blob: 6569a4768f341d7967f07c4dbaf1f4ed9a04ba9f [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Paul Beesleyf8640672019-04-12 14:19:42 +010026Please refer to the :ref:`Platform Compatibility Policy` for the policy
27regarding compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010028
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillardd7c21b72017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley610e7e12018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010061
Dan Handley610e7e12018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010092File : platform_def.h [mandatory]
93~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010094
95Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000096include path with the following constants defined. This will require updating
97the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010098
Paul Beesleyf8640672019-04-12 14:19:42 +010099Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100which provides typical values for some of the constants below. These values are
101likely to be suitable for all platform ports.
102
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100103- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100104
105 Defines the linker format used by the platform, for example
106 ``elf64-littleaarch64``.
107
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100108- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100109
110 Defines the processor architecture for the linker by the platform, for
111 example ``aarch64``.
112
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100113- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100114
115 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100116 by ``plat/common/aarch64/platform_mp_stack.S`` and
117 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
David Horstmann051fd6d2020-11-12 15:19:04 +0000119- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
121 Defines the size in bits of the largest cache line across all the cache
122 levels in the platform.
123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100124- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100125
126 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
127 function.
128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100129- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100130
131 Defines the total number of CPUs implemented by the platform across all
132 clusters in the system.
133
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100134- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100135
136 Defines the total number of nodes in the power domain topology
137 tree at all the power domain levels used by the platform.
138 This macro is used by the PSCI implementation to allocate
139 data structures to represent power domain topology.
140
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100141- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100142
143 Defines the maximum power domain level that the power management operations
144 should apply to. More often, but not always, the power domain level
145 corresponds to affinity level. This macro allows the PSCI implementation
146 to know the highest power domain level that it should consider for power
147 management operations in the system that the platform implements. For
148 example, the Base AEM FVP implements two clusters with a configurable
149 number of CPUs and it reports the maximum power domain level as 1.
150
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100151- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100152
153 Defines the local power state corresponding to the deepest power down
154 possible at every power domain level in the platform. The local power
155 states for each level may be sparsely allocated between 0 and this value
156 with 0 being reserved for the RUN state. The PSCI implementation uses this
157 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100158 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 Defines the local power state corresponding to the deepest retention state
163 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100164 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100165 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
170 Defines the maximum number of local power states per power domain level
171 that the platform supports. The default value of this macro is 2 since
172 most platforms just support a maximum of two local power states at each
173 power domain level (power-down and retention). If the platform needs to
174 account for more local power states, then it must redefine this macro.
175
176 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100177 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100178
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
181 Defines the base address in secure ROM where BL1 originally lives. Must be
182 aligned on a page-size boundary.
183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100184- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100185
186 Defines the maximum address in secure ROM that BL1's actual content (i.e.
187 excluding any data section allocated at runtime) can occupy.
188
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100189- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100190
191 Defines the base address in secure RAM where BL1's read-write data will live
192 at runtime. Must be aligned on a page-size boundary.
193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100194- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100195
196 Defines the maximum address in secure RAM that BL1's read-write data can
197 occupy at runtime.
198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100199- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100200
201 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000202 Must be aligned on a page-size boundary. This constant is not applicable
203 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100205- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
207 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000208 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100210- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000211
212 Defines the base address in secure XIP memory where BL2 RO section originally
213 lives. Must be aligned on a page-size boundary. This constant is only needed
214 when BL2_IN_XIP_MEM is set to '1'.
215
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100216- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000217
218 Defines the maximum address in secure XIP memory that BL2's actual content
219 (i.e. excluding any data section allocated at runtime) can occupy. This
220 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
221
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100222- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000223
224 Defines the base address in secure RAM where BL2's read-write data will live
225 at runtime. Must be aligned on a page-size boundary. This constant is only
226 needed when BL2_IN_XIP_MEM is set to '1'.
227
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100228- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000229
230 Defines the maximum address in secure RAM that BL2's read-write data can
231 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
232 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100233
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100234- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
236 Defines the base address in secure RAM where BL2 loads the BL31 binary
237 image. Must be aligned on a page-size boundary.
238
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100239- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100240
241 Defines the maximum address in secure RAM that the BL31 image can occupy.
242
243For every image, the platform must define individual identifiers that will be
244used by BL1 or BL2 to load the corresponding image into memory from non-volatile
245storage. For the sake of performance, integer numbers will be used as
246identifiers. The platform will use those identifiers to return the relevant
247information about the image to be loaded (file handler, load address,
248authentication information, etc.). The following image identifiers are
249mandatory:
250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100251- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100252
253 BL2 image identifier, used by BL1 to load BL2.
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 BL31 image identifier, used by BL2 to load BL31.
258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100259- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
261 BL33 image identifier, used by BL2 to load BL33.
262
263If Trusted Board Boot is enabled, the following certificate identifiers must
264also be defined:
265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100266- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100267
268 BL2 content certificate identifier, used by BL1 to load the BL2 content
269 certificate.
270
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100271- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100272
273 Trusted key certificate identifier, used by BL2 to load the trusted key
274 certificate.
275
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100276- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100277
278 BL31 key certificate identifier, used by BL2 to load the BL31 key
279 certificate.
280
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100281- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100282
283 BL31 content certificate identifier, used by BL2 to load the BL31 content
284 certificate.
285
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100286- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100287
288 BL33 key certificate identifier, used by BL2 to load the BL33 key
289 certificate.
290
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100291- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100292
293 BL33 content certificate identifier, used by BL2 to load the BL33 content
294 certificate.
295
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100296- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299 FWU content certificate.
300
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100301- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100302
Dan Handley610e7e12018-03-01 18:44:00 +0000303 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000305 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 set.
307
308If the AP Firmware Updater Configuration image, BL2U is used, the following
309must also be defined:
310
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100311- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100312
313 Defines the base address in secure memory where BL1 copies the BL2U binary
314 image. Must be aligned on a page-size boundary.
315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100316- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100317
318 Defines the maximum address in secure memory that the BL2U image can occupy.
319
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100320- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100321
322 BL2U image identifier, used by BL1 to fetch an image descriptor
323 corresponding to BL2U.
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326must also be defined:
327
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100328- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
331 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000332
333 .. note::
334 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100336If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337also be defined:
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000343
344 .. note::
345 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100347- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
350 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100352If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353be defined:
354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000359
360 .. note::
361 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100365 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
366 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367
368For the the Firmware update capability of TRUSTED BOARD BOOT, the following
369macros may also be defined:
370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372
373 Total number of images that can be loaded simultaneously. If the platform
374 doesn't specify any value, it defaults to 10.
375
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100376If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100377also be defined:
378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100381 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000382 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100384- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387 certificate (mandatory when Trusted Board Boot is enabled).
388
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100389- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100391 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392 content certificate (mandatory when Trusted Board Boot is enabled).
393
394If a BL32 image is supported by the platform, the following constants must
395also be defined:
396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100397- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100398
399 BL32 image identifier, used by BL2 to load BL32.
400
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100401- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100402
403 BL32 key certificate identifier, used by BL2 to load the BL32 key
404 certificate (mandatory when Trusted Board Boot is enabled).
405
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100406- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100407
408 BL32 content certificate identifier, used by BL2 to load the BL32 content
409 certificate (mandatory when Trusted Board Boot is enabled).
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 Defines the base address in secure memory where BL2 loads the BL32 binary
414 image. Must be aligned on a page-size boundary.
415
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100416- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100417
418 Defines the maximum address that the BL32 image can occupy.
419
420If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
421platform, the following constants must also be defined:
422
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100423- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100424
425 Defines the base address of the secure memory used by the TSP image on the
426 platform. This must be at the same address or below ``BL32_BASE``.
427
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100428- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100429
430 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000431 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
432 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
433 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100434
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100435- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100436
437 Defines the ID of the secure physical generic timer interrupt used by the
438 TSP's interrupt handling code.
439
440If the platform port uses the translation table library code, the following
441constants must also be defined:
442
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100443- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100444
445 Optional flag that can be set per-image to enable the dynamic allocation of
446 regions even when the MMU is enabled. If not defined, only static
447 functionality will be available, if defined and set to 1 it will also
448 include the dynamic functionality.
449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100450- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100451
452 Defines the maximum number of translation tables that are allocated by the
453 translation table library code. To minimize the amount of runtime memory
454 used, choose the smallest value needed to map the required virtual addresses
455 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
456 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
457 as well.
458
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100459- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100460
461 Defines the maximum number of regions that are allocated by the translation
462 table library code. A region consists of physical base address, virtual base
463 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
464 defined in the ``mmap_region_t`` structure. The platform defines the regions
465 that should be mapped. Then, the translation table library will create the
466 corresponding tables and descriptors at runtime. To minimize the amount of
467 runtime memory used, choose the smallest value needed to register the
468 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
469 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
470 the dynamic regions as well.
471
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100472- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100473
474 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000475 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100476
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100477- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100478
479 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000480 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100481
482If the platform port uses the IO storage framework, the following constants
483must also be defined:
484
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100485- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100486
487 Defines the maximum number of registered IO devices. Attempting to register
488 more devices than this value using ``io_register_device()`` will fail with
489 -ENOMEM.
490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the maximum number of open IO handles. Attempting to open more IO
494 entities than this value using ``io_open()`` will fail with -ENOMEM.
495
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100496- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100497
498 Defines the maximum number of registered IO block devices. Attempting to
499 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100500 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100501 With this macro, multiple block devices could be supported at the same
502 time.
503
504If the platform needs to allocate data within the per-cpu data framework in
505BL31, it should define the following macro. Currently this is only required if
506the platform decides not to use the coherent memory section by undefining the
507``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
508required memory within the the per-cpu data to minimize wastage.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the memory (in bytes) to be reserved within the per-cpu data
513 structure for use by the platform layer.
514
515The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000516memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100517
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100518- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100519
520 Defines the maximum address in secure RAM that the BL31's progbits sections
521 can occupy.
522
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100523- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100524
525 Defines the maximum address that the TSP's progbits sections can occupy.
526
527If the platform port uses the PL061 GPIO driver, the following constant may
528optionally be defined:
529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100530- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531 Maximum number of GPIOs required by the platform. This allows control how
532 much memory is allocated for PL061 GPIO controllers. The default value is
533
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100534 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100535
536If the platform port uses the partition driver, the following constant may
537optionally be defined:
538
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100539- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100540 Maximum number of partition entries required by the platform. This allows
541 control how much memory is allocated for partition entries. The default
542 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100543 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100544 PLAT_PARTITION_MAX_ENTRIES := 12
545 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100546
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800547- **PLAT_PARTITION_BLOCK_SIZE**
548 The size of partition block. It could be either 512 bytes or 4096 bytes.
549 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000550 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800551 PLAT_PARTITION_BLOCK_SIZE := 4096
552 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
553
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554The following constant is optional. It should be defined to override the default
555behaviour of the ``assert()`` function (for example, to save memory).
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
559 ``assert()`` prints the name of the file, the line number and the asserted
560 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
561 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
562 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
563 defined, it defaults to ``LOG_LEVEL``.
564
Alexei Fedorov7e6306b2020-07-14 08:17:56 +0100565If the platform port uses the Activity Monitor Unit, the following constant
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000566may be defined:
567
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100568- **PLAT_AMU_GROUP1_COUNTERS_MASK**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000569 This mask reflects the set of group counters that should be enabled. The
570 maximum number of group 1 counters supported by AMUv1 is 16 so the mask
571 can be at most 0xffff. If the platform does not define this mask, no group 1
Alexei Fedorov7e6306b2020-07-14 08:17:56 +0100572 counters are enabled.
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000573
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100574File : plat_macros.S [mandatory]
575~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100576
577Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000578the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100579found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
580
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100581- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100582
583 This macro allows the crash reporting routine to print relevant platform
584 registers in case of an unhandled exception in BL31. This aids in debugging
585 and this macro can be defined to be empty in case register reporting is not
586 desired.
587
588 For instance, GIC or interconnect registers may be helpful for
589 troubleshooting.
590
591Handling Reset
592--------------
593
594BL1 by default implements the reset vector where execution starts from a cold
595or warm boot. BL31 can be optionally set as a reset vector using the
596``RESET_TO_BL31`` make variable.
597
598For each CPU, the reset vector code is responsible for the following tasks:
599
600#. Distinguishing between a cold boot and a warm boot.
601
602#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
603 the CPU is placed in a platform-specific state until the primary CPU
604 performs the necessary steps to remove it from this state.
605
606#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
607 specific address in the BL31 image in the same processor mode as it was
608 when released from reset.
609
610The following functions need to be implemented by the platform port to enable
611reset vector code to perform the above tasks.
612
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100613Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
614~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100615
616::
617
618 Argument : void
619 Return : uintptr_t
620
621This function is called with the MMU and caches disabled
622(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
623distinguishing between a warm and cold reset for the current CPU using
624platform-specific means. If it's a warm reset, then it returns the warm
625reset entrypoint point provided to ``plat_setup_psci_ops()`` during
626BL31 initialization. If it's a cold reset then this function must return zero.
627
628This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000629Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100630not assume that callee saved registers are preserved across a call to this
631function.
632
633This function fulfills requirement 1 and 3 listed above.
634
635Note that for platforms that support programming the reset address, it is
636expected that a CPU will start executing code directly at the right address,
637both on a cold and warm reset. In this case, there is no need to identify the
638type of reset nor to query the warm reset entrypoint. Therefore, implementing
639this function is not required on such platforms.
640
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100641Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
642~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100643
644::
645
646 Argument : void
647
648This function is called with the MMU and data caches disabled. It is responsible
649for placing the executing secondary CPU in a platform-specific state until the
650primary CPU performs the necessary actions to bring it out of that state and
651allow entry into the OS. This function must not return.
652
Dan Handley610e7e12018-03-01 18:44:00 +0000653In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100654itself off. The primary CPU is responsible for powering up the secondary CPUs
655when normal world software requires them. When booting an EL3 payload instead,
656they stay powered on and are put in a holding pen until their mailbox gets
657populated.
658
659This function fulfills requirement 2 above.
660
661Note that for platforms that can't release secondary CPUs out of reset, only the
662primary CPU will execute the cold boot code. Therefore, implementing this
663function is not required on such platforms.
664
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100665Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
666~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100667
668::
669
670 Argument : void
671 Return : unsigned int
672
673This function identifies whether the current CPU is the primary CPU or a
674secondary CPU. A return value of zero indicates that the CPU is not the
675primary CPU, while a non-zero return value indicates that the CPU is the
676primary CPU.
677
678Note that for platforms that can't release secondary CPUs out of reset, only the
679primary CPU will execute the cold boot code. Therefore, there is no need to
680distinguish between primary and secondary CPUs and implementing this function is
681not required.
682
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100683Function : platform_mem_init() [mandatory]
684~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100685
686::
687
688 Argument : void
689 Return : void
690
691This function is called before any access to data is made by the firmware, in
692order to carry out any essential memory initialization.
693
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100694Function: plat_get_rotpk_info()
695~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100696
697::
698
699 Argument : void *, void **, unsigned int *, unsigned int *
700 Return : int
701
702This function is mandatory when Trusted Board Boot is enabled. It returns a
703pointer to the ROTPK stored in the platform (or a hash of it) and its length.
704The ROTPK must be encoded in DER format according to the following ASN.1
705structure:
706
707::
708
709 AlgorithmIdentifier ::= SEQUENCE {
710 algorithm OBJECT IDENTIFIER,
711 parameters ANY DEFINED BY algorithm OPTIONAL
712 }
713
714 SubjectPublicKeyInfo ::= SEQUENCE {
715 algorithm AlgorithmIdentifier,
716 subjectPublicKey BIT STRING
717 }
718
719In case the function returns a hash of the key:
720
721::
722
723 DigestInfo ::= SEQUENCE {
724 digestAlgorithm AlgorithmIdentifier,
725 digest OCTET STRING
726 }
727
728The function returns 0 on success. Any other value is treated as error by the
729Trusted Board Boot. The function also reports extra information related
730to the ROTPK in the flags parameter:
731
732::
733
734 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
735 hash.
736 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
737 verification while the platform ROTPK is not deployed.
738 When this flag is set, the function does not need to
739 return a platform ROTPK, and the authentication
740 framework uses the ROTPK in the certificate without
741 verifying it against the platform value. This flag
742 must not be used in a deployed production environment.
743
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100744Function: plat_get_nv_ctr()
745~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100746
747::
748
749 Argument : void *, unsigned int *
750 Return : int
751
752This function is mandatory when Trusted Board Boot is enabled. It returns the
753non-volatile counter value stored in the platform in the second argument. The
754cookie in the first argument may be used to select the counter in case the
755platform provides more than one (for example, on platforms that use the default
756TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100757TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100758
759The function returns 0 on success. Any other value means the counter value could
760not be retrieved from the platform.
761
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100762Function: plat_set_nv_ctr()
763~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100764
765::
766
767 Argument : void *, unsigned int
768 Return : int
769
770This function is mandatory when Trusted Board Boot is enabled. It sets a new
771counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100772select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100773the updated counter value to be written to the NV counter.
774
775The function returns 0 on success. Any other value means the counter value could
776not be updated.
777
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100778Function: plat_set_nv_ctr2()
779~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100780
781::
782
783 Argument : void *, const auth_img_desc_t *, unsigned int
784 Return : int
785
786This function is optional when Trusted Board Boot is enabled. If this
787interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
788first argument passed is a cookie and is typically used to
789differentiate between a Non Trusted NV Counter and a Trusted NV
790Counter. The second argument is a pointer to an authentication image
791descriptor and may be used to decide if the counter is allowed to be
792updated or not. The third argument is the updated counter value to
793be written to the NV counter.
794
795The function returns 0 on success. Any other value means the counter value
796either could not be updated or the authentication image descriptor indicates
797that it is not allowed to be updated.
798
799Common mandatory function modifications
800---------------------------------------
801
802The following functions are mandatory functions which need to be implemented
803by the platform port.
804
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100805Function : plat_my_core_pos()
806~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100807
808::
809
810 Argument : void
811 Return : unsigned int
812
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000813This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100814CPU-specific linear index into blocks of memory (for example while allocating
815per-CPU stacks). This function will be invoked very early in the
816initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000817implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100818runtime environment. This function can clobber x0 - x8 and must preserve
819x9 - x29.
820
821This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +0100822PSCI and details of this can be found in
823:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100824
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100825Function : plat_core_pos_by_mpidr()
826~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100827
828::
829
830 Argument : u_register_t
831 Return : int
832
833This function validates the ``MPIDR`` of a CPU and converts it to an index,
834which can be used as a CPU-specific linear index into blocks of memory. In
835case the ``MPIDR`` is invalid, this function returns -1. This function will only
836be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000837utilize the C runtime environment. For further details about how TF-A
838represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +0100839index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100840
Ambroise Vincentd207f562019-04-10 12:50:27 +0100841Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
842~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
843
844::
845
846 Arguments : void **heap_addr, size_t *heap_size
847 Return : int
848
849This function is invoked during Mbed TLS library initialisation to get a heap,
850by means of a starting address and a size. This heap will then be used
851internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
852must be able to provide a heap to it.
853
854A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
855which a heap is statically reserved during compile time inside every image
856(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
857the function simply returns the address and size of this "pre-allocated" heap.
858For a platform to use this default implementation, only a call to the helper
859from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
860
861However, by writting their own implementation, platforms have the potential to
862optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
863shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
864twice.
865
866On success the function should return 0 and a negative error code otherwise.
867
Sumit Gargc0c369c2019-11-15 18:47:53 +0530868Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
869~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
870
871::
872
873 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
874 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
875 size_t img_id_len
876 Return : int
877
878This function provides a symmetric key (either SSK or BSSK depending on
879fw_enc_status) which is invoked during runtime decryption of encrypted
880firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
881implementation for testing purposes which must be overridden by the platform
882trying to implement a real world firmware encryption use-case.
883
884It also allows the platform to pass symmetric key identifier rather than
885actual symmetric key which is useful in cases where the crypto backend provides
886secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
887flag must be set in ``flags``.
888
889In addition to above a platform may also choose to provide an image specific
890symmetric key/identifier using img_id.
891
892On success the function should return 0 and a negative error code otherwise.
893
894Note that this API depends on ``DECRYPTION_SUPPORT`` build flag which is
895marked as experimental.
896
Manish V Badarkheda87af12021-06-20 21:14:46 +0100897Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
898~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
899
900::
901
902 Argument : struct fwu_metadata *metadata
903 Return : void
904
905This function is mandatory when PSA_FWU_SUPPORT is enabled.
906It provides a means to retrieve image specification (offset in
907non-volatile storage and length) of active/updated images using the passed
908FWU metadata, and update I/O policies of active/updated images using retrieved
909image specification information.
910Further I/O layer operations such as I/O open, I/O read, etc. on these
911images rely on this function call.
912
913In Arm platforms, this function is used to set an I/O policy of the FIP image,
914container of all active/updated secure and non-secure images.
915
916Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
917~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
918
919::
920
921 Argument : unsigned int image_id, uintptr_t *dev_handle,
922 uintptr_t *image_spec
923 Return : int
924
925This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
926responsible for setting up the platform I/O policy of the requested metadata
927image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
928be used to load this image from the platform's non-volatile storage.
929
930FWU metadata can not be always stored as a raw image in non-volatile storage
931to define its image specification (offset in non-volatile storage and length)
932statically in I/O policy.
933For example, the FWU metadata image is stored as a partition inside the GUID
934partition table image. Its specification is defined in the partition table
935that needs to be parsed dynamically.
936This function provides a means to retrieve such dynamic information to set
937the I/O policy of the FWU metadata image.
938Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
939image relies on this function call.
940
941It returns '0' on success, otherwise a negative error value on error.
942Alongside, returns device handle and image specification from the I/O policy
943of the requested FWU metadata image.
944
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100945Common optional modifications
946-----------------------------
947
948The following are helper functions implemented by the firmware that perform
949common platform-specific tasks. A platform may choose to override these
950definitions.
951
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100952Function : plat_set_my_stack()
953~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100954
955::
956
957 Argument : void
958 Return : void
959
960This function sets the current stack pointer to the normal memory stack that
961has been allocated for the current CPU. For BL images that only require a
962stack for the primary CPU, the UP version of the function is used. The size
963of the stack allocated to each CPU is specified by the platform defined
964constant ``PLATFORM_STACK_SIZE``.
965
966Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100967provided in ``plat/common/aarch64/platform_up_stack.S`` and
968``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100969
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100970Function : plat_get_my_stack()
971~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100972
973::
974
975 Argument : void
976 Return : uintptr_t
977
978This function returns the base address of the normal memory stack that
979has been allocated for the current CPU. For BL images that only require a
980stack for the primary CPU, the UP version of the function is used. The size
981of the stack allocated to each CPU is specified by the platform defined
982constant ``PLATFORM_STACK_SIZE``.
983
984Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100985provided in ``plat/common/aarch64/platform_up_stack.S`` and
986``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100987
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100988Function : plat_report_exception()
989~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100990
991::
992
993 Argument : unsigned int
994 Return : void
995
996A platform may need to report various information about its status when an
997exception is taken, for example the current exception level, the CPU security
998state (secure/non-secure), the exception type, and so on. This function is
999called in the following circumstances:
1000
1001- In BL1, whenever an exception is taken.
1002- In BL2, whenever an exception is taken.
1003
1004The default implementation doesn't do anything, to avoid making assumptions
1005about the way the platform displays its status information.
1006
1007For AArch64, this function receives the exception type as its argument.
1008Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001009``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001010related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001011
1012For AArch32, this function receives the exception mode as its argument.
1013Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001014``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001015
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001016Function : plat_reset_handler()
1017~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001018
1019::
1020
1021 Argument : void
1022 Return : void
1023
1024A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001025allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001026specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001027preserve the values of callee saved registers x19 to x29.
1028
1029The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001030the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001031guidelines.
1032
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001033Function : plat_disable_acp()
1034~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001035
1036::
1037
1038 Argument : void
1039 Return : void
1040
John Tsichritzis6dda9762018-07-23 09:18:04 +01001041This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001042present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001043doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001044it has restrictions for stack usage and it can use the registers x0 - x17 as
1045scratch registers. It should preserve the value in x18 register as it is used
1046by the caller to store the return address.
1047
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001048Function : plat_error_handler()
1049~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001050
1051::
1052
1053 Argument : int
1054 Return : void
1055
1056This API is called when the generic code encounters an error situation from
1057which it cannot continue. It allows the platform to perform error reporting or
1058recovery actions (for example, reset the system). This function must not return.
1059
1060The parameter indicates the type of error using standard codes from ``errno.h``.
1061Possible errors reported by the generic code are:
1062
1063- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1064 Board Boot is enabled)
1065- ``-ENOENT``: the requested image or certificate could not be found or an IO
1066 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001067- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1068 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001069
1070The default implementation simply spins.
1071
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001072Function : plat_panic_handler()
1073~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001074
1075::
1076
1077 Argument : void
1078 Return : void
1079
1080This API is called when the generic code encounters an unexpected error
1081situation from which it cannot recover. This function must not return,
1082and must be implemented in assembly because it may be called before the C
1083environment is initialized.
1084
Paul Beesleyba3ed402019-03-13 16:20:44 +00001085.. note::
1086 The address from where it was called is stored in x30 (Link Register).
1087 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001088
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001089Function : plat_get_bl_image_load_info()
1090~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001091
1092::
1093
1094 Argument : void
1095 Return : bl_load_info_t *
1096
1097This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001098populated to load. This function is invoked in BL2 to load the
1099BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001100
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001101Function : plat_get_next_bl_params()
1102~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001103
1104::
1105
1106 Argument : void
1107 Return : bl_params_t *
1108
1109This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001110kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001111function is invoked in BL2 to pass this information to the next BL
1112image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001113
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001114Function : plat_get_stack_protector_canary()
1115~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001116
1117::
1118
1119 Argument : void
1120 Return : u_register_t
1121
1122This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001123when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001124value will weaken the protection as the attacker could easily write the right
1125value as part of the attack most of the time. Therefore, it should return a
1126true random number.
1127
Paul Beesleyba3ed402019-03-13 16:20:44 +00001128.. warning::
1129 For the protection to be effective, the global data need to be placed at
1130 a lower address than the stack bases. Failure to do so would allow an
1131 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001132
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001133Function : plat_flush_next_bl_params()
1134~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001135
1136::
1137
1138 Argument : void
1139 Return : void
1140
1141This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001142next image. This function is invoked in BL2 to flush this information
1143to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001144
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001145Function : plat_log_get_prefix()
1146~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001147
1148::
1149
1150 Argument : unsigned int
1151 Return : const char *
1152
1153This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001154prepended to all the log output from TF-A. The `log_level` (argument) will
1155correspond to one of the standard log levels defined in debug.h. The platform
1156can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001157the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001158increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001159
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001160Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001161~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001162
1163::
1164
1165 Argument : void
1166 Return : int32_t
1167
1168This function returns soc version which mainly consist of below fields
1169
1170::
1171
1172 soc_version[30:24] = JEP-106 continuation code for the SiP
1173 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001174 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001175
1176Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001177~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001178
1179::
1180
1181 Argument : void
1182 Return : int32_t
1183
1184This function returns soc revision in below format
1185
1186::
1187
1188 soc_revision[0:30] = SOC revision of specific SOC
1189
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001190Function : plat_is_smccc_feature_available()
1191~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1192
1193::
1194
1195 Argument : u_register_t
1196 Return : int32_t
1197
1198This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1199the SMCCC function specified in the argument; otherwise returns
1200SMC_ARCH_CALL_NOT_SUPPORTED.
1201
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001202Function : plat_mboot_measure_image()
1203~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1204
1205::
1206
1207 Argument : unsigned int, image_info_t *
1208 Return : void
1209
1210When the MEASURED_BOOT flag is enabled:
1211
1212- This function measures the given image and records its measurement using
1213 the measured boot backend driver.
1214- On the Arm FVP port, this function measures the given image using its
1215 passed id and information and then records that measurement in the
1216 Event Log buffer.
1217- This function must return 0 on success, a negative error code otherwise.
1218
1219When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1220
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001221Modifications specific to a Boot Loader stage
1222---------------------------------------------
1223
1224Boot Loader Stage 1 (BL1)
1225-------------------------
1226
1227BL1 implements the reset vector where execution starts from after a cold or
1228warm boot. For each CPU, BL1 is responsible for the following tasks:
1229
1230#. Handling the reset as described in section 2.2
1231
1232#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1233 only this CPU executes the remaining BL1 code, including loading and passing
1234 control to the BL2 stage.
1235
1236#. Identifying and starting the Firmware Update process (if required).
1237
1238#. Loading the BL2 image from non-volatile storage into secure memory at the
1239 address specified by the platform defined constant ``BL2_BASE``.
1240
1241#. Populating a ``meminfo`` structure with the following information in memory,
1242 accessible by BL2 immediately upon entry.
1243
1244 ::
1245
1246 meminfo.total_base = Base address of secure RAM visible to BL2
1247 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001248
Soby Mathew97b1bff2018-09-27 16:46:41 +01001249 By default, BL1 places this ``meminfo`` structure at the end of secure
1250 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001251
Soby Mathewb1bf0442018-02-16 14:52:52 +00001252 It is possible for the platform to decide where it wants to place the
1253 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1254 BL2 by overriding the weak default implementation of
1255 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001256
1257The following functions need to be implemented by the platform port to enable
1258BL1 to perform the above tasks.
1259
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001260Function : bl1_early_platform_setup() [mandatory]
1261~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001262
1263::
1264
1265 Argument : void
1266 Return : void
1267
1268This function executes with the MMU and data caches disabled. It is only called
1269by the primary CPU.
1270
Dan Handley610e7e12018-03-01 18:44:00 +00001271On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001272
1273- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1274
1275- Initializes a UART (PL011 console), which enables access to the ``printf``
1276 family of functions in BL1.
1277
1278- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1279 the CCI slave interface corresponding to the cluster that includes the
1280 primary CPU.
1281
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001282Function : bl1_plat_arch_setup() [mandatory]
1283~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001284
1285::
1286
1287 Argument : void
1288 Return : void
1289
1290This function performs any platform-specific and architectural setup that the
1291platform requires. Platform-specific setup might include configuration of
1292memory controllers and the interconnect.
1293
Dan Handley610e7e12018-03-01 18:44:00 +00001294In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001295
1296This function helps fulfill requirement 2 above.
1297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001298Function : bl1_platform_setup() [mandatory]
1299~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001300
1301::
1302
1303 Argument : void
1304 Return : void
1305
1306This function executes with the MMU and data caches enabled. It is responsible
1307for performing any remaining platform-specific setup that can occur after the
1308MMU and data cache have been enabled.
1309
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001310if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001311sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001312
Dan Handley610e7e12018-03-01 18:44:00 +00001313In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001314layer used to load the next bootloader image.
1315
1316This function helps fulfill requirement 4 above.
1317
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001318Function : bl1_plat_sec_mem_layout() [mandatory]
1319~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001320
1321::
1322
1323 Argument : void
1324 Return : meminfo *
1325
1326This function should only be called on the cold boot path. It executes with the
1327MMU and data caches enabled. The pointer returned by this function must point to
1328a ``meminfo`` structure containing the extents and availability of secure RAM for
1329the BL1 stage.
1330
1331::
1332
1333 meminfo.total_base = Base address of secure RAM visible to BL1
1334 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001335
1336This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1337populates a similar structure to tell BL2 the extents of memory available for
1338its own use.
1339
1340This function helps fulfill requirements 4 and 5 above.
1341
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001342Function : bl1_plat_prepare_exit() [optional]
1343~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001344
1345::
1346
1347 Argument : entry_point_info_t *
1348 Return : void
1349
1350This function is called prior to exiting BL1 in response to the
1351``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1352platform specific clean up or bookkeeping operations before transferring
1353control to the next image. It receives the address of the ``entry_point_info_t``
1354structure passed from BL2. This function runs with MMU disabled.
1355
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001356Function : bl1_plat_set_ep_info() [optional]
1357~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001358
1359::
1360
1361 Argument : unsigned int image_id, entry_point_info_t *ep_info
1362 Return : void
1363
1364This function allows platforms to override ``ep_info`` for the given ``image_id``.
1365
1366The default implementation just returns.
1367
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001368Function : bl1_plat_get_next_image_id() [optional]
1369~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001370
1371::
1372
1373 Argument : void
1374 Return : unsigned int
1375
1376This and the following function must be overridden to enable the FWU feature.
1377
1378BL1 calls this function after platform setup to identify the next image to be
1379loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1380with the normal boot sequence, which loads and executes BL2. If the platform
1381returns a different image id, BL1 assumes that Firmware Update is required.
1382
Dan Handley610e7e12018-03-01 18:44:00 +00001383The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001384platforms override this function to detect if firmware update is required, and
1385if so, return the first image in the firmware update process.
1386
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001387Function : bl1_plat_get_image_desc() [optional]
1388~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001389
1390::
1391
1392 Argument : unsigned int image_id
1393 Return : image_desc_t *
1394
1395BL1 calls this function to get the image descriptor information ``image_desc_t``
1396for the provided ``image_id`` from the platform.
1397
Dan Handley610e7e12018-03-01 18:44:00 +00001398The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001399standard platforms return an image descriptor corresponding to BL2 or one of
1400the firmware update images defined in the Trusted Board Boot Requirements
1401specification.
1402
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001403Function : bl1_plat_handle_pre_image_load() [optional]
1404~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001405
1406::
1407
Soby Mathew2f38ce32018-02-08 17:45:12 +00001408 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001409 Return : int
1410
1411This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001412corresponding to ``image_id``. This function is invoked in BL1, both in cold
1413boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001414
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001415Function : bl1_plat_handle_post_image_load() [optional]
1416~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001417
1418::
1419
Soby Mathew2f38ce32018-02-08 17:45:12 +00001420 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001421 Return : int
1422
1423This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001424corresponding to ``image_id``. This function is invoked in BL1, both in cold
1425boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001426
Soby Mathewb1bf0442018-02-16 14:52:52 +00001427The default weak implementation of this function calculates the amount of
1428Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1429structure at the beginning of this free memory and populates it. The address
1430of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1431information to BL2.
1432
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001433Function : bl1_plat_fwu_done() [optional]
1434~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001435
1436::
1437
1438 Argument : unsigned int image_id, uintptr_t image_src,
1439 unsigned int image_size
1440 Return : void
1441
1442BL1 calls this function when the FWU process is complete. It must not return.
1443The platform may override this function to take platform specific action, for
1444example to initiate the normal boot flow.
1445
1446The default implementation spins forever.
1447
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001448Function : bl1_plat_mem_check() [mandatory]
1449~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001450
1451::
1452
1453 Argument : uintptr_t mem_base, unsigned int mem_size,
1454 unsigned int flags
1455 Return : int
1456
1457BL1 calls this function while handling FWU related SMCs, more specifically when
1458copying or authenticating an image. Its responsibility is to ensure that the
1459region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1460that this memory corresponds to either a secure or non-secure memory region as
1461indicated by the security state of the ``flags`` argument.
1462
1463This function can safely assume that the value resulting from the addition of
1464``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1465overflow.
1466
1467This function must return 0 on success, a non-null error code otherwise.
1468
1469The default implementation of this function asserts therefore platforms must
1470override it when using the FWU feature.
1471
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001472Function : bl1_plat_mboot_init() [optional]
1473~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1474
1475::
1476
1477 Argument : void
1478 Return : void
1479
1480When the MEASURED_BOOT flag is enabled:
1481
1482- This function is used to initialize the backend driver(s) of measured boot.
1483- On the Arm FVP port, this function is used to initialize the Event Log
1484 backend driver, and also to write header information in the Event Log buffer.
1485
1486When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1487
1488Function : bl1_plat_mboot_finish() [optional]
1489~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1490
1491::
1492
1493 Argument : void
1494 Return : void
1495
1496When the MEASURED_BOOT flag is enabled:
1497
1498- This function is used to finalize the measured boot backend driver(s),
1499 and also, set the information for the next bootloader component to
1500 extend the measurement if needed.
1501- On the Arm FVP port, this function is used to pass the base address of
1502 the Event Log buffer and its size to BL2 via tb_fw_config to extend the
1503 Event Log buffer with the measurement of various images loaded by BL2.
1504 It results in panic on error.
1505
1506When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1507
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001508Boot Loader Stage 2 (BL2)
1509-------------------------
1510
1511The BL2 stage is executed only by the primary CPU, which is determined in BL1
1512using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001513``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1514``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1515non-volatile storage to secure/non-secure RAM. After all the images are loaded
1516then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1517images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001518
1519The following functions must be implemented by the platform port to enable BL2
1520to perform the above tasks.
1521
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001522Function : bl2_early_platform_setup2() [mandatory]
1523~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001524
1525::
1526
Soby Mathew97b1bff2018-09-27 16:46:41 +01001527 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001528 Return : void
1529
1530This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001531by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1532are platform specific.
1533
1534On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001535
Manish V Badarkhe81414512020-06-24 15:58:38 +01001536 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001537
1538 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1539 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001540
Dan Handley610e7e12018-03-01 18:44:00 +00001541On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001542
1543- Initializes a UART (PL011 console), which enables access to the ``printf``
1544 family of functions in BL2.
1545
1546- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001547 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1548 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001549
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001550Function : bl2_plat_arch_setup() [mandatory]
1551~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001552
1553::
1554
1555 Argument : void
1556 Return : void
1557
1558This function executes with the MMU and data caches disabled. It is only called
1559by the primary CPU.
1560
1561The purpose of this function is to perform any architectural initialization
1562that varies across platforms.
1563
Dan Handley610e7e12018-03-01 18:44:00 +00001564On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001565
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001566Function : bl2_platform_setup() [mandatory]
1567~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001568
1569::
1570
1571 Argument : void
1572 Return : void
1573
1574This function may execute with the MMU and data caches enabled if the platform
1575port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1576called by the primary CPU.
1577
1578The purpose of this function is to perform any platform initialization
1579specific to BL2.
1580
Dan Handley610e7e12018-03-01 18:44:00 +00001581In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001582configuration of the TrustZone controller to allow non-secure masters access
1583to most of DRAM. Part of DRAM is reserved for secure world use.
1584
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001585Function : bl2_plat_handle_pre_image_load() [optional]
1586~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001587
1588::
1589
1590 Argument : unsigned int
1591 Return : int
1592
1593This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001594for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001595loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001596
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001597Function : bl2_plat_handle_post_image_load() [optional]
1598~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001599
1600::
1601
1602 Argument : unsigned int
1603 Return : int
1604
1605This function can be used by the platforms to update/use image information
1606for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001607loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001608
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001609Function : bl2_plat_preload_setup [optional]
1610~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001611
1612::
John Tsichritzisee10e792018-06-06 09:38:10 +01001613
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001614 Argument : void
1615 Return : void
1616
1617This optional function performs any BL2 platform initialization
1618required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001619bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001620boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001621plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001622
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001623Function : plat_try_next_boot_source() [optional]
1624~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001625
1626::
John Tsichritzisee10e792018-06-06 09:38:10 +01001627
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001628 Argument : void
1629 Return : int
1630
1631This optional function passes to the next boot source in the redundancy
1632sequence.
1633
1634This function moves the current boot redundancy source to the next
1635element in the boot sequence. If there are no more boot sources then it
1636must return 0, otherwise it must return 1. The default implementation
1637of this always returns 0.
1638
Roberto Vargasb1584272017-11-20 13:36:10 +00001639Boot Loader Stage 2 (BL2) at EL3
1640--------------------------------
1641
Dan Handley610e7e12018-03-01 18:44:00 +00001642When the platform has a non-TF-A Boot ROM it is desirable to jump
1643directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001644execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1645document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001646
1647All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001648bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1649their work is done now by bl2_el3_early_platform_setup and
1650bl2_el3_plat_arch_setup. These functions should generally implement
1651the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001652
1653
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001654Function : bl2_el3_early_platform_setup() [mandatory]
1655~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001656
1657::
John Tsichritzisee10e792018-06-06 09:38:10 +01001658
Roberto Vargasb1584272017-11-20 13:36:10 +00001659 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1660 Return : void
1661
1662This function executes with the MMU and data caches disabled. It is only called
1663by the primary CPU. This function receives four parameters which can be used
1664by the platform to pass any needed information from the Boot ROM to BL2.
1665
Dan Handley610e7e12018-03-01 18:44:00 +00001666On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001667
1668- Initializes a UART (PL011 console), which enables access to the ``printf``
1669 family of functions in BL2.
1670
1671- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001672 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1673 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001674
1675- Initializes the private variables that define the memory layout used.
1676
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001677Function : bl2_el3_plat_arch_setup() [mandatory]
1678~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001679
1680::
John Tsichritzisee10e792018-06-06 09:38:10 +01001681
Roberto Vargasb1584272017-11-20 13:36:10 +00001682 Argument : void
1683 Return : void
1684
1685This function executes with the MMU and data caches disabled. It is only called
1686by the primary CPU.
1687
1688The purpose of this function is to perform any architectural initialization
1689that varies across platforms.
1690
Dan Handley610e7e12018-03-01 18:44:00 +00001691On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001692
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001693Function : bl2_el3_plat_prepare_exit() [optional]
1694~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001695
1696::
John Tsichritzisee10e792018-06-06 09:38:10 +01001697
Roberto Vargasb1584272017-11-20 13:36:10 +00001698 Argument : void
1699 Return : void
1700
1701This function is called prior to exiting BL2 and run the next image.
1702It should be used to perform platform specific clean up or bookkeeping
1703operations before transferring control to the next image. This function
1704runs with MMU disabled.
1705
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001706FWU Boot Loader Stage 2 (BL2U)
1707------------------------------
1708
1709The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1710process and is executed only by the primary CPU. BL1 passes control to BL2U at
1711``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1712
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001713#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1714 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1715 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1716 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001717 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1718 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1719
1720#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001721 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001722 normal world can access DDR memory.
1723
1724The following functions must be implemented by the platform port to enable
1725BL2U to perform the tasks mentioned above.
1726
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001727Function : bl2u_early_platform_setup() [mandatory]
1728~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001729
1730::
1731
1732 Argument : meminfo *mem_info, void *plat_info
1733 Return : void
1734
1735This function executes with the MMU and data caches disabled. It is only
1736called by the primary CPU. The arguments to this function is the address
1737of the ``meminfo`` structure and platform specific info provided by BL1.
1738
1739The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1740private storage as the original memory may be subsequently overwritten by BL2U.
1741
Dan Handley610e7e12018-03-01 18:44:00 +00001742On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001743to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001744variable.
1745
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001746Function : bl2u_plat_arch_setup() [mandatory]
1747~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001748
1749::
1750
1751 Argument : void
1752 Return : void
1753
1754This function executes with the MMU and data caches disabled. It is only
1755called by the primary CPU.
1756
1757The purpose of this function is to perform any architectural initialization
1758that varies across platforms, for example enabling the MMU (since the memory
1759map differs across platforms).
1760
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001761Function : bl2u_platform_setup() [mandatory]
1762~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001763
1764::
1765
1766 Argument : void
1767 Return : void
1768
1769This function may execute with the MMU and data caches enabled if the platform
1770port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1771called by the primary CPU.
1772
1773The purpose of this function is to perform any platform initialization
1774specific to BL2U.
1775
Dan Handley610e7e12018-03-01 18:44:00 +00001776In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001777configuration of the TrustZone controller to allow non-secure masters access
1778to most of DRAM. Part of DRAM is reserved for secure world use.
1779
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001780Function : bl2u_plat_handle_scp_bl2u() [optional]
1781~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001782
1783::
1784
1785 Argument : void
1786 Return : int
1787
1788This function is used to perform any platform-specific actions required to
1789handle the SCP firmware. Typically it transfers the image into SCP memory using
1790a platform-specific protocol and waits until SCP executes it and signals to the
1791Application Processor (AP) for BL2U execution to continue.
1792
1793This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001794This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001795
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001796Function : bl2_plat_mboot_init() [optional]
1797~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1798
1799::
1800
1801 Argument : void
1802 Return : void
1803
1804When the MEASURED_BOOT flag is enabled:
1805
1806- This function is used to initialize the backend driver(s) of measured boot.
1807- On the Arm FVP port, this function is used to initialize the Event Log
1808 backend driver with the Event Log buffer information (base address and
1809 size) received from BL1. It results in panic on error.
1810
1811When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1812
1813Function : bl2_plat_mboot_finish() [optional]
1814~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1815
1816::
1817
1818 Argument : void
1819 Return : void
1820
1821When the MEASURED_BOOT flag is enabled:
1822
1823- This function is used to finalize the measured boot backend driver(s),
1824 and also, set the information for the next bootloader component to extend
1825 the measurement if needed.
1826- On the Arm FVP port, this function is used to pass the Event Log buffer
1827 information (base address and size) to non-secure(BL33) and trusted OS(BL32)
1828 via nt_fw and tos_fw config respectively. It results in panic on error.
1829
1830When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1831
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001832Boot Loader Stage 3-1 (BL31)
1833----------------------------
1834
1835During cold boot, the BL31 stage is executed only by the primary CPU. This is
1836determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1837control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1838CPUs. BL31 executes at EL3 and is responsible for:
1839
1840#. Re-initializing all architectural and platform state. Although BL1 performs
1841 some of this initialization, BL31 remains resident in EL3 and must ensure
1842 that EL3 architectural and platform state is completely initialized. It
1843 should make no assumptions about the system state when it receives control.
1844
1845#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001846 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1847 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001848
1849#. Providing runtime firmware services. Currently, BL31 only implements a
1850 subset of the Power State Coordination Interface (PSCI) API as a runtime
1851 service. See Section 3.3 below for details of porting the PSCI
1852 implementation.
1853
1854#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001855 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001856 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001857 executed and run the corresponding image. On ARM platforms, BL31 uses the
1858 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001859
1860If BL31 is a reset vector, It also needs to handle the reset as specified in
1861section 2.2 before the tasks described above.
1862
1863The following functions must be implemented by the platform port to enable BL31
1864to perform the above tasks.
1865
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001866Function : bl31_early_platform_setup2() [mandatory]
1867~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001868
1869::
1870
Soby Mathew97b1bff2018-09-27 16:46:41 +01001871 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001872 Return : void
1873
1874This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001875by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1876platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001877
Soby Mathew97b1bff2018-09-27 16:46:41 +01001878In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001879
Soby Mathew97b1bff2018-09-27 16:46:41 +01001880 arg0 - The pointer to the head of `bl_params_t` list
1881 which is list of executable images following BL31,
1882
1883 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01001884 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01001885
Mikael Olsson0232da22021-02-12 17:30:16 +01001886 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01001887 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01001888
1889 arg2 - Points to load address of HW_CONFIG if present
1890
1891 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1892 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001893
Soby Mathew97b1bff2018-09-27 16:46:41 +01001894The function runs through the `bl_param_t` list and extracts the entry point
1895information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001896
1897- Initialize a UART (PL011 console), which enables access to the ``printf``
1898 family of functions in BL31.
1899
1900- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1901 CCI slave interface corresponding to the cluster that includes the primary
1902 CPU.
1903
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001904Function : bl31_plat_arch_setup() [mandatory]
1905~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001906
1907::
1908
1909 Argument : void
1910 Return : void
1911
1912This function executes with the MMU and data caches disabled. It is only called
1913by the primary CPU.
1914
1915The purpose of this function is to perform any architectural initialization
1916that varies across platforms.
1917
Dan Handley610e7e12018-03-01 18:44:00 +00001918On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001919
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001920Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001921~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1922
1923::
1924
1925 Argument : void
1926 Return : void
1927
1928This function may execute with the MMU and data caches enabled if the platform
1929port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1930called by the primary CPU.
1931
1932The purpose of this function is to complete platform initialization so that both
1933BL31 runtime services and normal world software can function correctly.
1934
Dan Handley610e7e12018-03-01 18:44:00 +00001935On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001936
1937- Initialize the generic interrupt controller.
1938
1939 Depending on the GIC driver selected by the platform, the appropriate GICv2
1940 or GICv3 initialization will be done, which mainly consists of:
1941
1942 - Enable secure interrupts in the GIC CPU interface.
1943 - Disable the legacy interrupt bypass mechanism.
1944 - Configure the priority mask register to allow interrupts of all priorities
1945 to be signaled to the CPU interface.
1946 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1947 - Target all secure SPIs to CPU0.
1948 - Enable these secure interrupts in the GIC distributor.
1949 - Configure all other interrupts as non-secure.
1950 - Enable signaling of secure interrupts in the GIC distributor.
1951
1952- Enable system-level implementation of the generic timer counter through the
1953 memory mapped interface.
1954
1955- Grant access to the system counter timer module
1956
1957- Initialize the power controller device.
1958
1959 In particular, initialise the locks that prevent concurrent accesses to the
1960 power controller device.
1961
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001962Function : bl31_plat_runtime_setup() [optional]
1963~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001964
1965::
1966
1967 Argument : void
1968 Return : void
1969
1970The purpose of this function is allow the platform to perform any BL31 runtime
1971setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001972implementation of this function will invoke ``console_switch_state()`` to switch
1973console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001974
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001975Function : bl31_plat_get_next_image_ep_info() [mandatory]
1976~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001977
1978::
1979
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001980 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001981 Return : entry_point_info *
1982
1983This function may execute with the MMU and data caches enabled if the platform
1984port does the necessary initializations in ``bl31_plat_arch_setup()``.
1985
1986This function is called by ``bl31_main()`` to retrieve information provided by
1987BL2 for the next image in the security state specified by the argument. BL31
1988uses this information to pass control to that image in the specified security
1989state. This function must return a pointer to the ``entry_point_info`` structure
1990(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1991should return NULL otherwise.
1992
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001993Function : bl31_plat_enable_mmu [optional]
1994~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1995
1996::
1997
1998 Argument : uint32_t
1999 Return : void
2000
2001This function enables the MMU. The boot code calls this function with MMU and
2002caches disabled. This function should program necessary registers to enable
2003translation, and upon return, the MMU on the calling PE must be enabled.
2004
2005The function must honor flags passed in the first argument. These flags are
2006defined by the translation library, and can be found in the file
2007``include/lib/xlat_tables/xlat_mmu_helpers.h``.
2008
2009On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002010is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002011
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002012Function : plat_init_apkey [optional]
2013~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002014
2015::
2016
2017 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002018 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002019
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002020This function returns the 128-bit value which can be used to program ARMv8.3
2021pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002022
2023The value should be obtained from a reliable source of randomness.
2024
2025This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002026Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002027
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002028Function : plat_get_syscnt_freq2() [mandatory]
2029~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002030
2031::
2032
2033 Argument : void
2034 Return : unsigned int
2035
2036This function is used by the architecture setup code to retrieve the counter
2037frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00002038``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002039of the system counter, which is retrieved from the first entry in the frequency
2040modes table.
2041
johpow013e24c162020-04-22 14:05:13 -05002042Function : plat_arm_set_twedel_scr_el3() [optional]
2043~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2044
2045::
2046
2047 Argument : void
2048 Return : uint32_t
2049
2050This function is used in v8.6+ systems to set the WFE trap delay value in
2051SCR_EL3. If this function returns TWED_DISABLED or is left unimplemented, this
2052feature is not enabled. The only hook provided is to set the TWED fields in
2053SCR_EL3, there are similar fields in HCR_EL2, SCTLR_EL2, and SCTLR_EL1 to adjust
2054the WFE trap delays in lower ELs and these fields should be set by the
2055appropriate EL2 or EL1 code depending on the platform configuration.
2056
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002057#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2058~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002059
2060When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2061bytes) aligned to the cache line boundary that should be allocated per-cpu to
2062accommodate all the bakery locks.
2063
2064If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
2065calculates the size of the ``bakery_lock`` input section, aligns it to the
2066nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2067and stores the result in a linker symbol. This constant prevents a platform
2068from relying on the linker and provide a more efficient mechanism for
2069accessing per-cpu bakery lock information.
2070
2071If this constant is defined and its value is not equal to the value
2072calculated by the linker then a link time assertion is raised. A compile time
2073assertion is raised if the value of the constant is not aligned to the cache
2074line boundary.
2075
Paul Beesleyf8640672019-04-12 14:19:42 +01002076.. _porting_guide_sdei_requirements:
2077
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002078SDEI porting requirements
2079~~~~~~~~~~~~~~~~~~~~~~~~~
2080
Paul Beesley606d8072019-03-13 13:58:02 +00002081The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002082and functions, of which some are optional, and some others mandatory.
2083
2084Macros
2085......
2086
2087Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2089
2090This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002091Normal |SDEI| events on the platform. This must have a higher value
2092(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002093
2094Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2096
2097This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002098Critical |SDEI| events on the platform. This must have a lower value
2099(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002100
Paul Beesley606d8072019-03-13 13:58:02 +00002101**Note**: |SDEI| exception priorities must be the lowest among Secure
2102priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2103be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002104
2105Functions
2106.........
2107
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002108Function: int plat_sdei_validate_entry_point() [optional]
2109^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002110
2111::
2112
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002113 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002114 Return: int
2115
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002116This function validates the entry point address of the event handler provided by
2117the client for both event registration and *Complete and Resume* |SDEI| calls.
2118The function ensures that the address is valid in the client translation regime.
2119
2120The second argument is the exception level that the client is executing in. It
2121can be Non-Secure EL1 or Non-Secure EL2.
2122
2123The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002124
Dan Handley610e7e12018-03-01 18:44:00 +00002125The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002126translates the entry point address within the client translation regime and
2127further ensures that the resulting physical address is located in Non-secure
2128DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002129
2130Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2132
2133::
2134
2135 Argument: uint64_t
2136 Argument: unsigned int
2137 Return: void
2138
Paul Beesley606d8072019-03-13 13:58:02 +00002139|SDEI| specification requires that a PE comes out of reset with the events
2140masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2141|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2142time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002143
Paul Beesley606d8072019-03-13 13:58:02 +00002144Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002145events are masked on the PE, the dispatcher implementation invokes the function
2146``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2147interrupt and the interrupt ID are passed as parameters.
2148
2149The default implementation only prints out a warning message.
2150
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002151.. _porting_guide_trng_requirements:
2152
2153TRNG porting requirements
2154~~~~~~~~~~~~~~~~~~~~~~~~~
2155
2156The |TRNG| backend requires the platform to provide the following values
2157and mandatory functions.
2158
2159Values
2160......
2161
2162value: uuid_t plat_trng_uuid [mandatory]
2163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2164
2165This value must be defined to the UUID of the TRNG backend that is specific to
2166the hardware after ``plat_trng_setup`` function is called. This value must
2167conform to the SMCCC calling convention; The most significant 32 bits of the
2168UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2169w0 indicates failure to get a TRNG source.
2170
2171Functions
2172.........
2173
2174Function: void plat_entropy_setup(void) [mandatory]
2175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2176
2177::
2178
2179 Argument: none
2180 Return: none
2181
2182This function is expected to do platform-specific initialization of any TRNG
2183hardware. This may include generating a UUID from a hardware-specific seed.
2184
2185Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2187
2188::
2189
2190 Argument: uint64_t *
2191 Return: bool
2192 Out : when the return value is true, the entropy has been written into the
2193 storage pointed to
2194
2195This function writes entropy into storage provided by the caller. If no entropy
2196is available, it must return false and the storage must not be written.
2197
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002198Power State Coordination Interface (in BL31)
2199--------------------------------------------
2200
Dan Handley610e7e12018-03-01 18:44:00 +00002201The TF-A implementation of the PSCI API is based around the concept of a
2202*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2203share some state on which power management operations can be performed as
2204specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2205a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2206*power domains* are arranged in a hierarchical tree structure and each
2207*power domain* can be identified in a system by the cpu index of any CPU that
2208is part of that domain and a *power domain level*. A processing element (for
2209example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2210logical grouping of CPUs that share some state, then level 1 is that group of
2211CPUs (for example, a cluster), and level 2 is a group of clusters (for
2212example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002213organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002214
2215BL31's platform initialization code exports a pointer to the platform-specific
2216power management operations required for the PSCI implementation to function
2217correctly. This information is populated in the ``plat_psci_ops`` structure. The
2218PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2219power management operations on the power domains. For example, the target
2220CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2221handler (if present) is called for the CPU power domain.
2222
2223The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2224describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002225defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002226array of local power states where each index corresponds to a power domain
2227level. Each entry contains the local power state the power domain at that power
2228level could enter. It depends on the ``validate_power_state()`` handler to
2229convert the power-state parameter (possibly encoding a composite power state)
2230passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2231
2232The following functions form part of platform port of PSCI functionality.
2233
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002234Function : plat_psci_stat_accounting_start() [optional]
2235~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002236
2237::
2238
2239 Argument : const psci_power_state_t *
2240 Return : void
2241
2242This is an optional hook that platforms can implement for residency statistics
2243accounting before entering a low power state. The ``pwr_domain_state`` field of
2244``state_info`` (first argument) can be inspected if stat accounting is done
2245differently at CPU level versus higher levels. As an example, if the element at
2246index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2247state, special hardware logic may be programmed in order to keep track of the
2248residency statistics. For higher levels (array indices > 0), the residency
2249statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2250default implementation will use PMF to capture timestamps.
2251
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002252Function : plat_psci_stat_accounting_stop() [optional]
2253~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002254
2255::
2256
2257 Argument : const psci_power_state_t *
2258 Return : void
2259
2260This is an optional hook that platforms can implement for residency statistics
2261accounting after exiting from a low power state. The ``pwr_domain_state`` field
2262of ``state_info`` (first argument) can be inspected if stat accounting is done
2263differently at CPU level versus higher levels. As an example, if the element at
2264index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2265state, special hardware logic may be programmed in order to keep track of the
2266residency statistics. For higher levels (array indices > 0), the residency
2267statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2268default implementation will use PMF to capture timestamps.
2269
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002270Function : plat_psci_stat_get_residency() [optional]
2271~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002272
2273::
2274
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002275 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002276 Return : u_register_t
2277
2278This is an optional interface that is is invoked after resuming from a low power
2279state and provides the time spent resident in that low power state by the power
2280domain at a particular power domain level. When a CPU wakes up from suspend,
2281all its parent power domain levels are also woken up. The generic PSCI code
2282invokes this function for each parent power domain that is resumed and it
2283identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2284argument) describes the low power state that the power domain has resumed from.
2285The current CPU is the first CPU in the power domain to resume from the low
2286power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2287CPU in the power domain to suspend and may be needed to calculate the residency
2288for that power domain.
2289
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002290Function : plat_get_target_pwr_state() [optional]
2291~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002292
2293::
2294
2295 Argument : unsigned int, const plat_local_state_t *, unsigned int
2296 Return : plat_local_state_t
2297
2298The PSCI generic code uses this function to let the platform participate in
2299state coordination during a power management operation. The function is passed
2300a pointer to an array of platform specific local power state ``states`` (second
2301argument) which contains the requested power state for each CPU at a particular
2302power domain level ``lvl`` (first argument) within the power domain. The function
2303is expected to traverse this array of upto ``ncpus`` (third argument) and return
2304a coordinated target power state by the comparing all the requested power
2305states. The target power state should not be deeper than any of the requested
2306power states.
2307
2308A weak definition of this API is provided by default wherein it assumes
2309that the platform assigns a local state value in order of increasing depth
2310of the power state i.e. for two power states X & Y, if X < Y
2311then X represents a shallower power state than Y. As a result, the
2312coordinated target local power state for a power domain will be the minimum
2313of the requested local power state values.
2314
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002315Function : plat_get_power_domain_tree_desc() [mandatory]
2316~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002317
2318::
2319
2320 Argument : void
2321 Return : const unsigned char *
2322
2323This function returns a pointer to the byte array containing the power domain
2324topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002325described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2326initialization code requires this array to be described by the platform, either
2327statically or dynamically, to initialize the power domain topology tree. In case
2328the array is populated dynamically, then plat_core_pos_by_mpidr() and
2329plat_my_core_pos() should also be implemented suitably so that the topology tree
2330description matches the CPU indices returned by these APIs. These APIs together
2331form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002332
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002333Function : plat_setup_psci_ops() [mandatory]
2334~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002335
2336::
2337
2338 Argument : uintptr_t, const plat_psci_ops **
2339 Return : int
2340
2341This function may execute with the MMU and data caches enabled if the platform
2342port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2343called by the primary CPU.
2344
2345This function is called by PSCI initialization code. Its purpose is to let
2346the platform layer know about the warm boot entrypoint through the
2347``sec_entrypoint`` (first argument) and to export handler routines for
2348platform-specific psci power management actions by populating the passed
2349pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2350
2351A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002352the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002353``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002354platform wants to support, the associated operation or operations in this
2355structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002356:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002357function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002358structure instead of providing an empty implementation.
2359
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002360plat_psci_ops.cpu_standby()
2361...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002362
2363Perform the platform-specific actions to enter the standby state for a cpu
2364indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002365wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002366For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2367the suspend state type specified in the ``power-state`` parameter should be
2368STANDBY and the target power domain level specified should be the CPU. The
2369handler should put the CPU into a low power retention state (usually by
2370issuing a wfi instruction) and ensure that it can be woken up from that
2371state by a normal interrupt. The generic code expects the handler to succeed.
2372
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002373plat_psci_ops.pwr_domain_on()
2374.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002375
2376Perform the platform specific actions to power on a CPU, specified
2377by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002378return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002379
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002380plat_psci_ops.pwr_domain_off()
2381..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002382
2383Perform the platform specific actions to prepare to power off the calling CPU
2384and its higher parent power domain levels as indicated by the ``target_state``
2385(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2386
2387The ``target_state`` encodes the platform coordinated target local power states
2388for the CPU power domain and its parent power domain levels. The handler
2389needs to perform power management operation corresponding to the local state
2390at each power level.
2391
2392For this handler, the local power state for the CPU power domain will be a
2393power down state where as it could be either power down, retention or run state
2394for the higher power domain levels depending on the result of state
2395coordination. The generic code expects the handler to succeed.
2396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002397plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2398...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002399
2400This optional function may be used as a performance optimization to replace
2401or complement pwr_domain_suspend() on some platforms. Its calling semantics
2402are identical to pwr_domain_suspend(), except the PSCI implementation only
2403calls this function when suspending to a power down state, and it guarantees
2404that data caches are enabled.
2405
2406When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2407before calling pwr_domain_suspend(). If the target_state corresponds to a
2408power down state and it is safe to perform some or all of the platform
2409specific actions in that function with data caches enabled, it may be more
2410efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2411= 1, data caches remain enabled throughout, and so there is no advantage to
2412moving platform specific actions to this function.
2413
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002414plat_psci_ops.pwr_domain_suspend()
2415..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002416
2417Perform the platform specific actions to prepare to suspend the calling
2418CPU and its higher parent power domain levels as indicated by the
2419``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2420API implementation.
2421
2422The ``target_state`` has a similar meaning as described in
2423the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2424target local power states for the CPU power domain and its parent
2425power domain levels. The handler needs to perform power management operation
2426corresponding to the local state at each power level. The generic code
2427expects the handler to succeed.
2428
Douglas Raillarda84996b2017-08-02 16:57:32 +01002429The difference between turning a power domain off versus suspending it is that
2430in the former case, the power domain is expected to re-initialize its state
2431when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2432case, the power domain is expected to save enough state so that it can resume
2433execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002434``pwr_domain_suspend_finish()``).
2435
Douglas Raillarda84996b2017-08-02 16:57:32 +01002436When suspending a core, the platform can also choose to power off the GICv3
2437Redistributor and ITS through an implementation-defined sequence. To achieve
2438this safely, the ITS context must be saved first. The architectural part is
2439implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2440sequence is implementation defined and it is therefore the responsibility of
2441the platform code to implement the necessary sequence. Then the GIC
2442Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2443Powering off the Redistributor requires the implementation to support it and it
2444is the responsibility of the platform code to execute the right implementation
2445defined sequence.
2446
2447When a system suspend is requested, the platform can also make use of the
2448``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2449it has saved the context of the Redistributors and ITS of all the cores in the
2450system. The context of the Distributor can be large and may require it to be
2451allocated in a special area if it cannot fit in the platform's global static
2452data, for example in DRAM. The Distributor can then be powered down using an
2453implementation-defined sequence.
2454
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002455plat_psci_ops.pwr_domain_pwr_down_wfi()
2456.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002457
2458This is an optional function and, if implemented, is expected to perform
2459platform specific actions including the ``wfi`` invocation which allows the
2460CPU to powerdown. Since this function is invoked outside the PSCI locks,
2461the actions performed in this hook must be local to the CPU or the platform
2462must ensure that races between multiple CPUs cannot occur.
2463
2464The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2465operation and it encodes the platform coordinated target local power states for
2466the CPU power domain and its parent power domain levels. This function must
2467not return back to the caller.
2468
2469If this function is not implemented by the platform, PSCI generic
2470implementation invokes ``psci_power_down_wfi()`` for power down.
2471
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002472plat_psci_ops.pwr_domain_on_finish()
2473....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002474
2475This function is called by the PSCI implementation after the calling CPU is
2476powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2477It performs the platform-specific setup required to initialize enough state for
2478this CPU to enter the normal world and also provide secure runtime firmware
2479services.
2480
2481The ``target_state`` (first argument) is the prior state of the power domains
2482immediately before the CPU was turned on. It indicates which power domains
2483above the CPU might require initialization due to having previously been in
2484low power states. The generic code expects the handler to succeed.
2485
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002486plat_psci_ops.pwr_domain_on_finish_late() [optional]
2487...........................................................
2488
2489This optional function is called by the PSCI implementation after the calling
2490CPU is fully powered on with respective data caches enabled. The calling CPU and
2491the associated cluster are guaranteed to be participating in coherency. This
2492function gives the flexibility to perform any platform-specific actions safely,
2493such as initialization or modification of shared data structures, without the
2494overhead of explicit cache maintainace operations.
2495
2496The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2497operation. The generic code expects the handler to succeed.
2498
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002499plat_psci_ops.pwr_domain_suspend_finish()
2500.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002501
2502This function is called by the PSCI implementation after the calling CPU is
2503powered on and released from reset in response to an asynchronous wakeup
2504event, for example a timer interrupt that was programmed by the CPU during the
2505``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2506setup required to restore the saved state for this CPU to resume execution
2507in the normal world and also provide secure runtime firmware services.
2508
2509The ``target_state`` (first argument) has a similar meaning as described in
2510the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2511to succeed.
2512
Douglas Raillarda84996b2017-08-02 16:57:32 +01002513If the Distributor, Redistributors or ITS have been powered off as part of a
2514suspend, their context must be restored in this function in the reverse order
2515to how they were saved during suspend sequence.
2516
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002517plat_psci_ops.system_off()
2518..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002519
2520This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2521call. It performs the platform-specific system poweroff sequence after
2522notifying the Secure Payload Dispatcher.
2523
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002524plat_psci_ops.system_reset()
2525............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002526
2527This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2528call. It performs the platform-specific system reset sequence after
2529notifying the Secure Payload Dispatcher.
2530
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002531plat_psci_ops.validate_power_state()
2532....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002533
2534This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2535call to validate the ``power_state`` parameter of the PSCI API and if valid,
2536populate it in ``req_state`` (second argument) array as power domain level
2537specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002538return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002539normal world PSCI client.
2540
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002541plat_psci_ops.validate_ns_entrypoint()
2542......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002543
2544This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2545``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2546parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002547the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002548propagated back to the normal world PSCI client.
2549
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002550plat_psci_ops.get_sys_suspend_power_state()
2551...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002552
2553This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2554call to get the ``req_state`` parameter from platform which encodes the power
2555domain level specific local states to suspend to system affinity level. The
2556``req_state`` will be utilized to do the PSCI state coordination and
2557``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2558enter system suspend.
2559
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002560plat_psci_ops.get_pwr_lvl_state_idx()
2561.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002562
2563This is an optional function and, if implemented, is invoked by the PSCI
2564implementation to convert the ``local_state`` (first argument) at a specified
2565``pwr_lvl`` (second argument) to an index between 0 and
2566``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2567supports more than two local power states at each power domain level, that is
2568``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2569local power states.
2570
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002571plat_psci_ops.translate_power_state_by_mpidr()
2572..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002573
2574This is an optional function and, if implemented, verifies the ``power_state``
2575(second argument) parameter of the PSCI API corresponding to a target power
2576domain. The target power domain is identified by using both ``MPIDR`` (first
2577argument) and the power domain level encoded in ``power_state``. The power domain
2578level specific local states are to be extracted from ``power_state`` and be
2579populated in the ``output_state`` (third argument) array. The functionality
2580is similar to the ``validate_power_state`` function described above and is
2581envisaged to be used in case the validity of ``power_state`` depend on the
2582targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002583domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002584function is not implemented, then the generic implementation relies on
2585``validate_power_state`` function to translate the ``power_state``.
2586
2587This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002588power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002589APIs as described in Section 5.18 of `PSCI`_.
2590
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002591plat_psci_ops.get_node_hw_state()
2592.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002593
2594This is an optional function. If implemented this function is intended to return
2595the power state of a node (identified by the first parameter, the ``MPIDR``) in
2596the power domain topology (identified by the second parameter, ``power_level``),
2597as retrieved from a power controller or equivalent component on the platform.
2598Upon successful completion, the implementation must map and return the final
2599status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2600must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2601appropriate.
2602
2603Implementations are not expected to handle ``power_levels`` greater than
2604``PLAT_MAX_PWR_LVL``.
2605
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002606plat_psci_ops.system_reset2()
2607.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002608
2609This is an optional function. If implemented this function is
2610called during the ``SYSTEM_RESET2`` call to perform a reset
2611based on the first parameter ``reset_type`` as specified in
2612`PSCI`_. The parameter ``cookie`` can be used to pass additional
2613reset information. If the ``reset_type`` is not supported, the
2614function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2615resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2616and vendor reset can return other PSCI error codes as defined
2617in `PSCI`_. On success this function will not return.
2618
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002619plat_psci_ops.write_mem_protect()
2620.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002621
2622This is an optional function. If implemented it enables or disables the
2623``MEM_PROTECT`` functionality based on the value of ``val``.
2624A non-zero value enables ``MEM_PROTECT`` and a value of zero
2625disables it. Upon encountering failures it must return a negative value
2626and on success it must return 0.
2627
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002628plat_psci_ops.read_mem_protect()
2629................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002630
2631This is an optional function. If implemented it returns the current
2632state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2633failures it must return a negative value and on success it must
2634return 0.
2635
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002636plat_psci_ops.mem_protect_chk()
2637...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002638
2639This is an optional function. If implemented it checks if a memory
2640region defined by a base address ``base`` and with a size of ``length``
2641bytes is protected by ``MEM_PROTECT``. If the region is protected
2642then it must return 0, otherwise it must return a negative number.
2643
Paul Beesleyf8640672019-04-12 14:19:42 +01002644.. _porting_guide_imf_in_bl31:
2645
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002646Interrupt Management framework (in BL31)
2647----------------------------------------
2648
2649BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2650generated in either security state and targeted to EL1 or EL2 in the non-secure
2651state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002652described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002653
2654A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002655text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002656platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002657present in the platform. Arm standard platform layer supports both
2658`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2659and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2660FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002661``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2662details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002663
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002664See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002665
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002666Function : plat_interrupt_type_to_line() [mandatory]
2667~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002668
2669::
2670
2671 Argument : uint32_t, uint32_t
2672 Return : uint32_t
2673
Dan Handley610e7e12018-03-01 18:44:00 +00002674The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002675interrupt line. The specific line that is signaled depends on how the interrupt
2676controller (IC) reports different interrupt types from an execution context in
2677either security state. The IMF uses this API to determine which interrupt line
2678the platform IC uses to signal each type of interrupt supported by the framework
2679from a given security state. This API must be invoked at EL3.
2680
2681The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01002682:ref:`Interrupt Management Framework`) indicating the target type of the
2683interrupt, the second parameter is the security state of the originating
2684execution context. The return result is the bit position in the ``SCR_EL3``
2685register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002686
Dan Handley610e7e12018-03-01 18:44:00 +00002687In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002688configured as FIQs and Non-secure interrupts as IRQs from either security
2689state.
2690
Dan Handley610e7e12018-03-01 18:44:00 +00002691In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002692configured depends on the security state of the execution context when the
2693interrupt is signalled and are as follows:
2694
2695- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2696 NS-EL0/1/2 context.
2697- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2698 in the NS-EL0/1/2 context.
2699- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2700 context.
2701
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002702Function : plat_ic_get_pending_interrupt_type() [mandatory]
2703~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002704
2705::
2706
2707 Argument : void
2708 Return : uint32_t
2709
2710This API returns the type of the highest priority pending interrupt at the
2711platform IC. The IMF uses the interrupt type to retrieve the corresponding
2712handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2713pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2714``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2715
Dan Handley610e7e12018-03-01 18:44:00 +00002716In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002717Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2718the pending interrupt. The type of interrupt depends upon the id value as
2719follows.
2720
2721#. id < 1022 is reported as a S-EL1 interrupt
2722#. id = 1022 is reported as a Non-secure interrupt.
2723#. id = 1023 is reported as an invalid interrupt type.
2724
Dan Handley610e7e12018-03-01 18:44:00 +00002725In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002726``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2727is read to determine the id of the pending interrupt. The type of interrupt
2728depends upon the id value as follows.
2729
2730#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2731#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2732#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2733#. All other interrupt id's are reported as EL3 interrupt.
2734
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002735Function : plat_ic_get_pending_interrupt_id() [mandatory]
2736~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002737
2738::
2739
2740 Argument : void
2741 Return : uint32_t
2742
2743This API returns the id of the highest priority pending interrupt at the
2744platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2745pending.
2746
Dan Handley610e7e12018-03-01 18:44:00 +00002747In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002748Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2749pending interrupt. The id that is returned by API depends upon the value of
2750the id read from the interrupt controller as follows.
2751
2752#. id < 1022. id is returned as is.
2753#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2754 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2755 This id is returned by the API.
2756#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2757
Dan Handley610e7e12018-03-01 18:44:00 +00002758In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002759EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2760group 0 Register*, is read to determine the id of the pending interrupt. The id
2761that is returned by API depends upon the value of the id read from the
2762interrupt controller as follows.
2763
2764#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2765#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2766 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2767 Register* is read to determine the id of the group 1 interrupt. This id
2768 is returned by the API as long as it is a valid interrupt id
2769#. If the id is any of the special interrupt identifiers,
2770 ``INTR_ID_UNAVAILABLE`` is returned.
2771
2772When the API invoked from S-EL1 for GICv3 systems, the id read from system
2773register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002774Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002775``INTR_ID_UNAVAILABLE`` is returned.
2776
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002777Function : plat_ic_acknowledge_interrupt() [mandatory]
2778~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002779
2780::
2781
2782 Argument : void
2783 Return : uint32_t
2784
2785This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002786the highest pending interrupt has begun. It should return the raw, unmodified
2787value obtained from the interrupt controller when acknowledging an interrupt.
2788The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002789`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002790
Dan Handley610e7e12018-03-01 18:44:00 +00002791This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002792Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2793priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002794It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002795
Dan Handley610e7e12018-03-01 18:44:00 +00002796In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002797from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2798Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2799reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2800group 1*. The read changes the state of the highest pending interrupt from
2801pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002802unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002803
2804The TSP uses this API to start processing of the secure physical timer
2805interrupt.
2806
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002807Function : plat_ic_end_of_interrupt() [mandatory]
2808~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002809
2810::
2811
2812 Argument : uint32_t
2813 Return : void
2814
2815This API is used by the CPU to indicate to the platform IC that processing of
2816the interrupt corresponding to the id (passed as the parameter) has
2817finished. The id should be the same as the id returned by the
2818``plat_ic_acknowledge_interrupt()`` API.
2819
Dan Handley610e7e12018-03-01 18:44:00 +00002820Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002821(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2822system register in case of GICv3 depending on where the API is invoked from,
2823EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2824controller.
2825
2826The TSP uses this API to finish processing of the secure physical timer
2827interrupt.
2828
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002829Function : plat_ic_get_interrupt_type() [mandatory]
2830~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002831
2832::
2833
2834 Argument : uint32_t
2835 Return : uint32_t
2836
2837This API returns the type of the interrupt id passed as the parameter.
2838``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2839interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2840returned depending upon how the interrupt has been configured by the platform
2841IC. This API must be invoked at EL3.
2842
Dan Handley610e7e12018-03-01 18:44:00 +00002843Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002844and Non-secure interrupts as Group1 interrupts. It reads the group value
2845corresponding to the interrupt id from the relevant *Interrupt Group Register*
2846(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2847
Dan Handley610e7e12018-03-01 18:44:00 +00002848In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002849Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2850(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2851as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2852
2853Crash Reporting mechanism (in BL31)
2854-----------------------------------
2855
2856BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002857of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002858on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002859``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2860
2861The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2862implementation of all of them. Platforms may include this file to their
2863makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002864output to be routed over the normal console infrastructure and get printed on
2865consoles configured to output in crash state. ``console_set_scope()`` can be
2866used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00002867
2868.. note::
2869 Platforms are responsible for making sure that they only mark consoles for
2870 use in the crash scope that are able to support this, i.e. that are written
2871 in assembly and conform with the register clobber rules for putc()
2872 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002873
Julius Werneraae9bb12017-09-18 16:49:48 -07002874In some cases (such as debugging very early crashes that happen before the
2875normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002876more explicitly. These platforms may instead provide custom implementations for
2877these. They are executed outside of a C environment and without a stack. Many
2878console drivers provide functions named ``console_xxx_core_init/putc/flush``
2879that are designed to be used by these functions. See Arm platforms (like juno)
2880for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002881
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002882Function : plat_crash_console_init [mandatory]
2883~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002884
2885::
2886
2887 Argument : void
2888 Return : int
2889
2890This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002891console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002892initialization and returns 1 on success.
2893
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002894Function : plat_crash_console_putc [mandatory]
2895~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002896
2897::
2898
2899 Argument : int
2900 Return : int
2901
2902This API is used by the crash reporting mechanism to print a character on the
2903designated crash console. It must only use general purpose registers x1 and
2904x2 to do its work. The parameter and the return value are in general purpose
2905register x0.
2906
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002907Function : plat_crash_console_flush [mandatory]
2908~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002909
2910::
2911
2912 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05002913 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002914
2915This API is used by the crash reporting mechanism to force write of all buffered
2916data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05002917registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002918
Manish Pandey9c9f38a2020-06-30 00:46:08 +01002919.. _External Abort handling and RAS Support:
2920
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002921External Abort handling and RAS Support
2922---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002923
2924Function : plat_ea_handler
2925~~~~~~~~~~~~~~~~~~~~~~~~~~
2926
2927::
2928
2929 Argument : int
2930 Argument : uint64_t
2931 Argument : void *
2932 Argument : void *
2933 Argument : uint64_t
2934 Return : void
2935
2936This function is invoked by the RAS framework for the platform to handle an
2937External Abort received at EL3. The intention of the function is to attempt to
2938resolve the cause of External Abort and return; if that's not possible, to
2939initiate orderly shutdown of the system.
2940
2941The first parameter (``int ea_reason``) indicates the reason for External Abort.
2942Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2943
2944The second parameter (``uint64_t syndrome``) is the respective syndrome
2945presented to EL3 after having received the External Abort. Depending on the
2946nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2947can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2948
2949The third parameter (``void *cookie``) is unused for now. The fourth parameter
2950(``void *handle``) is a pointer to the preempted context. The fifth parameter
2951(``uint64_t flags``) indicates the preempted security state. These parameters
2952are received from the top-level exception handler.
2953
2954If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2955function iterates through RAS handlers registered by the platform. If any of the
2956RAS handlers resolve the External Abort, no further action is taken.
2957
2958If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2959could resolve the External Abort, the default implementation prints an error
2960message, and panics.
2961
2962Function : plat_handle_uncontainable_ea
2963~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2964
2965::
2966
2967 Argument : int
2968 Argument : uint64_t
2969 Return : void
2970
2971This function is invoked by the RAS framework when an External Abort of
2972Uncontainable type is received at EL3. Due to the critical nature of
2973Uncontainable errors, the intention of this function is to initiate orderly
2974shutdown of the system, and is not expected to return.
2975
2976This function must be implemented in assembly.
2977
2978The first and second parameters are the same as that of ``plat_ea_handler``.
2979
2980The default implementation of this function calls
2981``report_unhandled_exception``.
2982
2983Function : plat_handle_double_fault
2984~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2985
2986::
2987
2988 Argument : int
2989 Argument : uint64_t
2990 Return : void
2991
2992This function is invoked by the RAS framework when another External Abort is
2993received at EL3 while one is already being handled. I.e., a call to
2994``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2995this function is to initiate orderly shutdown of the system, and is not expected
2996recover or return.
2997
2998This function must be implemented in assembly.
2999
3000The first and second parameters are the same as that of ``plat_ea_handler``.
3001
3002The default implementation of this function calls
3003``report_unhandled_exception``.
3004
3005Function : plat_handle_el3_ea
3006~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3007
3008::
3009
3010 Return : void
3011
3012This function is invoked when an External Abort is received while executing in
3013EL3. Due to its critical nature, the intention of this function is to initiate
3014orderly shutdown of the system, and is not expected recover or return.
3015
3016This function must be implemented in assembly.
3017
3018The default implementation of this function calls
3019``report_unhandled_exception``.
3020
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003021Build flags
3022-----------
3023
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003024There are some build flags which can be defined by the platform to control
3025inclusion or exclusion of certain BL stages from the FIP image. These flags
3026need to be defined in the platform makefile which will get included by the
3027build system.
3028
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003029- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003030 By default, this flag is defined ``yes`` by the build system and ``BL33``
3031 build option should be supplied as a build option. The platform has the
3032 option of excluding the BL33 image in the ``fip`` image by defining this flag
3033 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3034 are used, this flag will be set to ``no`` automatically.
3035
Paul Beesley07f0a312019-05-16 13:33:18 +01003036Platform include paths
3037----------------------
3038
3039Platforms are allowed to add more include paths to be passed to the compiler.
3040The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3041particular for the file ``platform_def.h``.
3042
3043Example:
3044
3045.. code:: c
3046
3047 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3048
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003049C Library
3050---------
3051
3052To avoid subtle toolchain behavioral dependencies, the header files provided
3053by the compiler are not used. The software is built with the ``-nostdinc`` flag
3054to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00003055required headers are included in the TF-A source tree. The library only
3056contains those C library definitions required by the local implementation. If
3057more functionality is required, the needed library functions will need to be
3058added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003059
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003060Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00003061been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003062from `FreeBSD`_, others have been written specifically for TF-A as well. The
3063files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003064
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01003065SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3066can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003067
3068Storage abstraction layer
3069-------------------------
3070
Louis Mayencourtb5469002019-07-15 13:56:03 +01003071In order to improve platform independence and portability a storage abstraction
3072layer is used to load data from non-volatile platform storage. Currently
3073storage access is only required by BL1 and BL2 phases and performed inside the
3074``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003075
Louis Mayencourtb5469002019-07-15 13:56:03 +01003076.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003077
Dan Handley610e7e12018-03-01 18:44:00 +00003078It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003079development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003080the default means to load data from storage (see :ref:`firmware_design_fip`).
3081The storage layer is described in the header file
3082``include/drivers/io/io_storage.h``. The implementation of the common library is
3083in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003084``drivers/io/``.
3085
Louis Mayencourtb5469002019-07-15 13:56:03 +01003086.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
3087
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003088Each IO driver must provide ``io_dev_*`` structures, as described in
3089``drivers/io/io_driver.h``. These are returned via a mandatory registration
3090function that is called on platform initialization. The semi-hosting driver
3091implementation in ``io_semihosting.c`` can be used as an example.
3092
Louis Mayencourtb5469002019-07-15 13:56:03 +01003093Each platform should register devices and their drivers via the storage
3094abstraction layer. These drivers then need to be initialized by bootloader
3095phases as required in their respective ``blx_platform_setup()`` functions.
3096
3097.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
3098
3099The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3100initialize storage devices before IO operations are called.
3101
3102.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
3103
3104The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003105include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3106Drivers do not have to implement all operations, but each platform must
3107provide at least one driver for a device capable of supporting generic
3108operations such as loading a bootloader image.
3109
3110The current implementation only allows for known images to be loaded by the
3111firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003112``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003113there). The platform layer (``plat_get_image_source()``) then returns a reference
3114to a device and a driver-specific ``spec`` which will be understood by the driver
3115to allow access to the image data.
3116
3117The layer is designed in such a way that is it possible to chain drivers with
3118other drivers. For example, file-system drivers may be implemented on top of
3119physical block devices, both represented by IO devices with corresponding
3120drivers. In such a case, the file-system "binding" with the block device may
3121be deferred until the file-system device is initialised.
3122
3123The abstraction currently depends on structures being statically allocated
3124by the drivers and callers, as the system does not yet provide a means of
3125dynamically allocating memory. This may also have the affect of limiting the
3126amount of open resources per driver.
3127
3128--------------
3129
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05003130*Copyright (c) 2013-2021, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003131
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003132.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00003133.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003134.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003135.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003136.. _SCC: http://www.simple-cc.org/