blob: 92ff39fdd7fcef2417a5e07380182e8ae6d6e95b [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Paul Beesleyf8640672019-04-12 14:19:42 +010026Please refer to the :ref:`Platform Compatibility Policy` for the policy
27regarding compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010028
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillardd7c21b72017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley610e7e12018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010061
Dan Handley610e7e12018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010092File : platform_def.h [mandatory]
93~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010094
95Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000096include path with the following constants defined. This will require updating
97the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010098
Paul Beesleyf8640672019-04-12 14:19:42 +010099Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100which provides typical values for some of the constants below. These values are
101likely to be suitable for all platform ports.
102
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100103- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100104
105 Defines the linker format used by the platform, for example
106 ``elf64-littleaarch64``.
107
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100108- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100109
110 Defines the processor architecture for the linker by the platform, for
111 example ``aarch64``.
112
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100113- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100114
115 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100116 by ``plat/common/aarch64/platform_mp_stack.S`` and
117 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
David Horstmann051fd6d2020-11-12 15:19:04 +0000119- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
121 Defines the size in bits of the largest cache line across all the cache
122 levels in the platform.
123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100124- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100125
126 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
127 function.
128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100129- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100130
131 Defines the total number of CPUs implemented by the platform across all
132 clusters in the system.
133
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100134- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100135
136 Defines the total number of nodes in the power domain topology
137 tree at all the power domain levels used by the platform.
138 This macro is used by the PSCI implementation to allocate
139 data structures to represent power domain topology.
140
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100141- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100142
143 Defines the maximum power domain level that the power management operations
144 should apply to. More often, but not always, the power domain level
145 corresponds to affinity level. This macro allows the PSCI implementation
146 to know the highest power domain level that it should consider for power
147 management operations in the system that the platform implements. For
148 example, the Base AEM FVP implements two clusters with a configurable
149 number of CPUs and it reports the maximum power domain level as 1.
150
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100151- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100152
153 Defines the local power state corresponding to the deepest power down
154 possible at every power domain level in the platform. The local power
155 states for each level may be sparsely allocated between 0 and this value
156 with 0 being reserved for the RUN state. The PSCI implementation uses this
157 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100158 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 Defines the local power state corresponding to the deepest retention state
163 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100164 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100165 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
170 Defines the maximum number of local power states per power domain level
171 that the platform supports. The default value of this macro is 2 since
172 most platforms just support a maximum of two local power states at each
173 power domain level (power-down and retention). If the platform needs to
174 account for more local power states, then it must redefine this macro.
175
176 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100177 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100178
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
181 Defines the base address in secure ROM where BL1 originally lives. Must be
182 aligned on a page-size boundary.
183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100184- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100185
186 Defines the maximum address in secure ROM that BL1's actual content (i.e.
187 excluding any data section allocated at runtime) can occupy.
188
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100189- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100190
191 Defines the base address in secure RAM where BL1's read-write data will live
192 at runtime. Must be aligned on a page-size boundary.
193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100194- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100195
196 Defines the maximum address in secure RAM that BL1's read-write data can
197 occupy at runtime.
198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100199- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100200
201 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000202 Must be aligned on a page-size boundary. This constant is not applicable
203 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100205- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
207 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000208 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100210- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000211
212 Defines the base address in secure XIP memory where BL2 RO section originally
213 lives. Must be aligned on a page-size boundary. This constant is only needed
214 when BL2_IN_XIP_MEM is set to '1'.
215
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100216- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000217
218 Defines the maximum address in secure XIP memory that BL2's actual content
219 (i.e. excluding any data section allocated at runtime) can occupy. This
220 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
221
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100222- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000223
224 Defines the base address in secure RAM where BL2's read-write data will live
225 at runtime. Must be aligned on a page-size boundary. This constant is only
226 needed when BL2_IN_XIP_MEM is set to '1'.
227
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100228- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000229
230 Defines the maximum address in secure RAM that BL2's read-write data can
231 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
232 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100233
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100234- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
236 Defines the base address in secure RAM where BL2 loads the BL31 binary
237 image. Must be aligned on a page-size boundary.
238
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100239- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100240
241 Defines the maximum address in secure RAM that the BL31 image can occupy.
242
243For every image, the platform must define individual identifiers that will be
244used by BL1 or BL2 to load the corresponding image into memory from non-volatile
245storage. For the sake of performance, integer numbers will be used as
246identifiers. The platform will use those identifiers to return the relevant
247information about the image to be loaded (file handler, load address,
248authentication information, etc.). The following image identifiers are
249mandatory:
250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100251- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100252
253 BL2 image identifier, used by BL1 to load BL2.
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 BL31 image identifier, used by BL2 to load BL31.
258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100259- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
261 BL33 image identifier, used by BL2 to load BL33.
262
263If Trusted Board Boot is enabled, the following certificate identifiers must
264also be defined:
265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100266- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100267
268 BL2 content certificate identifier, used by BL1 to load the BL2 content
269 certificate.
270
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100271- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100272
273 Trusted key certificate identifier, used by BL2 to load the trusted key
274 certificate.
275
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100276- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100277
278 BL31 key certificate identifier, used by BL2 to load the BL31 key
279 certificate.
280
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100281- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100282
283 BL31 content certificate identifier, used by BL2 to load the BL31 content
284 certificate.
285
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100286- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100287
288 BL33 key certificate identifier, used by BL2 to load the BL33 key
289 certificate.
290
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100291- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100292
293 BL33 content certificate identifier, used by BL2 to load the BL33 content
294 certificate.
295
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100296- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299 FWU content certificate.
300
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100301- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100302
Dan Handley610e7e12018-03-01 18:44:00 +0000303 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000305 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 set.
307
308If the AP Firmware Updater Configuration image, BL2U is used, the following
309must also be defined:
310
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100311- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100312
313 Defines the base address in secure memory where BL1 copies the BL2U binary
314 image. Must be aligned on a page-size boundary.
315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100316- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100317
318 Defines the maximum address in secure memory that the BL2U image can occupy.
319
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100320- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100321
322 BL2U image identifier, used by BL1 to fetch an image descriptor
323 corresponding to BL2U.
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326must also be defined:
327
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100328- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
331 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000332
333 .. note::
334 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100336If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337also be defined:
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000343
344 .. note::
345 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100347- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
350 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100352If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353be defined:
354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000359
360 .. note::
361 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100365 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
366 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367
368For the the Firmware update capability of TRUSTED BOARD BOOT, the following
369macros may also be defined:
370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372
373 Total number of images that can be loaded simultaneously. If the platform
374 doesn't specify any value, it defaults to 10.
375
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100376If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100377also be defined:
378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100381 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000382 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100384- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387 certificate (mandatory when Trusted Board Boot is enabled).
388
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100389- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100391 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392 content certificate (mandatory when Trusted Board Boot is enabled).
393
394If a BL32 image is supported by the platform, the following constants must
395also be defined:
396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100397- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100398
399 BL32 image identifier, used by BL2 to load BL32.
400
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100401- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100402
403 BL32 key certificate identifier, used by BL2 to load the BL32 key
404 certificate (mandatory when Trusted Board Boot is enabled).
405
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100406- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100407
408 BL32 content certificate identifier, used by BL2 to load the BL32 content
409 certificate (mandatory when Trusted Board Boot is enabled).
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 Defines the base address in secure memory where BL2 loads the BL32 binary
414 image. Must be aligned on a page-size boundary.
415
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100416- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100417
418 Defines the maximum address that the BL32 image can occupy.
419
420If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
421platform, the following constants must also be defined:
422
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100423- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100424
425 Defines the base address of the secure memory used by the TSP image on the
426 platform. This must be at the same address or below ``BL32_BASE``.
427
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100428- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100429
430 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000431 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
432 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
433 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100434
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100435- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100436
437 Defines the ID of the secure physical generic timer interrupt used by the
438 TSP's interrupt handling code.
439
440If the platform port uses the translation table library code, the following
441constants must also be defined:
442
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100443- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100444
445 Optional flag that can be set per-image to enable the dynamic allocation of
446 regions even when the MMU is enabled. If not defined, only static
447 functionality will be available, if defined and set to 1 it will also
448 include the dynamic functionality.
449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100450- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100451
452 Defines the maximum number of translation tables that are allocated by the
453 translation table library code. To minimize the amount of runtime memory
454 used, choose the smallest value needed to map the required virtual addresses
455 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
456 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
457 as well.
458
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100459- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100460
461 Defines the maximum number of regions that are allocated by the translation
462 table library code. A region consists of physical base address, virtual base
463 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
464 defined in the ``mmap_region_t`` structure. The platform defines the regions
465 that should be mapped. Then, the translation table library will create the
466 corresponding tables and descriptors at runtime. To minimize the amount of
467 runtime memory used, choose the smallest value needed to register the
468 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
469 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
470 the dynamic regions as well.
471
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100472- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100473
474 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000475 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100476
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100477- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100478
479 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000480 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100481
482If the platform port uses the IO storage framework, the following constants
483must also be defined:
484
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100485- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100486
487 Defines the maximum number of registered IO devices. Attempting to register
488 more devices than this value using ``io_register_device()`` will fail with
489 -ENOMEM.
490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the maximum number of open IO handles. Attempting to open more IO
494 entities than this value using ``io_open()`` will fail with -ENOMEM.
495
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100496- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100497
498 Defines the maximum number of registered IO block devices. Attempting to
499 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100500 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100501 With this macro, multiple block devices could be supported at the same
502 time.
503
504If the platform needs to allocate data within the per-cpu data framework in
505BL31, it should define the following macro. Currently this is only required if
506the platform decides not to use the coherent memory section by undefining the
507``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
508required memory within the the per-cpu data to minimize wastage.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the memory (in bytes) to be reserved within the per-cpu data
513 structure for use by the platform layer.
514
515The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000516memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100517
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100518- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100519
520 Defines the maximum address in secure RAM that the BL31's progbits sections
521 can occupy.
522
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100523- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100524
525 Defines the maximum address that the TSP's progbits sections can occupy.
526
527If the platform port uses the PL061 GPIO driver, the following constant may
528optionally be defined:
529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100530- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531 Maximum number of GPIOs required by the platform. This allows control how
532 much memory is allocated for PL061 GPIO controllers. The default value is
533
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100534 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100535
536If the platform port uses the partition driver, the following constant may
537optionally be defined:
538
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100539- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100540 Maximum number of partition entries required by the platform. This allows
541 control how much memory is allocated for partition entries. The default
542 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100543 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100544 PLAT_PARTITION_MAX_ENTRIES := 12
545 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100546
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800547- **PLAT_PARTITION_BLOCK_SIZE**
548 The size of partition block. It could be either 512 bytes or 4096 bytes.
549 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000550 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800551 PLAT_PARTITION_BLOCK_SIZE := 4096
552 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
553
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554The following constant is optional. It should be defined to override the default
555behaviour of the ``assert()`` function (for example, to save memory).
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
559 ``assert()`` prints the name of the file, the line number and the asserted
560 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
561 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
562 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
563 defined, it defaults to ``LOG_LEVEL``.
564
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100565File : plat_macros.S [mandatory]
566~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100567
568Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000569the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100570found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
571
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100572- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100573
574 This macro allows the crash reporting routine to print relevant platform
575 registers in case of an unhandled exception in BL31. This aids in debugging
576 and this macro can be defined to be empty in case register reporting is not
577 desired.
578
579 For instance, GIC or interconnect registers may be helpful for
580 troubleshooting.
581
582Handling Reset
583--------------
584
585BL1 by default implements the reset vector where execution starts from a cold
586or warm boot. BL31 can be optionally set as a reset vector using the
587``RESET_TO_BL31`` make variable.
588
589For each CPU, the reset vector code is responsible for the following tasks:
590
591#. Distinguishing between a cold boot and a warm boot.
592
593#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
594 the CPU is placed in a platform-specific state until the primary CPU
595 performs the necessary steps to remove it from this state.
596
597#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
598 specific address in the BL31 image in the same processor mode as it was
599 when released from reset.
600
601The following functions need to be implemented by the platform port to enable
602reset vector code to perform the above tasks.
603
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100604Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
605~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100606
607::
608
609 Argument : void
610 Return : uintptr_t
611
612This function is called with the MMU and caches disabled
613(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
614distinguishing between a warm and cold reset for the current CPU using
615platform-specific means. If it's a warm reset, then it returns the warm
616reset entrypoint point provided to ``plat_setup_psci_ops()`` during
617BL31 initialization. If it's a cold reset then this function must return zero.
618
619This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000620Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100621not assume that callee saved registers are preserved across a call to this
622function.
623
624This function fulfills requirement 1 and 3 listed above.
625
626Note that for platforms that support programming the reset address, it is
627expected that a CPU will start executing code directly at the right address,
628both on a cold and warm reset. In this case, there is no need to identify the
629type of reset nor to query the warm reset entrypoint. Therefore, implementing
630this function is not required on such platforms.
631
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100632Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
633~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100634
635::
636
637 Argument : void
638
639This function is called with the MMU and data caches disabled. It is responsible
640for placing the executing secondary CPU in a platform-specific state until the
641primary CPU performs the necessary actions to bring it out of that state and
642allow entry into the OS. This function must not return.
643
Dan Handley610e7e12018-03-01 18:44:00 +0000644In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100645itself off. The primary CPU is responsible for powering up the secondary CPUs
646when normal world software requires them. When booting an EL3 payload instead,
647they stay powered on and are put in a holding pen until their mailbox gets
648populated.
649
650This function fulfills requirement 2 above.
651
652Note that for platforms that can't release secondary CPUs out of reset, only the
653primary CPU will execute the cold boot code. Therefore, implementing this
654function is not required on such platforms.
655
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100656Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
657~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100658
659::
660
661 Argument : void
662 Return : unsigned int
663
664This function identifies whether the current CPU is the primary CPU or a
665secondary CPU. A return value of zero indicates that the CPU is not the
666primary CPU, while a non-zero return value indicates that the CPU is the
667primary CPU.
668
669Note that for platforms that can't release secondary CPUs out of reset, only the
670primary CPU will execute the cold boot code. Therefore, there is no need to
671distinguish between primary and secondary CPUs and implementing this function is
672not required.
673
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100674Function : platform_mem_init() [mandatory]
675~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100676
677::
678
679 Argument : void
680 Return : void
681
682This function is called before any access to data is made by the firmware, in
683order to carry out any essential memory initialization.
684
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100685Function: plat_get_rotpk_info()
686~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100687
688::
689
690 Argument : void *, void **, unsigned int *, unsigned int *
691 Return : int
692
693This function is mandatory when Trusted Board Boot is enabled. It returns a
694pointer to the ROTPK stored in the platform (or a hash of it) and its length.
695The ROTPK must be encoded in DER format according to the following ASN.1
696structure:
697
698::
699
700 AlgorithmIdentifier ::= SEQUENCE {
701 algorithm OBJECT IDENTIFIER,
702 parameters ANY DEFINED BY algorithm OPTIONAL
703 }
704
705 SubjectPublicKeyInfo ::= SEQUENCE {
706 algorithm AlgorithmIdentifier,
707 subjectPublicKey BIT STRING
708 }
709
710In case the function returns a hash of the key:
711
712::
713
714 DigestInfo ::= SEQUENCE {
715 digestAlgorithm AlgorithmIdentifier,
716 digest OCTET STRING
717 }
718
719The function returns 0 on success. Any other value is treated as error by the
720Trusted Board Boot. The function also reports extra information related
721to the ROTPK in the flags parameter:
722
723::
724
725 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
726 hash.
727 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
728 verification while the platform ROTPK is not deployed.
729 When this flag is set, the function does not need to
730 return a platform ROTPK, and the authentication
731 framework uses the ROTPK in the certificate without
732 verifying it against the platform value. This flag
733 must not be used in a deployed production environment.
734
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100735Function: plat_get_nv_ctr()
736~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100737
738::
739
740 Argument : void *, unsigned int *
741 Return : int
742
743This function is mandatory when Trusted Board Boot is enabled. It returns the
744non-volatile counter value stored in the platform in the second argument. The
745cookie in the first argument may be used to select the counter in case the
746platform provides more than one (for example, on platforms that use the default
747TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100748TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100749
750The function returns 0 on success. Any other value means the counter value could
751not be retrieved from the platform.
752
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100753Function: plat_set_nv_ctr()
754~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100755
756::
757
758 Argument : void *, unsigned int
759 Return : int
760
761This function is mandatory when Trusted Board Boot is enabled. It sets a new
762counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100763select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100764the updated counter value to be written to the NV counter.
765
766The function returns 0 on success. Any other value means the counter value could
767not be updated.
768
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100769Function: plat_set_nv_ctr2()
770~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100771
772::
773
774 Argument : void *, const auth_img_desc_t *, unsigned int
775 Return : int
776
777This function is optional when Trusted Board Boot is enabled. If this
778interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
779first argument passed is a cookie and is typically used to
780differentiate between a Non Trusted NV Counter and a Trusted NV
781Counter. The second argument is a pointer to an authentication image
782descriptor and may be used to decide if the counter is allowed to be
783updated or not. The third argument is the updated counter value to
784be written to the NV counter.
785
786The function returns 0 on success. Any other value means the counter value
787either could not be updated or the authentication image descriptor indicates
788that it is not allowed to be updated.
789
790Common mandatory function modifications
791---------------------------------------
792
793The following functions are mandatory functions which need to be implemented
794by the platform port.
795
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100796Function : plat_my_core_pos()
797~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100798
799::
800
801 Argument : void
802 Return : unsigned int
803
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000804This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100805CPU-specific linear index into blocks of memory (for example while allocating
806per-CPU stacks). This function will be invoked very early in the
807initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000808implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100809runtime environment. This function can clobber x0 - x8 and must preserve
810x9 - x29.
811
812This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +0100813PSCI and details of this can be found in
814:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100815
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100816Function : plat_core_pos_by_mpidr()
817~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100818
819::
820
821 Argument : u_register_t
822 Return : int
823
824This function validates the ``MPIDR`` of a CPU and converts it to an index,
825which can be used as a CPU-specific linear index into blocks of memory. In
826case the ``MPIDR`` is invalid, this function returns -1. This function will only
827be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000828utilize the C runtime environment. For further details about how TF-A
829represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +0100830index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100831
Ambroise Vincentd207f562019-04-10 12:50:27 +0100832Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
833~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
834
835::
836
837 Arguments : void **heap_addr, size_t *heap_size
838 Return : int
839
840This function is invoked during Mbed TLS library initialisation to get a heap,
841by means of a starting address and a size. This heap will then be used
842internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
843must be able to provide a heap to it.
844
845A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
846which a heap is statically reserved during compile time inside every image
847(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
848the function simply returns the address and size of this "pre-allocated" heap.
849For a platform to use this default implementation, only a call to the helper
850from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
851
852However, by writting their own implementation, platforms have the potential to
853optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
854shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
855twice.
856
857On success the function should return 0 and a negative error code otherwise.
858
Sumit Gargc0c369c2019-11-15 18:47:53 +0530859Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
860~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
861
862::
863
864 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
865 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
866 size_t img_id_len
867 Return : int
868
869This function provides a symmetric key (either SSK or BSSK depending on
870fw_enc_status) which is invoked during runtime decryption of encrypted
871firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
872implementation for testing purposes which must be overridden by the platform
873trying to implement a real world firmware encryption use-case.
874
875It also allows the platform to pass symmetric key identifier rather than
876actual symmetric key which is useful in cases where the crypto backend provides
877secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
878flag must be set in ``flags``.
879
880In addition to above a platform may also choose to provide an image specific
881symmetric key/identifier using img_id.
882
883On success the function should return 0 and a negative error code otherwise.
884
Manish Pandey34a305e2021-10-21 21:53:49 +0100885Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
Sumit Gargc0c369c2019-11-15 18:47:53 +0530886
Manish V Badarkheda87af12021-06-20 21:14:46 +0100887Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
888~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
889
890::
891
892 Argument : struct fwu_metadata *metadata
893 Return : void
894
895This function is mandatory when PSA_FWU_SUPPORT is enabled.
896It provides a means to retrieve image specification (offset in
897non-volatile storage and length) of active/updated images using the passed
898FWU metadata, and update I/O policies of active/updated images using retrieved
899image specification information.
900Further I/O layer operations such as I/O open, I/O read, etc. on these
901images rely on this function call.
902
903In Arm platforms, this function is used to set an I/O policy of the FIP image,
904container of all active/updated secure and non-secure images.
905
906Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
907~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
908
909::
910
911 Argument : unsigned int image_id, uintptr_t *dev_handle,
912 uintptr_t *image_spec
913 Return : int
914
915This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
916responsible for setting up the platform I/O policy of the requested metadata
917image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
918be used to load this image from the platform's non-volatile storage.
919
920FWU metadata can not be always stored as a raw image in non-volatile storage
921to define its image specification (offset in non-volatile storage and length)
922statically in I/O policy.
923For example, the FWU metadata image is stored as a partition inside the GUID
924partition table image. Its specification is defined in the partition table
925that needs to be parsed dynamically.
926This function provides a means to retrieve such dynamic information to set
927the I/O policy of the FWU metadata image.
928Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
929image relies on this function call.
930
931It returns '0' on success, otherwise a negative error value on error.
932Alongside, returns device handle and image specification from the I/O policy
933of the requested FWU metadata image.
934
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100935Common optional modifications
936-----------------------------
937
938The following are helper functions implemented by the firmware that perform
939common platform-specific tasks. A platform may choose to override these
940definitions.
941
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100942Function : plat_set_my_stack()
943~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100944
945::
946
947 Argument : void
948 Return : void
949
950This function sets the current stack pointer to the normal memory stack that
951has been allocated for the current CPU. For BL images that only require a
952stack for the primary CPU, the UP version of the function is used. The size
953of the stack allocated to each CPU is specified by the platform defined
954constant ``PLATFORM_STACK_SIZE``.
955
956Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100957provided in ``plat/common/aarch64/platform_up_stack.S`` and
958``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100959
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100960Function : plat_get_my_stack()
961~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100962
963::
964
965 Argument : void
966 Return : uintptr_t
967
968This function returns the base address of the normal memory stack that
969has been allocated for the current CPU. For BL images that only require a
970stack for the primary CPU, the UP version of the function is used. The size
971of the stack allocated to each CPU is specified by the platform defined
972constant ``PLATFORM_STACK_SIZE``.
973
974Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100975provided in ``plat/common/aarch64/platform_up_stack.S`` and
976``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100977
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100978Function : plat_report_exception()
979~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100980
981::
982
983 Argument : unsigned int
984 Return : void
985
986A platform may need to report various information about its status when an
987exception is taken, for example the current exception level, the CPU security
988state (secure/non-secure), the exception type, and so on. This function is
989called in the following circumstances:
990
991- In BL1, whenever an exception is taken.
992- In BL2, whenever an exception is taken.
993
994The default implementation doesn't do anything, to avoid making assumptions
995about the way the platform displays its status information.
996
997For AArch64, this function receives the exception type as its argument.
998Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +0100999``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001000related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001001
1002For AArch32, this function receives the exception mode as its argument.
1003Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001004``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001005
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001006Function : plat_reset_handler()
1007~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001008
1009::
1010
1011 Argument : void
1012 Return : void
1013
1014A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001015allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001016specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001017preserve the values of callee saved registers x19 to x29.
1018
1019The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001020the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001021guidelines.
1022
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001023Function : plat_disable_acp()
1024~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001025
1026::
1027
1028 Argument : void
1029 Return : void
1030
John Tsichritzis6dda9762018-07-23 09:18:04 +01001031This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001032present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001033doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001034it has restrictions for stack usage and it can use the registers x0 - x17 as
1035scratch registers. It should preserve the value in x18 register as it is used
1036by the caller to store the return address.
1037
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001038Function : plat_error_handler()
1039~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001040
1041::
1042
1043 Argument : int
1044 Return : void
1045
1046This API is called when the generic code encounters an error situation from
1047which it cannot continue. It allows the platform to perform error reporting or
1048recovery actions (for example, reset the system). This function must not return.
1049
1050The parameter indicates the type of error using standard codes from ``errno.h``.
1051Possible errors reported by the generic code are:
1052
1053- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1054 Board Boot is enabled)
1055- ``-ENOENT``: the requested image or certificate could not be found or an IO
1056 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001057- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1058 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001059
1060The default implementation simply spins.
1061
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001062Function : plat_panic_handler()
1063~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001064
1065::
1066
1067 Argument : void
1068 Return : void
1069
1070This API is called when the generic code encounters an unexpected error
1071situation from which it cannot recover. This function must not return,
1072and must be implemented in assembly because it may be called before the C
1073environment is initialized.
1074
Paul Beesleyba3ed402019-03-13 16:20:44 +00001075.. note::
1076 The address from where it was called is stored in x30 (Link Register).
1077 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001078
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001079Function : plat_get_bl_image_load_info()
1080~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001081
1082::
1083
1084 Argument : void
1085 Return : bl_load_info_t *
1086
1087This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001088populated to load. This function is invoked in BL2 to load the
1089BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001090
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001091Function : plat_get_next_bl_params()
1092~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001093
1094::
1095
1096 Argument : void
1097 Return : bl_params_t *
1098
1099This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001100kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001101function is invoked in BL2 to pass this information to the next BL
1102image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001103
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001104Function : plat_get_stack_protector_canary()
1105~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001106
1107::
1108
1109 Argument : void
1110 Return : u_register_t
1111
1112This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001113when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001114value will weaken the protection as the attacker could easily write the right
1115value as part of the attack most of the time. Therefore, it should return a
1116true random number.
1117
Paul Beesleyba3ed402019-03-13 16:20:44 +00001118.. warning::
1119 For the protection to be effective, the global data need to be placed at
1120 a lower address than the stack bases. Failure to do so would allow an
1121 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001122
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001123Function : plat_flush_next_bl_params()
1124~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001125
1126::
1127
1128 Argument : void
1129 Return : void
1130
1131This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001132next image. This function is invoked in BL2 to flush this information
1133to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001134
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001135Function : plat_log_get_prefix()
1136~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001137
1138::
1139
1140 Argument : unsigned int
1141 Return : const char *
1142
1143This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001144prepended to all the log output from TF-A. The `log_level` (argument) will
1145correspond to one of the standard log levels defined in debug.h. The platform
1146can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001147the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001148increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001149
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001150Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001151~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001152
1153::
1154
1155 Argument : void
1156 Return : int32_t
1157
1158This function returns soc version which mainly consist of below fields
1159
1160::
1161
1162 soc_version[30:24] = JEP-106 continuation code for the SiP
1163 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001164 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001165
1166Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001167~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001168
1169::
1170
1171 Argument : void
1172 Return : int32_t
1173
1174This function returns soc revision in below format
1175
1176::
1177
1178 soc_revision[0:30] = SOC revision of specific SOC
1179
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001180Function : plat_is_smccc_feature_available()
1181~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1182
1183::
1184
1185 Argument : u_register_t
1186 Return : int32_t
1187
1188This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1189the SMCCC function specified in the argument; otherwise returns
1190SMC_ARCH_CALL_NOT_SUPPORTED.
1191
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001192Function : plat_mboot_measure_image()
1193~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1194
1195::
1196
1197 Argument : unsigned int, image_info_t *
1198 Return : void
1199
1200When the MEASURED_BOOT flag is enabled:
1201
1202- This function measures the given image and records its measurement using
1203 the measured boot backend driver.
1204- On the Arm FVP port, this function measures the given image using its
1205 passed id and information and then records that measurement in the
1206 Event Log buffer.
1207- This function must return 0 on success, a negative error code otherwise.
1208
1209When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1210
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001211Modifications specific to a Boot Loader stage
1212---------------------------------------------
1213
1214Boot Loader Stage 1 (BL1)
1215-------------------------
1216
1217BL1 implements the reset vector where execution starts from after a cold or
1218warm boot. For each CPU, BL1 is responsible for the following tasks:
1219
1220#. Handling the reset as described in section 2.2
1221
1222#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1223 only this CPU executes the remaining BL1 code, including loading and passing
1224 control to the BL2 stage.
1225
1226#. Identifying and starting the Firmware Update process (if required).
1227
1228#. Loading the BL2 image from non-volatile storage into secure memory at the
1229 address specified by the platform defined constant ``BL2_BASE``.
1230
1231#. Populating a ``meminfo`` structure with the following information in memory,
1232 accessible by BL2 immediately upon entry.
1233
1234 ::
1235
1236 meminfo.total_base = Base address of secure RAM visible to BL2
1237 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001238
Soby Mathew97b1bff2018-09-27 16:46:41 +01001239 By default, BL1 places this ``meminfo`` structure at the end of secure
1240 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001241
Soby Mathewb1bf0442018-02-16 14:52:52 +00001242 It is possible for the platform to decide where it wants to place the
1243 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1244 BL2 by overriding the weak default implementation of
1245 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001246
1247The following functions need to be implemented by the platform port to enable
1248BL1 to perform the above tasks.
1249
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001250Function : bl1_early_platform_setup() [mandatory]
1251~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001252
1253::
1254
1255 Argument : void
1256 Return : void
1257
1258This function executes with the MMU and data caches disabled. It is only called
1259by the primary CPU.
1260
Dan Handley610e7e12018-03-01 18:44:00 +00001261On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001262
1263- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1264
1265- Initializes a UART (PL011 console), which enables access to the ``printf``
1266 family of functions in BL1.
1267
1268- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1269 the CCI slave interface corresponding to the cluster that includes the
1270 primary CPU.
1271
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001272Function : bl1_plat_arch_setup() [mandatory]
1273~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001274
1275::
1276
1277 Argument : void
1278 Return : void
1279
1280This function performs any platform-specific and architectural setup that the
1281platform requires. Platform-specific setup might include configuration of
1282memory controllers and the interconnect.
1283
Dan Handley610e7e12018-03-01 18:44:00 +00001284In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001285
1286This function helps fulfill requirement 2 above.
1287
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001288Function : bl1_platform_setup() [mandatory]
1289~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001290
1291::
1292
1293 Argument : void
1294 Return : void
1295
1296This function executes with the MMU and data caches enabled. It is responsible
1297for performing any remaining platform-specific setup that can occur after the
1298MMU and data cache have been enabled.
1299
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001300if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001301sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001302
Dan Handley610e7e12018-03-01 18:44:00 +00001303In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001304layer used to load the next bootloader image.
1305
1306This function helps fulfill requirement 4 above.
1307
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001308Function : bl1_plat_sec_mem_layout() [mandatory]
1309~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001310
1311::
1312
1313 Argument : void
1314 Return : meminfo *
1315
1316This function should only be called on the cold boot path. It executes with the
1317MMU and data caches enabled. The pointer returned by this function must point to
1318a ``meminfo`` structure containing the extents and availability of secure RAM for
1319the BL1 stage.
1320
1321::
1322
1323 meminfo.total_base = Base address of secure RAM visible to BL1
1324 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001325
1326This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1327populates a similar structure to tell BL2 the extents of memory available for
1328its own use.
1329
1330This function helps fulfill requirements 4 and 5 above.
1331
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001332Function : bl1_plat_prepare_exit() [optional]
1333~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001334
1335::
1336
1337 Argument : entry_point_info_t *
1338 Return : void
1339
1340This function is called prior to exiting BL1 in response to the
1341``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1342platform specific clean up or bookkeeping operations before transferring
1343control to the next image. It receives the address of the ``entry_point_info_t``
1344structure passed from BL2. This function runs with MMU disabled.
1345
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001346Function : bl1_plat_set_ep_info() [optional]
1347~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001348
1349::
1350
1351 Argument : unsigned int image_id, entry_point_info_t *ep_info
1352 Return : void
1353
1354This function allows platforms to override ``ep_info`` for the given ``image_id``.
1355
1356The default implementation just returns.
1357
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001358Function : bl1_plat_get_next_image_id() [optional]
1359~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001360
1361::
1362
1363 Argument : void
1364 Return : unsigned int
1365
1366This and the following function must be overridden to enable the FWU feature.
1367
1368BL1 calls this function after platform setup to identify the next image to be
1369loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1370with the normal boot sequence, which loads and executes BL2. If the platform
1371returns a different image id, BL1 assumes that Firmware Update is required.
1372
Dan Handley610e7e12018-03-01 18:44:00 +00001373The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001374platforms override this function to detect if firmware update is required, and
1375if so, return the first image in the firmware update process.
1376
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001377Function : bl1_plat_get_image_desc() [optional]
1378~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001379
1380::
1381
1382 Argument : unsigned int image_id
1383 Return : image_desc_t *
1384
1385BL1 calls this function to get the image descriptor information ``image_desc_t``
1386for the provided ``image_id`` from the platform.
1387
Dan Handley610e7e12018-03-01 18:44:00 +00001388The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001389standard platforms return an image descriptor corresponding to BL2 or one of
1390the firmware update images defined in the Trusted Board Boot Requirements
1391specification.
1392
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001393Function : bl1_plat_handle_pre_image_load() [optional]
1394~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001395
1396::
1397
Soby Mathew2f38ce32018-02-08 17:45:12 +00001398 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001399 Return : int
1400
1401This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001402corresponding to ``image_id``. This function is invoked in BL1, both in cold
1403boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001404
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001405Function : bl1_plat_handle_post_image_load() [optional]
1406~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001407
1408::
1409
Soby Mathew2f38ce32018-02-08 17:45:12 +00001410 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001411 Return : int
1412
1413This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001414corresponding to ``image_id``. This function is invoked in BL1, both in cold
1415boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001416
Soby Mathewb1bf0442018-02-16 14:52:52 +00001417The default weak implementation of this function calculates the amount of
1418Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1419structure at the beginning of this free memory and populates it. The address
1420of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1421information to BL2.
1422
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001423Function : bl1_plat_fwu_done() [optional]
1424~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001425
1426::
1427
1428 Argument : unsigned int image_id, uintptr_t image_src,
1429 unsigned int image_size
1430 Return : void
1431
1432BL1 calls this function when the FWU process is complete. It must not return.
1433The platform may override this function to take platform specific action, for
1434example to initiate the normal boot flow.
1435
1436The default implementation spins forever.
1437
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001438Function : bl1_plat_mem_check() [mandatory]
1439~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001440
1441::
1442
1443 Argument : uintptr_t mem_base, unsigned int mem_size,
1444 unsigned int flags
1445 Return : int
1446
1447BL1 calls this function while handling FWU related SMCs, more specifically when
1448copying or authenticating an image. Its responsibility is to ensure that the
1449region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1450that this memory corresponds to either a secure or non-secure memory region as
1451indicated by the security state of the ``flags`` argument.
1452
1453This function can safely assume that the value resulting from the addition of
1454``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1455overflow.
1456
1457This function must return 0 on success, a non-null error code otherwise.
1458
1459The default implementation of this function asserts therefore platforms must
1460override it when using the FWU feature.
1461
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001462Function : bl1_plat_mboot_init() [optional]
1463~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1464
1465::
1466
1467 Argument : void
1468 Return : void
1469
1470When the MEASURED_BOOT flag is enabled:
1471
1472- This function is used to initialize the backend driver(s) of measured boot.
1473- On the Arm FVP port, this function is used to initialize the Event Log
1474 backend driver, and also to write header information in the Event Log buffer.
1475
1476When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1477
1478Function : bl1_plat_mboot_finish() [optional]
1479~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1480
1481::
1482
1483 Argument : void
1484 Return : void
1485
1486When the MEASURED_BOOT flag is enabled:
1487
1488- This function is used to finalize the measured boot backend driver(s),
1489 and also, set the information for the next bootloader component to
1490 extend the measurement if needed.
1491- On the Arm FVP port, this function is used to pass the base address of
1492 the Event Log buffer and its size to BL2 via tb_fw_config to extend the
1493 Event Log buffer with the measurement of various images loaded by BL2.
1494 It results in panic on error.
1495
1496When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1497
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001498Boot Loader Stage 2 (BL2)
1499-------------------------
1500
1501The BL2 stage is executed only by the primary CPU, which is determined in BL1
1502using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001503``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1504``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1505non-volatile storage to secure/non-secure RAM. After all the images are loaded
1506then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1507images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001508
1509The following functions must be implemented by the platform port to enable BL2
1510to perform the above tasks.
1511
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001512Function : bl2_early_platform_setup2() [mandatory]
1513~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001514
1515::
1516
Soby Mathew97b1bff2018-09-27 16:46:41 +01001517 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001518 Return : void
1519
1520This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001521by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1522are platform specific.
1523
1524On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001525
Manish V Badarkhe81414512020-06-24 15:58:38 +01001526 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001527
1528 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1529 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001530
Dan Handley610e7e12018-03-01 18:44:00 +00001531On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001532
1533- Initializes a UART (PL011 console), which enables access to the ``printf``
1534 family of functions in BL2.
1535
1536- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001537 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1538 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001539
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001540Function : bl2_plat_arch_setup() [mandatory]
1541~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001542
1543::
1544
1545 Argument : void
1546 Return : void
1547
1548This function executes with the MMU and data caches disabled. It is only called
1549by the primary CPU.
1550
1551The purpose of this function is to perform any architectural initialization
1552that varies across platforms.
1553
Dan Handley610e7e12018-03-01 18:44:00 +00001554On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001555
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001556Function : bl2_platform_setup() [mandatory]
1557~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001558
1559::
1560
1561 Argument : void
1562 Return : void
1563
1564This function may execute with the MMU and data caches enabled if the platform
1565port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1566called by the primary CPU.
1567
1568The purpose of this function is to perform any platform initialization
1569specific to BL2.
1570
Dan Handley610e7e12018-03-01 18:44:00 +00001571In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001572configuration of the TrustZone controller to allow non-secure masters access
1573to most of DRAM. Part of DRAM is reserved for secure world use.
1574
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001575Function : bl2_plat_handle_pre_image_load() [optional]
1576~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001577
1578::
1579
1580 Argument : unsigned int
1581 Return : int
1582
1583This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001584for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001585loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001586
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001587Function : bl2_plat_handle_post_image_load() [optional]
1588~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001589
1590::
1591
1592 Argument : unsigned int
1593 Return : int
1594
1595This function can be used by the platforms to update/use image information
1596for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001597loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001598
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001599Function : bl2_plat_preload_setup [optional]
1600~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001601
1602::
John Tsichritzisee10e792018-06-06 09:38:10 +01001603
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001604 Argument : void
1605 Return : void
1606
1607This optional function performs any BL2 platform initialization
1608required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001609bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001610boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001611plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001612
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001613Function : plat_try_next_boot_source() [optional]
1614~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001615
1616::
John Tsichritzisee10e792018-06-06 09:38:10 +01001617
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001618 Argument : void
1619 Return : int
1620
1621This optional function passes to the next boot source in the redundancy
1622sequence.
1623
1624This function moves the current boot redundancy source to the next
1625element in the boot sequence. If there are no more boot sources then it
1626must return 0, otherwise it must return 1. The default implementation
1627of this always returns 0.
1628
Roberto Vargasb1584272017-11-20 13:36:10 +00001629Boot Loader Stage 2 (BL2) at EL3
1630--------------------------------
1631
Dan Handley610e7e12018-03-01 18:44:00 +00001632When the platform has a non-TF-A Boot ROM it is desirable to jump
1633directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001634execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1635document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001636
1637All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001638bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1639their work is done now by bl2_el3_early_platform_setup and
1640bl2_el3_plat_arch_setup. These functions should generally implement
1641the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001642
1643
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001644Function : bl2_el3_early_platform_setup() [mandatory]
1645~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001646
1647::
John Tsichritzisee10e792018-06-06 09:38:10 +01001648
Roberto Vargasb1584272017-11-20 13:36:10 +00001649 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1650 Return : void
1651
1652This function executes with the MMU and data caches disabled. It is only called
1653by the primary CPU. This function receives four parameters which can be used
1654by the platform to pass any needed information from the Boot ROM to BL2.
1655
Dan Handley610e7e12018-03-01 18:44:00 +00001656On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001657
1658- Initializes a UART (PL011 console), which enables access to the ``printf``
1659 family of functions in BL2.
1660
1661- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001662 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1663 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001664
1665- Initializes the private variables that define the memory layout used.
1666
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001667Function : bl2_el3_plat_arch_setup() [mandatory]
1668~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001669
1670::
John Tsichritzisee10e792018-06-06 09:38:10 +01001671
Roberto Vargasb1584272017-11-20 13:36:10 +00001672 Argument : void
1673 Return : void
1674
1675This function executes with the MMU and data caches disabled. It is only called
1676by the primary CPU.
1677
1678The purpose of this function is to perform any architectural initialization
1679that varies across platforms.
1680
Dan Handley610e7e12018-03-01 18:44:00 +00001681On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001682
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001683Function : bl2_el3_plat_prepare_exit() [optional]
1684~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001685
1686::
John Tsichritzisee10e792018-06-06 09:38:10 +01001687
Roberto Vargasb1584272017-11-20 13:36:10 +00001688 Argument : void
1689 Return : void
1690
1691This function is called prior to exiting BL2 and run the next image.
1692It should be used to perform platform specific clean up or bookkeeping
1693operations before transferring control to the next image. This function
1694runs with MMU disabled.
1695
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001696FWU Boot Loader Stage 2 (BL2U)
1697------------------------------
1698
1699The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1700process and is executed only by the primary CPU. BL1 passes control to BL2U at
1701``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1702
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001703#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1704 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1705 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1706 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001707 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1708 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1709
1710#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001711 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001712 normal world can access DDR memory.
1713
1714The following functions must be implemented by the platform port to enable
1715BL2U to perform the tasks mentioned above.
1716
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001717Function : bl2u_early_platform_setup() [mandatory]
1718~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001719
1720::
1721
1722 Argument : meminfo *mem_info, void *plat_info
1723 Return : void
1724
1725This function executes with the MMU and data caches disabled. It is only
1726called by the primary CPU. The arguments to this function is the address
1727of the ``meminfo`` structure and platform specific info provided by BL1.
1728
1729The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1730private storage as the original memory may be subsequently overwritten by BL2U.
1731
Dan Handley610e7e12018-03-01 18:44:00 +00001732On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001733to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001734variable.
1735
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001736Function : bl2u_plat_arch_setup() [mandatory]
1737~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001738
1739::
1740
1741 Argument : void
1742 Return : void
1743
1744This function executes with the MMU and data caches disabled. It is only
1745called by the primary CPU.
1746
1747The purpose of this function is to perform any architectural initialization
1748that varies across platforms, for example enabling the MMU (since the memory
1749map differs across platforms).
1750
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001751Function : bl2u_platform_setup() [mandatory]
1752~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001753
1754::
1755
1756 Argument : void
1757 Return : void
1758
1759This function may execute with the MMU and data caches enabled if the platform
1760port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1761called by the primary CPU.
1762
1763The purpose of this function is to perform any platform initialization
1764specific to BL2U.
1765
Dan Handley610e7e12018-03-01 18:44:00 +00001766In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001767configuration of the TrustZone controller to allow non-secure masters access
1768to most of DRAM. Part of DRAM is reserved for secure world use.
1769
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001770Function : bl2u_plat_handle_scp_bl2u() [optional]
1771~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001772
1773::
1774
1775 Argument : void
1776 Return : int
1777
1778This function is used to perform any platform-specific actions required to
1779handle the SCP firmware. Typically it transfers the image into SCP memory using
1780a platform-specific protocol and waits until SCP executes it and signals to the
1781Application Processor (AP) for BL2U execution to continue.
1782
1783This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001784This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001785
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001786Function : bl2_plat_mboot_init() [optional]
1787~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1788
1789::
1790
1791 Argument : void
1792 Return : void
1793
1794When the MEASURED_BOOT flag is enabled:
1795
1796- This function is used to initialize the backend driver(s) of measured boot.
1797- On the Arm FVP port, this function is used to initialize the Event Log
1798 backend driver with the Event Log buffer information (base address and
1799 size) received from BL1. It results in panic on error.
1800
1801When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1802
1803Function : bl2_plat_mboot_finish() [optional]
1804~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1805
1806::
1807
1808 Argument : void
1809 Return : void
1810
1811When the MEASURED_BOOT flag is enabled:
1812
1813- This function is used to finalize the measured boot backend driver(s),
1814 and also, set the information for the next bootloader component to extend
1815 the measurement if needed.
1816- On the Arm FVP port, this function is used to pass the Event Log buffer
1817 information (base address and size) to non-secure(BL33) and trusted OS(BL32)
1818 via nt_fw and tos_fw config respectively. It results in panic on error.
1819
1820When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1821
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001822Boot Loader Stage 3-1 (BL31)
1823----------------------------
1824
1825During cold boot, the BL31 stage is executed only by the primary CPU. This is
1826determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1827control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1828CPUs. BL31 executes at EL3 and is responsible for:
1829
1830#. Re-initializing all architectural and platform state. Although BL1 performs
1831 some of this initialization, BL31 remains resident in EL3 and must ensure
1832 that EL3 architectural and platform state is completely initialized. It
1833 should make no assumptions about the system state when it receives control.
1834
1835#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001836 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1837 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001838
1839#. Providing runtime firmware services. Currently, BL31 only implements a
1840 subset of the Power State Coordination Interface (PSCI) API as a runtime
1841 service. See Section 3.3 below for details of porting the PSCI
1842 implementation.
1843
1844#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001845 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001846 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001847 executed and run the corresponding image. On ARM platforms, BL31 uses the
1848 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001849
1850If BL31 is a reset vector, It also needs to handle the reset as specified in
1851section 2.2 before the tasks described above.
1852
1853The following functions must be implemented by the platform port to enable BL31
1854to perform the above tasks.
1855
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001856Function : bl31_early_platform_setup2() [mandatory]
1857~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001858
1859::
1860
Soby Mathew97b1bff2018-09-27 16:46:41 +01001861 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001862 Return : void
1863
1864This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001865by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1866platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001867
Soby Mathew97b1bff2018-09-27 16:46:41 +01001868In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001869
Soby Mathew97b1bff2018-09-27 16:46:41 +01001870 arg0 - The pointer to the head of `bl_params_t` list
1871 which is list of executable images following BL31,
1872
1873 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01001874 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01001875
Mikael Olsson0232da22021-02-12 17:30:16 +01001876 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01001877 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01001878
1879 arg2 - Points to load address of HW_CONFIG if present
1880
1881 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1882 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001883
Soby Mathew97b1bff2018-09-27 16:46:41 +01001884The function runs through the `bl_param_t` list and extracts the entry point
1885information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001886
1887- Initialize a UART (PL011 console), which enables access to the ``printf``
1888 family of functions in BL31.
1889
1890- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1891 CCI slave interface corresponding to the cluster that includes the primary
1892 CPU.
1893
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001894Function : bl31_plat_arch_setup() [mandatory]
1895~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001896
1897::
1898
1899 Argument : void
1900 Return : void
1901
1902This function executes with the MMU and data caches disabled. It is only called
1903by the primary CPU.
1904
1905The purpose of this function is to perform any architectural initialization
1906that varies across platforms.
1907
Dan Handley610e7e12018-03-01 18:44:00 +00001908On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001909
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001910Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001911~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1912
1913::
1914
1915 Argument : void
1916 Return : void
1917
1918This function may execute with the MMU and data caches enabled if the platform
1919port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1920called by the primary CPU.
1921
1922The purpose of this function is to complete platform initialization so that both
1923BL31 runtime services and normal world software can function correctly.
1924
Dan Handley610e7e12018-03-01 18:44:00 +00001925On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001926
1927- Initialize the generic interrupt controller.
1928
1929 Depending on the GIC driver selected by the platform, the appropriate GICv2
1930 or GICv3 initialization will be done, which mainly consists of:
1931
1932 - Enable secure interrupts in the GIC CPU interface.
1933 - Disable the legacy interrupt bypass mechanism.
1934 - Configure the priority mask register to allow interrupts of all priorities
1935 to be signaled to the CPU interface.
1936 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1937 - Target all secure SPIs to CPU0.
1938 - Enable these secure interrupts in the GIC distributor.
1939 - Configure all other interrupts as non-secure.
1940 - Enable signaling of secure interrupts in the GIC distributor.
1941
1942- Enable system-level implementation of the generic timer counter through the
1943 memory mapped interface.
1944
1945- Grant access to the system counter timer module
1946
1947- Initialize the power controller device.
1948
1949 In particular, initialise the locks that prevent concurrent accesses to the
1950 power controller device.
1951
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001952Function : bl31_plat_runtime_setup() [optional]
1953~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001954
1955::
1956
1957 Argument : void
1958 Return : void
1959
1960The purpose of this function is allow the platform to perform any BL31 runtime
1961setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001962implementation of this function will invoke ``console_switch_state()`` to switch
1963console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001964
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001965Function : bl31_plat_get_next_image_ep_info() [mandatory]
1966~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001967
1968::
1969
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001970 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001971 Return : entry_point_info *
1972
1973This function may execute with the MMU and data caches enabled if the platform
1974port does the necessary initializations in ``bl31_plat_arch_setup()``.
1975
1976This function is called by ``bl31_main()`` to retrieve information provided by
1977BL2 for the next image in the security state specified by the argument. BL31
1978uses this information to pass control to that image in the specified security
1979state. This function must return a pointer to the ``entry_point_info`` structure
1980(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1981should return NULL otherwise.
1982
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001983Function : bl31_plat_enable_mmu [optional]
1984~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1985
1986::
1987
1988 Argument : uint32_t
1989 Return : void
1990
1991This function enables the MMU. The boot code calls this function with MMU and
1992caches disabled. This function should program necessary registers to enable
1993translation, and upon return, the MMU on the calling PE must be enabled.
1994
1995The function must honor flags passed in the first argument. These flags are
1996defined by the translation library, and can be found in the file
1997``include/lib/xlat_tables/xlat_mmu_helpers.h``.
1998
1999On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002000is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002001
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002002Function : plat_init_apkey [optional]
2003~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002004
2005::
2006
2007 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002008 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002009
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002010This function returns the 128-bit value which can be used to program ARMv8.3
2011pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002012
2013The value should be obtained from a reliable source of randomness.
2014
2015This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002016Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002017
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002018Function : plat_get_syscnt_freq2() [mandatory]
2019~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002020
2021::
2022
2023 Argument : void
2024 Return : unsigned int
2025
2026This function is used by the architecture setup code to retrieve the counter
2027frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00002028``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002029of the system counter, which is retrieved from the first entry in the frequency
2030modes table.
2031
johpow013e24c162020-04-22 14:05:13 -05002032Function : plat_arm_set_twedel_scr_el3() [optional]
2033~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2034
2035::
2036
2037 Argument : void
2038 Return : uint32_t
2039
2040This function is used in v8.6+ systems to set the WFE trap delay value in
2041SCR_EL3. If this function returns TWED_DISABLED or is left unimplemented, this
2042feature is not enabled. The only hook provided is to set the TWED fields in
2043SCR_EL3, there are similar fields in HCR_EL2, SCTLR_EL2, and SCTLR_EL1 to adjust
2044the WFE trap delays in lower ELs and these fields should be set by the
2045appropriate EL2 or EL1 code depending on the platform configuration.
2046
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002047#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2048~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002049
2050When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2051bytes) aligned to the cache line boundary that should be allocated per-cpu to
2052accommodate all the bakery locks.
2053
2054If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
2055calculates the size of the ``bakery_lock`` input section, aligns it to the
2056nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2057and stores the result in a linker symbol. This constant prevents a platform
2058from relying on the linker and provide a more efficient mechanism for
2059accessing per-cpu bakery lock information.
2060
2061If this constant is defined and its value is not equal to the value
2062calculated by the linker then a link time assertion is raised. A compile time
2063assertion is raised if the value of the constant is not aligned to the cache
2064line boundary.
2065
Paul Beesleyf8640672019-04-12 14:19:42 +01002066.. _porting_guide_sdei_requirements:
2067
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002068SDEI porting requirements
2069~~~~~~~~~~~~~~~~~~~~~~~~~
2070
Paul Beesley606d8072019-03-13 13:58:02 +00002071The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002072and functions, of which some are optional, and some others mandatory.
2073
2074Macros
2075......
2076
2077Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2079
2080This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002081Normal |SDEI| events on the platform. This must have a higher value
2082(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002083
2084Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2086
2087This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002088Critical |SDEI| events on the platform. This must have a lower value
2089(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002090
Paul Beesley606d8072019-03-13 13:58:02 +00002091**Note**: |SDEI| exception priorities must be the lowest among Secure
2092priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2093be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002094
2095Functions
2096.........
2097
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002098Function: int plat_sdei_validate_entry_point() [optional]
2099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002100
2101::
2102
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002103 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002104 Return: int
2105
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002106This function validates the entry point address of the event handler provided by
2107the client for both event registration and *Complete and Resume* |SDEI| calls.
2108The function ensures that the address is valid in the client translation regime.
2109
2110The second argument is the exception level that the client is executing in. It
2111can be Non-Secure EL1 or Non-Secure EL2.
2112
2113The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002114
Dan Handley610e7e12018-03-01 18:44:00 +00002115The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002116translates the entry point address within the client translation regime and
2117further ensures that the resulting physical address is located in Non-secure
2118DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002119
2120Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2122
2123::
2124
2125 Argument: uint64_t
2126 Argument: unsigned int
2127 Return: void
2128
Paul Beesley606d8072019-03-13 13:58:02 +00002129|SDEI| specification requires that a PE comes out of reset with the events
2130masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2131|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2132time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002133
Paul Beesley606d8072019-03-13 13:58:02 +00002134Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002135events are masked on the PE, the dispatcher implementation invokes the function
2136``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2137interrupt and the interrupt ID are passed as parameters.
2138
2139The default implementation only prints out a warning message.
2140
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002141.. _porting_guide_trng_requirements:
2142
2143TRNG porting requirements
2144~~~~~~~~~~~~~~~~~~~~~~~~~
2145
2146The |TRNG| backend requires the platform to provide the following values
2147and mandatory functions.
2148
2149Values
2150......
2151
2152value: uuid_t plat_trng_uuid [mandatory]
2153^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2154
2155This value must be defined to the UUID of the TRNG backend that is specific to
2156the hardware after ``plat_trng_setup`` function is called. This value must
2157conform to the SMCCC calling convention; The most significant 32 bits of the
2158UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2159w0 indicates failure to get a TRNG source.
2160
2161Functions
2162.........
2163
2164Function: void plat_entropy_setup(void) [mandatory]
2165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2166
2167::
2168
2169 Argument: none
2170 Return: none
2171
2172This function is expected to do platform-specific initialization of any TRNG
2173hardware. This may include generating a UUID from a hardware-specific seed.
2174
2175Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2176^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2177
2178::
2179
2180 Argument: uint64_t *
2181 Return: bool
2182 Out : when the return value is true, the entropy has been written into the
2183 storage pointed to
2184
2185This function writes entropy into storage provided by the caller. If no entropy
2186is available, it must return false and the storage must not be written.
2187
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002188Power State Coordination Interface (in BL31)
2189--------------------------------------------
2190
Dan Handley610e7e12018-03-01 18:44:00 +00002191The TF-A implementation of the PSCI API is based around the concept of a
2192*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2193share some state on which power management operations can be performed as
2194specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2195a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2196*power domains* are arranged in a hierarchical tree structure and each
2197*power domain* can be identified in a system by the cpu index of any CPU that
2198is part of that domain and a *power domain level*. A processing element (for
2199example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2200logical grouping of CPUs that share some state, then level 1 is that group of
2201CPUs (for example, a cluster), and level 2 is a group of clusters (for
2202example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002203organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002204
2205BL31's platform initialization code exports a pointer to the platform-specific
2206power management operations required for the PSCI implementation to function
2207correctly. This information is populated in the ``plat_psci_ops`` structure. The
2208PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2209power management operations on the power domains. For example, the target
2210CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2211handler (if present) is called for the CPU power domain.
2212
2213The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2214describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002215defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002216array of local power states where each index corresponds to a power domain
2217level. Each entry contains the local power state the power domain at that power
2218level could enter. It depends on the ``validate_power_state()`` handler to
2219convert the power-state parameter (possibly encoding a composite power state)
2220passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2221
2222The following functions form part of platform port of PSCI functionality.
2223
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002224Function : plat_psci_stat_accounting_start() [optional]
2225~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002226
2227::
2228
2229 Argument : const psci_power_state_t *
2230 Return : void
2231
2232This is an optional hook that platforms can implement for residency statistics
2233accounting before entering a low power state. The ``pwr_domain_state`` field of
2234``state_info`` (first argument) can be inspected if stat accounting is done
2235differently at CPU level versus higher levels. As an example, if the element at
2236index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2237state, special hardware logic may be programmed in order to keep track of the
2238residency statistics. For higher levels (array indices > 0), the residency
2239statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2240default implementation will use PMF to capture timestamps.
2241
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002242Function : plat_psci_stat_accounting_stop() [optional]
2243~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002244
2245::
2246
2247 Argument : const psci_power_state_t *
2248 Return : void
2249
2250This is an optional hook that platforms can implement for residency statistics
2251accounting after exiting from a low power state. The ``pwr_domain_state`` field
2252of ``state_info`` (first argument) can be inspected if stat accounting is done
2253differently at CPU level versus higher levels. As an example, if the element at
2254index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2255state, special hardware logic may be programmed in order to keep track of the
2256residency statistics. For higher levels (array indices > 0), the residency
2257statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2258default implementation will use PMF to capture timestamps.
2259
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002260Function : plat_psci_stat_get_residency() [optional]
2261~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002262
2263::
2264
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002265 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002266 Return : u_register_t
2267
2268This is an optional interface that is is invoked after resuming from a low power
2269state and provides the time spent resident in that low power state by the power
2270domain at a particular power domain level. When a CPU wakes up from suspend,
2271all its parent power domain levels are also woken up. The generic PSCI code
2272invokes this function for each parent power domain that is resumed and it
2273identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2274argument) describes the low power state that the power domain has resumed from.
2275The current CPU is the first CPU in the power domain to resume from the low
2276power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2277CPU in the power domain to suspend and may be needed to calculate the residency
2278for that power domain.
2279
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002280Function : plat_get_target_pwr_state() [optional]
2281~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002282
2283::
2284
2285 Argument : unsigned int, const plat_local_state_t *, unsigned int
2286 Return : plat_local_state_t
2287
2288The PSCI generic code uses this function to let the platform participate in
2289state coordination during a power management operation. The function is passed
2290a pointer to an array of platform specific local power state ``states`` (second
2291argument) which contains the requested power state for each CPU at a particular
2292power domain level ``lvl`` (first argument) within the power domain. The function
2293is expected to traverse this array of upto ``ncpus`` (third argument) and return
2294a coordinated target power state by the comparing all the requested power
2295states. The target power state should not be deeper than any of the requested
2296power states.
2297
2298A weak definition of this API is provided by default wherein it assumes
2299that the platform assigns a local state value in order of increasing depth
2300of the power state i.e. for two power states X & Y, if X < Y
2301then X represents a shallower power state than Y. As a result, the
2302coordinated target local power state for a power domain will be the minimum
2303of the requested local power state values.
2304
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002305Function : plat_get_power_domain_tree_desc() [mandatory]
2306~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002307
2308::
2309
2310 Argument : void
2311 Return : const unsigned char *
2312
2313This function returns a pointer to the byte array containing the power domain
2314topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002315described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2316initialization code requires this array to be described by the platform, either
2317statically or dynamically, to initialize the power domain topology tree. In case
2318the array is populated dynamically, then plat_core_pos_by_mpidr() and
2319plat_my_core_pos() should also be implemented suitably so that the topology tree
2320description matches the CPU indices returned by these APIs. These APIs together
2321form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002322
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002323Function : plat_setup_psci_ops() [mandatory]
2324~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002325
2326::
2327
2328 Argument : uintptr_t, const plat_psci_ops **
2329 Return : int
2330
2331This function may execute with the MMU and data caches enabled if the platform
2332port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2333called by the primary CPU.
2334
2335This function is called by PSCI initialization code. Its purpose is to let
2336the platform layer know about the warm boot entrypoint through the
2337``sec_entrypoint`` (first argument) and to export handler routines for
2338platform-specific psci power management actions by populating the passed
2339pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2340
2341A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002342the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002343``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002344platform wants to support, the associated operation or operations in this
2345structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002346:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002347function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002348structure instead of providing an empty implementation.
2349
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002350plat_psci_ops.cpu_standby()
2351...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002352
2353Perform the platform-specific actions to enter the standby state for a cpu
2354indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002355wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002356For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2357the suspend state type specified in the ``power-state`` parameter should be
2358STANDBY and the target power domain level specified should be the CPU. The
2359handler should put the CPU into a low power retention state (usually by
2360issuing a wfi instruction) and ensure that it can be woken up from that
2361state by a normal interrupt. The generic code expects the handler to succeed.
2362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002363plat_psci_ops.pwr_domain_on()
2364.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002365
2366Perform the platform specific actions to power on a CPU, specified
2367by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002368return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002369
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002370plat_psci_ops.pwr_domain_off()
2371..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002372
2373Perform the platform specific actions to prepare to power off the calling CPU
2374and its higher parent power domain levels as indicated by the ``target_state``
2375(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2376
2377The ``target_state`` encodes the platform coordinated target local power states
2378for the CPU power domain and its parent power domain levels. The handler
2379needs to perform power management operation corresponding to the local state
2380at each power level.
2381
2382For this handler, the local power state for the CPU power domain will be a
2383power down state where as it could be either power down, retention or run state
2384for the higher power domain levels depending on the result of state
2385coordination. The generic code expects the handler to succeed.
2386
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002387plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2388...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002389
2390This optional function may be used as a performance optimization to replace
2391or complement pwr_domain_suspend() on some platforms. Its calling semantics
2392are identical to pwr_domain_suspend(), except the PSCI implementation only
2393calls this function when suspending to a power down state, and it guarantees
2394that data caches are enabled.
2395
2396When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2397before calling pwr_domain_suspend(). If the target_state corresponds to a
2398power down state and it is safe to perform some or all of the platform
2399specific actions in that function with data caches enabled, it may be more
2400efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2401= 1, data caches remain enabled throughout, and so there is no advantage to
2402moving platform specific actions to this function.
2403
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002404plat_psci_ops.pwr_domain_suspend()
2405..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002406
2407Perform the platform specific actions to prepare to suspend the calling
2408CPU and its higher parent power domain levels as indicated by the
2409``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2410API implementation.
2411
2412The ``target_state`` has a similar meaning as described in
2413the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2414target local power states for the CPU power domain and its parent
2415power domain levels. The handler needs to perform power management operation
2416corresponding to the local state at each power level. The generic code
2417expects the handler to succeed.
2418
Douglas Raillarda84996b2017-08-02 16:57:32 +01002419The difference between turning a power domain off versus suspending it is that
2420in the former case, the power domain is expected to re-initialize its state
2421when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2422case, the power domain is expected to save enough state so that it can resume
2423execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002424``pwr_domain_suspend_finish()``).
2425
Douglas Raillarda84996b2017-08-02 16:57:32 +01002426When suspending a core, the platform can also choose to power off the GICv3
2427Redistributor and ITS through an implementation-defined sequence. To achieve
2428this safely, the ITS context must be saved first. The architectural part is
2429implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2430sequence is implementation defined and it is therefore the responsibility of
2431the platform code to implement the necessary sequence. Then the GIC
2432Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2433Powering off the Redistributor requires the implementation to support it and it
2434is the responsibility of the platform code to execute the right implementation
2435defined sequence.
2436
2437When a system suspend is requested, the platform can also make use of the
2438``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2439it has saved the context of the Redistributors and ITS of all the cores in the
2440system. The context of the Distributor can be large and may require it to be
2441allocated in a special area if it cannot fit in the platform's global static
2442data, for example in DRAM. The Distributor can then be powered down using an
2443implementation-defined sequence.
2444
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002445plat_psci_ops.pwr_domain_pwr_down_wfi()
2446.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002447
2448This is an optional function and, if implemented, is expected to perform
2449platform specific actions including the ``wfi`` invocation which allows the
2450CPU to powerdown. Since this function is invoked outside the PSCI locks,
2451the actions performed in this hook must be local to the CPU or the platform
2452must ensure that races between multiple CPUs cannot occur.
2453
2454The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2455operation and it encodes the platform coordinated target local power states for
2456the CPU power domain and its parent power domain levels. This function must
2457not return back to the caller.
2458
2459If this function is not implemented by the platform, PSCI generic
2460implementation invokes ``psci_power_down_wfi()`` for power down.
2461
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002462plat_psci_ops.pwr_domain_on_finish()
2463....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002464
2465This function is called by the PSCI implementation after the calling CPU is
2466powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2467It performs the platform-specific setup required to initialize enough state for
2468this CPU to enter the normal world and also provide secure runtime firmware
2469services.
2470
2471The ``target_state`` (first argument) is the prior state of the power domains
2472immediately before the CPU was turned on. It indicates which power domains
2473above the CPU might require initialization due to having previously been in
2474low power states. The generic code expects the handler to succeed.
2475
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002476plat_psci_ops.pwr_domain_on_finish_late() [optional]
2477...........................................................
2478
2479This optional function is called by the PSCI implementation after the calling
2480CPU is fully powered on with respective data caches enabled. The calling CPU and
2481the associated cluster are guaranteed to be participating in coherency. This
2482function gives the flexibility to perform any platform-specific actions safely,
2483such as initialization or modification of shared data structures, without the
2484overhead of explicit cache maintainace operations.
2485
2486The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2487operation. The generic code expects the handler to succeed.
2488
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002489plat_psci_ops.pwr_domain_suspend_finish()
2490.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002491
2492This function is called by the PSCI implementation after the calling CPU is
2493powered on and released from reset in response to an asynchronous wakeup
2494event, for example a timer interrupt that was programmed by the CPU during the
2495``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2496setup required to restore the saved state for this CPU to resume execution
2497in the normal world and also provide secure runtime firmware services.
2498
2499The ``target_state`` (first argument) has a similar meaning as described in
2500the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2501to succeed.
2502
Douglas Raillarda84996b2017-08-02 16:57:32 +01002503If the Distributor, Redistributors or ITS have been powered off as part of a
2504suspend, their context must be restored in this function in the reverse order
2505to how they were saved during suspend sequence.
2506
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002507plat_psci_ops.system_off()
2508..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002509
2510This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2511call. It performs the platform-specific system poweroff sequence after
2512notifying the Secure Payload Dispatcher.
2513
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002514plat_psci_ops.system_reset()
2515............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002516
2517This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2518call. It performs the platform-specific system reset sequence after
2519notifying the Secure Payload Dispatcher.
2520
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002521plat_psci_ops.validate_power_state()
2522....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002523
2524This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2525call to validate the ``power_state`` parameter of the PSCI API and if valid,
2526populate it in ``req_state`` (second argument) array as power domain level
2527specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002528return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002529normal world PSCI client.
2530
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002531plat_psci_ops.validate_ns_entrypoint()
2532......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002533
2534This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2535``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2536parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002537the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002538propagated back to the normal world PSCI client.
2539
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002540plat_psci_ops.get_sys_suspend_power_state()
2541...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002542
2543This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2544call to get the ``req_state`` parameter from platform which encodes the power
2545domain level specific local states to suspend to system affinity level. The
2546``req_state`` will be utilized to do the PSCI state coordination and
2547``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2548enter system suspend.
2549
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002550plat_psci_ops.get_pwr_lvl_state_idx()
2551.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002552
2553This is an optional function and, if implemented, is invoked by the PSCI
2554implementation to convert the ``local_state`` (first argument) at a specified
2555``pwr_lvl`` (second argument) to an index between 0 and
2556``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2557supports more than two local power states at each power domain level, that is
2558``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2559local power states.
2560
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002561plat_psci_ops.translate_power_state_by_mpidr()
2562..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002563
2564This is an optional function and, if implemented, verifies the ``power_state``
2565(second argument) parameter of the PSCI API corresponding to a target power
2566domain. The target power domain is identified by using both ``MPIDR`` (first
2567argument) and the power domain level encoded in ``power_state``. The power domain
2568level specific local states are to be extracted from ``power_state`` and be
2569populated in the ``output_state`` (third argument) array. The functionality
2570is similar to the ``validate_power_state`` function described above and is
2571envisaged to be used in case the validity of ``power_state`` depend on the
2572targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002573domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002574function is not implemented, then the generic implementation relies on
2575``validate_power_state`` function to translate the ``power_state``.
2576
2577This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002578power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002579APIs as described in Section 5.18 of `PSCI`_.
2580
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002581plat_psci_ops.get_node_hw_state()
2582.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002583
2584This is an optional function. If implemented this function is intended to return
2585the power state of a node (identified by the first parameter, the ``MPIDR``) in
2586the power domain topology (identified by the second parameter, ``power_level``),
2587as retrieved from a power controller or equivalent component on the platform.
2588Upon successful completion, the implementation must map and return the final
2589status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2590must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2591appropriate.
2592
2593Implementations are not expected to handle ``power_levels`` greater than
2594``PLAT_MAX_PWR_LVL``.
2595
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002596plat_psci_ops.system_reset2()
2597.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002598
2599This is an optional function. If implemented this function is
2600called during the ``SYSTEM_RESET2`` call to perform a reset
2601based on the first parameter ``reset_type`` as specified in
2602`PSCI`_. The parameter ``cookie`` can be used to pass additional
2603reset information. If the ``reset_type`` is not supported, the
2604function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2605resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2606and vendor reset can return other PSCI error codes as defined
2607in `PSCI`_. On success this function will not return.
2608
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002609plat_psci_ops.write_mem_protect()
2610.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002611
2612This is an optional function. If implemented it enables or disables the
2613``MEM_PROTECT`` functionality based on the value of ``val``.
2614A non-zero value enables ``MEM_PROTECT`` and a value of zero
2615disables it. Upon encountering failures it must return a negative value
2616and on success it must return 0.
2617
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002618plat_psci_ops.read_mem_protect()
2619................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002620
2621This is an optional function. If implemented it returns the current
2622state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2623failures it must return a negative value and on success it must
2624return 0.
2625
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002626plat_psci_ops.mem_protect_chk()
2627...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002628
2629This is an optional function. If implemented it checks if a memory
2630region defined by a base address ``base`` and with a size of ``length``
2631bytes is protected by ``MEM_PROTECT``. If the region is protected
2632then it must return 0, otherwise it must return a negative number.
2633
Paul Beesleyf8640672019-04-12 14:19:42 +01002634.. _porting_guide_imf_in_bl31:
2635
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002636Interrupt Management framework (in BL31)
2637----------------------------------------
2638
2639BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2640generated in either security state and targeted to EL1 or EL2 in the non-secure
2641state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002642described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002643
2644A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002645text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002646platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002647present in the platform. Arm standard platform layer supports both
2648`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2649and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2650FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002651``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2652details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002653
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002654See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002655
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002656Function : plat_interrupt_type_to_line() [mandatory]
2657~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002658
2659::
2660
2661 Argument : uint32_t, uint32_t
2662 Return : uint32_t
2663
Dan Handley610e7e12018-03-01 18:44:00 +00002664The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002665interrupt line. The specific line that is signaled depends on how the interrupt
2666controller (IC) reports different interrupt types from an execution context in
2667either security state. The IMF uses this API to determine which interrupt line
2668the platform IC uses to signal each type of interrupt supported by the framework
2669from a given security state. This API must be invoked at EL3.
2670
2671The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01002672:ref:`Interrupt Management Framework`) indicating the target type of the
2673interrupt, the second parameter is the security state of the originating
2674execution context. The return result is the bit position in the ``SCR_EL3``
2675register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002676
Dan Handley610e7e12018-03-01 18:44:00 +00002677In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002678configured as FIQs and Non-secure interrupts as IRQs from either security
2679state.
2680
Dan Handley610e7e12018-03-01 18:44:00 +00002681In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002682configured depends on the security state of the execution context when the
2683interrupt is signalled and are as follows:
2684
2685- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2686 NS-EL0/1/2 context.
2687- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2688 in the NS-EL0/1/2 context.
2689- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2690 context.
2691
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002692Function : plat_ic_get_pending_interrupt_type() [mandatory]
2693~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002694
2695::
2696
2697 Argument : void
2698 Return : uint32_t
2699
2700This API returns the type of the highest priority pending interrupt at the
2701platform IC. The IMF uses the interrupt type to retrieve the corresponding
2702handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2703pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2704``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2705
Dan Handley610e7e12018-03-01 18:44:00 +00002706In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002707Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2708the pending interrupt. The type of interrupt depends upon the id value as
2709follows.
2710
2711#. id < 1022 is reported as a S-EL1 interrupt
2712#. id = 1022 is reported as a Non-secure interrupt.
2713#. id = 1023 is reported as an invalid interrupt type.
2714
Dan Handley610e7e12018-03-01 18:44:00 +00002715In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002716``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2717is read to determine the id of the pending interrupt. The type of interrupt
2718depends upon the id value as follows.
2719
2720#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2721#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2722#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2723#. All other interrupt id's are reported as EL3 interrupt.
2724
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002725Function : plat_ic_get_pending_interrupt_id() [mandatory]
2726~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002727
2728::
2729
2730 Argument : void
2731 Return : uint32_t
2732
2733This API returns the id of the highest priority pending interrupt at the
2734platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2735pending.
2736
Dan Handley610e7e12018-03-01 18:44:00 +00002737In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002738Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2739pending interrupt. The id that is returned by API depends upon the value of
2740the id read from the interrupt controller as follows.
2741
2742#. id < 1022. id is returned as is.
2743#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2744 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2745 This id is returned by the API.
2746#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2747
Dan Handley610e7e12018-03-01 18:44:00 +00002748In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002749EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2750group 0 Register*, is read to determine the id of the pending interrupt. The id
2751that is returned by API depends upon the value of the id read from the
2752interrupt controller as follows.
2753
2754#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2755#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2756 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2757 Register* is read to determine the id of the group 1 interrupt. This id
2758 is returned by the API as long as it is a valid interrupt id
2759#. If the id is any of the special interrupt identifiers,
2760 ``INTR_ID_UNAVAILABLE`` is returned.
2761
2762When the API invoked from S-EL1 for GICv3 systems, the id read from system
2763register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002764Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002765``INTR_ID_UNAVAILABLE`` is returned.
2766
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002767Function : plat_ic_acknowledge_interrupt() [mandatory]
2768~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002769
2770::
2771
2772 Argument : void
2773 Return : uint32_t
2774
2775This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002776the highest pending interrupt has begun. It should return the raw, unmodified
2777value obtained from the interrupt controller when acknowledging an interrupt.
2778The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002779`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002780
Dan Handley610e7e12018-03-01 18:44:00 +00002781This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002782Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2783priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002784It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002785
Dan Handley610e7e12018-03-01 18:44:00 +00002786In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002787from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2788Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2789reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2790group 1*. The read changes the state of the highest pending interrupt from
2791pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002792unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002793
2794The TSP uses this API to start processing of the secure physical timer
2795interrupt.
2796
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002797Function : plat_ic_end_of_interrupt() [mandatory]
2798~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002799
2800::
2801
2802 Argument : uint32_t
2803 Return : void
2804
2805This API is used by the CPU to indicate to the platform IC that processing of
2806the interrupt corresponding to the id (passed as the parameter) has
2807finished. The id should be the same as the id returned by the
2808``plat_ic_acknowledge_interrupt()`` API.
2809
Dan Handley610e7e12018-03-01 18:44:00 +00002810Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002811(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2812system register in case of GICv3 depending on where the API is invoked from,
2813EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2814controller.
2815
2816The TSP uses this API to finish processing of the secure physical timer
2817interrupt.
2818
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002819Function : plat_ic_get_interrupt_type() [mandatory]
2820~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002821
2822::
2823
2824 Argument : uint32_t
2825 Return : uint32_t
2826
2827This API returns the type of the interrupt id passed as the parameter.
2828``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2829interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2830returned depending upon how the interrupt has been configured by the platform
2831IC. This API must be invoked at EL3.
2832
Dan Handley610e7e12018-03-01 18:44:00 +00002833Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002834and Non-secure interrupts as Group1 interrupts. It reads the group value
2835corresponding to the interrupt id from the relevant *Interrupt Group Register*
2836(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2837
Dan Handley610e7e12018-03-01 18:44:00 +00002838In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002839Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2840(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2841as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2842
2843Crash Reporting mechanism (in BL31)
2844-----------------------------------
2845
2846BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002847of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002848on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002849``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2850
2851The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2852implementation of all of them. Platforms may include this file to their
2853makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002854output to be routed over the normal console infrastructure and get printed on
2855consoles configured to output in crash state. ``console_set_scope()`` can be
2856used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00002857
2858.. note::
2859 Platforms are responsible for making sure that they only mark consoles for
2860 use in the crash scope that are able to support this, i.e. that are written
2861 in assembly and conform with the register clobber rules for putc()
2862 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002863
Julius Werneraae9bb12017-09-18 16:49:48 -07002864In some cases (such as debugging very early crashes that happen before the
2865normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002866more explicitly. These platforms may instead provide custom implementations for
2867these. They are executed outside of a C environment and without a stack. Many
2868console drivers provide functions named ``console_xxx_core_init/putc/flush``
2869that are designed to be used by these functions. See Arm platforms (like juno)
2870for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002871
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002872Function : plat_crash_console_init [mandatory]
2873~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002874
2875::
2876
2877 Argument : void
2878 Return : int
2879
2880This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002881console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002882initialization and returns 1 on success.
2883
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002884Function : plat_crash_console_putc [mandatory]
2885~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002886
2887::
2888
2889 Argument : int
2890 Return : int
2891
2892This API is used by the crash reporting mechanism to print a character on the
2893designated crash console. It must only use general purpose registers x1 and
2894x2 to do its work. The parameter and the return value are in general purpose
2895register x0.
2896
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002897Function : plat_crash_console_flush [mandatory]
2898~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002899
2900::
2901
2902 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05002903 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002904
2905This API is used by the crash reporting mechanism to force write of all buffered
2906data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05002907registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002908
Manish Pandey9c9f38a2020-06-30 00:46:08 +01002909.. _External Abort handling and RAS Support:
2910
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002911External Abort handling and RAS Support
2912---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002913
2914Function : plat_ea_handler
2915~~~~~~~~~~~~~~~~~~~~~~~~~~
2916
2917::
2918
2919 Argument : int
2920 Argument : uint64_t
2921 Argument : void *
2922 Argument : void *
2923 Argument : uint64_t
2924 Return : void
2925
2926This function is invoked by the RAS framework for the platform to handle an
2927External Abort received at EL3. The intention of the function is to attempt to
2928resolve the cause of External Abort and return; if that's not possible, to
2929initiate orderly shutdown of the system.
2930
2931The first parameter (``int ea_reason``) indicates the reason for External Abort.
2932Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2933
2934The second parameter (``uint64_t syndrome``) is the respective syndrome
2935presented to EL3 after having received the External Abort. Depending on the
2936nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2937can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2938
2939The third parameter (``void *cookie``) is unused for now. The fourth parameter
2940(``void *handle``) is a pointer to the preempted context. The fifth parameter
2941(``uint64_t flags``) indicates the preempted security state. These parameters
2942are received from the top-level exception handler.
2943
2944If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2945function iterates through RAS handlers registered by the platform. If any of the
2946RAS handlers resolve the External Abort, no further action is taken.
2947
2948If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2949could resolve the External Abort, the default implementation prints an error
2950message, and panics.
2951
2952Function : plat_handle_uncontainable_ea
2953~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2954
2955::
2956
2957 Argument : int
2958 Argument : uint64_t
2959 Return : void
2960
2961This function is invoked by the RAS framework when an External Abort of
2962Uncontainable type is received at EL3. Due to the critical nature of
2963Uncontainable errors, the intention of this function is to initiate orderly
2964shutdown of the system, and is not expected to return.
2965
2966This function must be implemented in assembly.
2967
2968The first and second parameters are the same as that of ``plat_ea_handler``.
2969
2970The default implementation of this function calls
2971``report_unhandled_exception``.
2972
2973Function : plat_handle_double_fault
2974~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2975
2976::
2977
2978 Argument : int
2979 Argument : uint64_t
2980 Return : void
2981
2982This function is invoked by the RAS framework when another External Abort is
2983received at EL3 while one is already being handled. I.e., a call to
2984``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2985this function is to initiate orderly shutdown of the system, and is not expected
2986recover or return.
2987
2988This function must be implemented in assembly.
2989
2990The first and second parameters are the same as that of ``plat_ea_handler``.
2991
2992The default implementation of this function calls
2993``report_unhandled_exception``.
2994
2995Function : plat_handle_el3_ea
2996~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2997
2998::
2999
3000 Return : void
3001
3002This function is invoked when an External Abort is received while executing in
3003EL3. Due to its critical nature, the intention of this function is to initiate
3004orderly shutdown of the system, and is not expected recover or return.
3005
3006This function must be implemented in assembly.
3007
3008The default implementation of this function calls
3009``report_unhandled_exception``.
3010
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003011Build flags
3012-----------
3013
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003014There are some build flags which can be defined by the platform to control
3015inclusion or exclusion of certain BL stages from the FIP image. These flags
3016need to be defined in the platform makefile which will get included by the
3017build system.
3018
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003019- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003020 By default, this flag is defined ``yes`` by the build system and ``BL33``
3021 build option should be supplied as a build option. The platform has the
3022 option of excluding the BL33 image in the ``fip`` image by defining this flag
3023 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3024 are used, this flag will be set to ``no`` automatically.
3025
Paul Beesley07f0a312019-05-16 13:33:18 +01003026Platform include paths
3027----------------------
3028
3029Platforms are allowed to add more include paths to be passed to the compiler.
3030The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3031particular for the file ``platform_def.h``.
3032
3033Example:
3034
3035.. code:: c
3036
3037 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3038
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003039C Library
3040---------
3041
3042To avoid subtle toolchain behavioral dependencies, the header files provided
3043by the compiler are not used. The software is built with the ``-nostdinc`` flag
3044to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00003045required headers are included in the TF-A source tree. The library only
3046contains those C library definitions required by the local implementation. If
3047more functionality is required, the needed library functions will need to be
3048added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003049
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003050Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00003051been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003052from `FreeBSD`_, others have been written specifically for TF-A as well. The
3053files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003054
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01003055SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3056can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003057
3058Storage abstraction layer
3059-------------------------
3060
Louis Mayencourtb5469002019-07-15 13:56:03 +01003061In order to improve platform independence and portability a storage abstraction
3062layer is used to load data from non-volatile platform storage. Currently
3063storage access is only required by BL1 and BL2 phases and performed inside the
3064``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003065
Louis Mayencourtb5469002019-07-15 13:56:03 +01003066.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003067
Dan Handley610e7e12018-03-01 18:44:00 +00003068It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003069development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003070the default means to load data from storage (see :ref:`firmware_design_fip`).
3071The storage layer is described in the header file
3072``include/drivers/io/io_storage.h``. The implementation of the common library is
3073in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003074``drivers/io/``.
3075
Louis Mayencourtb5469002019-07-15 13:56:03 +01003076.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
3077
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003078Each IO driver must provide ``io_dev_*`` structures, as described in
3079``drivers/io/io_driver.h``. These are returned via a mandatory registration
3080function that is called on platform initialization. The semi-hosting driver
3081implementation in ``io_semihosting.c`` can be used as an example.
3082
Louis Mayencourtb5469002019-07-15 13:56:03 +01003083Each platform should register devices and their drivers via the storage
3084abstraction layer. These drivers then need to be initialized by bootloader
3085phases as required in their respective ``blx_platform_setup()`` functions.
3086
3087.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
3088
3089The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3090initialize storage devices before IO operations are called.
3091
3092.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
3093
3094The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003095include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3096Drivers do not have to implement all operations, but each platform must
3097provide at least one driver for a device capable of supporting generic
3098operations such as loading a bootloader image.
3099
3100The current implementation only allows for known images to be loaded by the
3101firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003102``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003103there). The platform layer (``plat_get_image_source()``) then returns a reference
3104to a device and a driver-specific ``spec`` which will be understood by the driver
3105to allow access to the image data.
3106
3107The layer is designed in such a way that is it possible to chain drivers with
3108other drivers. For example, file-system drivers may be implemented on top of
3109physical block devices, both represented by IO devices with corresponding
3110drivers. In such a case, the file-system "binding" with the block device may
3111be deferred until the file-system device is initialised.
3112
3113The abstraction currently depends on structures being statically allocated
3114by the drivers and callers, as the system does not yet provide a means of
3115dynamically allocating memory. This may also have the affect of limiting the
3116amount of open resources per driver.
3117
3118--------------
3119
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05003120*Copyright (c) 2013-2021, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003121
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003122.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00003123.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003124.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003125.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003126.. _SCC: http://www.simple-cc.org/