is enabled. It returns a
711pointer to the ROTPK stored in the platform (or a hash of it) and its length.
712The ROTPK must be encoded in DER format according to the following ASN.1
713structure:
714
715::
716
717 AlgorithmIdentifier ::= SEQUENCE {
718 algorithm OBJECT IDENTIFIER,
719 parameters ANY DEFINED BY algorithm OPTIONAL
720 }
721
722 SubjectPublicKeyInfo ::= SEQUENCE {
723 algorithm AlgorithmIdentifier,
724 subjectPublicKey BIT STRING
725 }
726
727In case the function returns a hash of the key:
728
729::
730
731 DigestInfo ::= SEQUENCE {
732 digestAlgorithm AlgorithmIdentifier,
733 digest OCTET STRING
734 }
735
736The function returns 0 on success. Any other value is treated as error by the
737Trusted Board Boot. The function also reports extra information related
738to the ROTPK in the flags parameter:
739
740::
741
742 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
743 hash.
744 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
745 verification while the platform ROTPK is not deployed.
746 When this flag is set, the function does not need to
747 return a platform ROTPK, and the authentication
748 framework uses the ROTPK in the certificate without
749 verifying it against the platform value. This flag
750 must not be used in a deployed production environment.
751
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100752Function: plat_get_nv_ctr()
753~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100754
755::
756
757 Argument : void *, unsigned int *
758 Return : int
759
760This function is mandatory when Trusted Board Boot is enabled. It returns the
761non-volatile counter value stored in the platform in the second argument. The
762cookie in the first argument may be used to select the counter in case the
763platform provides more than one (for example, on platforms that use the default
764TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100765TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100766
767The function returns 0 on success. Any other value means the counter value could
768not be retrieved from the platform.
769
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100770Function: plat_set_nv_ctr()
771~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100772
773::
774
775 Argument : void *, unsigned int
776 Return : int
777
778This function is mandatory when Trusted Board Boot is enabled. It sets a new
779counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100780select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100781the updated counter value to be written to the NV counter.
782
783The function returns 0 on success. Any other value means the counter value could
784not be updated.
785
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100786Function: plat_set_nv_ctr2()
787~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100788
789::
790
791 Argument : void *, const auth_img_desc_t *, unsigned int
792 Return : int
793
794This function is optional when Trusted Board Boot is enabled. If this
795interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
796first argument passed is a cookie and is typically used to
797differentiate between a Non Trusted NV Counter and a Trusted NV
798Counter. The second argument is a pointer to an authentication image
799descriptor and may be used to decide if the counter is allowed to be
800updated or not. The third argument is the updated counter value to
801be written to the NV counter.
802
803The function returns 0 on success. Any other value means the counter value
804either could not be updated or the authentication image descriptor indicates
805that it is not allowed to be updated.
806
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +0100807Dynamic Root of Trust for Measurement support (in BL31)
808-------------------------------------------------------
809
810The functions mentioned in this section are mandatory, when platform enables
811DRTM_SUPPORT build flag.
812
813Function : plat_get_addr_mmap()
814~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
815
816::
817
818 Argument : void
819 Return : const mmap_region_t *
820
821This function is used to return the address of the platform *address-map* table,
822which describes the regions of normal memory, memory mapped I/O
823and non-volatile memory.
824
825Function : plat_has_non_host_platforms()
826~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
827
828::
829
830 Argument : void
831 Return : bool
832
833This function returns *true* if the platform has any trusted devices capable of
834DMA, otherwise returns *false*.
835
836Function : plat_has_unmanaged_dma_peripherals()
837~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
838
839::
840
841 Argument : void
842 Return : bool
843
844This function returns *true* if platform uses peripherals whose DMA is not
845managed by an SMMU, otherwise returns *false*.
846
847Note -
848If the platform has peripherals that are not managed by the SMMU, then the
849platform should investigate such peripherals to determine whether they can
850be trusted, and such peripherals should be moved under "Non-host platforms"
851if they can be trusted.
852
853Function : plat_get_total_num_smmus()
854~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
855
856::
857
858 Argument : void
859 Return : unsigned int
860
861This function returns the total number of SMMUs in the platform.
862
863Function : plat_enumerate_smmus()
864~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
865::
866
867
868 Argument : void
869 Return : const uintptr_t *, size_t
870
871This function returns an array of SMMU addresses and the actual number of SMMUs
872reported by the platform.
873
874Function : plat_drtm_get_dma_prot_features()
875~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
876
877::
878
879 Argument : void
880 Return : const plat_drtm_dma_prot_features_t*
881
882This function returns the address of plat_drtm_dma_prot_features_t structure
883containing the maximum number of protected regions and bitmap with the types
884of DMA protection supported by the platform.
885For more details see section 3.3 Table 6 of `DRTM`_ specification.
886
887Function : plat_drtm_dma_prot_get_max_table_bytes()
888~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
889
890::
891
892 Argument : void
893 Return : uint64_t
894
895This function returns the maximum size of DMA protected regions table in
896bytes.
897
898Function : plat_drtm_get_tpm_features()
899~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
900
901::
902
903 Argument : void
904 Return : const plat_drtm_tpm_features_t*
905
906This function returns the address of *plat_drtm_tpm_features_t* structure
907containing PCR usage schema, TPM-based hash, and firmware hash algorithm
908supported by the platform.
909
910Function : plat_drtm_get_min_size_normal_world_dce()
911~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
912
913::
914
915 Argument : void
916 Return : uint64_t
917
918This function returns the size normal-world DCE of the platform.
919
920Function : plat_drtm_get_imp_def_dlme_region_size()
921~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
922
923::
924
925 Argument : void
926 Return : uint64_t
927
928This function returns the size of implementation defined DLME region
929of the platform.
930
931Function : plat_drtm_get_tcb_hash_table_size()
932~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
933
934::
935
936 Argument : void
937 Return : uint64_t
938
939This function returns the size of TCB hash table of the platform.
940
941Function : plat_drtm_get_tcb_hash_features()
942~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
943
944::
945
946 Argument : void
947 Return : uint64_t
948
949This function returns the Maximum number of TCB hashes recorded by the
950platform.
951For more details see section 3.3 Table 6 of `DRTM`_ specification.
952
953Function : plat_drtm_validate_ns_region()
954~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
955
956::
957
958 Argument : uintptr_t, uintptr_t
959 Return : int
960
961This function validates that given region is within the Non-Secure region
962of DRAM. This function takes a region start address and size an input
963arguments, and returns 0 on success and -1 on failure.
964
965Function : plat_set_drtm_error()
966~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
967
968::
969
970 Argument : uint64_t
971 Return : int
972
973This function writes a 64 bit error code received as input into
974non-volatile storage and returns 0 on success and -1 on failure.
975
976Function : plat_get_drtm_error()
977~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
978
979::
980
981 Argument : uint64_t*
982 Return : int
983
984This function reads a 64 bit error code from the non-volatile storage
985into the received address, and returns 0 on success and -1 on failure.
986
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100987Common mandatory function modifications
988---------------------------------------
989
990The following functions are mandatory functions which need to be implemented
991by the platform port.
992
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100993Function : plat_my_core_pos()
994~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100995
996::
997
998 Argument : void
999 Return : unsigned int
1000
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001001This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001002CPU-specific linear index into blocks of memory (for example while allocating
1003per-CPU stacks). This function will be invoked very early in the
1004initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001005implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001006runtime environment. This function can clobber x0 - x8 and must preserve
1007x9 - x29.
1008
1009This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +01001010PSCI and details of this can be found in
1011:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001012
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001013Function : plat_core_pos_by_mpidr()
1014~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001015
1016::
1017
1018 Argument : u_register_t
1019 Return : int
1020
1021This function validates the ``MPIDR`` of a CPU and converts it to an index,
1022which can be used as a CPU-specific linear index into blocks of memory. In
1023case the ``MPIDR`` is invalid, this function returns -1. This function will only
1024be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +00001025utilize the C runtime environment. For further details about how TF-A
1026represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +01001027index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001028
Ambroise Vincentd207f562019-04-10 12:50:27 +01001029Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
1030~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1031
1032::
1033
1034 Arguments : void **heap_addr, size_t *heap_size
1035 Return : int
1036
1037This function is invoked during Mbed TLS library initialisation to get a heap,
1038by means of a starting address and a size. This heap will then be used
1039internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
1040must be able to provide a heap to it.
1041
1042A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
1043which a heap is statically reserved during compile time inside every image
1044(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
1045the function simply returns the address and size of this "pre-allocated" heap.
1046For a platform to use this default implementation, only a call to the helper
1047from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
1048
1049However, by writting their own implementation, platforms have the potential to
1050optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
1051shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
1052twice.
1053
1054On success the function should return 0 and a negative error code otherwise.
1055
Sumit Gargc0c369c2019-11-15 18:47:53 +05301056Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
1057~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1058
1059::
1060
1061 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
1062 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
1063 size_t img_id_len
1064 Return : int
1065
1066This function provides a symmetric key (either SSK or BSSK depending on
1067fw_enc_status) which is invoked during runtime decryption of encrypted
1068firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
1069implementation for testing purposes which must be overridden by the platform
1070trying to implement a real world firmware encryption use-case.
1071
1072It also allows the platform to pass symmetric key identifier rather than
1073actual symmetric key which is useful in cases where the crypto backend provides
1074secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
1075flag must be set in ``flags``.
1076
1077In addition to above a platform may also choose to provide an image specific
1078symmetric key/identifier using img_id.
1079
1080On success the function should return 0 and a negative error code otherwise.
1081
Manish Pandey34a305e2021-10-21 21:53:49 +01001082Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
Sumit Gargc0c369c2019-11-15 18:47:53 +05301083
Manish V Badarkheda87af12021-06-20 21:14:46 +01001084Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
1085~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1086
1087::
1088
Sughosh Ganuf40154f2021-11-17 17:08:10 +05301089 Argument : const struct fwu_metadata *metadata
Manish V Badarkheda87af12021-06-20 21:14:46 +01001090 Return : void
1091
1092This function is mandatory when PSA_FWU_SUPPORT is enabled.
1093It provides a means to retrieve image specification (offset in
1094non-volatile storage and length) of active/updated images using the passed
1095FWU metadata, and update I/O policies of active/updated images using retrieved
1096image specification information.
1097Further I/O layer operations such as I/O open, I/O read, etc. on these
1098images rely on this function call.
1099
1100In Arm platforms, this function is used to set an I/O policy of the FIP image,
1101container of all active/updated secure and non-secure images.
1102
1103Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
1104~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1105
1106::
1107
1108 Argument : unsigned int image_id, uintptr_t *dev_handle,
1109 uintptr_t *image_spec
1110 Return : int
1111
1112This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
1113responsible for setting up the platform I/O policy of the requested metadata
1114image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
1115be used to load this image from the platform's non-volatile storage.
1116
1117FWU metadata can not be always stored as a raw image in non-volatile storage
1118to define its image specification (offset in non-volatile storage and length)
1119statically in I/O policy.
1120For example, the FWU metadata image is stored as a partition inside the GUID
1121partition table image. Its specification is defined in the partition table
1122that needs to be parsed dynamically.
1123This function provides a means to retrieve such dynamic information to set
1124the I/O policy of the FWU metadata image.
1125Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
1126image relies on this function call.
1127
1128It returns '0' on success, otherwise a negative error value on error.
1129Alongside, returns device handle and image specification from the I/O policy
1130of the requested FWU metadata image.
1131
Sughosh Ganu4e336a62021-12-01 15:53:32 +05301132Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]
1133~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1134
1135::
1136
1137 Argument : void
1138 Return : uint32_t
1139
1140This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the
1141means to retrieve the boot index value from the platform. The boot index is the
1142bank from which the platform has booted the firmware images.
1143
1144By default, the platform will read the metadata structure and try to boot from
1145the active bank. If the platform fails to boot from the active bank due to
1146reasons like an Authentication failure, or on crossing a set number of watchdog
1147resets while booting from the active bank, the platform can then switch to boot
1148from a different bank. This function then returns the bank that the platform
1149should boot its images from.
1150
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001151Common optional modifications
1152-----------------------------
1153
1154The following are helper functions implemented by the firmware that perform
1155common platform-specific tasks. A platform may choose to override these
1156definitions.
1157
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001158Function : plat_set_my_stack()
1159~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001160
1161::
1162
1163 Argument : void
1164 Return : void
1165
1166This function sets the current stack pointer to the normal memory stack that
1167has been allocated for the current CPU. For BL images that only require a
1168stack for the primary CPU, the UP version of the function is used. The size
1169of the stack allocated to each CPU is specified by the platform defined
1170constant ``PLATFORM_STACK_SIZE``.
1171
1172Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001173provided in ``plat/common/aarch64/platform_up_stack.S`` and
1174``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001175
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001176Function : plat_get_my_stack()
1177~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001178
1179::
1180
1181 Argument : void
1182 Return : uintptr_t
1183
1184This function returns the base address of the normal memory stack that
1185has been allocated for the current CPU. For BL images that only require a
1186stack for the primary CPU, the UP version of the function is used. The size
1187of the stack allocated to each CPU is specified by the platform defined
1188constant ``PLATFORM_STACK_SIZE``.
1189
1190Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +01001191provided in ``plat/common/aarch64/platform_up_stack.S`` and
1192``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001194Function : plat_report_exception()
1195~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001196
1197::
1198
1199 Argument : unsigned int
1200 Return : void
1201
1202A platform may need to report various information about its status when an
1203exception is taken, for example the current exception level, the CPU security
1204state (secure/non-secure), the exception type, and so on. This function is
1205called in the following circumstances:
1206
1207- In BL1, whenever an exception is taken.
1208- In BL2, whenever an exception is taken.
1209
1210The default implementation doesn't do anything, to avoid making assumptions
1211about the way the platform displays its status information.
1212
1213For AArch64, this function receives the exception type as its argument.
1214Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001215``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001216related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001217
1218For AArch32, this function receives the exception mode as its argument.
1219Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001220``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001221
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001222Function : plat_reset_handler()
1223~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001224
1225::
1226
1227 Argument : void
1228 Return : void
1229
1230A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001231allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001232specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001233preserve the values of callee saved registers x19 to x29.
1234
1235The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001236the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001237guidelines.
1238
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001239Function : plat_disable_acp()
1240~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001241
1242::
1243
1244 Argument : void
1245 Return : void
1246
John Tsichritzis6dda9762018-07-23 09:18:04 +01001247This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001248present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001249doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001250it has restrictions for stack usage and it can use the registers x0 - x17 as
1251scratch registers. It should preserve the value in x18 register as it is used
1252by the caller to store the return address.
1253
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001254Function : plat_error_handler()
1255~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001256
1257::
1258
1259 Argument : int
1260 Return : void
1261
1262This API is called when the generic code encounters an error situation from
1263which it cannot continue. It allows the platform to perform error reporting or
1264recovery actions (for example, reset the system). This function must not return.
1265
1266The parameter indicates the type of error using standard codes from ``errno.h``.
1267Possible errors reported by the generic code are:
1268
1269- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1270 Board Boot is enabled)
1271- ``-ENOENT``: the requested image or certificate could not be found or an IO
1272 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001273- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1274 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001275
1276The default implementation simply spins.
1277
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001278Function : plat_panic_handler()
1279~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001280
1281::
1282
1283 Argument : void
1284 Return : void
1285
1286This API is called when the generic code encounters an unexpected error
1287situation from which it cannot recover. This function must not return,
1288and must be implemented in assembly because it may be called before the C
1289environment is initialized.
1290
Paul Beesleyba3ed402019-03-13 16:20:44 +00001291.. note::
1292 The address from where it was called is stored in x30 (Link Register).
1293 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001294
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01001295Function : plat_system_reset()
1296~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1297
1298::
1299
1300 Argument : void
1301 Return : void
1302
1303This function is used by the platform to resets the system. It can be used
1304in any specific use-case where system needs to be resetted. For example,
1305in case of DRTM implementation this function reset the system after
1306writing the DRTM error code in the non-volatile storage. This function
1307never returns. Failure in reset results in panic.
1308
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001309Function : plat_get_bl_image_load_info()
1310~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001311
1312::
1313
1314 Argument : void
1315 Return : bl_load_info_t *
1316
1317This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001318populated to load. This function is invoked in BL2 to load the
1319BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001320
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001321Function : plat_get_next_bl_params()
1322~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001323
1324::
1325
1326 Argument : void
1327 Return : bl_params_t *
1328
1329This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001330kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001331function is invoked in BL2 to pass this information to the next BL
1332image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001333
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001334Function : plat_get_stack_protector_canary()
1335~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001336
1337::
1338
1339 Argument : void
1340 Return : u_register_t
1341
1342This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001343when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001344value will weaken the protection as the attacker could easily write the right
1345value as part of the attack most of the time. Therefore, it should return a
1346true random number.
1347
Paul Beesleyba3ed402019-03-13 16:20:44 +00001348.. warning::
1349 For the protection to be effective, the global data need to be placed at
1350 a lower address than the stack bases. Failure to do so would allow an
1351 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001352
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001353Function : plat_flush_next_bl_params()
1354~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001355
1356::
1357
1358 Argument : void
1359 Return : void
1360
1361This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001362next image. This function is invoked in BL2 to flush this information
1363to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001365Function : plat_log_get_prefix()
1366~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001367
1368::
1369
1370 Argument : unsigned int
1371 Return : const char *
1372
1373This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001374prepended to all the log output from TF-A. The `log_level` (argument) will
1375correspond to one of the standard log levels defined in debug.h. The platform
1376can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001377the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001378increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001379
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001380Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001381~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001382
1383::
1384
1385 Argument : void
1386 Return : int32_t
1387
1388This function returns soc version which mainly consist of below fields
1389
1390::
1391
1392 soc_version[30:24] = JEP-106 continuation code for the SiP
1393 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001394 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001395
1396Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001397~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001398
1399::
1400
1401 Argument : void
1402 Return : int32_t
1403
1404This function returns soc revision in below format
1405
1406::
1407
1408 soc_revision[0:30] = SOC revision of specific SOC
1409
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001410Function : plat_is_smccc_feature_available()
1411~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1412
1413::
1414
1415 Argument : u_register_t
1416 Return : int32_t
1417
1418This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1419the SMCCC function specified in the argument; otherwise returns
1420SMC_ARCH_CALL_NOT_SUPPORTED.
1421
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001422Function : plat_mboot_measure_image()
1423~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1424
1425::
1426
1427 Argument : unsigned int, image_info_t *
Manish V Badarkhe931c6ef2021-10-21 09:06:18 +01001428 Return : int
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001429
1430When the MEASURED_BOOT flag is enabled:
1431
1432- This function measures the given image and records its measurement using
1433 the measured boot backend driver.
1434- On the Arm FVP port, this function measures the given image using its
1435 passed id and information and then records that measurement in the
1436 Event Log buffer.
Manish V Badarkhe931c6ef2021-10-21 09:06:18 +01001437- This function must return 0 on success, a signed integer error code
1438 otherwise.
1439
1440When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1441
1442Function : plat_mboot_measure_critical_data()
1443~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1444
1445::
1446
1447 Argument : unsigned int, const void *, size_t
1448 Return : int
1449
1450When the MEASURED_BOOT flag is enabled:
1451
1452- This function measures the given critical data structure and records its
1453 measurement using the measured boot backend driver.
1454- This function must return 0 on success, a signed integer error code
1455 otherwise.
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001456
1457When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1458
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001459Modifications specific to a Boot Loader stage
1460---------------------------------------------
1461
1462Boot Loader Stage 1 (BL1)
1463-------------------------
1464
1465BL1 implements the reset vector where execution starts from after a cold or
1466warm boot. For each CPU, BL1 is responsible for the following tasks:
1467
1468#. Handling the reset as described in section 2.2
1469
1470#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1471 only this CPU executes the remaining BL1 code, including loading and passing
1472 control to the BL2 stage.
1473
1474#. Identifying and starting the Firmware Update process (if required).
1475
1476#. Loading the BL2 image from non-volatile storage into secure memory at the
1477 address specified by the platform defined constant ``BL2_BASE``.
1478
1479#. Populating a ``meminfo`` structure with the following information in memory,
1480 accessible by BL2 immediately upon entry.
1481
1482 ::
1483
1484 meminfo.total_base = Base address of secure RAM visible to BL2
1485 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001486
Soby Mathew97b1bff2018-09-27 16:46:41 +01001487 By default, BL1 places this ``meminfo`` structure at the end of secure
1488 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001489
Soby Mathewb1bf0442018-02-16 14:52:52 +00001490 It is possible for the platform to decide where it wants to place the
1491 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1492 BL2 by overriding the weak default implementation of
1493 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001494
1495The following functions need to be implemented by the platform port to enable
1496BL1 to perform the above tasks.
1497
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001498Function : bl1_early_platform_setup() [mandatory]
1499~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001500
1501::
1502
1503 Argument : void
1504 Return : void
1505
1506This function executes with the MMU and data caches disabled. It is only called
1507by the primary CPU.
1508
Dan Handley610e7e12018-03-01 18:44:00 +00001509On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001510
1511- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1512
1513- Initializes a UART (PL011 console), which enables access to the ``printf``
1514 family of functions in BL1.
1515
1516- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1517 the CCI slave interface corresponding to the cluster that includes the
1518 primary CPU.
1519
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001520Function : bl1_plat_arch_setup() [mandatory]
1521~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001522
1523::
1524
1525 Argument : void
1526 Return : void
1527
1528This function performs any platform-specific and architectural setup that the
1529platform requires. Platform-specific setup might include configuration of
1530memory controllers and the interconnect.
1531
Dan Handley610e7e12018-03-01 18:44:00 +00001532In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001533
1534This function helps fulfill requirement 2 above.
1535
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001536Function : bl1_platform_setup() [mandatory]
1537~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001538
1539::
1540
1541 Argument : void
1542 Return : void
1543
1544This function executes with the MMU and data caches enabled. It is responsible
1545for performing any remaining platform-specific setup that can occur after the
1546MMU and data cache have been enabled.
1547
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001548if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001549sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001550
Dan Handley610e7e12018-03-01 18:44:00 +00001551In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001552layer used to load the next bootloader image.
1553
1554This function helps fulfill requirement 4 above.
1555
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001556Function : bl1_plat_sec_mem_layout() [mandatory]
1557~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001558
1559::
1560
1561 Argument : void
1562 Return : meminfo *
1563
1564This function should only be called on the cold boot path. It executes with the
1565MMU and data caches enabled. The pointer returned by this function must point to
1566a ``meminfo`` structure containing the extents and availability of secure RAM for
1567the BL1 stage.
1568
1569::
1570
1571 meminfo.total_base = Base address of secure RAM visible to BL1
1572 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001573
1574This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1575populates a similar structure to tell BL2 the extents of memory available for
1576its own use.
1577
1578This function helps fulfill requirements 4 and 5 above.
1579
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001580Function : bl1_plat_prepare_exit() [optional]
1581~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001582
1583::
1584
1585 Argument : entry_point_info_t *
1586 Return : void
1587
1588This function is called prior to exiting BL1 in response to the
1589``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1590platform specific clean up or bookkeeping operations before transferring
1591control to the next image. It receives the address of the ``entry_point_info_t``
1592structure passed from BL2. This function runs with MMU disabled.
1593
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001594Function : bl1_plat_set_ep_info() [optional]
1595~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001596
1597::
1598
1599 Argument : unsigned int image_id, entry_point_info_t *ep_info
1600 Return : void
1601
1602This function allows platforms to override ``ep_info`` for the given ``image_id``.
1603
1604The default implementation just returns.
1605
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001606Function : bl1_plat_get_next_image_id() [optional]
1607~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001608
1609::
1610
1611 Argument : void
1612 Return : unsigned int
1613
1614This and the following function must be overridden to enable the FWU feature.
1615
1616BL1 calls this function after platform setup to identify the next image to be
1617loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1618with the normal boot sequence, which loads and executes BL2. If the platform
1619returns a different image id, BL1 assumes that Firmware Update is required.
1620
Dan Handley610e7e12018-03-01 18:44:00 +00001621The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001622platforms override this function to detect if firmware update is required, and
1623if so, return the first image in the firmware update process.
1624
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001625Function : bl1_plat_get_image_desc() [optional]
1626~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001627
1628::
1629
1630 Argument : unsigned int image_id
1631 Return : image_desc_t *
1632
1633BL1 calls this function to get the image descriptor information ``image_desc_t``
1634for the provided ``image_id`` from the platform.
1635
Dan Handley610e7e12018-03-01 18:44:00 +00001636The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001637standard platforms return an image descriptor corresponding to BL2 or one of
1638the firmware update images defined in the Trusted Board Boot Requirements
1639specification.
1640
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001641Function : bl1_plat_handle_pre_image_load() [optional]
1642~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001643
1644::
1645
Soby Mathew2f38ce32018-02-08 17:45:12 +00001646 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001647 Return : int
1648
1649This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001650corresponding to ``image_id``. This function is invoked in BL1, both in cold
1651boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001652
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001653Function : bl1_plat_handle_post_image_load() [optional]
1654~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001655
1656::
1657
Soby Mathew2f38ce32018-02-08 17:45:12 +00001658 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001659 Return : int
1660
1661This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001662corresponding to ``image_id``. This function is invoked in BL1, both in cold
1663boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001664
Soby Mathewb1bf0442018-02-16 14:52:52 +00001665The default weak implementation of this function calculates the amount of
1666Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1667structure at the beginning of this free memory and populates it. The address
1668of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1669information to BL2.
1670
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001671Function : bl1_plat_fwu_done() [optional]
1672~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001673
1674::
1675
1676 Argument : unsigned int image_id, uintptr_t image_src,
1677 unsigned int image_size
1678 Return : void
1679
1680BL1 calls this function when the FWU process is complete. It must not return.
1681The platform may override this function to take platform specific action, for
1682example to initiate the normal boot flow.
1683
1684The default implementation spins forever.
1685
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001686Function : bl1_plat_mem_check() [mandatory]
1687~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001688
1689::
1690
1691 Argument : uintptr_t mem_base, unsigned int mem_size,
1692 unsigned int flags
1693 Return : int
1694
1695BL1 calls this function while handling FWU related SMCs, more specifically when
1696copying or authenticating an image. Its responsibility is to ensure that the
1697region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1698that this memory corresponds to either a secure or non-secure memory region as
1699indicated by the security state of the ``flags`` argument.
1700
1701This function can safely assume that the value resulting from the addition of
1702``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1703overflow.
1704
1705This function must return 0 on success, a non-null error code otherwise.
1706
1707The default implementation of this function asserts therefore platforms must
1708override it when using the FWU feature.
1709
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001710Function : bl1_plat_mboot_init() [optional]
1711~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1712
1713::
1714
1715 Argument : void
1716 Return : void
1717
1718When the MEASURED_BOOT flag is enabled:
1719
1720- This function is used to initialize the backend driver(s) of measured boot.
1721- On the Arm FVP port, this function is used to initialize the Event Log
1722 backend driver, and also to write header information in the Event Log buffer.
1723
1724When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1725
1726Function : bl1_plat_mboot_finish() [optional]
1727~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1728
1729::
1730
1731 Argument : void
1732 Return : void
1733
1734When the MEASURED_BOOT flag is enabled:
1735
1736- This function is used to finalize the measured boot backend driver(s),
1737 and also, set the information for the next bootloader component to
1738 extend the measurement if needed.
1739- On the Arm FVP port, this function is used to pass the base address of
1740 the Event Log buffer and its size to BL2 via tb_fw_config to extend the
1741 Event Log buffer with the measurement of various images loaded by BL2.
1742 It results in panic on error.
1743
1744When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1745
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001746Boot Loader Stage 2 (BL2)
1747-------------------------
1748
1749The BL2 stage is executed only by the primary CPU, which is determined in BL1
1750using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001751``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1752``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1753non-volatile storage to secure/non-secure RAM. After all the images are loaded
1754then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1755images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001756
1757The following functions must be implemented by the platform port to enable BL2
1758to perform the above tasks.
1759
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001760Function : bl2_early_platform_setup2() [mandatory]
1761~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001762
1763::
1764
Soby Mathew97b1bff2018-09-27 16:46:41 +01001765 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001766 Return : void
1767
1768This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001769by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1770are platform specific.
1771
1772On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001773
Manish V Badarkhe81414512020-06-24 15:58:38 +01001774 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001775
1776 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1777 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001778
Dan Handley610e7e12018-03-01 18:44:00 +00001779On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001780
1781- Initializes a UART (PL011 console), which enables access to the ``printf``
1782 family of functions in BL2.
1783
1784- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001785 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1786 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001787
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001788Function : bl2_plat_arch_setup() [mandatory]
1789~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001790
1791::
1792
1793 Argument : void
1794 Return : void
1795
1796This function executes with the MMU and data caches disabled. It is only called
1797by the primary CPU.
1798
1799The purpose of this function is to perform any architectural initialization
1800that varies across platforms.
1801
Dan Handley610e7e12018-03-01 18:44:00 +00001802On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001803
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001804Function : bl2_platform_setup() [mandatory]
1805~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001806
1807::
1808
1809 Argument : void
1810 Return : void
1811
1812This function may execute with the MMU and data caches enabled if the platform
1813port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1814called by the primary CPU.
1815
1816The purpose of this function is to perform any platform initialization
1817specific to BL2.
1818
Dan Handley610e7e12018-03-01 18:44:00 +00001819In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001820configuration of the TrustZone controller to allow non-secure masters access
1821to most of DRAM. Part of DRAM is reserved for secure world use.
1822
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001823Function : bl2_plat_handle_pre_image_load() [optional]
1824~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001825
1826::
1827
1828 Argument : unsigned int
1829 Return : int
1830
1831This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001832for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001833loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001834
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001835Function : bl2_plat_handle_post_image_load() [optional]
1836~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001837
1838::
1839
1840 Argument : unsigned int
1841 Return : int
1842
1843This function can be used by the platforms to update/use image information
1844for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001845loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001846
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001847Function : bl2_plat_preload_setup [optional]
1848~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001849
1850::
John Tsichritzisee10e792018-06-06 09:38:10 +01001851
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001852 Argument : void
1853 Return : void
1854
1855This optional function performs any BL2 platform initialization
1856required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001857bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001858boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001859plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001860
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001861Function : plat_try_next_boot_source() [optional]
1862~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001863
1864::
John Tsichritzisee10e792018-06-06 09:38:10 +01001865
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001866 Argument : void
1867 Return : int
1868
1869This optional function passes to the next boot source in the redundancy
1870sequence.
1871
1872This function moves the current boot redundancy source to the next
1873element in the boot sequence. If there are no more boot sources then it
1874must return 0, otherwise it must return 1. The default implementation
1875of this always returns 0.
1876
Sandrine Bailleuxeb5fadc2022-07-13 10:07:54 +02001877Function : bl2_plat_mboot_init() [optional]
1878~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1879
1880::
1881
1882 Argument : void
1883 Return : void
1884
1885When the MEASURED_BOOT flag is enabled:
1886
1887- This function is used to initialize the backend driver(s) of measured boot.
1888- On the Arm FVP port, this function is used to initialize the Event Log
1889 backend driver with the Event Log buffer information (base address and
1890 size) received from BL1. It results in panic on error.
1891
1892When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1893
1894Function : bl2_plat_mboot_finish() [optional]
1895~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1896
1897::
1898
1899 Argument : void
1900 Return : void
1901
1902When the MEASURED_BOOT flag is enabled:
1903
1904- This function is used to finalize the measured boot backend driver(s),
1905 and also, set the information for the next bootloader component to extend
1906 the measurement if needed.
1907- On the Arm FVP port, this function is used to pass the Event Log buffer
1908 information (base address and size) to non-secure(BL33) and trusted OS(BL32)
1909 via nt_fw and tos_fw config respectively. It results in panic on error.
1910
1911When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1912
Roberto Vargasb1584272017-11-20 13:36:10 +00001913Boot Loader Stage 2 (BL2) at EL3
1914--------------------------------
1915
Dan Handley610e7e12018-03-01 18:44:00 +00001916When the platform has a non-TF-A Boot ROM it is desirable to jump
1917directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001918execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1919document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001920
1921All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001922bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1923their work is done now by bl2_el3_early_platform_setup and
1924bl2_el3_plat_arch_setup. These functions should generally implement
1925the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001926
1927
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001928Function : bl2_el3_early_platform_setup() [mandatory]
1929~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001930
1931::
John Tsichritzisee10e792018-06-06 09:38:10 +01001932
Roberto Vargasb1584272017-11-20 13:36:10 +00001933 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1934 Return : void
1935
1936This function executes with the MMU and data caches disabled. It is only called
1937by the primary CPU. This function receives four parameters which can be used
1938by the platform to pass any needed information from the Boot ROM to BL2.
1939
Dan Handley610e7e12018-03-01 18:44:00 +00001940On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001941
1942- Initializes a UART (PL011 console), which enables access to the ``printf``
1943 family of functions in BL2.
1944
1945- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001946 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1947 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001948
1949- Initializes the private variables that define the memory layout used.
1950
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001951Function : bl2_el3_plat_arch_setup() [mandatory]
1952~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001953
1954::
John Tsichritzisee10e792018-06-06 09:38:10 +01001955
Roberto Vargasb1584272017-11-20 13:36:10 +00001956 Argument : void
1957 Return : void
1958
1959This function executes with the MMU and data caches disabled. It is only called
1960by the primary CPU.
1961
1962The purpose of this function is to perform any architectural initialization
1963that varies across platforms.
1964
Dan Handley610e7e12018-03-01 18:44:00 +00001965On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001966
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001967Function : bl2_el3_plat_prepare_exit() [optional]
1968~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001969
1970::
John Tsichritzisee10e792018-06-06 09:38:10 +01001971
Roberto Vargasb1584272017-11-20 13:36:10 +00001972 Argument : void
1973 Return : void
1974
1975This function is called prior to exiting BL2 and run the next image.
1976It should be used to perform platform specific clean up or bookkeeping
1977operations before transferring control to the next image. This function
1978runs with MMU disabled.
1979
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001980FWU Boot Loader Stage 2 (BL2U)
1981------------------------------
1982
1983The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1984process and is executed only by the primary CPU. BL1 passes control to BL2U at
1985``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1986
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001987#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1988 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1989 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1990 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001991 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1992 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1993
1994#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001995 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001996 normal world can access DDR memory.
1997
1998The following functions must be implemented by the platform port to enable
1999BL2U to perform the tasks mentioned above.
2000
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002001Function : bl2u_early_platform_setup() [mandatory]
2002~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002003
2004::
2005
2006 Argument : meminfo *mem_info, void *plat_info
2007 Return : void
2008
2009This function executes with the MMU and data caches disabled. It is only
2010called by the primary CPU. The arguments to this function is the address
2011of the ``meminfo`` structure and platform specific info provided by BL1.
2012
2013The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
2014private storage as the original memory may be subsequently overwritten by BL2U.
2015
Dan Handley610e7e12018-03-01 18:44:00 +00002016On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002017to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002018variable.
2019
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002020Function : bl2u_plat_arch_setup() [mandatory]
2021~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002022
2023::
2024
2025 Argument : void
2026 Return : void
2027
2028This function executes with the MMU and data caches disabled. It is only
2029called by the primary CPU.
2030
2031The purpose of this function is to perform any architectural initialization
2032that varies across platforms, for example enabling the MMU (since the memory
2033map differs across platforms).
2034
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002035Function : bl2u_platform_setup() [mandatory]
2036~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002037
2038::
2039
2040 Argument : void
2041 Return : void
2042
2043This function may execute with the MMU and data caches enabled if the platform
2044port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
2045called by the primary CPU.
2046
2047The purpose of this function is to perform any platform initialization
2048specific to BL2U.
2049
Dan Handley610e7e12018-03-01 18:44:00 +00002050In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002051configuration of the TrustZone controller to allow non-secure masters access
2052to most of DRAM. Part of DRAM is reserved for secure world use.
2053
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002054Function : bl2u_plat_handle_scp_bl2u() [optional]
2055~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002056
2057::
2058
2059 Argument : void
2060 Return : int
2061
2062This function is used to perform any platform-specific actions required to
2063handle the SCP firmware. Typically it transfers the image into SCP memory using
2064a platform-specific protocol and waits until SCP executes it and signals to the
2065Application Processor (AP) for BL2U execution to continue.
2066
2067This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002068This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002069
2070Boot Loader Stage 3-1 (BL31)
2071----------------------------
2072
2073During cold boot, the BL31 stage is executed only by the primary CPU. This is
2074determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
2075control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
2076CPUs. BL31 executes at EL3 and is responsible for:
2077
2078#. Re-initializing all architectural and platform state. Although BL1 performs
2079 some of this initialization, BL31 remains resident in EL3 and must ensure
2080 that EL3 architectural and platform state is completely initialized. It
2081 should make no assumptions about the system state when it receives control.
2082
2083#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01002084 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
2085 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002086
2087#. Providing runtime firmware services. Currently, BL31 only implements a
2088 subset of the Power State Coordination Interface (PSCI) API as a runtime
2089 service. See Section 3.3 below for details of porting the PSCI
2090 implementation.
2091
2092#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002093 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002094 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01002095 executed and run the corresponding image. On ARM platforms, BL31 uses the
2096 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002097
2098If BL31 is a reset vector, It also needs to handle the reset as specified in
2099section 2.2 before the tasks described above.
2100
2101The following functions must be implemented by the platform port to enable BL31
2102to perform the above tasks.
2103
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002104Function : bl31_early_platform_setup2() [mandatory]
2105~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002106
2107::
2108
Soby Mathew97b1bff2018-09-27 16:46:41 +01002109 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002110 Return : void
2111
2112This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01002113by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
2114platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002115
Soby Mathew97b1bff2018-09-27 16:46:41 +01002116In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002117
Soby Mathew97b1bff2018-09-27 16:46:41 +01002118 arg0 - The pointer to the head of `bl_params_t` list
2119 which is list of executable images following BL31,
2120
2121 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01002122 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01002123
Mikael Olsson0232da22021-02-12 17:30:16 +01002124 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01002125 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01002126
2127 arg2 - Points to load address of HW_CONFIG if present
2128
2129 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
2130 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002131
Soby Mathew97b1bff2018-09-27 16:46:41 +01002132The function runs through the `bl_param_t` list and extracts the entry point
2133information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002134
2135- Initialize a UART (PL011 console), which enables access to the ``printf``
2136 family of functions in BL31.
2137
2138- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
2139 CCI slave interface corresponding to the cluster that includes the primary
2140 CPU.
2141
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002142Function : bl31_plat_arch_setup() [mandatory]
2143~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002144
2145::
2146
2147 Argument : void
2148 Return : void
2149
2150This function executes with the MMU and data caches disabled. It is only called
2151by the primary CPU.
2152
2153The purpose of this function is to perform any architectural initialization
2154that varies across platforms.
2155
Dan Handley610e7e12018-03-01 18:44:00 +00002156On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002157
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002158Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002159~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2160
2161::
2162
2163 Argument : void
2164 Return : void
2165
2166This function may execute with the MMU and data caches enabled if the platform
2167port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
2168called by the primary CPU.
2169
2170The purpose of this function is to complete platform initialization so that both
2171BL31 runtime services and normal world software can function correctly.
2172
Dan Handley610e7e12018-03-01 18:44:00 +00002173On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002174
2175- Initialize the generic interrupt controller.
2176
2177 Depending on the GIC driver selected by the platform, the appropriate GICv2
2178 or GICv3 initialization will be done, which mainly consists of:
2179
2180 - Enable secure interrupts in the GIC CPU interface.
2181 - Disable the legacy interrupt bypass mechanism.
2182 - Configure the priority mask register to allow interrupts of all priorities
2183 to be signaled to the CPU interface.
2184 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
2185 - Target all secure SPIs to CPU0.
2186 - Enable these secure interrupts in the GIC distributor.
2187 - Configure all other interrupts as non-secure.
2188 - Enable signaling of secure interrupts in the GIC distributor.
2189
2190- Enable system-level implementation of the generic timer counter through the
2191 memory mapped interface.
2192
2193- Grant access to the system counter timer module
2194
2195- Initialize the power controller device.
2196
2197 In particular, initialise the locks that prevent concurrent accesses to the
2198 power controller device.
2199
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002200Function : bl31_plat_runtime_setup() [optional]
2201~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002202
2203::
2204
2205 Argument : void
2206 Return : void
2207
2208The purpose of this function is allow the platform to perform any BL31 runtime
2209setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07002210implementation of this function will invoke ``console_switch_state()`` to switch
2211console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002212
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002213Function : bl31_plat_get_next_image_ep_info() [mandatory]
2214~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002215
2216::
2217
Sandrine Bailleux842117d2018-05-14 14:25:47 +02002218 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002219 Return : entry_point_info *
2220
2221This function may execute with the MMU and data caches enabled if the platform
2222port does the necessary initializations in ``bl31_plat_arch_setup()``.
2223
2224This function is called by ``bl31_main()`` to retrieve information provided by
2225BL2 for the next image in the security state specified by the argument. BL31
2226uses this information to pass control to that image in the specified security
2227state. This function must return a pointer to the ``entry_point_info`` structure
2228(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
2229should return NULL otherwise.
2230
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002231Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
Soby Mathew294e1cf2022-03-22 16:19:39 +00002232~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2233
2234::
2235
2236 Argument : uintptr_t, size_t *, uintptr_t, size_t
2237 Return : int
2238
2239This function returns the Platform attestation token.
2240
2241The parameters of the function are:
2242
2243 arg0 - A pointer to the buffer where the Platform token should be copied by
2244 this function. The buffer must be big enough to hold the Platform
2245 token.
2246
2247 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2248 function returns the platform token length in this parameter.
2249
2250 arg2 - A pointer to the buffer where the challenge object is stored.
2251
2252 arg3 - The length of the challenge object in bytes. Possible values are 32,
2253 48 and 64.
2254
2255The function returns 0 on success, -EINVAL on failure.
2256
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002257Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
2258~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewf05d93a2022-03-22 16:21:19 +00002259
2260::
2261
2262 Argument : uintptr_t, size_t *, unsigned int
2263 Return : int
2264
2265This function returns the delegated realm attestation key which will be used to
2266sign Realm attestation token. The API currently only supports P-384 ECC curve
2267key.
2268
2269The parameters of the function are:
2270
2271 arg0 - A pointer to the buffer where the attestation key should be copied
2272 by this function. The buffer must be big enough to hold the
2273 attestation key.
2274
2275 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2276 function returns the attestation key length in this parameter.
2277
2278 arg2 - The type of the elliptic curve to which the requested attestation key
2279 belongs.
2280
2281The function returns 0 on success, -EINVAL on failure.
2282
Javier Almansa Sobrino7176a772021-11-24 18:37:37 +00002283Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
2284~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2285
2286::
2287
2288 Argument : uintptr_t *
2289 Return : size_t
2290
2291This function returns the size of the shared area between EL3 and RMM (or 0 on
2292failure). A pointer to the shared area (or a NULL pointer on failure) is stored
2293in the pointer passed as argument.
2294
Javier Almansa Sobrino4165e842022-04-25 17:18:15 +01002295Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
2296~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2297
2298::
2299
2300 Arguments : rmm_manifest_t *manifest
2301 Return : int
2302
2303When ENABLE_RME is enabled, this function populates a boot manifest for the
2304RMM image and stores it in the area specified by manifest.
2305
2306When ENABLE_RME is disabled, this function is not used.
2307
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002308Function : bl31_plat_enable_mmu [optional]
2309~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2310
2311::
2312
2313 Argument : uint32_t
2314 Return : void
2315
2316This function enables the MMU. The boot code calls this function with MMU and
2317caches disabled. This function should program necessary registers to enable
2318translation, and upon return, the MMU on the calling PE must be enabled.
2319
2320The function must honor flags passed in the first argument. These flags are
2321defined by the translation library, and can be found in the file
2322``include/lib/xlat_tables/xlat_mmu_helpers.h``.
2323
2324On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002325is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002326
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002327Function : plat_init_apkey [optional]
2328~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002329
2330::
2331
2332 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002333 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002334
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002335This function returns the 128-bit value which can be used to program ARMv8.3
2336pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002337
2338The value should be obtained from a reliable source of randomness.
2339
2340This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002341Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002342
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002343Function : plat_get_syscnt_freq2() [mandatory]
2344~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002345
2346::
2347
2348 Argument : void
2349 Return : unsigned int
2350
2351This function is used by the architecture setup code to retrieve the counter
2352frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00002353``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002354of the system counter, which is retrieved from the first entry in the frequency
2355modes table.
2356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002357#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2358~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002359
2360When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2361bytes) aligned to the cache line boundary that should be allocated per-cpu to
2362accommodate all the bakery locks.
2363
2364If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
2365calculates the size of the ``bakery_lock`` input section, aligns it to the
2366nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2367and stores the result in a linker symbol. This constant prevents a platform
2368from relying on the linker and provide a more efficient mechanism for
2369accessing per-cpu bakery lock information.
2370
2371If this constant is defined and its value is not equal to the value
2372calculated by the linker then a link time assertion is raised. A compile time
2373assertion is raised if the value of the constant is not aligned to the cache
2374line boundary.
2375
Paul Beesleyf8640672019-04-12 14:19:42 +01002376.. _porting_guide_sdei_requirements:
2377
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002378SDEI porting requirements
2379~~~~~~~~~~~~~~~~~~~~~~~~~
2380
Paul Beesley606d8072019-03-13 13:58:02 +00002381The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002382and functions, of which some are optional, and some others mandatory.
2383
2384Macros
2385......
2386
2387Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2389
2390This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002391Normal |SDEI| events on the platform. This must have a higher value
2392(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002393
2394Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2396
2397This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002398Critical |SDEI| events on the platform. This must have a lower value
2399(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002400
Paul Beesley606d8072019-03-13 13:58:02 +00002401**Note**: |SDEI| exception priorities must be the lowest among Secure
2402priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2403be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002404
2405Functions
2406.........
2407
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002408Function: int plat_sdei_validate_entry_point() [optional]
2409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002410
2411::
2412
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002413 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002414 Return: int
2415
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002416This function validates the entry point address of the event handler provided by
2417the client for both event registration and *Complete and Resume* |SDEI| calls.
2418The function ensures that the address is valid in the client translation regime.
2419
2420The second argument is the exception level that the client is executing in. It
2421can be Non-Secure EL1 or Non-Secure EL2.
2422
2423The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002424
Dan Handley610e7e12018-03-01 18:44:00 +00002425The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002426translates the entry point address within the client translation regime and
2427further ensures that the resulting physical address is located in Non-secure
2428DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002429
2430Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2432
2433::
2434
2435 Argument: uint64_t
2436 Argument: unsigned int
2437 Return: void
2438
Paul Beesley606d8072019-03-13 13:58:02 +00002439|SDEI| specification requires that a PE comes out of reset with the events
2440masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2441|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2442time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002443
Paul Beesley606d8072019-03-13 13:58:02 +00002444Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002445events are masked on the PE, the dispatcher implementation invokes the function
2446``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2447interrupt and the interrupt ID are passed as parameters.
2448
2449The default implementation only prints out a warning message.
2450
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002451.. _porting_guide_trng_requirements:
2452
2453TRNG porting requirements
2454~~~~~~~~~~~~~~~~~~~~~~~~~
2455
2456The |TRNG| backend requires the platform to provide the following values
2457and mandatory functions.
2458
2459Values
2460......
2461
2462value: uuid_t plat_trng_uuid [mandatory]
2463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2464
2465This value must be defined to the UUID of the TRNG backend that is specific to
2466the hardware after ``plat_trng_setup`` function is called. This value must
2467conform to the SMCCC calling convention; The most significant 32 bits of the
2468UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2469w0 indicates failure to get a TRNG source.
2470
2471Functions
2472.........
2473
2474Function: void plat_entropy_setup(void) [mandatory]
2475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2476
2477::
2478
2479 Argument: none
2480 Return: none
2481
2482This function is expected to do platform-specific initialization of any TRNG
2483hardware. This may include generating a UUID from a hardware-specific seed.
2484
2485Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2486^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2487
2488::
2489
2490 Argument: uint64_t *
2491 Return: bool
2492 Out : when the return value is true, the entropy has been written into the
2493 storage pointed to
2494
2495This function writes entropy into storage provided by the caller. If no entropy
2496is available, it must return false and the storage must not be written.
2497
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002498Power State Coordination Interface (in BL31)
2499--------------------------------------------
2500
Dan Handley610e7e12018-03-01 18:44:00 +00002501The TF-A implementation of the PSCI API is based around the concept of a
2502*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2503share some state on which power management operations can be performed as
2504specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2505a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2506*power domains* are arranged in a hierarchical tree structure and each
2507*power domain* can be identified in a system by the cpu index of any CPU that
2508is part of that domain and a *power domain level*. A processing element (for
2509example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2510logical grouping of CPUs that share some state, then level 1 is that group of
2511CPUs (for example, a cluster), and level 2 is a group of clusters (for
2512example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002513organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002514
2515BL31's platform initialization code exports a pointer to the platform-specific
2516power management operations required for the PSCI implementation to function
2517correctly. This information is populated in the ``plat_psci_ops`` structure. The
2518PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2519power management operations on the power domains. For example, the target
2520CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2521handler (if present) is called for the CPU power domain.
2522
2523The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2524describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002525defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002526array of local power states where each index corresponds to a power domain
2527level. Each entry contains the local power state the power domain at that power
2528level could enter. It depends on the ``validate_power_state()`` handler to
2529convert the power-state parameter (possibly encoding a composite power state)
2530passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2531
2532The following functions form part of platform port of PSCI functionality.
2533
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002534Function : plat_psci_stat_accounting_start() [optional]
2535~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002536
2537::
2538
2539 Argument : const psci_power_state_t *
2540 Return : void
2541
2542This is an optional hook that platforms can implement for residency statistics
2543accounting before entering a low power state. The ``pwr_domain_state`` field of
2544``state_info`` (first argument) can be inspected if stat accounting is done
2545differently at CPU level versus higher levels. As an example, if the element at
2546index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2547state, special hardware logic may be programmed in order to keep track of the
2548residency statistics. For higher levels (array indices > 0), the residency
2549statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2550default implementation will use PMF to capture timestamps.
2551
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002552Function : plat_psci_stat_accounting_stop() [optional]
2553~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002554
2555::
2556
2557 Argument : const psci_power_state_t *
2558 Return : void
2559
2560This is an optional hook that platforms can implement for residency statistics
2561accounting after exiting from a low power state. The ``pwr_domain_state`` field
2562of ``state_info`` (first argument) can be inspected if stat accounting is done
2563differently at CPU level versus higher levels. As an example, if the element at
2564index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2565state, special hardware logic may be programmed in order to keep track of the
2566residency statistics. For higher levels (array indices > 0), the residency
2567statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2568default implementation will use PMF to capture timestamps.
2569
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002570Function : plat_psci_stat_get_residency() [optional]
2571~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002572
2573::
2574
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002575 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002576 Return : u_register_t
2577
2578This is an optional interface that is is invoked after resuming from a low power
2579state and provides the time spent resident in that low power state by the power
2580domain at a particular power domain level. When a CPU wakes up from suspend,
2581all its parent power domain levels are also woken up. The generic PSCI code
2582invokes this function for each parent power domain that is resumed and it
2583identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2584argument) describes the low power state that the power domain has resumed from.
2585The current CPU is the first CPU in the power domain to resume from the low
2586power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2587CPU in the power domain to suspend and may be needed to calculate the residency
2588for that power domain.
2589
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002590Function : plat_get_target_pwr_state() [optional]
2591~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002592
2593::
2594
2595 Argument : unsigned int, const plat_local_state_t *, unsigned int
2596 Return : plat_local_state_t
2597
2598The PSCI generic code uses this function to let the platform participate in
2599state coordination during a power management operation. The function is passed
2600a pointer to an array of platform specific local power state ``states`` (second
2601argument) which contains the requested power state for each CPU at a particular
2602power domain level ``lvl`` (first argument) within the power domain. The function
2603is expected to traverse this array of upto ``ncpus`` (third argument) and return
2604a coordinated target power state by the comparing all the requested power
2605states. The target power state should not be deeper than any of the requested
2606power states.
2607
2608A weak definition of this API is provided by default wherein it assumes
2609that the platform assigns a local state value in order of increasing depth
2610of the power state i.e. for two power states X & Y, if X < Y
2611then X represents a shallower power state than Y. As a result, the
2612coordinated target local power state for a power domain will be the minimum
2613of the requested local power state values.
2614
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002615Function : plat_get_power_domain_tree_desc() [mandatory]
2616~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002617
2618::
2619
2620 Argument : void
2621 Return : const unsigned char *
2622
2623This function returns a pointer to the byte array containing the power domain
2624topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002625described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2626initialization code requires this array to be described by the platform, either
2627statically or dynamically, to initialize the power domain topology tree. In case
2628the array is populated dynamically, then plat_core_pos_by_mpidr() and
2629plat_my_core_pos() should also be implemented suitably so that the topology tree
2630description matches the CPU indices returned by these APIs. These APIs together
2631form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002632
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002633Function : plat_setup_psci_ops() [mandatory]
2634~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002635
2636::
2637
2638 Argument : uintptr_t, const plat_psci_ops **
2639 Return : int
2640
2641This function may execute with the MMU and data caches enabled if the platform
2642port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2643called by the primary CPU.
2644
2645This function is called by PSCI initialization code. Its purpose is to let
2646the platform layer know about the warm boot entrypoint through the
2647``sec_entrypoint`` (first argument) and to export handler routines for
2648platform-specific psci power management actions by populating the passed
2649pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2650
2651A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002652the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002653``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002654platform wants to support, the associated operation or operations in this
2655structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002656:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002657function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002658structure instead of providing an empty implementation.
2659
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002660plat_psci_ops.cpu_standby()
2661...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002662
2663Perform the platform-specific actions to enter the standby state for a cpu
2664indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002665wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002666For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2667the suspend state type specified in the ``power-state`` parameter should be
2668STANDBY and the target power domain level specified should be the CPU. The
2669handler should put the CPU into a low power retention state (usually by
2670issuing a wfi instruction) and ensure that it can be woken up from that
2671state by a normal interrupt. The generic code expects the handler to succeed.
2672
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002673plat_psci_ops.pwr_domain_on()
2674.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002675
2676Perform the platform specific actions to power on a CPU, specified
2677by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002678return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002679
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002680plat_psci_ops.pwr_domain_off()
2681..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002682
2683Perform the platform specific actions to prepare to power off the calling CPU
2684and its higher parent power domain levels as indicated by the ``target_state``
2685(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2686
2687The ``target_state`` encodes the platform coordinated target local power states
2688for the CPU power domain and its parent power domain levels. The handler
2689needs to perform power management operation corresponding to the local state
2690at each power level.
2691
2692For this handler, the local power state for the CPU power domain will be a
2693power down state where as it could be either power down, retention or run state
2694for the higher power domain levels depending on the result of state
2695coordination. The generic code expects the handler to succeed.
2696
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002697plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2698...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002699
2700This optional function may be used as a performance optimization to replace
2701or complement pwr_domain_suspend() on some platforms. Its calling semantics
2702are identical to pwr_domain_suspend(), except the PSCI implementation only
2703calls this function when suspending to a power down state, and it guarantees
2704that data caches are enabled.
2705
2706When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2707before calling pwr_domain_suspend(). If the target_state corresponds to a
2708power down state and it is safe to perform some or all of the platform
2709specific actions in that function with data caches enabled, it may be more
2710efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2711= 1, data caches remain enabled throughout, and so there is no advantage to
2712moving platform specific actions to this function.
2713
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002714plat_psci_ops.pwr_domain_suspend()
2715..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002716
2717Perform the platform specific actions to prepare to suspend the calling
2718CPU and its higher parent power domain levels as indicated by the
2719``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2720API implementation.
2721
2722The ``target_state`` has a similar meaning as described in
2723the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2724target local power states for the CPU power domain and its parent
2725power domain levels. The handler needs to perform power management operation
2726corresponding to the local state at each power level. The generic code
2727expects the handler to succeed.
2728
Douglas Raillarda84996b2017-08-02 16:57:32 +01002729The difference between turning a power domain off versus suspending it is that
2730in the former case, the power domain is expected to re-initialize its state
2731when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2732case, the power domain is expected to save enough state so that it can resume
2733execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002734``pwr_domain_suspend_finish()``).
2735
Douglas Raillarda84996b2017-08-02 16:57:32 +01002736When suspending a core, the platform can also choose to power off the GICv3
2737Redistributor and ITS through an implementation-defined sequence. To achieve
2738this safely, the ITS context must be saved first. The architectural part is
2739implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2740sequence is implementation defined and it is therefore the responsibility of
2741the platform code to implement the necessary sequence. Then the GIC
2742Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2743Powering off the Redistributor requires the implementation to support it and it
2744is the responsibility of the platform code to execute the right implementation
2745defined sequence.
2746
2747When a system suspend is requested, the platform can also make use of the
2748``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2749it has saved the context of the Redistributors and ITS of all the cores in the
2750system. The context of the Distributor can be large and may require it to be
2751allocated in a special area if it cannot fit in the platform's global static
2752data, for example in DRAM. The Distributor can then be powered down using an
2753implementation-defined sequence.
2754
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002755plat_psci_ops.pwr_domain_pwr_down_wfi()
2756.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002757
2758This is an optional function and, if implemented, is expected to perform
2759platform specific actions including the ``wfi`` invocation which allows the
2760CPU to powerdown. Since this function is invoked outside the PSCI locks,
2761the actions performed in this hook must be local to the CPU or the platform
2762must ensure that races between multiple CPUs cannot occur.
2763
2764The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2765operation and it encodes the platform coordinated target local power states for
2766the CPU power domain and its parent power domain levels. This function must
2767not return back to the caller.
2768
2769If this function is not implemented by the platform, PSCI generic
2770implementation invokes ``psci_power_down_wfi()`` for power down.
2771
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002772plat_psci_ops.pwr_domain_on_finish()
2773....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002774
2775This function is called by the PSCI implementation after the calling CPU is
2776powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2777It performs the platform-specific setup required to initialize enough state for
2778this CPU to enter the normal world and also provide secure runtime firmware
2779services.
2780
2781The ``target_state`` (first argument) is the prior state of the power domains
2782immediately before the CPU was turned on. It indicates which power domains
2783above the CPU might require initialization due to having previously been in
2784low power states. The generic code expects the handler to succeed.
2785
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002786plat_psci_ops.pwr_domain_on_finish_late() [optional]
2787...........................................................
2788
2789This optional function is called by the PSCI implementation after the calling
2790CPU is fully powered on with respective data caches enabled. The calling CPU and
2791the associated cluster are guaranteed to be participating in coherency. This
2792function gives the flexibility to perform any platform-specific actions safely,
2793such as initialization or modification of shared data structures, without the
2794overhead of explicit cache maintainace operations.
2795
2796The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2797operation. The generic code expects the handler to succeed.
2798
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002799plat_psci_ops.pwr_domain_suspend_finish()
2800.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002801
2802This function is called by the PSCI implementation after the calling CPU is
2803powered on and released from reset in response to an asynchronous wakeup
2804event, for example a timer interrupt that was programmed by the CPU during the
2805``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2806setup required to restore the saved state for this CPU to resume execution
2807in the normal world and also provide secure runtime firmware services.
2808
2809The ``target_state`` (first argument) has a similar meaning as described in
2810the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2811to succeed.
2812
Douglas Raillarda84996b2017-08-02 16:57:32 +01002813If the Distributor, Redistributors or ITS have been powered off as part of a
2814suspend, their context must be restored in this function in the reverse order
2815to how they were saved during suspend sequence.
2816
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002817plat_psci_ops.system_off()
2818..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002819
2820This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2821call. It performs the platform-specific system poweroff sequence after
2822notifying the Secure Payload Dispatcher.
2823
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002824plat_psci_ops.system_reset()
2825............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002826
2827This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2828call. It performs the platform-specific system reset sequence after
2829notifying the Secure Payload Dispatcher.
2830
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002831plat_psci_ops.validate_power_state()
2832....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002833
2834This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2835call to validate the ``power_state`` parameter of the PSCI API and if valid,
2836populate it in ``req_state`` (second argument) array as power domain level
2837specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002838return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002839normal world PSCI client.
2840
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002841plat_psci_ops.validate_ns_entrypoint()
2842......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002843
2844This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2845``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2846parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002847the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002848propagated back to the normal world PSCI client.
2849
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002850plat_psci_ops.get_sys_suspend_power_state()
2851...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002852
2853This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2854call to get the ``req_state`` parameter from platform which encodes the power
2855domain level specific local states to suspend to system affinity level. The
2856``req_state`` will be utilized to do the PSCI state coordination and
2857``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2858enter system suspend.
2859
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002860plat_psci_ops.get_pwr_lvl_state_idx()
2861.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002862
2863This is an optional function and, if implemented, is invoked by the PSCI
2864implementation to convert the ``local_state`` (first argument) at a specified
2865``pwr_lvl`` (second argument) to an index between 0 and
2866``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2867supports more than two local power states at each power domain level, that is
2868``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2869local power states.
2870
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002871plat_psci_ops.translate_power_state_by_mpidr()
2872..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002873
2874This is an optional function and, if implemented, verifies the ``power_state``
2875(second argument) parameter of the PSCI API corresponding to a target power
2876domain. The target power domain is identified by using both ``MPIDR`` (first
2877argument) and the power domain level encoded in ``power_state``. The power domain
2878level specific local states are to be extracted from ``power_state`` and be
2879populated in the ``output_state`` (third argument) array. The functionality
2880is similar to the ``validate_power_state`` function described above and is
2881envisaged to be used in case the validity of ``power_state`` depend on the
2882targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002883domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002884function is not implemented, then the generic implementation relies on
2885``validate_power_state`` function to translate the ``power_state``.
2886
2887This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002888power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002889APIs as described in Section 5.18 of `PSCI`_.
2890
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002891plat_psci_ops.get_node_hw_state()
2892.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002893
2894This is an optional function. If implemented this function is intended to return
2895the power state of a node (identified by the first parameter, the ``MPIDR``) in
2896the power domain topology (identified by the second parameter, ``power_level``),
2897as retrieved from a power controller or equivalent component on the platform.
2898Upon successful completion, the implementation must map and return the final
2899status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2900must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2901appropriate.
2902
2903Implementations are not expected to handle ``power_levels`` greater than
2904``PLAT_MAX_PWR_LVL``.
2905
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002906plat_psci_ops.system_reset2()
2907.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002908
2909This is an optional function. If implemented this function is
2910called during the ``SYSTEM_RESET2`` call to perform a reset
2911based on the first parameter ``reset_type`` as specified in
2912`PSCI`_. The parameter ``cookie`` can be used to pass additional
2913reset information. If the ``reset_type`` is not supported, the
2914function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2915resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2916and vendor reset can return other PSCI error codes as defined
2917in `PSCI`_. On success this function will not return.
2918
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002919plat_psci_ops.write_mem_protect()
2920.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002921
2922This is an optional function. If implemented it enables or disables the
2923``MEM_PROTECT`` functionality based on the value of ``val``.
2924A non-zero value enables ``MEM_PROTECT`` and a value of zero
2925disables it. Upon encountering failures it must return a negative value
2926and on success it must return 0.
2927
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002928plat_psci_ops.read_mem_protect()
2929................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002930
2931This is an optional function. If implemented it returns the current
2932state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2933failures it must return a negative value and on success it must
2934return 0.
2935
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002936plat_psci_ops.mem_protect_chk()
2937...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002938
2939This is an optional function. If implemented it checks if a memory
2940region defined by a base address ``base`` and with a size of ``length``
2941bytes is protected by ``MEM_PROTECT``. If the region is protected
2942then it must return 0, otherwise it must return a negative number.
2943
Paul Beesleyf8640672019-04-12 14:19:42 +01002944.. _porting_guide_imf_in_bl31:
2945
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002946Interrupt Management framework (in BL31)
2947----------------------------------------
2948
2949BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2950generated in either security state and targeted to EL1 or EL2 in the non-secure
2951state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002952described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002953
2954A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002955text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002956platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002957present in the platform. Arm standard platform layer supports both
2958`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2959and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2960FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002961``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2962details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002963
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002964See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002965
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002966Function : plat_interrupt_type_to_line() [mandatory]
2967~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002968
2969::
2970
2971 Argument : uint32_t, uint32_t
2972 Return : uint32_t
2973
Dan Handley610e7e12018-03-01 18:44:00 +00002974The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002975interrupt line. The specific line that is signaled depends on how the interrupt
2976controller (IC) reports different interrupt types from an execution context in
2977either security state. The IMF uses this API to determine which interrupt line
2978the platform IC uses to signal each type of interrupt supported by the framework
2979from a given security state. This API must be invoked at EL3.
2980
2981The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01002982:ref:`Interrupt Management Framework`) indicating the target type of the
2983interrupt, the second parameter is the security state of the originating
2984execution context. The return result is the bit position in the ``SCR_EL3``
2985register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002986
Dan Handley610e7e12018-03-01 18:44:00 +00002987In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002988configured as FIQs and Non-secure interrupts as IRQs from either security
2989state.
2990
Dan Handley610e7e12018-03-01 18:44:00 +00002991In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002992configured depends on the security state of the execution context when the
2993interrupt is signalled and are as follows:
2994
2995- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2996 NS-EL0/1/2 context.
2997- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2998 in the NS-EL0/1/2 context.
2999- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
3000 context.
3001
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003002Function : plat_ic_get_pending_interrupt_type() [mandatory]
3003~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003004
3005::
3006
3007 Argument : void
3008 Return : uint32_t
3009
3010This API returns the type of the highest priority pending interrupt at the
3011platform IC. The IMF uses the interrupt type to retrieve the corresponding
3012handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
3013pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
3014``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
3015
Dan Handley610e7e12018-03-01 18:44:00 +00003016In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003017Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
3018the pending interrupt. The type of interrupt depends upon the id value as
3019follows.
3020
3021#. id < 1022 is reported as a S-EL1 interrupt
3022#. id = 1022 is reported as a Non-secure interrupt.
3023#. id = 1023 is reported as an invalid interrupt type.
3024
Dan Handley610e7e12018-03-01 18:44:00 +00003025In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003026``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
3027is read to determine the id of the pending interrupt. The type of interrupt
3028depends upon the id value as follows.
3029
3030#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
3031#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
3032#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
3033#. All other interrupt id's are reported as EL3 interrupt.
3034
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003035Function : plat_ic_get_pending_interrupt_id() [mandatory]
3036~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003037
3038::
3039
3040 Argument : void
3041 Return : uint32_t
3042
3043This API returns the id of the highest priority pending interrupt at the
3044platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
3045pending.
3046
Dan Handley610e7e12018-03-01 18:44:00 +00003047In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003048Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
3049pending interrupt. The id that is returned by API depends upon the value of
3050the id read from the interrupt controller as follows.
3051
3052#. id < 1022. id is returned as is.
3053#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
3054 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
3055 This id is returned by the API.
3056#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
3057
Dan Handley610e7e12018-03-01 18:44:00 +00003058In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003059EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
3060group 0 Register*, is read to determine the id of the pending interrupt. The id
3061that is returned by API depends upon the value of the id read from the
3062interrupt controller as follows.
3063
3064#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
3065#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
3066 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
3067 Register* is read to determine the id of the group 1 interrupt. This id
3068 is returned by the API as long as it is a valid interrupt id
3069#. If the id is any of the special interrupt identifiers,
3070 ``INTR_ID_UNAVAILABLE`` is returned.
3071
3072When the API invoked from S-EL1 for GICv3 systems, the id read from system
3073register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003074Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003075``INTR_ID_UNAVAILABLE`` is returned.
3076
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003077Function : plat_ic_acknowledge_interrupt() [mandatory]
3078~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003079
3080::
3081
3082 Argument : void
3083 Return : uint32_t
3084
3085This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003086the highest pending interrupt has begun. It should return the raw, unmodified
3087value obtained from the interrupt controller when acknowledging an interrupt.
3088The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05003089`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003090
Dan Handley610e7e12018-03-01 18:44:00 +00003091This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003092Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
3093priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003094It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003095
Dan Handley610e7e12018-03-01 18:44:00 +00003096In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003097from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
3098Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
3099reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
3100group 1*. The read changes the state of the highest pending interrupt from
3101pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01003102unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003103
3104The TSP uses this API to start processing of the secure physical timer
3105interrupt.
3106
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003107Function : plat_ic_end_of_interrupt() [mandatory]
3108~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003109
3110::
3111
3112 Argument : uint32_t
3113 Return : void
3114
3115This API is used by the CPU to indicate to the platform IC that processing of
3116the interrupt corresponding to the id (passed as the parameter) has
3117finished. The id should be the same as the id returned by the
3118``plat_ic_acknowledge_interrupt()`` API.
3119
Dan Handley610e7e12018-03-01 18:44:00 +00003120Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003121(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
3122system register in case of GICv3 depending on where the API is invoked from,
3123EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
3124controller.
3125
3126The TSP uses this API to finish processing of the secure physical timer
3127interrupt.
3128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003129Function : plat_ic_get_interrupt_type() [mandatory]
3130~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003131
3132::
3133
3134 Argument : uint32_t
3135 Return : uint32_t
3136
3137This API returns the type of the interrupt id passed as the parameter.
3138``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
3139interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
3140returned depending upon how the interrupt has been configured by the platform
3141IC. This API must be invoked at EL3.
3142
Dan Handley610e7e12018-03-01 18:44:00 +00003143Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003144and Non-secure interrupts as Group1 interrupts. It reads the group value
3145corresponding to the interrupt id from the relevant *Interrupt Group Register*
3146(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
3147
Dan Handley610e7e12018-03-01 18:44:00 +00003148In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003149Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
3150(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
3151as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
3152
3153Crash Reporting mechanism (in BL31)
3154-----------------------------------
3155
3156BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003157of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00003158on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003159``plat_crash_console_putc`` and ``plat_crash_console_flush``.
3160
3161The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
3162implementation of all of them. Platforms may include this file to their
3163makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003164output to be routed over the normal console infrastructure and get printed on
3165consoles configured to output in crash state. ``console_set_scope()`` can be
3166used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00003167
3168.. note::
3169 Platforms are responsible for making sure that they only mark consoles for
3170 use in the crash scope that are able to support this, i.e. that are written
3171 in assembly and conform with the register clobber rules for putc()
3172 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003173
Julius Werneraae9bb12017-09-18 16:49:48 -07003174In some cases (such as debugging very early crashes that happen before the
3175normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08003176more explicitly. These platforms may instead provide custom implementations for
3177these. They are executed outside of a C environment and without a stack. Many
3178console drivers provide functions named ``console_xxx_core_init/putc/flush``
3179that are designed to be used by these functions. See Arm platforms (like juno)
3180for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01003181
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003182Function : plat_crash_console_init [mandatory]
3183~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003184
3185::
3186
3187 Argument : void
3188 Return : int
3189
3190This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07003191console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003192initialization and returns 1 on success.
3193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003194Function : plat_crash_console_putc [mandatory]
3195~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003196
3197::
3198
3199 Argument : int
3200 Return : int
3201
3202This API is used by the crash reporting mechanism to print a character on the
3203designated crash console. It must only use general purpose registers x1 and
3204x2 to do its work. The parameter and the return value are in general purpose
3205register x0.
3206
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003207Function : plat_crash_console_flush [mandatory]
3208~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003209
3210::
3211
3212 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003213 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003214
3215This API is used by the crash reporting mechanism to force write of all buffered
3216data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05003217registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003218
Manish Pandey9c9f38a2020-06-30 00:46:08 +01003219.. _External Abort handling and RAS Support:
3220
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01003221External Abort handling and RAS Support
3222---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01003223
3224Function : plat_ea_handler
3225~~~~~~~~~~~~~~~~~~~~~~~~~~
3226
3227::
3228
3229 Argument : int
3230 Argument : uint64_t
3231 Argument : void *
3232 Argument : void *
3233 Argument : uint64_t
3234 Return : void
3235
3236This function is invoked by the RAS framework for the platform to handle an
3237External Abort received at EL3. The intention of the function is to attempt to
3238resolve the cause of External Abort and return; if that's not possible, to
3239initiate orderly shutdown of the system.
3240
3241The first parameter (``int ea_reason``) indicates the reason for External Abort.
3242Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
3243
3244The second parameter (``uint64_t syndrome``) is the respective syndrome
3245presented to EL3 after having received the External Abort. Depending on the
3246nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
3247can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
3248
3249The third parameter (``void *cookie``) is unused for now. The fourth parameter
3250(``void *handle``) is a pointer to the preempted context. The fifth parameter
3251(``uint64_t flags``) indicates the preempted security state. These parameters
3252are received from the top-level exception handler.
3253
3254If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
3255function iterates through RAS handlers registered by the platform. If any of the
3256RAS handlers resolve the External Abort, no further action is taken.
3257
3258If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
3259could resolve the External Abort, the default implementation prints an error
3260message, and panics.
3261
3262Function : plat_handle_uncontainable_ea
3263~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3264
3265::
3266
3267 Argument : int
3268 Argument : uint64_t
3269 Return : void
3270
3271This function is invoked by the RAS framework when an External Abort of
3272Uncontainable type is received at EL3. Due to the critical nature of
3273Uncontainable errors, the intention of this function is to initiate orderly
3274shutdown of the system, and is not expected to return.
3275
3276This function must be implemented in assembly.
3277
3278The first and second parameters are the same as that of ``plat_ea_handler``.
3279
3280The default implementation of this function calls
3281``report_unhandled_exception``.
3282
3283Function : plat_handle_double_fault
3284~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3285
3286::
3287
3288 Argument : int
3289 Argument : uint64_t
3290 Return : void
3291
3292This function is invoked by the RAS framework when another External Abort is
3293received at EL3 while one is already being handled. I.e., a call to
3294``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
3295this function is to initiate orderly shutdown of the system, and is not expected
3296recover or return.
3297
3298This function must be implemented in assembly.
3299
3300The first and second parameters are the same as that of ``plat_ea_handler``.
3301
3302The default implementation of this function calls
3303``report_unhandled_exception``.
3304
3305Function : plat_handle_el3_ea
3306~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3307
3308::
3309
3310 Return : void
3311
3312This function is invoked when an External Abort is received while executing in
3313EL3. Due to its critical nature, the intention of this function is to initiate
3314orderly shutdown of the system, and is not expected recover or return.
3315
3316This function must be implemented in assembly.
3317
3318The default implementation of this function calls
3319``report_unhandled_exception``.
3320
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003321Build flags
3322-----------
3323
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003324There are some build flags which can be defined by the platform to control
3325inclusion or exclusion of certain BL stages from the FIP image. These flags
3326need to be defined in the platform makefile which will get included by the
3327build system.
3328
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003329- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003330 By default, this flag is defined ``yes`` by the build system and ``BL33``
3331 build option should be supplied as a build option. The platform has the
3332 option of excluding the BL33 image in the ``fip`` image by defining this flag
3333 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3334 are used, this flag will be set to ``no`` automatically.
3335
Paul Beesley07f0a312019-05-16 13:33:18 +01003336Platform include paths
3337----------------------
3338
3339Platforms are allowed to add more include paths to be passed to the compiler.
3340The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3341particular for the file ``platform_def.h``.
3342
3343Example:
3344
3345.. code:: c
3346
3347 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3348
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003349C Library
3350---------
3351
3352To avoid subtle toolchain behavioral dependencies, the header files provided
3353by the compiler are not used. The software is built with the ``-nostdinc`` flag
3354to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00003355required headers are included in the TF-A source tree. The library only
3356contains those C library definitions required by the local implementation. If
3357more functionality is required, the needed library functions will need to be
3358added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003359
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003360Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00003361been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003362from `FreeBSD`_, others have been written specifically for TF-A as well. The
3363files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003364
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01003365SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3366can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003367
3368Storage abstraction layer
3369-------------------------
3370
Louis Mayencourtb5469002019-07-15 13:56:03 +01003371In order to improve platform independence and portability a storage abstraction
3372layer is used to load data from non-volatile platform storage. Currently
3373storage access is only required by BL1 and BL2 phases and performed inside the
3374``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003375
Louis Mayencourtb5469002019-07-15 13:56:03 +01003376.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003377
Dan Handley610e7e12018-03-01 18:44:00 +00003378It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003379development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003380the default means to load data from storage (see :ref:`firmware_design_fip`).
3381The storage layer is described in the header file
3382``include/drivers/io/io_storage.h``. The implementation of the common library is
3383in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003384``drivers/io/``.
3385
Louis Mayencourtb5469002019-07-15 13:56:03 +01003386.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
3387
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003388Each IO driver must provide ``io_dev_*`` structures, as described in
3389``drivers/io/io_driver.h``. These are returned via a mandatory registration
3390function that is called on platform initialization. The semi-hosting driver
3391implementation in ``io_semihosting.c`` can be used as an example.
3392
Louis Mayencourtb5469002019-07-15 13:56:03 +01003393Each platform should register devices and their drivers via the storage
3394abstraction layer. These drivers then need to be initialized by bootloader
3395phases as required in their respective ``blx_platform_setup()`` functions.
3396
3397.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
3398
3399The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3400initialize storage devices before IO operations are called.
3401
3402.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
3403
3404The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003405include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3406Drivers do not have to implement all operations, but each platform must
3407provide at least one driver for a device capable of supporting generic
3408operations such as loading a bootloader image.
3409
3410The current implementation only allows for known images to be loaded by the
3411firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003412``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003413there). The platform layer (``plat_get_image_source()``) then returns a reference
3414to a device and a driver-specific ``spec`` which will be understood by the driver
3415to allow access to the image data.
3416
3417The layer is designed in such a way that is it possible to chain drivers with
3418other drivers. For example, file-system drivers may be implemented on top of
3419physical block devices, both represented by IO devices with corresponding
3420drivers. In such a case, the file-system "binding" with the block device may
3421be deferred until the file-system device is initialised.
3422
3423The abstraction currently depends on structures being statically allocated
3424by the drivers and callers, as the system does not yet provide a means of
3425dynamically allocating memory. This may also have the affect of limiting the
3426amount of open resources per driver.
3427
3428--------------
3429
Soby Mathewf05d93a2022-03-22 16:21:19 +00003430*Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003431
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003432.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00003433.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003434.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003435.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003436.. _SCC: http://www.simple-cc.org/
Lucian Paul-Trifub93037a2022-06-22 18:45:36 +01003437.. _DRTM: https://developer.arm.com/documentation/den0113/a