blob: 6f577f9428e41d0926c76b293a45dca333f954a1 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Paul Beesleyf8640672019-04-12 14:19:42 +010026Please refer to the :ref:`Platform Compatibility Policy` for the policy
27regarding compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010028
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillardd7c21b72017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley610e7e12018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010061
Dan Handley610e7e12018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010092File : platform_def.h [mandatory]
93~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010094
95Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000096include path with the following constants defined. This will require updating
97the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010098
Paul Beesleyf8640672019-04-12 14:19:42 +010099Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100which provides typical values for some of the constants below. These values are
101likely to be suitable for all platform ports.
102
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100103- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100104
105 Defines the linker format used by the platform, for example
106 ``elf64-littleaarch64``.
107
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100108- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100109
110 Defines the processor architecture for the linker by the platform, for
111 example ``aarch64``.
112
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100113- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100114
115 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100116 by ``plat/common/aarch64/platform_mp_stack.S`` and
117 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
David Horstmann051fd6d2020-11-12 15:19:04 +0000119- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
121 Defines the size in bits of the largest cache line across all the cache
122 levels in the platform.
123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100124- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100125
126 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
127 function.
128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100129- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100130
131 Defines the total number of CPUs implemented by the platform across all
132 clusters in the system.
133
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100134- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100135
136 Defines the total number of nodes in the power domain topology
137 tree at all the power domain levels used by the platform.
138 This macro is used by the PSCI implementation to allocate
139 data structures to represent power domain topology.
140
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100141- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100142
143 Defines the maximum power domain level that the power management operations
144 should apply to. More often, but not always, the power domain level
145 corresponds to affinity level. This macro allows the PSCI implementation
146 to know the highest power domain level that it should consider for power
147 management operations in the system that the platform implements. For
148 example, the Base AEM FVP implements two clusters with a configurable
149 number of CPUs and it reports the maximum power domain level as 1.
150
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100151- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100152
153 Defines the local power state corresponding to the deepest power down
154 possible at every power domain level in the platform. The local power
155 states for each level may be sparsely allocated between 0 and this value
156 with 0 being reserved for the RUN state. The PSCI implementation uses this
157 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100158 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 Defines the local power state corresponding to the deepest retention state
163 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100164 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100165 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
170 Defines the maximum number of local power states per power domain level
171 that the platform supports. The default value of this macro is 2 since
172 most platforms just support a maximum of two local power states at each
173 power domain level (power-down and retention). If the platform needs to
174 account for more local power states, then it must redefine this macro.
175
176 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100177 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100178
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
181 Defines the base address in secure ROM where BL1 originally lives. Must be
182 aligned on a page-size boundary.
183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100184- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100185
186 Defines the maximum address in secure ROM that BL1's actual content (i.e.
187 excluding any data section allocated at runtime) can occupy.
188
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100189- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100190
191 Defines the base address in secure RAM where BL1's read-write data will live
192 at runtime. Must be aligned on a page-size boundary.
193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100194- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100195
196 Defines the maximum address in secure RAM that BL1's read-write data can
197 occupy at runtime.
198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100199- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100200
201 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000202 Must be aligned on a page-size boundary. This constant is not applicable
203 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100205- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
207 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000208 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100210- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000211
212 Defines the base address in secure XIP memory where BL2 RO section originally
213 lives. Must be aligned on a page-size boundary. This constant is only needed
214 when BL2_IN_XIP_MEM is set to '1'.
215
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100216- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000217
218 Defines the maximum address in secure XIP memory that BL2's actual content
219 (i.e. excluding any data section allocated at runtime) can occupy. This
220 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
221
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100222- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000223
224 Defines the base address in secure RAM where BL2's read-write data will live
225 at runtime. Must be aligned on a page-size boundary. This constant is only
226 needed when BL2_IN_XIP_MEM is set to '1'.
227
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100228- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000229
230 Defines the maximum address in secure RAM that BL2's read-write data can
231 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
232 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100233
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100234- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
236 Defines the base address in secure RAM where BL2 loads the BL31 binary
237 image. Must be aligned on a page-size boundary.
238
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100239- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100240
241 Defines the maximum address in secure RAM that the BL31 image can occupy.
242
243For every image, the platform must define individual identifiers that will be
244used by BL1 or BL2 to load the corresponding image into memory from non-volatile
245storage. For the sake of performance, integer numbers will be used as
246identifiers. The platform will use those identifiers to return the relevant
247information about the image to be loaded (file handler, load address,
248authentication information, etc.). The following image identifiers are
249mandatory:
250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100251- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100252
253 BL2 image identifier, used by BL1 to load BL2.
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 BL31 image identifier, used by BL2 to load BL31.
258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100259- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
261 BL33 image identifier, used by BL2 to load BL33.
262
263If Trusted Board Boot is enabled, the following certificate identifiers must
264also be defined:
265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100266- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100267
268 BL2 content certificate identifier, used by BL1 to load the BL2 content
269 certificate.
270
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100271- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100272
273 Trusted key certificate identifier, used by BL2 to load the trusted key
274 certificate.
275
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100276- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100277
278 BL31 key certificate identifier, used by BL2 to load the BL31 key
279 certificate.
280
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100281- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100282
283 BL31 content certificate identifier, used by BL2 to load the BL31 content
284 certificate.
285
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100286- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100287
288 BL33 key certificate identifier, used by BL2 to load the BL33 key
289 certificate.
290
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100291- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100292
293 BL33 content certificate identifier, used by BL2 to load the BL33 content
294 certificate.
295
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100296- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299 FWU content certificate.
300
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100301- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100302
Dan Handley610e7e12018-03-01 18:44:00 +0000303 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000305 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 set.
307
308If the AP Firmware Updater Configuration image, BL2U is used, the following
309must also be defined:
310
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100311- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100312
313 Defines the base address in secure memory where BL1 copies the BL2U binary
314 image. Must be aligned on a page-size boundary.
315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100316- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100317
318 Defines the maximum address in secure memory that the BL2U image can occupy.
319
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100320- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100321
322 BL2U image identifier, used by BL1 to fetch an image descriptor
323 corresponding to BL2U.
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326must also be defined:
327
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100328- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
331 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000332
333 .. note::
334 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100336If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337also be defined:
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000343
344 .. note::
345 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100347- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
350 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100352If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353be defined:
354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000359
360 .. note::
361 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100365 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
366 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367
368For the the Firmware update capability of TRUSTED BOARD BOOT, the following
369macros may also be defined:
370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372
373 Total number of images that can be loaded simultaneously. If the platform
374 doesn't specify any value, it defaults to 10.
375
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100376If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100377also be defined:
378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100381 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000382 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100384- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387 certificate (mandatory when Trusted Board Boot is enabled).
388
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100389- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100391 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392 content certificate (mandatory when Trusted Board Boot is enabled).
393
394If a BL32 image is supported by the platform, the following constants must
395also be defined:
396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100397- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100398
399 BL32 image identifier, used by BL2 to load BL32.
400
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100401- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100402
403 BL32 key certificate identifier, used by BL2 to load the BL32 key
404 certificate (mandatory when Trusted Board Boot is enabled).
405
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100406- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100407
408 BL32 content certificate identifier, used by BL2 to load the BL32 content
409 certificate (mandatory when Trusted Board Boot is enabled).
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 Defines the base address in secure memory where BL2 loads the BL32 binary
414 image. Must be aligned on a page-size boundary.
415
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100416- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100417
418 Defines the maximum address that the BL32 image can occupy.
419
420If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
421platform, the following constants must also be defined:
422
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100423- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100424
425 Defines the base address of the secure memory used by the TSP image on the
426 platform. This must be at the same address or below ``BL32_BASE``.
427
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100428- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100429
430 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000431 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
432 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
433 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100434
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100435- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100436
437 Defines the ID of the secure physical generic timer interrupt used by the
438 TSP's interrupt handling code.
439
440If the platform port uses the translation table library code, the following
441constants must also be defined:
442
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100443- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100444
445 Optional flag that can be set per-image to enable the dynamic allocation of
446 regions even when the MMU is enabled. If not defined, only static
447 functionality will be available, if defined and set to 1 it will also
448 include the dynamic functionality.
449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100450- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100451
452 Defines the maximum number of translation tables that are allocated by the
453 translation table library code. To minimize the amount of runtime memory
454 used, choose the smallest value needed to map the required virtual addresses
455 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
456 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
457 as well.
458
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100459- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100460
461 Defines the maximum number of regions that are allocated by the translation
462 table library code. A region consists of physical base address, virtual base
463 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
464 defined in the ``mmap_region_t`` structure. The platform defines the regions
465 that should be mapped. Then, the translation table library will create the
466 corresponding tables and descriptors at runtime. To minimize the amount of
467 runtime memory used, choose the smallest value needed to register the
468 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
469 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
470 the dynamic regions as well.
471
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100472- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100473
474 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000475 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100476
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100477- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100478
479 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000480 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100481
482If the platform port uses the IO storage framework, the following constants
483must also be defined:
484
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100485- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100486
487 Defines the maximum number of registered IO devices. Attempting to register
488 more devices than this value using ``io_register_device()`` will fail with
489 -ENOMEM.
490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the maximum number of open IO handles. Attempting to open more IO
494 entities than this value using ``io_open()`` will fail with -ENOMEM.
495
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100496- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100497
498 Defines the maximum number of registered IO block devices. Attempting to
499 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100500 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100501 With this macro, multiple block devices could be supported at the same
502 time.
503
504If the platform needs to allocate data within the per-cpu data framework in
505BL31, it should define the following macro. Currently this is only required if
506the platform decides not to use the coherent memory section by undefining the
507``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
508required memory within the the per-cpu data to minimize wastage.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the memory (in bytes) to be reserved within the per-cpu data
513 structure for use by the platform layer.
514
515The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000516memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100517
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100518- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100519
520 Defines the maximum address in secure RAM that the BL31's progbits sections
521 can occupy.
522
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100523- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100524
525 Defines the maximum address that the TSP's progbits sections can occupy.
526
527If the platform port uses the PL061 GPIO driver, the following constant may
528optionally be defined:
529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100530- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531 Maximum number of GPIOs required by the platform. This allows control how
532 much memory is allocated for PL061 GPIO controllers. The default value is
533
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100534 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100535
536If the platform port uses the partition driver, the following constant may
537optionally be defined:
538
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100539- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100540 Maximum number of partition entries required by the platform. This allows
541 control how much memory is allocated for partition entries. The default
542 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100543 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100544 PLAT_PARTITION_MAX_ENTRIES := 12
545 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100546
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800547- **PLAT_PARTITION_BLOCK_SIZE**
548 The size of partition block. It could be either 512 bytes or 4096 bytes.
549 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000550 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800551 PLAT_PARTITION_BLOCK_SIZE := 4096
552 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
553
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554The following constant is optional. It should be defined to override the default
555behaviour of the ``assert()`` function (for example, to save memory).
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
559 ``assert()`` prints the name of the file, the line number and the asserted
560 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
561 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
562 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
563 defined, it defaults to ``LOG_LEVEL``.
564
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100565File : plat_macros.S [mandatory]
566~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100567
568Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000569the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100570found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
571
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100572- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100573
574 This macro allows the crash reporting routine to print relevant platform
575 registers in case of an unhandled exception in BL31. This aids in debugging
576 and this macro can be defined to be empty in case register reporting is not
577 desired.
578
579 For instance, GIC or interconnect registers may be helpful for
580 troubleshooting.
581
582Handling Reset
583--------------
584
585BL1 by default implements the reset vector where execution starts from a cold
586or warm boot. BL31 can be optionally set as a reset vector using the
587``RESET_TO_BL31`` make variable.
588
589For each CPU, the reset vector code is responsible for the following tasks:
590
591#. Distinguishing between a cold boot and a warm boot.
592
593#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
594 the CPU is placed in a platform-specific state until the primary CPU
595 performs the necessary steps to remove it from this state.
596
597#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
598 specific address in the BL31 image in the same processor mode as it was
599 when released from reset.
600
601The following functions need to be implemented by the platform port to enable
602reset vector code to perform the above tasks.
603
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100604Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
605~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100606
607::
608
609 Argument : void
610 Return : uintptr_t
611
612This function is called with the MMU and caches disabled
613(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
614distinguishing between a warm and cold reset for the current CPU using
615platform-specific means. If it's a warm reset, then it returns the warm
616reset entrypoint point provided to ``plat_setup_psci_ops()`` during
617BL31 initialization. If it's a cold reset then this function must return zero.
618
619This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000620Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100621not assume that callee saved registers are preserved across a call to this
622function.
623
624This function fulfills requirement 1 and 3 listed above.
625
626Note that for platforms that support programming the reset address, it is
627expected that a CPU will start executing code directly at the right address,
628both on a cold and warm reset. In this case, there is no need to identify the
629type of reset nor to query the warm reset entrypoint. Therefore, implementing
630this function is not required on such platforms.
631
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100632Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
633~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100634
635::
636
637 Argument : void
638
639This function is called with the MMU and data caches disabled. It is responsible
640for placing the executing secondary CPU in a platform-specific state until the
641primary CPU performs the necessary actions to bring it out of that state and
642allow entry into the OS. This function must not return.
643
Dan Handley610e7e12018-03-01 18:44:00 +0000644In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100645itself off. The primary CPU is responsible for powering up the secondary CPUs
646when normal world software requires them. When booting an EL3 payload instead,
647they stay powered on and are put in a holding pen until their mailbox gets
648populated.
649
650This function fulfills requirement 2 above.
651
652Note that for platforms that can't release secondary CPUs out of reset, only the
653primary CPU will execute the cold boot code. Therefore, implementing this
654function is not required on such platforms.
655
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100656Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
657~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100658
659::
660
661 Argument : void
662 Return : unsigned int
663
664This function identifies whether the current CPU is the primary CPU or a
665secondary CPU. A return value of zero indicates that the CPU is not the
666primary CPU, while a non-zero return value indicates that the CPU is the
667primary CPU.
668
669Note that for platforms that can't release secondary CPUs out of reset, only the
670primary CPU will execute the cold boot code. Therefore, there is no need to
671distinguish between primary and secondary CPUs and implementing this function is
672not required.
673
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100674Function : platform_mem_init() [mandatory]
675~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100676
677::
678
679 Argument : void
680 Return : void
681
682This function is called before any access to data is made by the firmware, in
683order to carry out any essential memory initialization.
684
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100685Function: plat_get_rotpk_info()
686~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100687
688::
689
690 Argument : void *, void **, unsigned int *, unsigned int *
691 Return : int
692
693This function is mandatory when Trusted Board Boot is enabled. It returns a
694pointer to the ROTPK stored in the platform (or a hash of it) and its length.
695The ROTPK must be encoded in DER format according to the following ASN.1
696structure:
697
698::
699
700 AlgorithmIdentifier ::= SEQUENCE {
701 algorithm OBJECT IDENTIFIER,
702 parameters ANY DEFINED BY algorithm OPTIONAL
703 }
704
705 SubjectPublicKeyInfo ::= SEQUENCE {
706 algorithm AlgorithmIdentifier,
707 subjectPublicKey BIT STRING
708 }
709
710In case the function returns a hash of the key:
711
712::
713
714 DigestInfo ::= SEQUENCE {
715 digestAlgorithm AlgorithmIdentifier,
716 digest OCTET STRING
717 }
718
719The function returns 0 on success. Any other value is treated as error by the
720Trusted Board Boot. The function also reports extra information related
721to the ROTPK in the flags parameter:
722
723::
724
725 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
726 hash.
727 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
728 verification while the platform ROTPK is not deployed.
729 When this flag is set, the function does not need to
730 return a platform ROTPK, and the authentication
731 framework uses the ROTPK in the certificate without
732 verifying it against the platform value. This flag
733 must not be used in a deployed production environment.
734
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100735Function: plat_get_nv_ctr()
736~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100737
738::
739
740 Argument : void *, unsigned int *
741 Return : int
742
743This function is mandatory when Trusted Board Boot is enabled. It returns the
744non-volatile counter value stored in the platform in the second argument. The
745cookie in the first argument may be used to select the counter in case the
746platform provides more than one (for example, on platforms that use the default
747TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100748TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100749
750The function returns 0 on success. Any other value means the counter value could
751not be retrieved from the platform.
752
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100753Function: plat_set_nv_ctr()
754~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100755
756::
757
758 Argument : void *, unsigned int
759 Return : int
760
761This function is mandatory when Trusted Board Boot is enabled. It sets a new
762counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100763select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100764the updated counter value to be written to the NV counter.
765
766The function returns 0 on success. Any other value means the counter value could
767not be updated.
768
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100769Function: plat_set_nv_ctr2()
770~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100771
772::
773
774 Argument : void *, const auth_img_desc_t *, unsigned int
775 Return : int
776
777This function is optional when Trusted Board Boot is enabled. If this
778interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
779first argument passed is a cookie and is typically used to
780differentiate between a Non Trusted NV Counter and a Trusted NV
781Counter. The second argument is a pointer to an authentication image
782descriptor and may be used to decide if the counter is allowed to be
783updated or not. The third argument is the updated counter value to
784be written to the NV counter.
785
786The function returns 0 on success. Any other value means the counter value
787either could not be updated or the authentication image descriptor indicates
788that it is not allowed to be updated.
789
790Common mandatory function modifications
791---------------------------------------
792
793The following functions are mandatory functions which need to be implemented
794by the platform port.
795
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100796Function : plat_my_core_pos()
797~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100798
799::
800
801 Argument : void
802 Return : unsigned int
803
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000804This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100805CPU-specific linear index into blocks of memory (for example while allocating
806per-CPU stacks). This function will be invoked very early in the
807initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000808implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100809runtime environment. This function can clobber x0 - x8 and must preserve
810x9 - x29.
811
812This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +0100813PSCI and details of this can be found in
814:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100815
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100816Function : plat_core_pos_by_mpidr()
817~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100818
819::
820
821 Argument : u_register_t
822 Return : int
823
824This function validates the ``MPIDR`` of a CPU and converts it to an index,
825which can be used as a CPU-specific linear index into blocks of memory. In
826case the ``MPIDR`` is invalid, this function returns -1. This function will only
827be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000828utilize the C runtime environment. For further details about how TF-A
829represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +0100830index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100831
Ambroise Vincentd207f562019-04-10 12:50:27 +0100832Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
833~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
834
835::
836
837 Arguments : void **heap_addr, size_t *heap_size
838 Return : int
839
840This function is invoked during Mbed TLS library initialisation to get a heap,
841by means of a starting address and a size. This heap will then be used
842internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
843must be able to provide a heap to it.
844
845A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
846which a heap is statically reserved during compile time inside every image
847(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
848the function simply returns the address and size of this "pre-allocated" heap.
849For a platform to use this default implementation, only a call to the helper
850from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
851
852However, by writting their own implementation, platforms have the potential to
853optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
854shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
855twice.
856
857On success the function should return 0 and a negative error code otherwise.
858
Sumit Gargc0c369c2019-11-15 18:47:53 +0530859Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
860~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
861
862::
863
864 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
865 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
866 size_t img_id_len
867 Return : int
868
869This function provides a symmetric key (either SSK or BSSK depending on
870fw_enc_status) which is invoked during runtime decryption of encrypted
871firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
872implementation for testing purposes which must be overridden by the platform
873trying to implement a real world firmware encryption use-case.
874
875It also allows the platform to pass symmetric key identifier rather than
876actual symmetric key which is useful in cases where the crypto backend provides
877secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
878flag must be set in ``flags``.
879
880In addition to above a platform may also choose to provide an image specific
881symmetric key/identifier using img_id.
882
883On success the function should return 0 and a negative error code otherwise.
884
885Note that this API depends on ``DECRYPTION_SUPPORT`` build flag which is
886marked as experimental.
887
Manish V Badarkheda87af12021-06-20 21:14:46 +0100888Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
889~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
890
891::
892
893 Argument : struct fwu_metadata *metadata
894 Return : void
895
896This function is mandatory when PSA_FWU_SUPPORT is enabled.
897It provides a means to retrieve image specification (offset in
898non-volatile storage and length) of active/updated images using the passed
899FWU metadata, and update I/O policies of active/updated images using retrieved
900image specification information.
901Further I/O layer operations such as I/O open, I/O read, etc. on these
902images rely on this function call.
903
904In Arm platforms, this function is used to set an I/O policy of the FIP image,
905container of all active/updated secure and non-secure images.
906
907Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
908~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
909
910::
911
912 Argument : unsigned int image_id, uintptr_t *dev_handle,
913 uintptr_t *image_spec
914 Return : int
915
916This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
917responsible for setting up the platform I/O policy of the requested metadata
918image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
919be used to load this image from the platform's non-volatile storage.
920
921FWU metadata can not be always stored as a raw image in non-volatile storage
922to define its image specification (offset in non-volatile storage and length)
923statically in I/O policy.
924For example, the FWU metadata image is stored as a partition inside the GUID
925partition table image. Its specification is defined in the partition table
926that needs to be parsed dynamically.
927This function provides a means to retrieve such dynamic information to set
928the I/O policy of the FWU metadata image.
929Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
930image relies on this function call.
931
932It returns '0' on success, otherwise a negative error value on error.
933Alongside, returns device handle and image specification from the I/O policy
934of the requested FWU metadata image.
935
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100936Common optional modifications
937-----------------------------
938
939The following are helper functions implemented by the firmware that perform
940common platform-specific tasks. A platform may choose to override these
941definitions.
942
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100943Function : plat_set_my_stack()
944~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100945
946::
947
948 Argument : void
949 Return : void
950
951This function sets the current stack pointer to the normal memory stack that
952has been allocated for the current CPU. For BL images that only require a
953stack for the primary CPU, the UP version of the function is used. The size
954of the stack allocated to each CPU is specified by the platform defined
955constant ``PLATFORM_STACK_SIZE``.
956
957Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100958provided in ``plat/common/aarch64/platform_up_stack.S`` and
959``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100960
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100961Function : plat_get_my_stack()
962~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100963
964::
965
966 Argument : void
967 Return : uintptr_t
968
969This function returns the base address of the normal memory stack that
970has been allocated for the current CPU. For BL images that only require a
971stack for the primary CPU, the UP version of the function is used. The size
972of the stack allocated to each CPU is specified by the platform defined
973constant ``PLATFORM_STACK_SIZE``.
974
975Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100976provided in ``plat/common/aarch64/platform_up_stack.S`` and
977``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100978
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100979Function : plat_report_exception()
980~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100981
982::
983
984 Argument : unsigned int
985 Return : void
986
987A platform may need to report various information about its status when an
988exception is taken, for example the current exception level, the CPU security
989state (secure/non-secure), the exception type, and so on. This function is
990called in the following circumstances:
991
992- In BL1, whenever an exception is taken.
993- In BL2, whenever an exception is taken.
994
995The default implementation doesn't do anything, to avoid making assumptions
996about the way the platform displays its status information.
997
998For AArch64, this function receives the exception type as its argument.
999Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001000``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +00001001related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001002
1003For AArch32, this function receives the exception mode as its argument.
1004Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +01001005``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001006
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001007Function : plat_reset_handler()
1008~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001009
1010::
1011
1012 Argument : void
1013 Return : void
1014
1015A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +00001016allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001017specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001018preserve the values of callee saved registers x19 to x29.
1019
1020The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +01001021the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001022guidelines.
1023
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001024Function : plat_disable_acp()
1025~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001026
1027::
1028
1029 Argument : void
1030 Return : void
1031
John Tsichritzis6dda9762018-07-23 09:18:04 +01001032This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001033present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001034doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001035it has restrictions for stack usage and it can use the registers x0 - x17 as
1036scratch registers. It should preserve the value in x18 register as it is used
1037by the caller to store the return address.
1038
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001039Function : plat_error_handler()
1040~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001041
1042::
1043
1044 Argument : int
1045 Return : void
1046
1047This API is called when the generic code encounters an error situation from
1048which it cannot continue. It allows the platform to perform error reporting or
1049recovery actions (for example, reset the system). This function must not return.
1050
1051The parameter indicates the type of error using standard codes from ``errno.h``.
1052Possible errors reported by the generic code are:
1053
1054- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1055 Board Boot is enabled)
1056- ``-ENOENT``: the requested image or certificate could not be found or an IO
1057 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001058- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1059 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001060
1061The default implementation simply spins.
1062
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001063Function : plat_panic_handler()
1064~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001065
1066::
1067
1068 Argument : void
1069 Return : void
1070
1071This API is called when the generic code encounters an unexpected error
1072situation from which it cannot recover. This function must not return,
1073and must be implemented in assembly because it may be called before the C
1074environment is initialized.
1075
Paul Beesleyba3ed402019-03-13 16:20:44 +00001076.. note::
1077 The address from where it was called is stored in x30 (Link Register).
1078 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001079
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001080Function : plat_get_bl_image_load_info()
1081~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001082
1083::
1084
1085 Argument : void
1086 Return : bl_load_info_t *
1087
1088This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001089populated to load. This function is invoked in BL2 to load the
1090BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001091
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001092Function : plat_get_next_bl_params()
1093~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001094
1095::
1096
1097 Argument : void
1098 Return : bl_params_t *
1099
1100This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001101kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001102function is invoked in BL2 to pass this information to the next BL
1103image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001104
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001105Function : plat_get_stack_protector_canary()
1106~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001107
1108::
1109
1110 Argument : void
1111 Return : u_register_t
1112
1113This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001114when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001115value will weaken the protection as the attacker could easily write the right
1116value as part of the attack most of the time. Therefore, it should return a
1117true random number.
1118
Paul Beesleyba3ed402019-03-13 16:20:44 +00001119.. warning::
1120 For the protection to be effective, the global data need to be placed at
1121 a lower address than the stack bases. Failure to do so would allow an
1122 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001124Function : plat_flush_next_bl_params()
1125~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001126
1127::
1128
1129 Argument : void
1130 Return : void
1131
1132This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001133next image. This function is invoked in BL2 to flush this information
1134to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001135
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001136Function : plat_log_get_prefix()
1137~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001138
1139::
1140
1141 Argument : unsigned int
1142 Return : const char *
1143
1144This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001145prepended to all the log output from TF-A. The `log_level` (argument) will
1146correspond to one of the standard log levels defined in debug.h. The platform
1147can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001148the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001149increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001150
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001151Function : plat_get_soc_version()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001152~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001153
1154::
1155
1156 Argument : void
1157 Return : int32_t
1158
1159This function returns soc version which mainly consist of below fields
1160
1161::
1162
1163 soc_version[30:24] = JEP-106 continuation code for the SiP
1164 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001165 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001166
1167Function : plat_get_soc_revision()
Manish V Badarkhe904f93a2020-03-26 14:20:27 +00001168~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001169
1170::
1171
1172 Argument : void
1173 Return : int32_t
1174
1175This function returns soc revision in below format
1176
1177::
1178
1179 soc_revision[0:30] = SOC revision of specific SOC
1180
Manish V Badarkhe80f13ee2020-07-23 20:23:01 +01001181Function : plat_is_smccc_feature_available()
1182~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1183
1184::
1185
1186 Argument : u_register_t
1187 Return : int32_t
1188
1189This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1190the SMCCC function specified in the argument; otherwise returns
1191SMC_ARCH_CALL_NOT_SUPPORTED.
1192
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001193Function : plat_mboot_measure_image()
1194~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1195
1196::
1197
1198 Argument : unsigned int, image_info_t *
1199 Return : void
1200
1201When the MEASURED_BOOT flag is enabled:
1202
1203- This function measures the given image and records its measurement using
1204 the measured boot backend driver.
1205- On the Arm FVP port, this function measures the given image using its
1206 passed id and information and then records that measurement in the
1207 Event Log buffer.
1208- This function must return 0 on success, a negative error code otherwise.
1209
1210When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1211
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001212Modifications specific to a Boot Loader stage
1213---------------------------------------------
1214
1215Boot Loader Stage 1 (BL1)
1216-------------------------
1217
1218BL1 implements the reset vector where execution starts from after a cold or
1219warm boot. For each CPU, BL1 is responsible for the following tasks:
1220
1221#. Handling the reset as described in section 2.2
1222
1223#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1224 only this CPU executes the remaining BL1 code, including loading and passing
1225 control to the BL2 stage.
1226
1227#. Identifying and starting the Firmware Update process (if required).
1228
1229#. Loading the BL2 image from non-volatile storage into secure memory at the
1230 address specified by the platform defined constant ``BL2_BASE``.
1231
1232#. Populating a ``meminfo`` structure with the following information in memory,
1233 accessible by BL2 immediately upon entry.
1234
1235 ::
1236
1237 meminfo.total_base = Base address of secure RAM visible to BL2
1238 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001239
Soby Mathew97b1bff2018-09-27 16:46:41 +01001240 By default, BL1 places this ``meminfo`` structure at the end of secure
1241 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001242
Soby Mathewb1bf0442018-02-16 14:52:52 +00001243 It is possible for the platform to decide where it wants to place the
1244 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1245 BL2 by overriding the weak default implementation of
1246 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001247
1248The following functions need to be implemented by the platform port to enable
1249BL1 to perform the above tasks.
1250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001251Function : bl1_early_platform_setup() [mandatory]
1252~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001253
1254::
1255
1256 Argument : void
1257 Return : void
1258
1259This function executes with the MMU and data caches disabled. It is only called
1260by the primary CPU.
1261
Dan Handley610e7e12018-03-01 18:44:00 +00001262On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001263
1264- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1265
1266- Initializes a UART (PL011 console), which enables access to the ``printf``
1267 family of functions in BL1.
1268
1269- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1270 the CCI slave interface corresponding to the cluster that includes the
1271 primary CPU.
1272
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001273Function : bl1_plat_arch_setup() [mandatory]
1274~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001275
1276::
1277
1278 Argument : void
1279 Return : void
1280
1281This function performs any platform-specific and architectural setup that the
1282platform requires. Platform-specific setup might include configuration of
1283memory controllers and the interconnect.
1284
Dan Handley610e7e12018-03-01 18:44:00 +00001285In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001286
1287This function helps fulfill requirement 2 above.
1288
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001289Function : bl1_platform_setup() [mandatory]
1290~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001291
1292::
1293
1294 Argument : void
1295 Return : void
1296
1297This function executes with the MMU and data caches enabled. It is responsible
1298for performing any remaining platform-specific setup that can occur after the
1299MMU and data cache have been enabled.
1300
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001301if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001302sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001303
Dan Handley610e7e12018-03-01 18:44:00 +00001304In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001305layer used to load the next bootloader image.
1306
1307This function helps fulfill requirement 4 above.
1308
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001309Function : bl1_plat_sec_mem_layout() [mandatory]
1310~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001311
1312::
1313
1314 Argument : void
1315 Return : meminfo *
1316
1317This function should only be called on the cold boot path. It executes with the
1318MMU and data caches enabled. The pointer returned by this function must point to
1319a ``meminfo`` structure containing the extents and availability of secure RAM for
1320the BL1 stage.
1321
1322::
1323
1324 meminfo.total_base = Base address of secure RAM visible to BL1
1325 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001326
1327This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1328populates a similar structure to tell BL2 the extents of memory available for
1329its own use.
1330
1331This function helps fulfill requirements 4 and 5 above.
1332
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001333Function : bl1_plat_prepare_exit() [optional]
1334~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001335
1336::
1337
1338 Argument : entry_point_info_t *
1339 Return : void
1340
1341This function is called prior to exiting BL1 in response to the
1342``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1343platform specific clean up or bookkeeping operations before transferring
1344control to the next image. It receives the address of the ``entry_point_info_t``
1345structure passed from BL2. This function runs with MMU disabled.
1346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001347Function : bl1_plat_set_ep_info() [optional]
1348~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001349
1350::
1351
1352 Argument : unsigned int image_id, entry_point_info_t *ep_info
1353 Return : void
1354
1355This function allows platforms to override ``ep_info`` for the given ``image_id``.
1356
1357The default implementation just returns.
1358
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001359Function : bl1_plat_get_next_image_id() [optional]
1360~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001361
1362::
1363
1364 Argument : void
1365 Return : unsigned int
1366
1367This and the following function must be overridden to enable the FWU feature.
1368
1369BL1 calls this function after platform setup to identify the next image to be
1370loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1371with the normal boot sequence, which loads and executes BL2. If the platform
1372returns a different image id, BL1 assumes that Firmware Update is required.
1373
Dan Handley610e7e12018-03-01 18:44:00 +00001374The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001375platforms override this function to detect if firmware update is required, and
1376if so, return the first image in the firmware update process.
1377
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001378Function : bl1_plat_get_image_desc() [optional]
1379~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001380
1381::
1382
1383 Argument : unsigned int image_id
1384 Return : image_desc_t *
1385
1386BL1 calls this function to get the image descriptor information ``image_desc_t``
1387for the provided ``image_id`` from the platform.
1388
Dan Handley610e7e12018-03-01 18:44:00 +00001389The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001390standard platforms return an image descriptor corresponding to BL2 or one of
1391the firmware update images defined in the Trusted Board Boot Requirements
1392specification.
1393
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001394Function : bl1_plat_handle_pre_image_load() [optional]
1395~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001396
1397::
1398
Soby Mathew2f38ce32018-02-08 17:45:12 +00001399 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001400 Return : int
1401
1402This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001403corresponding to ``image_id``. This function is invoked in BL1, both in cold
1404boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001405
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001406Function : bl1_plat_handle_post_image_load() [optional]
1407~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001408
1409::
1410
Soby Mathew2f38ce32018-02-08 17:45:12 +00001411 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001412 Return : int
1413
1414This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001415corresponding to ``image_id``. This function is invoked in BL1, both in cold
1416boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001417
Soby Mathewb1bf0442018-02-16 14:52:52 +00001418The default weak implementation of this function calculates the amount of
1419Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1420structure at the beginning of this free memory and populates it. The address
1421of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1422information to BL2.
1423
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001424Function : bl1_plat_fwu_done() [optional]
1425~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001426
1427::
1428
1429 Argument : unsigned int image_id, uintptr_t image_src,
1430 unsigned int image_size
1431 Return : void
1432
1433BL1 calls this function when the FWU process is complete. It must not return.
1434The platform may override this function to take platform specific action, for
1435example to initiate the normal boot flow.
1436
1437The default implementation spins forever.
1438
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001439Function : bl1_plat_mem_check() [mandatory]
1440~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001441
1442::
1443
1444 Argument : uintptr_t mem_base, unsigned int mem_size,
1445 unsigned int flags
1446 Return : int
1447
1448BL1 calls this function while handling FWU related SMCs, more specifically when
1449copying or authenticating an image. Its responsibility is to ensure that the
1450region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1451that this memory corresponds to either a secure or non-secure memory region as
1452indicated by the security state of the ``flags`` argument.
1453
1454This function can safely assume that the value resulting from the addition of
1455``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1456overflow.
1457
1458This function must return 0 on success, a non-null error code otherwise.
1459
1460The default implementation of this function asserts therefore platforms must
1461override it when using the FWU feature.
1462
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001463Function : bl1_plat_mboot_init() [optional]
1464~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1465
1466::
1467
1468 Argument : void
1469 Return : void
1470
1471When the MEASURED_BOOT flag is enabled:
1472
1473- This function is used to initialize the backend driver(s) of measured boot.
1474- On the Arm FVP port, this function is used to initialize the Event Log
1475 backend driver, and also to write header information in the Event Log buffer.
1476
1477When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1478
1479Function : bl1_plat_mboot_finish() [optional]
1480~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1481
1482::
1483
1484 Argument : void
1485 Return : void
1486
1487When the MEASURED_BOOT flag is enabled:
1488
1489- This function is used to finalize the measured boot backend driver(s),
1490 and also, set the information for the next bootloader component to
1491 extend the measurement if needed.
1492- On the Arm FVP port, this function is used to pass the base address of
1493 the Event Log buffer and its size to BL2 via tb_fw_config to extend the
1494 Event Log buffer with the measurement of various images loaded by BL2.
1495 It results in panic on error.
1496
1497When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1498
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001499Boot Loader Stage 2 (BL2)
1500-------------------------
1501
1502The BL2 stage is executed only by the primary CPU, which is determined in BL1
1503using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001504``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1505``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1506non-volatile storage to secure/non-secure RAM. After all the images are loaded
1507then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1508images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001509
1510The following functions must be implemented by the platform port to enable BL2
1511to perform the above tasks.
1512
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001513Function : bl2_early_platform_setup2() [mandatory]
1514~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001515
1516::
1517
Soby Mathew97b1bff2018-09-27 16:46:41 +01001518 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001519 Return : void
1520
1521This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001522by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1523are platform specific.
1524
1525On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001526
Manish V Badarkhe81414512020-06-24 15:58:38 +01001527 arg0 - Points to load address of FW_CONFIG
Soby Mathew97b1bff2018-09-27 16:46:41 +01001528
1529 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1530 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001531
Dan Handley610e7e12018-03-01 18:44:00 +00001532On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001533
1534- Initializes a UART (PL011 console), which enables access to the ``printf``
1535 family of functions in BL2.
1536
1537- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001538 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1539 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001540
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001541Function : bl2_plat_arch_setup() [mandatory]
1542~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001543
1544::
1545
1546 Argument : void
1547 Return : void
1548
1549This function executes with the MMU and data caches disabled. It is only called
1550by the primary CPU.
1551
1552The purpose of this function is to perform any architectural initialization
1553that varies across platforms.
1554
Dan Handley610e7e12018-03-01 18:44:00 +00001555On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001557Function : bl2_platform_setup() [mandatory]
1558~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001559
1560::
1561
1562 Argument : void
1563 Return : void
1564
1565This function may execute with the MMU and data caches enabled if the platform
1566port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1567called by the primary CPU.
1568
1569The purpose of this function is to perform any platform initialization
1570specific to BL2.
1571
Dan Handley610e7e12018-03-01 18:44:00 +00001572In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001573configuration of the TrustZone controller to allow non-secure masters access
1574to most of DRAM. Part of DRAM is reserved for secure world use.
1575
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001576Function : bl2_plat_handle_pre_image_load() [optional]
1577~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001578
1579::
1580
1581 Argument : unsigned int
1582 Return : int
1583
1584This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001585for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001586loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001587
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001588Function : bl2_plat_handle_post_image_load() [optional]
1589~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001590
1591::
1592
1593 Argument : unsigned int
1594 Return : int
1595
1596This function can be used by the platforms to update/use image information
1597for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001598loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001599
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001600Function : bl2_plat_preload_setup [optional]
1601~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001602
1603::
John Tsichritzisee10e792018-06-06 09:38:10 +01001604
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001605 Argument : void
1606 Return : void
1607
1608This optional function performs any BL2 platform initialization
1609required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001610bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001611boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001612plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001613
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001614Function : plat_try_next_boot_source() [optional]
1615~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001616
1617::
John Tsichritzisee10e792018-06-06 09:38:10 +01001618
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001619 Argument : void
1620 Return : int
1621
1622This optional function passes to the next boot source in the redundancy
1623sequence.
1624
1625This function moves the current boot redundancy source to the next
1626element in the boot sequence. If there are no more boot sources then it
1627must return 0, otherwise it must return 1. The default implementation
1628of this always returns 0.
1629
Roberto Vargasb1584272017-11-20 13:36:10 +00001630Boot Loader Stage 2 (BL2) at EL3
1631--------------------------------
1632
Dan Handley610e7e12018-03-01 18:44:00 +00001633When the platform has a non-TF-A Boot ROM it is desirable to jump
1634directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001635execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1636document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001637
1638All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001639bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1640their work is done now by bl2_el3_early_platform_setup and
1641bl2_el3_plat_arch_setup. These functions should generally implement
1642the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001643
1644
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001645Function : bl2_el3_early_platform_setup() [mandatory]
1646~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001647
1648::
John Tsichritzisee10e792018-06-06 09:38:10 +01001649
Roberto Vargasb1584272017-11-20 13:36:10 +00001650 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1651 Return : void
1652
1653This function executes with the MMU and data caches disabled. It is only called
1654by the primary CPU. This function receives four parameters which can be used
1655by the platform to pass any needed information from the Boot ROM to BL2.
1656
Dan Handley610e7e12018-03-01 18:44:00 +00001657On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001658
1659- Initializes a UART (PL011 console), which enables access to the ``printf``
1660 family of functions in BL2.
1661
1662- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001663 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1664 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001665
1666- Initializes the private variables that define the memory layout used.
1667
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001668Function : bl2_el3_plat_arch_setup() [mandatory]
1669~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001670
1671::
John Tsichritzisee10e792018-06-06 09:38:10 +01001672
Roberto Vargasb1584272017-11-20 13:36:10 +00001673 Argument : void
1674 Return : void
1675
1676This function executes with the MMU and data caches disabled. It is only called
1677by the primary CPU.
1678
1679The purpose of this function is to perform any architectural initialization
1680that varies across platforms.
1681
Dan Handley610e7e12018-03-01 18:44:00 +00001682On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001683
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001684Function : bl2_el3_plat_prepare_exit() [optional]
1685~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001686
1687::
John Tsichritzisee10e792018-06-06 09:38:10 +01001688
Roberto Vargasb1584272017-11-20 13:36:10 +00001689 Argument : void
1690 Return : void
1691
1692This function is called prior to exiting BL2 and run the next image.
1693It should be used to perform platform specific clean up or bookkeeping
1694operations before transferring control to the next image. This function
1695runs with MMU disabled.
1696
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001697FWU Boot Loader Stage 2 (BL2U)
1698------------------------------
1699
1700The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1701process and is executed only by the primary CPU. BL1 passes control to BL2U at
1702``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1703
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001704#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1705 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1706 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1707 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001708 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1709 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1710
1711#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001712 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001713 normal world can access DDR memory.
1714
1715The following functions must be implemented by the platform port to enable
1716BL2U to perform the tasks mentioned above.
1717
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001718Function : bl2u_early_platform_setup() [mandatory]
1719~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001720
1721::
1722
1723 Argument : meminfo *mem_info, void *plat_info
1724 Return : void
1725
1726This function executes with the MMU and data caches disabled. It is only
1727called by the primary CPU. The arguments to this function is the address
1728of the ``meminfo`` structure and platform specific info provided by BL1.
1729
1730The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1731private storage as the original memory may be subsequently overwritten by BL2U.
1732
Dan Handley610e7e12018-03-01 18:44:00 +00001733On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001734to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001735variable.
1736
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001737Function : bl2u_plat_arch_setup() [mandatory]
1738~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001739
1740::
1741
1742 Argument : void
1743 Return : void
1744
1745This function executes with the MMU and data caches disabled. It is only
1746called by the primary CPU.
1747
1748The purpose of this function is to perform any architectural initialization
1749that varies across platforms, for example enabling the MMU (since the memory
1750map differs across platforms).
1751
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001752Function : bl2u_platform_setup() [mandatory]
1753~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001754
1755::
1756
1757 Argument : void
1758 Return : void
1759
1760This function may execute with the MMU and data caches enabled if the platform
1761port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1762called by the primary CPU.
1763
1764The purpose of this function is to perform any platform initialization
1765specific to BL2U.
1766
Dan Handley610e7e12018-03-01 18:44:00 +00001767In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001768configuration of the TrustZone controller to allow non-secure masters access
1769to most of DRAM. Part of DRAM is reserved for secure world use.
1770
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001771Function : bl2u_plat_handle_scp_bl2u() [optional]
1772~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001773
1774::
1775
1776 Argument : void
1777 Return : int
1778
1779This function is used to perform any platform-specific actions required to
1780handle the SCP firmware. Typically it transfers the image into SCP memory using
1781a platform-specific protocol and waits until SCP executes it and signals to the
1782Application Processor (AP) for BL2U execution to continue.
1783
1784This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001785This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001786
Manish V Badarkhebd617b92021-09-20 15:19:59 +01001787Function : bl2_plat_mboot_init() [optional]
1788~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1789
1790::
1791
1792 Argument : void
1793 Return : void
1794
1795When the MEASURED_BOOT flag is enabled:
1796
1797- This function is used to initialize the backend driver(s) of measured boot.
1798- On the Arm FVP port, this function is used to initialize the Event Log
1799 backend driver with the Event Log buffer information (base address and
1800 size) received from BL1. It results in panic on error.
1801
1802When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1803
1804Function : bl2_plat_mboot_finish() [optional]
1805~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1806
1807::
1808
1809 Argument : void
1810 Return : void
1811
1812When the MEASURED_BOOT flag is enabled:
1813
1814- This function is used to finalize the measured boot backend driver(s),
1815 and also, set the information for the next bootloader component to extend
1816 the measurement if needed.
1817- On the Arm FVP port, this function is used to pass the Event Log buffer
1818 information (base address and size) to non-secure(BL33) and trusted OS(BL32)
1819 via nt_fw and tos_fw config respectively. It results in panic on error.
1820
1821When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1822
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001823Boot Loader Stage 3-1 (BL31)
1824----------------------------
1825
1826During cold boot, the BL31 stage is executed only by the primary CPU. This is
1827determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1828control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1829CPUs. BL31 executes at EL3 and is responsible for:
1830
1831#. Re-initializing all architectural and platform state. Although BL1 performs
1832 some of this initialization, BL31 remains resident in EL3 and must ensure
1833 that EL3 architectural and platform state is completely initialized. It
1834 should make no assumptions about the system state when it receives control.
1835
1836#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001837 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1838 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001839
1840#. Providing runtime firmware services. Currently, BL31 only implements a
1841 subset of the Power State Coordination Interface (PSCI) API as a runtime
1842 service. See Section 3.3 below for details of porting the PSCI
1843 implementation.
1844
1845#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001846 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001847 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001848 executed and run the corresponding image. On ARM platforms, BL31 uses the
1849 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001850
1851If BL31 is a reset vector, It also needs to handle the reset as specified in
1852section 2.2 before the tasks described above.
1853
1854The following functions must be implemented by the platform port to enable BL31
1855to perform the above tasks.
1856
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001857Function : bl31_early_platform_setup2() [mandatory]
1858~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001859
1860::
1861
Soby Mathew97b1bff2018-09-27 16:46:41 +01001862 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001863 Return : void
1864
1865This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001866by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1867platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001868
Soby Mathew97b1bff2018-09-27 16:46:41 +01001869In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001870
Soby Mathew97b1bff2018-09-27 16:46:41 +01001871 arg0 - The pointer to the head of `bl_params_t` list
1872 which is list of executable images following BL31,
1873
1874 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson0232da22021-02-12 17:30:16 +01001875 except in case of Arm FVP and Juno platform.
Manish V Badarkhe81414512020-06-24 15:58:38 +01001876
Mikael Olsson0232da22021-02-12 17:30:16 +01001877 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhe81414512020-06-24 15:58:38 +01001878 of FW_CONFIG.
Soby Mathew97b1bff2018-09-27 16:46:41 +01001879
1880 arg2 - Points to load address of HW_CONFIG if present
1881
1882 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1883 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001884
Soby Mathew97b1bff2018-09-27 16:46:41 +01001885The function runs through the `bl_param_t` list and extracts the entry point
1886information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001887
1888- Initialize a UART (PL011 console), which enables access to the ``printf``
1889 family of functions in BL31.
1890
1891- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1892 CCI slave interface corresponding to the cluster that includes the primary
1893 CPU.
1894
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001895Function : bl31_plat_arch_setup() [mandatory]
1896~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001897
1898::
1899
1900 Argument : void
1901 Return : void
1902
1903This function executes with the MMU and data caches disabled. It is only called
1904by the primary CPU.
1905
1906The purpose of this function is to perform any architectural initialization
1907that varies across platforms.
1908
Dan Handley610e7e12018-03-01 18:44:00 +00001909On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001910
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001911Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001912~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1913
1914::
1915
1916 Argument : void
1917 Return : void
1918
1919This function may execute with the MMU and data caches enabled if the platform
1920port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1921called by the primary CPU.
1922
1923The purpose of this function is to complete platform initialization so that both
1924BL31 runtime services and normal world software can function correctly.
1925
Dan Handley610e7e12018-03-01 18:44:00 +00001926On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001927
1928- Initialize the generic interrupt controller.
1929
1930 Depending on the GIC driver selected by the platform, the appropriate GICv2
1931 or GICv3 initialization will be done, which mainly consists of:
1932
1933 - Enable secure interrupts in the GIC CPU interface.
1934 - Disable the legacy interrupt bypass mechanism.
1935 - Configure the priority mask register to allow interrupts of all priorities
1936 to be signaled to the CPU interface.
1937 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1938 - Target all secure SPIs to CPU0.
1939 - Enable these secure interrupts in the GIC distributor.
1940 - Configure all other interrupts as non-secure.
1941 - Enable signaling of secure interrupts in the GIC distributor.
1942
1943- Enable system-level implementation of the generic timer counter through the
1944 memory mapped interface.
1945
1946- Grant access to the system counter timer module
1947
1948- Initialize the power controller device.
1949
1950 In particular, initialise the locks that prevent concurrent accesses to the
1951 power controller device.
1952
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001953Function : bl31_plat_runtime_setup() [optional]
1954~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001955
1956::
1957
1958 Argument : void
1959 Return : void
1960
1961The purpose of this function is allow the platform to perform any BL31 runtime
1962setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001963implementation of this function will invoke ``console_switch_state()`` to switch
1964console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001965
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001966Function : bl31_plat_get_next_image_ep_info() [mandatory]
1967~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001968
1969::
1970
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001971 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001972 Return : entry_point_info *
1973
1974This function may execute with the MMU and data caches enabled if the platform
1975port does the necessary initializations in ``bl31_plat_arch_setup()``.
1976
1977This function is called by ``bl31_main()`` to retrieve information provided by
1978BL2 for the next image in the security state specified by the argument. BL31
1979uses this information to pass control to that image in the specified security
1980state. This function must return a pointer to the ``entry_point_info`` structure
1981(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1982should return NULL otherwise.
1983
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001984Function : bl31_plat_enable_mmu [optional]
1985~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1986
1987::
1988
1989 Argument : uint32_t
1990 Return : void
1991
1992This function enables the MMU. The boot code calls this function with MMU and
1993caches disabled. This function should program necessary registers to enable
1994translation, and upon return, the MMU on the calling PE must be enabled.
1995
1996The function must honor flags passed in the first argument. These flags are
1997defined by the translation library, and can be found in the file
1998``include/lib/xlat_tables/xlat_mmu_helpers.h``.
1999
2000On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002001is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01002002
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002003Function : plat_init_apkey [optional]
2004~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002005
2006::
2007
2008 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002009 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002010
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002011This function returns the 128-bit value which can be used to program ARMv8.3
2012pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002013
2014The value should be obtained from a reliable source of randomness.
2015
2016This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01002017Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00002018
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002019Function : plat_get_syscnt_freq2() [mandatory]
2020~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002021
2022::
2023
2024 Argument : void
2025 Return : unsigned int
2026
2027This function is used by the architecture setup code to retrieve the counter
2028frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00002029``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002030of the system counter, which is retrieved from the first entry in the frequency
2031modes table.
2032
johpow013e24c162020-04-22 14:05:13 -05002033Function : plat_arm_set_twedel_scr_el3() [optional]
2034~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2035
2036::
2037
2038 Argument : void
2039 Return : uint32_t
2040
2041This function is used in v8.6+ systems to set the WFE trap delay value in
2042SCR_EL3. If this function returns TWED_DISABLED or is left unimplemented, this
2043feature is not enabled. The only hook provided is to set the TWED fields in
2044SCR_EL3, there are similar fields in HCR_EL2, SCTLR_EL2, and SCTLR_EL1 to adjust
2045the WFE trap delays in lower ELs and these fields should be set by the
2046appropriate EL2 or EL1 code depending on the platform configuration.
2047
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002048#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2049~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002050
2051When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2052bytes) aligned to the cache line boundary that should be allocated per-cpu to
2053accommodate all the bakery locks.
2054
2055If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
2056calculates the size of the ``bakery_lock`` input section, aligns it to the
2057nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2058and stores the result in a linker symbol. This constant prevents a platform
2059from relying on the linker and provide a more efficient mechanism for
2060accessing per-cpu bakery lock information.
2061
2062If this constant is defined and its value is not equal to the value
2063calculated by the linker then a link time assertion is raised. A compile time
2064assertion is raised if the value of the constant is not aligned to the cache
2065line boundary.
2066
Paul Beesleyf8640672019-04-12 14:19:42 +01002067.. _porting_guide_sdei_requirements:
2068
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002069SDEI porting requirements
2070~~~~~~~~~~~~~~~~~~~~~~~~~
2071
Paul Beesley606d8072019-03-13 13:58:02 +00002072The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002073and functions, of which some are optional, and some others mandatory.
2074
2075Macros
2076......
2077
2078Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2079^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2080
2081This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002082Normal |SDEI| events on the platform. This must have a higher value
2083(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002084
2085Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2087
2088This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00002089Critical |SDEI| events on the platform. This must have a lower value
2090(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002091
Paul Beesley606d8072019-03-13 13:58:02 +00002092**Note**: |SDEI| exception priorities must be the lowest among Secure
2093priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2094be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002095
2096Functions
2097.........
2098
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002099Function: int plat_sdei_validate_entry_point() [optional]
2100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002101
2102::
2103
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002104 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002105 Return: int
2106
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002107This function validates the entry point address of the event handler provided by
2108the client for both event registration and *Complete and Resume* |SDEI| calls.
2109The function ensures that the address is valid in the client translation regime.
2110
2111The second argument is the exception level that the client is executing in. It
2112can be Non-Secure EL1 or Non-Secure EL2.
2113
2114The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002115
Dan Handley610e7e12018-03-01 18:44:00 +00002116The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleux95db98b2020-05-15 12:05:51 +02002117translates the entry point address within the client translation regime and
2118further ensures that the resulting physical address is located in Non-secure
2119DRAM.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002120
2121Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2122^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2123
2124::
2125
2126 Argument: uint64_t
2127 Argument: unsigned int
2128 Return: void
2129
Paul Beesley606d8072019-03-13 13:58:02 +00002130|SDEI| specification requires that a PE comes out of reset with the events
2131masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2132|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2133time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002134
Paul Beesley606d8072019-03-13 13:58:02 +00002135Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01002136events are masked on the PE, the dispatcher implementation invokes the function
2137``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2138interrupt and the interrupt ID are passed as parameters.
2139
2140The default implementation only prints out a warning message.
2141
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05002142.. _porting_guide_trng_requirements:
2143
2144TRNG porting requirements
2145~~~~~~~~~~~~~~~~~~~~~~~~~
2146
2147The |TRNG| backend requires the platform to provide the following values
2148and mandatory functions.
2149
2150Values
2151......
2152
2153value: uuid_t plat_trng_uuid [mandatory]
2154^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2155
2156This value must be defined to the UUID of the TRNG backend that is specific to
2157the hardware after ``plat_trng_setup`` function is called. This value must
2158conform to the SMCCC calling convention; The most significant 32 bits of the
2159UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2160w0 indicates failure to get a TRNG source.
2161
2162Functions
2163.........
2164
2165Function: void plat_entropy_setup(void) [mandatory]
2166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2167
2168::
2169
2170 Argument: none
2171 Return: none
2172
2173This function is expected to do platform-specific initialization of any TRNG
2174hardware. This may include generating a UUID from a hardware-specific seed.
2175
2176Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2178
2179::
2180
2181 Argument: uint64_t *
2182 Return: bool
2183 Out : when the return value is true, the entropy has been written into the
2184 storage pointed to
2185
2186This function writes entropy into storage provided by the caller. If no entropy
2187is available, it must return false and the storage must not be written.
2188
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002189Power State Coordination Interface (in BL31)
2190--------------------------------------------
2191
Dan Handley610e7e12018-03-01 18:44:00 +00002192The TF-A implementation of the PSCI API is based around the concept of a
2193*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2194share some state on which power management operations can be performed as
2195specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2196a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2197*power domains* are arranged in a hierarchical tree structure and each
2198*power domain* can be identified in a system by the cpu index of any CPU that
2199is part of that domain and a *power domain level*. A processing element (for
2200example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2201logical grouping of CPUs that share some state, then level 1 is that group of
2202CPUs (for example, a cluster), and level 2 is a group of clusters (for
2203example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01002204organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002205
2206BL31's platform initialization code exports a pointer to the platform-specific
2207power management operations required for the PSCI implementation to function
2208correctly. This information is populated in the ``plat_psci_ops`` structure. The
2209PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2210power management operations on the power domains. For example, the target
2211CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2212handler (if present) is called for the CPU power domain.
2213
2214The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2215describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002216defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002217array of local power states where each index corresponds to a power domain
2218level. Each entry contains the local power state the power domain at that power
2219level could enter. It depends on the ``validate_power_state()`` handler to
2220convert the power-state parameter (possibly encoding a composite power state)
2221passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2222
2223The following functions form part of platform port of PSCI functionality.
2224
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002225Function : plat_psci_stat_accounting_start() [optional]
2226~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002227
2228::
2229
2230 Argument : const psci_power_state_t *
2231 Return : void
2232
2233This is an optional hook that platforms can implement for residency statistics
2234accounting before entering a low power state. The ``pwr_domain_state`` field of
2235``state_info`` (first argument) can be inspected if stat accounting is done
2236differently at CPU level versus higher levels. As an example, if the element at
2237index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2238state, special hardware logic may be programmed in order to keep track of the
2239residency statistics. For higher levels (array indices > 0), the residency
2240statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2241default implementation will use PMF to capture timestamps.
2242
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002243Function : plat_psci_stat_accounting_stop() [optional]
2244~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002245
2246::
2247
2248 Argument : const psci_power_state_t *
2249 Return : void
2250
2251This is an optional hook that platforms can implement for residency statistics
2252accounting after exiting from a low power state. The ``pwr_domain_state`` field
2253of ``state_info`` (first argument) can be inspected if stat accounting is done
2254differently at CPU level versus higher levels. As an example, if the element at
2255index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2256state, special hardware logic may be programmed in order to keep track of the
2257residency statistics. For higher levels (array indices > 0), the residency
2258statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2259default implementation will use PMF to capture timestamps.
2260
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002261Function : plat_psci_stat_get_residency() [optional]
2262~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002263
2264::
2265
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002266 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002267 Return : u_register_t
2268
2269This is an optional interface that is is invoked after resuming from a low power
2270state and provides the time spent resident in that low power state by the power
2271domain at a particular power domain level. When a CPU wakes up from suspend,
2272all its parent power domain levels are also woken up. The generic PSCI code
2273invokes this function for each parent power domain that is resumed and it
2274identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2275argument) describes the low power state that the power domain has resumed from.
2276The current CPU is the first CPU in the power domain to resume from the low
2277power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2278CPU in the power domain to suspend and may be needed to calculate the residency
2279for that power domain.
2280
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002281Function : plat_get_target_pwr_state() [optional]
2282~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002283
2284::
2285
2286 Argument : unsigned int, const plat_local_state_t *, unsigned int
2287 Return : plat_local_state_t
2288
2289The PSCI generic code uses this function to let the platform participate in
2290state coordination during a power management operation. The function is passed
2291a pointer to an array of platform specific local power state ``states`` (second
2292argument) which contains the requested power state for each CPU at a particular
2293power domain level ``lvl`` (first argument) within the power domain. The function
2294is expected to traverse this array of upto ``ncpus`` (third argument) and return
2295a coordinated target power state by the comparing all the requested power
2296states. The target power state should not be deeper than any of the requested
2297power states.
2298
2299A weak definition of this API is provided by default wherein it assumes
2300that the platform assigns a local state value in order of increasing depth
2301of the power state i.e. for two power states X & Y, if X < Y
2302then X represents a shallower power state than Y. As a result, the
2303coordinated target local power state for a power domain will be the minimum
2304of the requested local power state values.
2305
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002306Function : plat_get_power_domain_tree_desc() [mandatory]
2307~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002308
2309::
2310
2311 Argument : void
2312 Return : const unsigned char *
2313
2314This function returns a pointer to the byte array containing the power domain
2315topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002316described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2317initialization code requires this array to be described by the platform, either
2318statically or dynamically, to initialize the power domain topology tree. In case
2319the array is populated dynamically, then plat_core_pos_by_mpidr() and
2320plat_my_core_pos() should also be implemented suitably so that the topology tree
2321description matches the CPU indices returned by these APIs. These APIs together
2322form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002323
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002324Function : plat_setup_psci_ops() [mandatory]
2325~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002326
2327::
2328
2329 Argument : uintptr_t, const plat_psci_ops **
2330 Return : int
2331
2332This function may execute with the MMU and data caches enabled if the platform
2333port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2334called by the primary CPU.
2335
2336This function is called by PSCI initialization code. Its purpose is to let
2337the platform layer know about the warm boot entrypoint through the
2338``sec_entrypoint`` (first argument) and to export handler routines for
2339platform-specific psci power management actions by populating the passed
2340pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2341
2342A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002343the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002344``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002345platform wants to support, the associated operation or operations in this
2346structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002347:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002348function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002349structure instead of providing an empty implementation.
2350
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002351plat_psci_ops.cpu_standby()
2352...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002353
2354Perform the platform-specific actions to enter the standby state for a cpu
2355indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002356wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002357For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2358the suspend state type specified in the ``power-state`` parameter should be
2359STANDBY and the target power domain level specified should be the CPU. The
2360handler should put the CPU into a low power retention state (usually by
2361issuing a wfi instruction) and ensure that it can be woken up from that
2362state by a normal interrupt. The generic code expects the handler to succeed.
2363
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002364plat_psci_ops.pwr_domain_on()
2365.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002366
2367Perform the platform specific actions to power on a CPU, specified
2368by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002369return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002371plat_psci_ops.pwr_domain_off()
2372..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002373
2374Perform the platform specific actions to prepare to power off the calling CPU
2375and its higher parent power domain levels as indicated by the ``target_state``
2376(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2377
2378The ``target_state`` encodes the platform coordinated target local power states
2379for the CPU power domain and its parent power domain levels. The handler
2380needs to perform power management operation corresponding to the local state
2381at each power level.
2382
2383For this handler, the local power state for the CPU power domain will be a
2384power down state where as it could be either power down, retention or run state
2385for the higher power domain levels depending on the result of state
2386coordination. The generic code expects the handler to succeed.
2387
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002388plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2389...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002390
2391This optional function may be used as a performance optimization to replace
2392or complement pwr_domain_suspend() on some platforms. Its calling semantics
2393are identical to pwr_domain_suspend(), except the PSCI implementation only
2394calls this function when suspending to a power down state, and it guarantees
2395that data caches are enabled.
2396
2397When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2398before calling pwr_domain_suspend(). If the target_state corresponds to a
2399power down state and it is safe to perform some or all of the platform
2400specific actions in that function with data caches enabled, it may be more
2401efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2402= 1, data caches remain enabled throughout, and so there is no advantage to
2403moving platform specific actions to this function.
2404
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002405plat_psci_ops.pwr_domain_suspend()
2406..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002407
2408Perform the platform specific actions to prepare to suspend the calling
2409CPU and its higher parent power domain levels as indicated by the
2410``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2411API implementation.
2412
2413The ``target_state`` has a similar meaning as described in
2414the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2415target local power states for the CPU power domain and its parent
2416power domain levels. The handler needs to perform power management operation
2417corresponding to the local state at each power level. The generic code
2418expects the handler to succeed.
2419
Douglas Raillarda84996b2017-08-02 16:57:32 +01002420The difference between turning a power domain off versus suspending it is that
2421in the former case, the power domain is expected to re-initialize its state
2422when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2423case, the power domain is expected to save enough state so that it can resume
2424execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002425``pwr_domain_suspend_finish()``).
2426
Douglas Raillarda84996b2017-08-02 16:57:32 +01002427When suspending a core, the platform can also choose to power off the GICv3
2428Redistributor and ITS through an implementation-defined sequence. To achieve
2429this safely, the ITS context must be saved first. The architectural part is
2430implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2431sequence is implementation defined and it is therefore the responsibility of
2432the platform code to implement the necessary sequence. Then the GIC
2433Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2434Powering off the Redistributor requires the implementation to support it and it
2435is the responsibility of the platform code to execute the right implementation
2436defined sequence.
2437
2438When a system suspend is requested, the platform can also make use of the
2439``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2440it has saved the context of the Redistributors and ITS of all the cores in the
2441system. The context of the Distributor can be large and may require it to be
2442allocated in a special area if it cannot fit in the platform's global static
2443data, for example in DRAM. The Distributor can then be powered down using an
2444implementation-defined sequence.
2445
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002446plat_psci_ops.pwr_domain_pwr_down_wfi()
2447.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002448
2449This is an optional function and, if implemented, is expected to perform
2450platform specific actions including the ``wfi`` invocation which allows the
2451CPU to powerdown. Since this function is invoked outside the PSCI locks,
2452the actions performed in this hook must be local to the CPU or the platform
2453must ensure that races between multiple CPUs cannot occur.
2454
2455The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2456operation and it encodes the platform coordinated target local power states for
2457the CPU power domain and its parent power domain levels. This function must
2458not return back to the caller.
2459
2460If this function is not implemented by the platform, PSCI generic
2461implementation invokes ``psci_power_down_wfi()`` for power down.
2462
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002463plat_psci_ops.pwr_domain_on_finish()
2464....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002465
2466This function is called by the PSCI implementation after the calling CPU is
2467powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2468It performs the platform-specific setup required to initialize enough state for
2469this CPU to enter the normal world and also provide secure runtime firmware
2470services.
2471
2472The ``target_state`` (first argument) is the prior state of the power domains
2473immediately before the CPU was turned on. It indicates which power domains
2474above the CPU might require initialization due to having previously been in
2475low power states. The generic code expects the handler to succeed.
2476
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002477plat_psci_ops.pwr_domain_on_finish_late() [optional]
2478...........................................................
2479
2480This optional function is called by the PSCI implementation after the calling
2481CPU is fully powered on with respective data caches enabled. The calling CPU and
2482the associated cluster are guaranteed to be participating in coherency. This
2483function gives the flexibility to perform any platform-specific actions safely,
2484such as initialization or modification of shared data structures, without the
2485overhead of explicit cache maintainace operations.
2486
2487The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2488operation. The generic code expects the handler to succeed.
2489
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002490plat_psci_ops.pwr_domain_suspend_finish()
2491.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002492
2493This function is called by the PSCI implementation after the calling CPU is
2494powered on and released from reset in response to an asynchronous wakeup
2495event, for example a timer interrupt that was programmed by the CPU during the
2496``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2497setup required to restore the saved state for this CPU to resume execution
2498in the normal world and also provide secure runtime firmware services.
2499
2500The ``target_state`` (first argument) has a similar meaning as described in
2501the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2502to succeed.
2503
Douglas Raillarda84996b2017-08-02 16:57:32 +01002504If the Distributor, Redistributors or ITS have been powered off as part of a
2505suspend, their context must be restored in this function in the reverse order
2506to how they were saved during suspend sequence.
2507
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002508plat_psci_ops.system_off()
2509..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002510
2511This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2512call. It performs the platform-specific system poweroff sequence after
2513notifying the Secure Payload Dispatcher.
2514
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002515plat_psci_ops.system_reset()
2516............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002517
2518This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2519call. It performs the platform-specific system reset sequence after
2520notifying the Secure Payload Dispatcher.
2521
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002522plat_psci_ops.validate_power_state()
2523....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002524
2525This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2526call to validate the ``power_state`` parameter of the PSCI API and if valid,
2527populate it in ``req_state`` (second argument) array as power domain level
2528specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002529return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002530normal world PSCI client.
2531
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002532plat_psci_ops.validate_ns_entrypoint()
2533......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002534
2535This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2536``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2537parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002538the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002539propagated back to the normal world PSCI client.
2540
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002541plat_psci_ops.get_sys_suspend_power_state()
2542...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002543
2544This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2545call to get the ``req_state`` parameter from platform which encodes the power
2546domain level specific local states to suspend to system affinity level. The
2547``req_state`` will be utilized to do the PSCI state coordination and
2548``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2549enter system suspend.
2550
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002551plat_psci_ops.get_pwr_lvl_state_idx()
2552.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002553
2554This is an optional function and, if implemented, is invoked by the PSCI
2555implementation to convert the ``local_state`` (first argument) at a specified
2556``pwr_lvl`` (second argument) to an index between 0 and
2557``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2558supports more than two local power states at each power domain level, that is
2559``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2560local power states.
2561
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002562plat_psci_ops.translate_power_state_by_mpidr()
2563..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002564
2565This is an optional function and, if implemented, verifies the ``power_state``
2566(second argument) parameter of the PSCI API corresponding to a target power
2567domain. The target power domain is identified by using both ``MPIDR`` (first
2568argument) and the power domain level encoded in ``power_state``. The power domain
2569level specific local states are to be extracted from ``power_state`` and be
2570populated in the ``output_state`` (third argument) array. The functionality
2571is similar to the ``validate_power_state`` function described above and is
2572envisaged to be used in case the validity of ``power_state`` depend on the
2573targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002574domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002575function is not implemented, then the generic implementation relies on
2576``validate_power_state`` function to translate the ``power_state``.
2577
2578This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002579power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002580APIs as described in Section 5.18 of `PSCI`_.
2581
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002582plat_psci_ops.get_node_hw_state()
2583.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002584
2585This is an optional function. If implemented this function is intended to return
2586the power state of a node (identified by the first parameter, the ``MPIDR``) in
2587the power domain topology (identified by the second parameter, ``power_level``),
2588as retrieved from a power controller or equivalent component on the platform.
2589Upon successful completion, the implementation must map and return the final
2590status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2591must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2592appropriate.
2593
2594Implementations are not expected to handle ``power_levels`` greater than
2595``PLAT_MAX_PWR_LVL``.
2596
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002597plat_psci_ops.system_reset2()
2598.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002599
2600This is an optional function. If implemented this function is
2601called during the ``SYSTEM_RESET2`` call to perform a reset
2602based on the first parameter ``reset_type`` as specified in
2603`PSCI`_. The parameter ``cookie`` can be used to pass additional
2604reset information. If the ``reset_type`` is not supported, the
2605function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2606resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2607and vendor reset can return other PSCI error codes as defined
2608in `PSCI`_. On success this function will not return.
2609
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002610plat_psci_ops.write_mem_protect()
2611.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002612
2613This is an optional function. If implemented it enables or disables the
2614``MEM_PROTECT`` functionality based on the value of ``val``.
2615A non-zero value enables ``MEM_PROTECT`` and a value of zero
2616disables it. Upon encountering failures it must return a negative value
2617and on success it must return 0.
2618
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002619plat_psci_ops.read_mem_protect()
2620................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002621
2622This is an optional function. If implemented it returns the current
2623state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2624failures it must return a negative value and on success it must
2625return 0.
2626
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002627plat_psci_ops.mem_protect_chk()
2628...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002629
2630This is an optional function. If implemented it checks if a memory
2631region defined by a base address ``base`` and with a size of ``length``
2632bytes is protected by ``MEM_PROTECT``. If the region is protected
2633then it must return 0, otherwise it must return a negative number.
2634
Paul Beesleyf8640672019-04-12 14:19:42 +01002635.. _porting_guide_imf_in_bl31:
2636
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002637Interrupt Management framework (in BL31)
2638----------------------------------------
2639
2640BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2641generated in either security state and targeted to EL1 or EL2 in the non-secure
2642state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002643described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002644
2645A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002646text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002647platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002648present in the platform. Arm standard platform layer supports both
2649`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2650and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2651FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002652``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2653details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002654
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002655See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002656
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002657Function : plat_interrupt_type_to_line() [mandatory]
2658~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002659
2660::
2661
2662 Argument : uint32_t, uint32_t
2663 Return : uint32_t
2664
Dan Handley610e7e12018-03-01 18:44:00 +00002665The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002666interrupt line. The specific line that is signaled depends on how the interrupt
2667controller (IC) reports different interrupt types from an execution context in
2668either security state. The IMF uses this API to determine which interrupt line
2669the platform IC uses to signal each type of interrupt supported by the framework
2670from a given security state. This API must be invoked at EL3.
2671
2672The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01002673:ref:`Interrupt Management Framework`) indicating the target type of the
2674interrupt, the second parameter is the security state of the originating
2675execution context. The return result is the bit position in the ``SCR_EL3``
2676register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002677
Dan Handley610e7e12018-03-01 18:44:00 +00002678In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002679configured as FIQs and Non-secure interrupts as IRQs from either security
2680state.
2681
Dan Handley610e7e12018-03-01 18:44:00 +00002682In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002683configured depends on the security state of the execution context when the
2684interrupt is signalled and are as follows:
2685
2686- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2687 NS-EL0/1/2 context.
2688- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2689 in the NS-EL0/1/2 context.
2690- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2691 context.
2692
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002693Function : plat_ic_get_pending_interrupt_type() [mandatory]
2694~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002695
2696::
2697
2698 Argument : void
2699 Return : uint32_t
2700
2701This API returns the type of the highest priority pending interrupt at the
2702platform IC. The IMF uses the interrupt type to retrieve the corresponding
2703handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2704pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2705``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2706
Dan Handley610e7e12018-03-01 18:44:00 +00002707In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002708Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2709the pending interrupt. The type of interrupt depends upon the id value as
2710follows.
2711
2712#. id < 1022 is reported as a S-EL1 interrupt
2713#. id = 1022 is reported as a Non-secure interrupt.
2714#. id = 1023 is reported as an invalid interrupt type.
2715
Dan Handley610e7e12018-03-01 18:44:00 +00002716In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002717``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2718is read to determine the id of the pending interrupt. The type of interrupt
2719depends upon the id value as follows.
2720
2721#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2722#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2723#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2724#. All other interrupt id's are reported as EL3 interrupt.
2725
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002726Function : plat_ic_get_pending_interrupt_id() [mandatory]
2727~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002728
2729::
2730
2731 Argument : void
2732 Return : uint32_t
2733
2734This API returns the id of the highest priority pending interrupt at the
2735platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2736pending.
2737
Dan Handley610e7e12018-03-01 18:44:00 +00002738In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002739Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2740pending interrupt. The id that is returned by API depends upon the value of
2741the id read from the interrupt controller as follows.
2742
2743#. id < 1022. id is returned as is.
2744#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2745 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2746 This id is returned by the API.
2747#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2748
Dan Handley610e7e12018-03-01 18:44:00 +00002749In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002750EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2751group 0 Register*, is read to determine the id of the pending interrupt. The id
2752that is returned by API depends upon the value of the id read from the
2753interrupt controller as follows.
2754
2755#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2756#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2757 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2758 Register* is read to determine the id of the group 1 interrupt. This id
2759 is returned by the API as long as it is a valid interrupt id
2760#. If the id is any of the special interrupt identifiers,
2761 ``INTR_ID_UNAVAILABLE`` is returned.
2762
2763When the API invoked from S-EL1 for GICv3 systems, the id read from system
2764register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002765Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002766``INTR_ID_UNAVAILABLE`` is returned.
2767
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002768Function : plat_ic_acknowledge_interrupt() [mandatory]
2769~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002770
2771::
2772
2773 Argument : void
2774 Return : uint32_t
2775
2776This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002777the highest pending interrupt has begun. It should return the raw, unmodified
2778value obtained from the interrupt controller when acknowledging an interrupt.
2779The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05002780`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002781
Dan Handley610e7e12018-03-01 18:44:00 +00002782This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002783Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2784priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002785It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002786
Dan Handley610e7e12018-03-01 18:44:00 +00002787In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002788from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2789Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2790reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2791group 1*. The read changes the state of the highest pending interrupt from
2792pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002793unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002794
2795The TSP uses this API to start processing of the secure physical timer
2796interrupt.
2797
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002798Function : plat_ic_end_of_interrupt() [mandatory]
2799~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002800
2801::
2802
2803 Argument : uint32_t
2804 Return : void
2805
2806This API is used by the CPU to indicate to the platform IC that processing of
2807the interrupt corresponding to the id (passed as the parameter) has
2808finished. The id should be the same as the id returned by the
2809``plat_ic_acknowledge_interrupt()`` API.
2810
Dan Handley610e7e12018-03-01 18:44:00 +00002811Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002812(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2813system register in case of GICv3 depending on where the API is invoked from,
2814EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2815controller.
2816
2817The TSP uses this API to finish processing of the secure physical timer
2818interrupt.
2819
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002820Function : plat_ic_get_interrupt_type() [mandatory]
2821~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002822
2823::
2824
2825 Argument : uint32_t
2826 Return : uint32_t
2827
2828This API returns the type of the interrupt id passed as the parameter.
2829``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2830interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2831returned depending upon how the interrupt has been configured by the platform
2832IC. This API must be invoked at EL3.
2833
Dan Handley610e7e12018-03-01 18:44:00 +00002834Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002835and Non-secure interrupts as Group1 interrupts. It reads the group value
2836corresponding to the interrupt id from the relevant *Interrupt Group Register*
2837(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2838
Dan Handley610e7e12018-03-01 18:44:00 +00002839In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002840Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2841(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2842as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2843
2844Crash Reporting mechanism (in BL31)
2845-----------------------------------
2846
2847BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002848of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002849on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002850``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2851
2852The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2853implementation of all of them. Platforms may include this file to their
2854makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002855output to be routed over the normal console infrastructure and get printed on
2856consoles configured to output in crash state. ``console_set_scope()`` can be
2857used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00002858
2859.. note::
2860 Platforms are responsible for making sure that they only mark consoles for
2861 use in the crash scope that are able to support this, i.e. that are written
2862 in assembly and conform with the register clobber rules for putc()
2863 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002864
Julius Werneraae9bb12017-09-18 16:49:48 -07002865In some cases (such as debugging very early crashes that happen before the
2866normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002867more explicitly. These platforms may instead provide custom implementations for
2868these. They are executed outside of a C environment and without a stack. Many
2869console drivers provide functions named ``console_xxx_core_init/putc/flush``
2870that are designed to be used by these functions. See Arm platforms (like juno)
2871for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002872
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002873Function : plat_crash_console_init [mandatory]
2874~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002875
2876::
2877
2878 Argument : void
2879 Return : int
2880
2881This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002882console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002883initialization and returns 1 on success.
2884
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002885Function : plat_crash_console_putc [mandatory]
2886~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002887
2888::
2889
2890 Argument : int
2891 Return : int
2892
2893This API is used by the crash reporting mechanism to print a character on the
2894designated crash console. It must only use general purpose registers x1 and
2895x2 to do its work. The parameter and the return value are in general purpose
2896register x0.
2897
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002898Function : plat_crash_console_flush [mandatory]
2899~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002900
2901::
2902
2903 Argument : void
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05002904 Return : void
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002905
2906This API is used by the crash reporting mechanism to force write of all buffered
2907data on the designated crash console. It should only use general purpose
Jimmy Brisson39f9eee2020-08-05 13:44:05 -05002908registers x0 through x5 to do its work.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002909
Manish Pandey9c9f38a2020-06-30 00:46:08 +01002910.. _External Abort handling and RAS Support:
2911
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002912External Abort handling and RAS Support
2913---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002914
2915Function : plat_ea_handler
2916~~~~~~~~~~~~~~~~~~~~~~~~~~
2917
2918::
2919
2920 Argument : int
2921 Argument : uint64_t
2922 Argument : void *
2923 Argument : void *
2924 Argument : uint64_t
2925 Return : void
2926
2927This function is invoked by the RAS framework for the platform to handle an
2928External Abort received at EL3. The intention of the function is to attempt to
2929resolve the cause of External Abort and return; if that's not possible, to
2930initiate orderly shutdown of the system.
2931
2932The first parameter (``int ea_reason``) indicates the reason for External Abort.
2933Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2934
2935The second parameter (``uint64_t syndrome``) is the respective syndrome
2936presented to EL3 after having received the External Abort. Depending on the
2937nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2938can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2939
2940The third parameter (``void *cookie``) is unused for now. The fourth parameter
2941(``void *handle``) is a pointer to the preempted context. The fifth parameter
2942(``uint64_t flags``) indicates the preempted security state. These parameters
2943are received from the top-level exception handler.
2944
2945If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2946function iterates through RAS handlers registered by the platform. If any of the
2947RAS handlers resolve the External Abort, no further action is taken.
2948
2949If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2950could resolve the External Abort, the default implementation prints an error
2951message, and panics.
2952
2953Function : plat_handle_uncontainable_ea
2954~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2955
2956::
2957
2958 Argument : int
2959 Argument : uint64_t
2960 Return : void
2961
2962This function is invoked by the RAS framework when an External Abort of
2963Uncontainable type is received at EL3. Due to the critical nature of
2964Uncontainable errors, the intention of this function is to initiate orderly
2965shutdown of the system, and is not expected to return.
2966
2967This function must be implemented in assembly.
2968
2969The first and second parameters are the same as that of ``plat_ea_handler``.
2970
2971The default implementation of this function calls
2972``report_unhandled_exception``.
2973
2974Function : plat_handle_double_fault
2975~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2976
2977::
2978
2979 Argument : int
2980 Argument : uint64_t
2981 Return : void
2982
2983This function is invoked by the RAS framework when another External Abort is
2984received at EL3 while one is already being handled. I.e., a call to
2985``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2986this function is to initiate orderly shutdown of the system, and is not expected
2987recover or return.
2988
2989This function must be implemented in assembly.
2990
2991The first and second parameters are the same as that of ``plat_ea_handler``.
2992
2993The default implementation of this function calls
2994``report_unhandled_exception``.
2995
2996Function : plat_handle_el3_ea
2997~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2998
2999::
3000
3001 Return : void
3002
3003This function is invoked when an External Abort is received while executing in
3004EL3. Due to its critical nature, the intention of this function is to initiate
3005orderly shutdown of the system, and is not expected recover or return.
3006
3007This function must be implemented in assembly.
3008
3009The default implementation of this function calls
3010``report_unhandled_exception``.
3011
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003012Build flags
3013-----------
3014
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003015There are some build flags which can be defined by the platform to control
3016inclusion or exclusion of certain BL stages from the FIP image. These flags
3017need to be defined in the platform makefile which will get included by the
3018build system.
3019
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01003020- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003021 By default, this flag is defined ``yes`` by the build system and ``BL33``
3022 build option should be supplied as a build option. The platform has the
3023 option of excluding the BL33 image in the ``fip`` image by defining this flag
3024 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3025 are used, this flag will be set to ``no`` automatically.
3026
Paul Beesley07f0a312019-05-16 13:33:18 +01003027Platform include paths
3028----------------------
3029
3030Platforms are allowed to add more include paths to be passed to the compiler.
3031The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3032particular for the file ``platform_def.h``.
3033
3034Example:
3035
3036.. code:: c
3037
3038 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3039
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003040C Library
3041---------
3042
3043To avoid subtle toolchain behavioral dependencies, the header files provided
3044by the compiler are not used. The software is built with the ``-nostdinc`` flag
3045to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00003046required headers are included in the TF-A source tree. The library only
3047contains those C library definitions required by the local implementation. If
3048more functionality is required, the needed library functions will need to be
3049added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003050
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003051Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00003052been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003053from `FreeBSD`_, others have been written specifically for TF-A as well. The
3054files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003055
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01003056SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3057can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003058
3059Storage abstraction layer
3060-------------------------
3061
Louis Mayencourtb5469002019-07-15 13:56:03 +01003062In order to improve platform independence and portability a storage abstraction
3063layer is used to load data from non-volatile platform storage. Currently
3064storage access is only required by BL1 and BL2 phases and performed inside the
3065``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003066
Louis Mayencourtb5469002019-07-15 13:56:03 +01003067.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003068
Dan Handley610e7e12018-03-01 18:44:00 +00003069It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003070development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01003071the default means to load data from storage (see :ref:`firmware_design_fip`).
3072The storage layer is described in the header file
3073``include/drivers/io/io_storage.h``. The implementation of the common library is
3074in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003075``drivers/io/``.
3076
Louis Mayencourtb5469002019-07-15 13:56:03 +01003077.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
3078
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003079Each IO driver must provide ``io_dev_*`` structures, as described in
3080``drivers/io/io_driver.h``. These are returned via a mandatory registration
3081function that is called on platform initialization. The semi-hosting driver
3082implementation in ``io_semihosting.c`` can be used as an example.
3083
Louis Mayencourtb5469002019-07-15 13:56:03 +01003084Each platform should register devices and their drivers via the storage
3085abstraction layer. These drivers then need to be initialized by bootloader
3086phases as required in their respective ``blx_platform_setup()`` functions.
3087
3088.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
3089
3090The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3091initialize storage devices before IO operations are called.
3092
3093.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
3094
3095The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003096include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3097Drivers do not have to implement all operations, but each platform must
3098provide at least one driver for a device capable of supporting generic
3099operations such as loading a bootloader image.
3100
3101The current implementation only allows for known images to be loaded by the
3102firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00003103``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003104there). The platform layer (``plat_get_image_source()``) then returns a reference
3105to a device and a driver-specific ``spec`` which will be understood by the driver
3106to allow access to the image data.
3107
3108The layer is designed in such a way that is it possible to chain drivers with
3109other drivers. For example, file-system drivers may be implemented on top of
3110physical block devices, both represented by IO devices with corresponding
3111drivers. In such a case, the file-system "binding" with the block device may
3112be deferred until the file-system device is initialised.
3113
3114The abstraction currently depends on structures being statically allocated
3115by the drivers and callers, as the system does not yet provide a means of
3116dynamically allocating memory. This may also have the affect of limiting the
3117amount of open resources per driver.
3118
3119--------------
3120
Jimmy Brisson26c5b5c2020-06-22 14:18:42 -05003121*Copyright (c) 2013-2021, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003122
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003123.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00003124.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003125.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00003126.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01003127.. _SCC: http://www.simple-cc.org/