blob: d6572f50771d47acd50b9ae23c9fcc3b3ff75367 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesleyf8640672019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Paul Beesleyf8640672019-04-12 14:19:42 +010026Please refer to the :ref:`Platform Compatibility Policy` for the policy
27regarding compatibility and deprecation of these porting interfaces.
Soby Mathew02bdbb92018-09-26 11:17:23 +010028
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillardd7c21b72017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley610e7e12018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010061
Dan Handley610e7e12018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010092File : platform_def.h [mandatory]
93~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010094
95Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000096include path with the following constants defined. This will require updating
97the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010098
Paul Beesleyf8640672019-04-12 14:19:42 +010099Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100which provides typical values for some of the constants below. These values are
101likely to be suitable for all platform ports.
102
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100103- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100104
105 Defines the linker format used by the platform, for example
106 ``elf64-littleaarch64``.
107
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100108- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100109
110 Defines the processor architecture for the linker by the platform, for
111 example ``aarch64``.
112
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100113- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100114
115 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesleyf8640672019-04-12 14:19:42 +0100116 by ``plat/common/aarch64/platform_mp_stack.S`` and
117 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100118
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100119- **define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
121 Defines the size in bits of the largest cache line across all the cache
122 levels in the platform.
123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100124- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100125
126 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
127 function.
128
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100129- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100130
131 Defines the total number of CPUs implemented by the platform across all
132 clusters in the system.
133
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100134- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100135
136 Defines the total number of nodes in the power domain topology
137 tree at all the power domain levels used by the platform.
138 This macro is used by the PSCI implementation to allocate
139 data structures to represent power domain topology.
140
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100141- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100142
143 Defines the maximum power domain level that the power management operations
144 should apply to. More often, but not always, the power domain level
145 corresponds to affinity level. This macro allows the PSCI implementation
146 to know the highest power domain level that it should consider for power
147 management operations in the system that the platform implements. For
148 example, the Base AEM FVP implements two clusters with a configurable
149 number of CPUs and it reports the maximum power domain level as 1.
150
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100151- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100152
153 Defines the local power state corresponding to the deepest power down
154 possible at every power domain level in the platform. The local power
155 states for each level may be sparsely allocated between 0 and this value
156 with 0 being reserved for the RUN state. The PSCI implementation uses this
157 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100158 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100159
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 Defines the local power state corresponding to the deepest retention state
163 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100164 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100165 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
170 Defines the maximum number of local power states per power domain level
171 that the platform supports. The default value of this macro is 2 since
172 most platforms just support a maximum of two local power states at each
173 power domain level (power-down and retention). If the platform needs to
174 account for more local power states, then it must redefine this macro.
175
176 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100177 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100178
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
181 Defines the base address in secure ROM where BL1 originally lives. Must be
182 aligned on a page-size boundary.
183
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100184- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100185
186 Defines the maximum address in secure ROM that BL1's actual content (i.e.
187 excluding any data section allocated at runtime) can occupy.
188
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100189- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100190
191 Defines the base address in secure RAM where BL1's read-write data will live
192 at runtime. Must be aligned on a page-size boundary.
193
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100194- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100195
196 Defines the maximum address in secure RAM that BL1's read-write data can
197 occupy at runtime.
198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100199- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100200
201 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000202 Must be aligned on a page-size boundary. This constant is not applicable
203 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100204
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100205- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
207 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000208 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
209
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100210- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000211
212 Defines the base address in secure XIP memory where BL2 RO section originally
213 lives. Must be aligned on a page-size boundary. This constant is only needed
214 when BL2_IN_XIP_MEM is set to '1'.
215
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100216- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000217
218 Defines the maximum address in secure XIP memory that BL2's actual content
219 (i.e. excluding any data section allocated at runtime) can occupy. This
220 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
221
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100222- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000223
224 Defines the base address in secure RAM where BL2's read-write data will live
225 at runtime. Must be aligned on a page-size boundary. This constant is only
226 needed when BL2_IN_XIP_MEM is set to '1'.
227
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100228- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000229
230 Defines the maximum address in secure RAM that BL2's read-write data can
231 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
232 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100233
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100234- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
236 Defines the base address in secure RAM where BL2 loads the BL31 binary
237 image. Must be aligned on a page-size boundary.
238
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100239- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100240
241 Defines the maximum address in secure RAM that the BL31 image can occupy.
242
243For every image, the platform must define individual identifiers that will be
244used by BL1 or BL2 to load the corresponding image into memory from non-volatile
245storage. For the sake of performance, integer numbers will be used as
246identifiers. The platform will use those identifiers to return the relevant
247information about the image to be loaded (file handler, load address,
248authentication information, etc.). The following image identifiers are
249mandatory:
250
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100251- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100252
253 BL2 image identifier, used by BL1 to load BL2.
254
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100255- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100256
257 BL31 image identifier, used by BL2 to load BL31.
258
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100259- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100260
261 BL33 image identifier, used by BL2 to load BL33.
262
263If Trusted Board Boot is enabled, the following certificate identifiers must
264also be defined:
265
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100266- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100267
268 BL2 content certificate identifier, used by BL1 to load the BL2 content
269 certificate.
270
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100271- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100272
273 Trusted key certificate identifier, used by BL2 to load the trusted key
274 certificate.
275
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100276- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100277
278 BL31 key certificate identifier, used by BL2 to load the BL31 key
279 certificate.
280
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100281- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100282
283 BL31 content certificate identifier, used by BL2 to load the BL31 content
284 certificate.
285
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100286- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100287
288 BL33 key certificate identifier, used by BL2 to load the BL33 key
289 certificate.
290
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100291- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100292
293 BL33 content certificate identifier, used by BL2 to load the BL33 content
294 certificate.
295
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100296- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299 FWU content certificate.
300
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100301- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100302
Dan Handley610e7e12018-03-01 18:44:00 +0000303 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000305 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 set.
307
308If the AP Firmware Updater Configuration image, BL2U is used, the following
309must also be defined:
310
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100311- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100312
313 Defines the base address in secure memory where BL1 copies the BL2U binary
314 image. Must be aligned on a page-size boundary.
315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100316- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100317
318 Defines the maximum address in secure memory that the BL2U image can occupy.
319
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100320- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100321
322 BL2U image identifier, used by BL1 to fetch an image descriptor
323 corresponding to BL2U.
324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100325If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100326must also be defined:
327
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100328- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
331 corresponding to SCP_BL2U.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000332
333 .. note::
334 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100336If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337also be defined:
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000343
344 .. note::
345 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100347- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100348
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100349 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
350 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100352If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100353be defined:
354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100357 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358 Must be aligned on a page-size boundary.
Paul Beesleyba3ed402019-03-13 16:20:44 +0000359
360 .. note::
361 TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100363- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100364
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100365 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
366 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100367
368For the the Firmware update capability of TRUSTED BOARD BOOT, the following
369macros may also be defined:
370
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100371- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100372
373 Total number of images that can be loaded simultaneously. If the platform
374 doesn't specify any value, it defaults to 10.
375
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100376If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100377also be defined:
378
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100379- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100380
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100381 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000382 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100384- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100385
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100386 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100387 certificate (mandatory when Trusted Board Boot is enabled).
388
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100389- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100391 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100392 content certificate (mandatory when Trusted Board Boot is enabled).
393
394If a BL32 image is supported by the platform, the following constants must
395also be defined:
396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100397- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100398
399 BL32 image identifier, used by BL2 to load BL32.
400
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100401- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100402
403 BL32 key certificate identifier, used by BL2 to load the BL32 key
404 certificate (mandatory when Trusted Board Boot is enabled).
405
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100406- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100407
408 BL32 content certificate identifier, used by BL2 to load the BL32 content
409 certificate (mandatory when Trusted Board Boot is enabled).
410
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100411- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100412
413 Defines the base address in secure memory where BL2 loads the BL32 binary
414 image. Must be aligned on a page-size boundary.
415
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100416- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100417
418 Defines the maximum address that the BL32 image can occupy.
419
420If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
421platform, the following constants must also be defined:
422
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100423- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100424
425 Defines the base address of the secure memory used by the TSP image on the
426 platform. This must be at the same address or below ``BL32_BASE``.
427
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100428- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100429
430 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000431 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
432 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
433 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100434
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100435- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100436
437 Defines the ID of the secure physical generic timer interrupt used by the
438 TSP's interrupt handling code.
439
440If the platform port uses the translation table library code, the following
441constants must also be defined:
442
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100443- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100444
445 Optional flag that can be set per-image to enable the dynamic allocation of
446 regions even when the MMU is enabled. If not defined, only static
447 functionality will be available, if defined and set to 1 it will also
448 include the dynamic functionality.
449
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100450- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100451
452 Defines the maximum number of translation tables that are allocated by the
453 translation table library code. To minimize the amount of runtime memory
454 used, choose the smallest value needed to map the required virtual addresses
455 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
456 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
457 as well.
458
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100459- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100460
461 Defines the maximum number of regions that are allocated by the translation
462 table library code. A region consists of physical base address, virtual base
463 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
464 defined in the ``mmap_region_t`` structure. The platform defines the regions
465 that should be mapped. Then, the translation table library will create the
466 corresponding tables and descriptors at runtime. To minimize the amount of
467 runtime memory used, choose the smallest value needed to register the
468 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
469 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
470 the dynamic regions as well.
471
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100472- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100473
474 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000475 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100476
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100477- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100478
479 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000480 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100481
482If the platform port uses the IO storage framework, the following constants
483must also be defined:
484
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100485- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100486
487 Defines the maximum number of registered IO devices. Attempting to register
488 more devices than this value using ``io_register_device()`` will fail with
489 -ENOMEM.
490
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100491- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100492
493 Defines the maximum number of open IO handles. Attempting to open more IO
494 entities than this value using ``io_open()`` will fail with -ENOMEM.
495
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100496- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100497
498 Defines the maximum number of registered IO block devices. Attempting to
499 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100500 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100501 With this macro, multiple block devices could be supported at the same
502 time.
503
504If the platform needs to allocate data within the per-cpu data framework in
505BL31, it should define the following macro. Currently this is only required if
506the platform decides not to use the coherent memory section by undefining the
507``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
508required memory within the the per-cpu data to minimize wastage.
509
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100510- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100511
512 Defines the memory (in bytes) to be reserved within the per-cpu data
513 structure for use by the platform layer.
514
515The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000516memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100517
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100518- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100519
520 Defines the maximum address in secure RAM that the BL31's progbits sections
521 can occupy.
522
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100523- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100524
525 Defines the maximum address that the TSP's progbits sections can occupy.
526
527If the platform port uses the PL061 GPIO driver, the following constant may
528optionally be defined:
529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100530- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531 Maximum number of GPIOs required by the platform. This allows control how
532 much memory is allocated for PL061 GPIO controllers. The default value is
533
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100534 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100535
536If the platform port uses the partition driver, the following constant may
537optionally be defined:
538
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100539- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100540 Maximum number of partition entries required by the platform. This allows
541 control how much memory is allocated for partition entries. The default
542 value is 128.
Paul Beesleyf8640672019-04-12 14:19:42 +0100543 For example, define the build flag in ``platform.mk``:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100544 PLAT_PARTITION_MAX_ENTRIES := 12
545 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100546
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800547- **PLAT_PARTITION_BLOCK_SIZE**
548 The size of partition block. It could be either 512 bytes or 4096 bytes.
549 The default value is 512.
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000550 For example, define the build flag in ``platform.mk``:
Haojian Zhuang42a746d2019-09-14 18:01:16 +0800551 PLAT_PARTITION_BLOCK_SIZE := 4096
552 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
553
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100554The following constant is optional. It should be defined to override the default
555behaviour of the ``assert()`` function (for example, to save memory).
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100558 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
559 ``assert()`` prints the name of the file, the line number and the asserted
560 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
561 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
562 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
563 defined, it defaults to ``LOG_LEVEL``.
564
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000565If the platform port uses the Activity Monitor Unit, the following constants
566may be defined:
567
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100568- **PLAT_AMU_GROUP1_COUNTERS_MASK**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000569 This mask reflects the set of group counters that should be enabled. The
570 maximum number of group 1 counters supported by AMUv1 is 16 so the mask
571 can be at most 0xffff. If the platform does not define this mask, no group 1
572 counters are enabled. If the platform defines this mask, the following
573 constant needs to also be defined.
574
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100575- **PLAT_AMU_GROUP1_NR_COUNTERS**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000576 This value is used to allocate an array to save and restore the counters
577 specified by ``PLAT_AMU_GROUP1_COUNTERS_MASK`` on CPU suspend.
578 This value should be equal to the highest bit position set in the
579 mask, plus 1. The maximum number of group 1 counters in AMUv1 is 16.
580
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100581File : plat_macros.S [mandatory]
582~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100583
584Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000585the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100586found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
587
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100588- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100589
590 This macro allows the crash reporting routine to print relevant platform
591 registers in case of an unhandled exception in BL31. This aids in debugging
592 and this macro can be defined to be empty in case register reporting is not
593 desired.
594
595 For instance, GIC or interconnect registers may be helpful for
596 troubleshooting.
597
598Handling Reset
599--------------
600
601BL1 by default implements the reset vector where execution starts from a cold
602or warm boot. BL31 can be optionally set as a reset vector using the
603``RESET_TO_BL31`` make variable.
604
605For each CPU, the reset vector code is responsible for the following tasks:
606
607#. Distinguishing between a cold boot and a warm boot.
608
609#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
610 the CPU is placed in a platform-specific state until the primary CPU
611 performs the necessary steps to remove it from this state.
612
613#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
614 specific address in the BL31 image in the same processor mode as it was
615 when released from reset.
616
617The following functions need to be implemented by the platform port to enable
618reset vector code to perform the above tasks.
619
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100620Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
621~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100622
623::
624
625 Argument : void
626 Return : uintptr_t
627
628This function is called with the MMU and caches disabled
629(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
630distinguishing between a warm and cold reset for the current CPU using
631platform-specific means. If it's a warm reset, then it returns the warm
632reset entrypoint point provided to ``plat_setup_psci_ops()`` during
633BL31 initialization. If it's a cold reset then this function must return zero.
634
635This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000636Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100637not assume that callee saved registers are preserved across a call to this
638function.
639
640This function fulfills requirement 1 and 3 listed above.
641
642Note that for platforms that support programming the reset address, it is
643expected that a CPU will start executing code directly at the right address,
644both on a cold and warm reset. In this case, there is no need to identify the
645type of reset nor to query the warm reset entrypoint. Therefore, implementing
646this function is not required on such platforms.
647
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100648Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
649~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100650
651::
652
653 Argument : void
654
655This function is called with the MMU and data caches disabled. It is responsible
656for placing the executing secondary CPU in a platform-specific state until the
657primary CPU performs the necessary actions to bring it out of that state and
658allow entry into the OS. This function must not return.
659
Dan Handley610e7e12018-03-01 18:44:00 +0000660In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100661itself off. The primary CPU is responsible for powering up the secondary CPUs
662when normal world software requires them. When booting an EL3 payload instead,
663they stay powered on and are put in a holding pen until their mailbox gets
664populated.
665
666This function fulfills requirement 2 above.
667
668Note that for platforms that can't release secondary CPUs out of reset, only the
669primary CPU will execute the cold boot code. Therefore, implementing this
670function is not required on such platforms.
671
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100672Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
673~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100674
675::
676
677 Argument : void
678 Return : unsigned int
679
680This function identifies whether the current CPU is the primary CPU or a
681secondary CPU. A return value of zero indicates that the CPU is not the
682primary CPU, while a non-zero return value indicates that the CPU is the
683primary CPU.
684
685Note that for platforms that can't release secondary CPUs out of reset, only the
686primary CPU will execute the cold boot code. Therefore, there is no need to
687distinguish between primary and secondary CPUs and implementing this function is
688not required.
689
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100690Function : platform_mem_init() [mandatory]
691~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100692
693::
694
695 Argument : void
696 Return : void
697
698This function is called before any access to data is made by the firmware, in
699order to carry out any essential memory initialization.
700
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100701Function: plat_get_rotpk_info()
702~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100703
704::
705
706 Argument : void *, void **, unsigned int *, unsigned int *
707 Return : int
708
709This function is mandatory when Trusted Board Boot is enabled. It returns a
710pointer to the ROTPK stored in the platform (or a hash of it) and its length.
711The ROTPK must be encoded in DER format according to the following ASN.1
712structure:
713
714::
715
716 AlgorithmIdentifier ::= SEQUENCE {
717 algorithm OBJECT IDENTIFIER,
718 parameters ANY DEFINED BY algorithm OPTIONAL
719 }
720
721 SubjectPublicKeyInfo ::= SEQUENCE {
722 algorithm AlgorithmIdentifier,
723 subjectPublicKey BIT STRING
724 }
725
726In case the function returns a hash of the key:
727
728::
729
730 DigestInfo ::= SEQUENCE {
731 digestAlgorithm AlgorithmIdentifier,
732 digest OCTET STRING
733 }
734
735The function returns 0 on success. Any other value is treated as error by the
736Trusted Board Boot. The function also reports extra information related
737to the ROTPK in the flags parameter:
738
739::
740
741 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
742 hash.
743 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
744 verification while the platform ROTPK is not deployed.
745 When this flag is set, the function does not need to
746 return a platform ROTPK, and the authentication
747 framework uses the ROTPK in the certificate without
748 verifying it against the platform value. This flag
749 must not be used in a deployed production environment.
750
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100751Function: plat_get_nv_ctr()
752~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100753
754::
755
756 Argument : void *, unsigned int *
757 Return : int
758
759This function is mandatory when Trusted Board Boot is enabled. It returns the
760non-volatile counter value stored in the platform in the second argument. The
761cookie in the first argument may be used to select the counter in case the
762platform provides more than one (for example, on platforms that use the default
763TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100764TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100765
766The function returns 0 on success. Any other value means the counter value could
767not be retrieved from the platform.
768
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100769Function: plat_set_nv_ctr()
770~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100771
772::
773
774 Argument : void *, unsigned int
775 Return : int
776
777This function is mandatory when Trusted Board Boot is enabled. It sets a new
778counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100779select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100780the updated counter value to be written to the NV counter.
781
782The function returns 0 on success. Any other value means the counter value could
783not be updated.
784
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100785Function: plat_set_nv_ctr2()
786~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100787
788::
789
790 Argument : void *, const auth_img_desc_t *, unsigned int
791 Return : int
792
793This function is optional when Trusted Board Boot is enabled. If this
794interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
795first argument passed is a cookie and is typically used to
796differentiate between a Non Trusted NV Counter and a Trusted NV
797Counter. The second argument is a pointer to an authentication image
798descriptor and may be used to decide if the counter is allowed to be
799updated or not. The third argument is the updated counter value to
800be written to the NV counter.
801
802The function returns 0 on success. Any other value means the counter value
803either could not be updated or the authentication image descriptor indicates
804that it is not allowed to be updated.
805
806Common mandatory function modifications
807---------------------------------------
808
809The following functions are mandatory functions which need to be implemented
810by the platform port.
811
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100812Function : plat_my_core_pos()
813~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100814
815::
816
817 Argument : void
818 Return : unsigned int
819
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000820This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100821CPU-specific linear index into blocks of memory (for example while allocating
822per-CPU stacks). This function will be invoked very early in the
823initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000824implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100825runtime environment. This function can clobber x0 - x8 and must preserve
826x9 - x29.
827
828This function plays a crucial role in the power domain topology framework in
Paul Beesleyf8640672019-04-12 14:19:42 +0100829PSCI and details of this can be found in
830:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100831
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100832Function : plat_core_pos_by_mpidr()
833~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100834
835::
836
837 Argument : u_register_t
838 Return : int
839
840This function validates the ``MPIDR`` of a CPU and converts it to an index,
841which can be used as a CPU-specific linear index into blocks of memory. In
842case the ``MPIDR`` is invalid, this function returns -1. This function will only
843be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000844utilize the C runtime environment. For further details about how TF-A
845represents the power domain topology and how this relates to the linear CPU
Paul Beesleyf8640672019-04-12 14:19:42 +0100846index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100847
Ambroise Vincentd207f562019-04-10 12:50:27 +0100848Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
849~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
850
851::
852
853 Arguments : void **heap_addr, size_t *heap_size
854 Return : int
855
856This function is invoked during Mbed TLS library initialisation to get a heap,
857by means of a starting address and a size. This heap will then be used
858internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
859must be able to provide a heap to it.
860
861A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
862which a heap is statically reserved during compile time inside every image
863(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
864the function simply returns the address and size of this "pre-allocated" heap.
865For a platform to use this default implementation, only a call to the helper
866from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
867
868However, by writting their own implementation, platforms have the potential to
869optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
870shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
871twice.
872
873On success the function should return 0 and a negative error code otherwise.
874
Sumit Gargc0c369c2019-11-15 18:47:53 +0530875Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
876~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
877
878::
879
880 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
881 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
882 size_t img_id_len
883 Return : int
884
885This function provides a symmetric key (either SSK or BSSK depending on
886fw_enc_status) which is invoked during runtime decryption of encrypted
887firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
888implementation for testing purposes which must be overridden by the platform
889trying to implement a real world firmware encryption use-case.
890
891It also allows the platform to pass symmetric key identifier rather than
892actual symmetric key which is useful in cases where the crypto backend provides
893secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
894flag must be set in ``flags``.
895
896In addition to above a platform may also choose to provide an image specific
897symmetric key/identifier using img_id.
898
899On success the function should return 0 and a negative error code otherwise.
900
901Note that this API depends on ``DECRYPTION_SUPPORT`` build flag which is
902marked as experimental.
903
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100904Common optional modifications
905-----------------------------
906
907The following are helper functions implemented by the firmware that perform
908common platform-specific tasks. A platform may choose to override these
909definitions.
910
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100911Function : plat_set_my_stack()
912~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100913
914::
915
916 Argument : void
917 Return : void
918
919This function sets the current stack pointer to the normal memory stack that
920has been allocated for the current CPU. For BL images that only require a
921stack for the primary CPU, the UP version of the function is used. The size
922of the stack allocated to each CPU is specified by the platform defined
923constant ``PLATFORM_STACK_SIZE``.
924
925Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100926provided in ``plat/common/aarch64/platform_up_stack.S`` and
927``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100928
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100929Function : plat_get_my_stack()
930~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100931
932::
933
934 Argument : void
935 Return : uintptr_t
936
937This function returns the base address of the normal memory stack that
938has been allocated for the current CPU. For BL images that only require a
939stack for the primary CPU, the UP version of the function is used. The size
940of the stack allocated to each CPU is specified by the platform defined
941constant ``PLATFORM_STACK_SIZE``.
942
943Common implementations of this function for the UP and MP BL images are
Paul Beesleyf8640672019-04-12 14:19:42 +0100944provided in ``plat/common/aarch64/platform_up_stack.S`` and
945``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100946
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100947Function : plat_report_exception()
948~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100949
950::
951
952 Argument : unsigned int
953 Return : void
954
955A platform may need to report various information about its status when an
956exception is taken, for example the current exception level, the CPU security
957state (secure/non-secure), the exception type, and so on. This function is
958called in the following circumstances:
959
960- In BL1, whenever an exception is taken.
961- In BL2, whenever an exception is taken.
962
963The default implementation doesn't do anything, to avoid making assumptions
964about the way the platform displays its status information.
965
966For AArch64, this function receives the exception type as its argument.
967Possible values for exceptions types are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +0100968``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +0000969related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100970
971For AArch32, this function receives the exception mode as its argument.
972Possible values for exception modes are listed in the
Paul Beesleyf8640672019-04-12 14:19:42 +0100973``include/lib/aarch32/arch.h`` header file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100974
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100975Function : plat_reset_handler()
976~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100977
978::
979
980 Argument : void
981 Return : void
982
983A platform may need to do additional initialization after reset. This function
Paul Beesleyf2ec7142019-10-04 16:17:46 +0000984allows the platform to do the platform specific initializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000985specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100986preserve the values of callee saved registers x19 to x29.
987
988The default implementation doesn't do anything. If a platform needs to override
Paul Beesleyf8640672019-04-12 14:19:42 +0100989the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100990guidelines.
991
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100992Function : plat_disable_acp()
993~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100994
995::
996
997 Argument : void
998 Return : void
999
John Tsichritzis6dda9762018-07-23 09:18:04 +01001000This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001001present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +01001002doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001003it has restrictions for stack usage and it can use the registers x0 - x17 as
1004scratch registers. It should preserve the value in x18 register as it is used
1005by the caller to store the return address.
1006
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001007Function : plat_error_handler()
1008~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001009
1010::
1011
1012 Argument : int
1013 Return : void
1014
1015This API is called when the generic code encounters an error situation from
1016which it cannot continue. It allows the platform to perform error reporting or
1017recovery actions (for example, reset the system). This function must not return.
1018
1019The parameter indicates the type of error using standard codes from ``errno.h``.
1020Possible errors reported by the generic code are:
1021
1022- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1023 Board Boot is enabled)
1024- ``-ENOENT``: the requested image or certificate could not be found or an IO
1025 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +00001026- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1027 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001028
1029The default implementation simply spins.
1030
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001031Function : plat_panic_handler()
1032~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001033
1034::
1035
1036 Argument : void
1037 Return : void
1038
1039This API is called when the generic code encounters an unexpected error
1040situation from which it cannot recover. This function must not return,
1041and must be implemented in assembly because it may be called before the C
1042environment is initialized.
1043
Paul Beesleyba3ed402019-03-13 16:20:44 +00001044.. note::
1045 The address from where it was called is stored in x30 (Link Register).
1046 The default implementation simply spins.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001047
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001048Function : plat_get_bl_image_load_info()
1049~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001050
1051::
1052
1053 Argument : void
1054 Return : bl_load_info_t *
1055
1056This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001057populated to load. This function is invoked in BL2 to load the
1058BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001059
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001060Function : plat_get_next_bl_params()
1061~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001062
1063::
1064
1065 Argument : void
1066 Return : bl_params_t *
1067
1068This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001069kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001070function is invoked in BL2 to pass this information to the next BL
1071image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001072
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001073Function : plat_get_stack_protector_canary()
1074~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001075
1076::
1077
1078 Argument : void
1079 Return : u_register_t
1080
1081This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001082when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001083value will weaken the protection as the attacker could easily write the right
1084value as part of the attack most of the time. Therefore, it should return a
1085true random number.
1086
Paul Beesleyba3ed402019-03-13 16:20:44 +00001087.. warning::
1088 For the protection to be effective, the global data need to be placed at
1089 a lower address than the stack bases. Failure to do so would allow an
1090 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001091
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001092Function : plat_flush_next_bl_params()
1093~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001094
1095::
1096
1097 Argument : void
1098 Return : void
1099
1100This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001101next image. This function is invoked in BL2 to flush this information
1102to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001103
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001104Function : plat_log_get_prefix()
1105~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001106
1107::
1108
1109 Argument : unsigned int
1110 Return : const char *
1111
1112This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001113prepended to all the log output from TF-A. The `log_level` (argument) will
1114correspond to one of the standard log levels defined in debug.h. The platform
1115can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001116the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001117increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001118
Manish V Badarkhef809c6e2020-02-22 08:43:00 +00001119Function : plat_get_soc_version()
1120~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1121
1122::
1123
1124 Argument : void
1125 Return : int32_t
1126
1127This function returns soc version which mainly consist of below fields
1128
1129::
1130
1131 soc_version[30:24] = JEP-106 continuation code for the SiP
1132 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
1133
1134Function : plat_get_soc_revision()
1135~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1136
1137::
1138
1139 Argument : void
1140 Return : int32_t
1141
1142This function returns soc revision in below format
1143
1144::
1145
1146 soc_revision[0:30] = SOC revision of specific SOC
1147
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001148Modifications specific to a Boot Loader stage
1149---------------------------------------------
1150
1151Boot Loader Stage 1 (BL1)
1152-------------------------
1153
1154BL1 implements the reset vector where execution starts from after a cold or
1155warm boot. For each CPU, BL1 is responsible for the following tasks:
1156
1157#. Handling the reset as described in section 2.2
1158
1159#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1160 only this CPU executes the remaining BL1 code, including loading and passing
1161 control to the BL2 stage.
1162
1163#. Identifying and starting the Firmware Update process (if required).
1164
1165#. Loading the BL2 image from non-volatile storage into secure memory at the
1166 address specified by the platform defined constant ``BL2_BASE``.
1167
1168#. Populating a ``meminfo`` structure with the following information in memory,
1169 accessible by BL2 immediately upon entry.
1170
1171 ::
1172
1173 meminfo.total_base = Base address of secure RAM visible to BL2
1174 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001175
Soby Mathew97b1bff2018-09-27 16:46:41 +01001176 By default, BL1 places this ``meminfo`` structure at the end of secure
1177 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001178
Soby Mathewb1bf0442018-02-16 14:52:52 +00001179 It is possible for the platform to decide where it wants to place the
1180 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1181 BL2 by overriding the weak default implementation of
1182 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001183
1184The following functions need to be implemented by the platform port to enable
1185BL1 to perform the above tasks.
1186
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001187Function : bl1_early_platform_setup() [mandatory]
1188~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001189
1190::
1191
1192 Argument : void
1193 Return : void
1194
1195This function executes with the MMU and data caches disabled. It is only called
1196by the primary CPU.
1197
Dan Handley610e7e12018-03-01 18:44:00 +00001198On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001199
1200- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1201
1202- Initializes a UART (PL011 console), which enables access to the ``printf``
1203 family of functions in BL1.
1204
1205- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1206 the CCI slave interface corresponding to the cluster that includes the
1207 primary CPU.
1208
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001209Function : bl1_plat_arch_setup() [mandatory]
1210~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001211
1212::
1213
1214 Argument : void
1215 Return : void
1216
1217This function performs any platform-specific and architectural setup that the
1218platform requires. Platform-specific setup might include configuration of
1219memory controllers and the interconnect.
1220
Dan Handley610e7e12018-03-01 18:44:00 +00001221In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001222
1223This function helps fulfill requirement 2 above.
1224
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001225Function : bl1_platform_setup() [mandatory]
1226~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001227
1228::
1229
1230 Argument : void
1231 Return : void
1232
1233This function executes with the MMU and data caches enabled. It is responsible
1234for performing any remaining platform-specific setup that can occur after the
1235MMU and data cache have been enabled.
1236
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001237if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001238sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001239
Dan Handley610e7e12018-03-01 18:44:00 +00001240In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001241layer used to load the next bootloader image.
1242
1243This function helps fulfill requirement 4 above.
1244
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001245Function : bl1_plat_sec_mem_layout() [mandatory]
1246~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001247
1248::
1249
1250 Argument : void
1251 Return : meminfo *
1252
1253This function should only be called on the cold boot path. It executes with the
1254MMU and data caches enabled. The pointer returned by this function must point to
1255a ``meminfo`` structure containing the extents and availability of secure RAM for
1256the BL1 stage.
1257
1258::
1259
1260 meminfo.total_base = Base address of secure RAM visible to BL1
1261 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001262
1263This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1264populates a similar structure to tell BL2 the extents of memory available for
1265its own use.
1266
1267This function helps fulfill requirements 4 and 5 above.
1268
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001269Function : bl1_plat_prepare_exit() [optional]
1270~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001271
1272::
1273
1274 Argument : entry_point_info_t *
1275 Return : void
1276
1277This function is called prior to exiting BL1 in response to the
1278``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1279platform specific clean up or bookkeeping operations before transferring
1280control to the next image. It receives the address of the ``entry_point_info_t``
1281structure passed from BL2. This function runs with MMU disabled.
1282
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001283Function : bl1_plat_set_ep_info() [optional]
1284~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001285
1286::
1287
1288 Argument : unsigned int image_id, entry_point_info_t *ep_info
1289 Return : void
1290
1291This function allows platforms to override ``ep_info`` for the given ``image_id``.
1292
1293The default implementation just returns.
1294
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001295Function : bl1_plat_get_next_image_id() [optional]
1296~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001297
1298::
1299
1300 Argument : void
1301 Return : unsigned int
1302
1303This and the following function must be overridden to enable the FWU feature.
1304
1305BL1 calls this function after platform setup to identify the next image to be
1306loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1307with the normal boot sequence, which loads and executes BL2. If the platform
1308returns a different image id, BL1 assumes that Firmware Update is required.
1309
Dan Handley610e7e12018-03-01 18:44:00 +00001310The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001311platforms override this function to detect if firmware update is required, and
1312if so, return the first image in the firmware update process.
1313
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001314Function : bl1_plat_get_image_desc() [optional]
1315~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001316
1317::
1318
1319 Argument : unsigned int image_id
1320 Return : image_desc_t *
1321
1322BL1 calls this function to get the image descriptor information ``image_desc_t``
1323for the provided ``image_id`` from the platform.
1324
Dan Handley610e7e12018-03-01 18:44:00 +00001325The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001326standard platforms return an image descriptor corresponding to BL2 or one of
1327the firmware update images defined in the Trusted Board Boot Requirements
1328specification.
1329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001330Function : bl1_plat_handle_pre_image_load() [optional]
1331~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001332
1333::
1334
Soby Mathew2f38ce32018-02-08 17:45:12 +00001335 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001336 Return : int
1337
1338This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001339corresponding to ``image_id``. This function is invoked in BL1, both in cold
1340boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001341
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001342Function : bl1_plat_handle_post_image_load() [optional]
1343~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001344
1345::
1346
Soby Mathew2f38ce32018-02-08 17:45:12 +00001347 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001348 Return : int
1349
1350This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001351corresponding to ``image_id``. This function is invoked in BL1, both in cold
1352boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001353
Soby Mathewb1bf0442018-02-16 14:52:52 +00001354The default weak implementation of this function calculates the amount of
1355Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1356structure at the beginning of this free memory and populates it. The address
1357of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1358information to BL2.
1359
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001360Function : bl1_plat_fwu_done() [optional]
1361~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001362
1363::
1364
1365 Argument : unsigned int image_id, uintptr_t image_src,
1366 unsigned int image_size
1367 Return : void
1368
1369BL1 calls this function when the FWU process is complete. It must not return.
1370The platform may override this function to take platform specific action, for
1371example to initiate the normal boot flow.
1372
1373The default implementation spins forever.
1374
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001375Function : bl1_plat_mem_check() [mandatory]
1376~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001377
1378::
1379
1380 Argument : uintptr_t mem_base, unsigned int mem_size,
1381 unsigned int flags
1382 Return : int
1383
1384BL1 calls this function while handling FWU related SMCs, more specifically when
1385copying or authenticating an image. Its responsibility is to ensure that the
1386region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1387that this memory corresponds to either a secure or non-secure memory region as
1388indicated by the security state of the ``flags`` argument.
1389
1390This function can safely assume that the value resulting from the addition of
1391``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1392overflow.
1393
1394This function must return 0 on success, a non-null error code otherwise.
1395
1396The default implementation of this function asserts therefore platforms must
1397override it when using the FWU feature.
1398
1399Boot Loader Stage 2 (BL2)
1400-------------------------
1401
1402The BL2 stage is executed only by the primary CPU, which is determined in BL1
1403using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001404``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1405``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1406non-volatile storage to secure/non-secure RAM. After all the images are loaded
1407then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1408images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001409
1410The following functions must be implemented by the platform port to enable BL2
1411to perform the above tasks.
1412
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001413Function : bl2_early_platform_setup2() [mandatory]
1414~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001415
1416::
1417
Soby Mathew97b1bff2018-09-27 16:46:41 +01001418 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001419 Return : void
1420
1421This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001422by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1423are platform specific.
1424
1425On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001426
Soby Mathew97b1bff2018-09-27 16:46:41 +01001427 arg0 - Points to load address of HW_CONFIG if present
1428
1429 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1430 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001431
Dan Handley610e7e12018-03-01 18:44:00 +00001432On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001433
1434- Initializes a UART (PL011 console), which enables access to the ``printf``
1435 family of functions in BL2.
1436
1437- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001438 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1439 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001440
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001441Function : bl2_plat_arch_setup() [mandatory]
1442~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001443
1444::
1445
1446 Argument : void
1447 Return : void
1448
1449This function executes with the MMU and data caches disabled. It is only called
1450by the primary CPU.
1451
1452The purpose of this function is to perform any architectural initialization
1453that varies across platforms.
1454
Dan Handley610e7e12018-03-01 18:44:00 +00001455On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001456
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001457Function : bl2_platform_setup() [mandatory]
1458~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001459
1460::
1461
1462 Argument : void
1463 Return : void
1464
1465This function may execute with the MMU and data caches enabled if the platform
1466port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1467called by the primary CPU.
1468
1469The purpose of this function is to perform any platform initialization
1470specific to BL2.
1471
Dan Handley610e7e12018-03-01 18:44:00 +00001472In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001473configuration of the TrustZone controller to allow non-secure masters access
1474to most of DRAM. Part of DRAM is reserved for secure world use.
1475
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001476Function : bl2_plat_handle_pre_image_load() [optional]
1477~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001478
1479::
1480
1481 Argument : unsigned int
1482 Return : int
1483
1484This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001485for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001486loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001487
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001488Function : bl2_plat_handle_post_image_load() [optional]
1489~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001490
1491::
1492
1493 Argument : unsigned int
1494 Return : int
1495
1496This function can be used by the platforms to update/use image information
1497for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001498loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001499
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001500Function : bl2_plat_preload_setup [optional]
1501~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001502
1503::
John Tsichritzisee10e792018-06-06 09:38:10 +01001504
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001505 Argument : void
1506 Return : void
1507
1508This optional function performs any BL2 platform initialization
1509required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001510bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001511boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001512plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001513
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001514Function : plat_try_next_boot_source() [optional]
1515~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001516
1517::
John Tsichritzisee10e792018-06-06 09:38:10 +01001518
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001519 Argument : void
1520 Return : int
1521
1522This optional function passes to the next boot source in the redundancy
1523sequence.
1524
1525This function moves the current boot redundancy source to the next
1526element in the boot sequence. If there are no more boot sources then it
1527must return 0, otherwise it must return 1. The default implementation
1528of this always returns 0.
1529
Roberto Vargasb1584272017-11-20 13:36:10 +00001530Boot Loader Stage 2 (BL2) at EL3
1531--------------------------------
1532
Dan Handley610e7e12018-03-01 18:44:00 +00001533When the platform has a non-TF-A Boot ROM it is desirable to jump
1534directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesleyf8640672019-04-12 14:19:42 +01001535execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1536document for more information.
Roberto Vargasb1584272017-11-20 13:36:10 +00001537
1538All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001539bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1540their work is done now by bl2_el3_early_platform_setup and
1541bl2_el3_plat_arch_setup. These functions should generally implement
1542the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001543
1544
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001545Function : bl2_el3_early_platform_setup() [mandatory]
1546~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001547
1548::
John Tsichritzisee10e792018-06-06 09:38:10 +01001549
Roberto Vargasb1584272017-11-20 13:36:10 +00001550 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1551 Return : void
1552
1553This function executes with the MMU and data caches disabled. It is only called
1554by the primary CPU. This function receives four parameters which can be used
1555by the platform to pass any needed information from the Boot ROM to BL2.
1556
Dan Handley610e7e12018-03-01 18:44:00 +00001557On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001558
1559- Initializes a UART (PL011 console), which enables access to the ``printf``
1560 family of functions in BL2.
1561
1562- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001563 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1564 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001565
1566- Initializes the private variables that define the memory layout used.
1567
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001568Function : bl2_el3_plat_arch_setup() [mandatory]
1569~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001570
1571::
John Tsichritzisee10e792018-06-06 09:38:10 +01001572
Roberto Vargasb1584272017-11-20 13:36:10 +00001573 Argument : void
1574 Return : void
1575
1576This function executes with the MMU and data caches disabled. It is only called
1577by the primary CPU.
1578
1579The purpose of this function is to perform any architectural initialization
1580that varies across platforms.
1581
Dan Handley610e7e12018-03-01 18:44:00 +00001582On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001583
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001584Function : bl2_el3_plat_prepare_exit() [optional]
1585~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001586
1587::
John Tsichritzisee10e792018-06-06 09:38:10 +01001588
Roberto Vargasb1584272017-11-20 13:36:10 +00001589 Argument : void
1590 Return : void
1591
1592This function is called prior to exiting BL2 and run the next image.
1593It should be used to perform platform specific clean up or bookkeeping
1594operations before transferring control to the next image. This function
1595runs with MMU disabled.
1596
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001597FWU Boot Loader Stage 2 (BL2U)
1598------------------------------
1599
1600The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1601process and is executed only by the primary CPU. BL1 passes control to BL2U at
1602``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1603
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001604#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1605 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1606 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1607 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001608 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1609 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1610
1611#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001612 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001613 normal world can access DDR memory.
1614
1615The following functions must be implemented by the platform port to enable
1616BL2U to perform the tasks mentioned above.
1617
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001618Function : bl2u_early_platform_setup() [mandatory]
1619~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001620
1621::
1622
1623 Argument : meminfo *mem_info, void *plat_info
1624 Return : void
1625
1626This function executes with the MMU and data caches disabled. It is only
1627called by the primary CPU. The arguments to this function is the address
1628of the ``meminfo`` structure and platform specific info provided by BL1.
1629
1630The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1631private storage as the original memory may be subsequently overwritten by BL2U.
1632
Dan Handley610e7e12018-03-01 18:44:00 +00001633On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001634to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001635variable.
1636
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001637Function : bl2u_plat_arch_setup() [mandatory]
1638~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001639
1640::
1641
1642 Argument : void
1643 Return : void
1644
1645This function executes with the MMU and data caches disabled. It is only
1646called by the primary CPU.
1647
1648The purpose of this function is to perform any architectural initialization
1649that varies across platforms, for example enabling the MMU (since the memory
1650map differs across platforms).
1651
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001652Function : bl2u_platform_setup() [mandatory]
1653~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001654
1655::
1656
1657 Argument : void
1658 Return : void
1659
1660This function may execute with the MMU and data caches enabled if the platform
1661port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1662called by the primary CPU.
1663
1664The purpose of this function is to perform any platform initialization
1665specific to BL2U.
1666
Dan Handley610e7e12018-03-01 18:44:00 +00001667In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001668configuration of the TrustZone controller to allow non-secure masters access
1669to most of DRAM. Part of DRAM is reserved for secure world use.
1670
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001671Function : bl2u_plat_handle_scp_bl2u() [optional]
1672~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001673
1674::
1675
1676 Argument : void
1677 Return : int
1678
1679This function is used to perform any platform-specific actions required to
1680handle the SCP firmware. Typically it transfers the image into SCP memory using
1681a platform-specific protocol and waits until SCP executes it and signals to the
1682Application Processor (AP) for BL2U execution to continue.
1683
1684This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001685This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001686
1687Boot Loader Stage 3-1 (BL31)
1688----------------------------
1689
1690During cold boot, the BL31 stage is executed only by the primary CPU. This is
1691determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1692control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1693CPUs. BL31 executes at EL3 and is responsible for:
1694
1695#. Re-initializing all architectural and platform state. Although BL1 performs
1696 some of this initialization, BL31 remains resident in EL3 and must ensure
1697 that EL3 architectural and platform state is completely initialized. It
1698 should make no assumptions about the system state when it receives control.
1699
1700#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001701 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1702 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001703
1704#. Providing runtime firmware services. Currently, BL31 only implements a
1705 subset of the Power State Coordination Interface (PSCI) API as a runtime
1706 service. See Section 3.3 below for details of porting the PSCI
1707 implementation.
1708
1709#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001710 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001711 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001712 executed and run the corresponding image. On ARM platforms, BL31 uses the
1713 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001714
1715If BL31 is a reset vector, It also needs to handle the reset as specified in
1716section 2.2 before the tasks described above.
1717
1718The following functions must be implemented by the platform port to enable BL31
1719to perform the above tasks.
1720
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001721Function : bl31_early_platform_setup2() [mandatory]
1722~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001723
1724::
1725
Soby Mathew97b1bff2018-09-27 16:46:41 +01001726 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001727 Return : void
1728
1729This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001730by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1731platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001732
Soby Mathew97b1bff2018-09-27 16:46:41 +01001733In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001734
Soby Mathew97b1bff2018-09-27 16:46:41 +01001735 arg0 - The pointer to the head of `bl_params_t` list
1736 which is list of executable images following BL31,
1737
1738 arg1 - Points to load address of SOC_FW_CONFIG if present
1739
1740 arg2 - Points to load address of HW_CONFIG if present
1741
1742 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1743 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001744
Soby Mathew97b1bff2018-09-27 16:46:41 +01001745The function runs through the `bl_param_t` list and extracts the entry point
1746information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001747
1748- Initialize a UART (PL011 console), which enables access to the ``printf``
1749 family of functions in BL31.
1750
1751- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1752 CCI slave interface corresponding to the cluster that includes the primary
1753 CPU.
1754
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001755Function : bl31_plat_arch_setup() [mandatory]
1756~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001757
1758::
1759
1760 Argument : void
1761 Return : void
1762
1763This function executes with the MMU and data caches disabled. It is only called
1764by the primary CPU.
1765
1766The purpose of this function is to perform any architectural initialization
1767that varies across platforms.
1768
Dan Handley610e7e12018-03-01 18:44:00 +00001769On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001770
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001771Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001772~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1773
1774::
1775
1776 Argument : void
1777 Return : void
1778
1779This function may execute with the MMU and data caches enabled if the platform
1780port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1781called by the primary CPU.
1782
1783The purpose of this function is to complete platform initialization so that both
1784BL31 runtime services and normal world software can function correctly.
1785
Dan Handley610e7e12018-03-01 18:44:00 +00001786On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001787
1788- Initialize the generic interrupt controller.
1789
1790 Depending on the GIC driver selected by the platform, the appropriate GICv2
1791 or GICv3 initialization will be done, which mainly consists of:
1792
1793 - Enable secure interrupts in the GIC CPU interface.
1794 - Disable the legacy interrupt bypass mechanism.
1795 - Configure the priority mask register to allow interrupts of all priorities
1796 to be signaled to the CPU interface.
1797 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1798 - Target all secure SPIs to CPU0.
1799 - Enable these secure interrupts in the GIC distributor.
1800 - Configure all other interrupts as non-secure.
1801 - Enable signaling of secure interrupts in the GIC distributor.
1802
1803- Enable system-level implementation of the generic timer counter through the
1804 memory mapped interface.
1805
1806- Grant access to the system counter timer module
1807
1808- Initialize the power controller device.
1809
1810 In particular, initialise the locks that prevent concurrent accesses to the
1811 power controller device.
1812
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001813Function : bl31_plat_runtime_setup() [optional]
1814~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001815
1816::
1817
1818 Argument : void
1819 Return : void
1820
1821The purpose of this function is allow the platform to perform any BL31 runtime
1822setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001823implementation of this function will invoke ``console_switch_state()`` to switch
1824console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001825
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001826Function : bl31_plat_get_next_image_ep_info() [mandatory]
1827~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001828
1829::
1830
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001831 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001832 Return : entry_point_info *
1833
1834This function may execute with the MMU and data caches enabled if the platform
1835port does the necessary initializations in ``bl31_plat_arch_setup()``.
1836
1837This function is called by ``bl31_main()`` to retrieve information provided by
1838BL2 for the next image in the security state specified by the argument. BL31
1839uses this information to pass control to that image in the specified security
1840state. This function must return a pointer to the ``entry_point_info`` structure
1841(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1842should return NULL otherwise.
1843
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001844Function : bl31_plat_enable_mmu [optional]
1845~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1846
1847::
1848
1849 Argument : uint32_t
1850 Return : void
1851
1852This function enables the MMU. The boot code calls this function with MMU and
1853caches disabled. This function should program necessary registers to enable
1854translation, and upon return, the MMU on the calling PE must be enabled.
1855
1856The function must honor flags passed in the first argument. These flags are
1857defined by the translation library, and can be found in the file
1858``include/lib/xlat_tables/xlat_mmu_helpers.h``.
1859
1860On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001861is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001862
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001863Function : plat_init_apkey [optional]
1864~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001865
1866::
1867
1868 Argument : void
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001869 Return : uint128_t
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001870
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001871This function returns the 128-bit value which can be used to program ARMv8.3
1872pointer authentication keys.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001873
1874The value should be obtained from a reliable source of randomness.
1875
1876This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedorovf41355c2019-09-13 14:11:59 +01001877Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001878
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001879Function : plat_get_syscnt_freq2() [mandatory]
1880~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001881
1882::
1883
1884 Argument : void
1885 Return : unsigned int
1886
1887This function is used by the architecture setup code to retrieve the counter
1888frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00001889``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001890of the system counter, which is retrieved from the first entry in the frequency
1891modes table.
1892
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001893#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
1894~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001895
1896When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
1897bytes) aligned to the cache line boundary that should be allocated per-cpu to
1898accommodate all the bakery locks.
1899
1900If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
1901calculates the size of the ``bakery_lock`` input section, aligns it to the
1902nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
1903and stores the result in a linker symbol. This constant prevents a platform
1904from relying on the linker and provide a more efficient mechanism for
1905accessing per-cpu bakery lock information.
1906
1907If this constant is defined and its value is not equal to the value
1908calculated by the linker then a link time assertion is raised. A compile time
1909assertion is raised if the value of the constant is not aligned to the cache
1910line boundary.
1911
Paul Beesleyf8640672019-04-12 14:19:42 +01001912.. _porting_guide_sdei_requirements:
1913
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001914SDEI porting requirements
1915~~~~~~~~~~~~~~~~~~~~~~~~~
1916
Paul Beesley606d8072019-03-13 13:58:02 +00001917The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001918and functions, of which some are optional, and some others mandatory.
1919
1920Macros
1921......
1922
1923Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
1924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1925
1926This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00001927Normal |SDEI| events on the platform. This must have a higher value
1928(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001929
1930Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
1931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1932
1933This macro must be defined to the EL3 exception priority level associated with
Paul Beesley606d8072019-03-13 13:58:02 +00001934Critical |SDEI| events on the platform. This must have a lower value
1935(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001936
Paul Beesley606d8072019-03-13 13:58:02 +00001937**Note**: |SDEI| exception priorities must be the lowest among Secure
1938priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
1939be higher than Normal |SDEI| priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001940
1941Functions
1942.........
1943
1944Function: int plat_sdei_validate_entry_point(uintptr_t ep) [optional]
1945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1946
1947::
1948
1949 Argument: uintptr_t
1950 Return: int
1951
1952This function validates the address of client entry points provided for both
Paul Beesley606d8072019-03-13 13:58:02 +00001953event registration and *Complete and Resume* |SDEI| calls. The function
1954takes one argument, which is the address of the handler the |SDEI| client
1955requested to register. The function must return ``0`` for successful validation,
1956or ``-1`` upon failure.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001957
Dan Handley610e7e12018-03-01 18:44:00 +00001958The default implementation always returns ``0``. On Arm platforms, this function
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001959is implemented to translate the entry point to physical address, and further to
1960ensure that the address is located in Non-secure DRAM.
1961
1962Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
1963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1964
1965::
1966
1967 Argument: uint64_t
1968 Argument: unsigned int
1969 Return: void
1970
Paul Beesley606d8072019-03-13 13:58:02 +00001971|SDEI| specification requires that a PE comes out of reset with the events
1972masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
1973|SDEI| events on the PE. No |SDEI| events can be dispatched until such
1974time.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001975
Paul Beesley606d8072019-03-13 13:58:02 +00001976Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001977events are masked on the PE, the dispatcher implementation invokes the function
1978``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
1979interrupt and the interrupt ID are passed as parameters.
1980
1981The default implementation only prints out a warning message.
1982
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001983Power State Coordination Interface (in BL31)
1984--------------------------------------------
1985
Dan Handley610e7e12018-03-01 18:44:00 +00001986The TF-A implementation of the PSCI API is based around the concept of a
1987*power domain*. A *power domain* is a CPU or a logical group of CPUs which
1988share some state on which power management operations can be performed as
1989specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
1990a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
1991*power domains* are arranged in a hierarchical tree structure and each
1992*power domain* can be identified in a system by the cpu index of any CPU that
1993is part of that domain and a *power domain level*. A processing element (for
1994example, a CPU) is at level 0. If the *power domain* node above a CPU is a
1995logical grouping of CPUs that share some state, then level 1 is that group of
1996CPUs (for example, a cluster), and level 2 is a group of clusters (for
1997example, the system). More details on the power domain topology and its
Paul Beesleyf8640672019-04-12 14:19:42 +01001998organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001999
2000BL31's platform initialization code exports a pointer to the platform-specific
2001power management operations required for the PSCI implementation to function
2002correctly. This information is populated in the ``plat_psci_ops`` structure. The
2003PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2004power management operations on the power domains. For example, the target
2005CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2006handler (if present) is called for the CPU power domain.
2007
2008The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2009describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00002010defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002011array of local power states where each index corresponds to a power domain
2012level. Each entry contains the local power state the power domain at that power
2013level could enter. It depends on the ``validate_power_state()`` handler to
2014convert the power-state parameter (possibly encoding a composite power state)
2015passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2016
2017The following functions form part of platform port of PSCI functionality.
2018
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002019Function : plat_psci_stat_accounting_start() [optional]
2020~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002021
2022::
2023
2024 Argument : const psci_power_state_t *
2025 Return : void
2026
2027This is an optional hook that platforms can implement for residency statistics
2028accounting before entering a low power state. The ``pwr_domain_state`` field of
2029``state_info`` (first argument) can be inspected if stat accounting is done
2030differently at CPU level versus higher levels. As an example, if the element at
2031index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2032state, special hardware logic may be programmed in order to keep track of the
2033residency statistics. For higher levels (array indices > 0), the residency
2034statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2035default implementation will use PMF to capture timestamps.
2036
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002037Function : plat_psci_stat_accounting_stop() [optional]
2038~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002039
2040::
2041
2042 Argument : const psci_power_state_t *
2043 Return : void
2044
2045This is an optional hook that platforms can implement for residency statistics
2046accounting after exiting from a low power state. The ``pwr_domain_state`` field
2047of ``state_info`` (first argument) can be inspected if stat accounting is done
2048differently at CPU level versus higher levels. As an example, if the element at
2049index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2050state, special hardware logic may be programmed in order to keep track of the
2051residency statistics. For higher levels (array indices > 0), the residency
2052statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2053default implementation will use PMF to capture timestamps.
2054
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002055Function : plat_psci_stat_get_residency() [optional]
2056~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002057
2058::
2059
Deepika Bhavnani4287c0c2019-12-13 10:23:18 -06002060 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002061 Return : u_register_t
2062
2063This is an optional interface that is is invoked after resuming from a low power
2064state and provides the time spent resident in that low power state by the power
2065domain at a particular power domain level. When a CPU wakes up from suspend,
2066all its parent power domain levels are also woken up. The generic PSCI code
2067invokes this function for each parent power domain that is resumed and it
2068identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2069argument) describes the low power state that the power domain has resumed from.
2070The current CPU is the first CPU in the power domain to resume from the low
2071power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2072CPU in the power domain to suspend and may be needed to calculate the residency
2073for that power domain.
2074
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002075Function : plat_get_target_pwr_state() [optional]
2076~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002077
2078::
2079
2080 Argument : unsigned int, const plat_local_state_t *, unsigned int
2081 Return : plat_local_state_t
2082
2083The PSCI generic code uses this function to let the platform participate in
2084state coordination during a power management operation. The function is passed
2085a pointer to an array of platform specific local power state ``states`` (second
2086argument) which contains the requested power state for each CPU at a particular
2087power domain level ``lvl`` (first argument) within the power domain. The function
2088is expected to traverse this array of upto ``ncpus`` (third argument) and return
2089a coordinated target power state by the comparing all the requested power
2090states. The target power state should not be deeper than any of the requested
2091power states.
2092
2093A weak definition of this API is provided by default wherein it assumes
2094that the platform assigns a local state value in order of increasing depth
2095of the power state i.e. for two power states X & Y, if X < Y
2096then X represents a shallower power state than Y. As a result, the
2097coordinated target local power state for a power domain will be the minimum
2098of the requested local power state values.
2099
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002100Function : plat_get_power_domain_tree_desc() [mandatory]
2101~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002102
2103::
2104
2105 Argument : void
2106 Return : const unsigned char *
2107
2108This function returns a pointer to the byte array containing the power domain
2109topology tree description. The format and method to construct this array are
Paul Beesleyf8640672019-04-12 14:19:42 +01002110described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2111initialization code requires this array to be described by the platform, either
2112statically or dynamically, to initialize the power domain topology tree. In case
2113the array is populated dynamically, then plat_core_pos_by_mpidr() and
2114plat_my_core_pos() should also be implemented suitably so that the topology tree
2115description matches the CPU indices returned by these APIs. These APIs together
2116form the platform interface for the PSCI topology framework.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002117
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002118Function : plat_setup_psci_ops() [mandatory]
2119~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002120
2121::
2122
2123 Argument : uintptr_t, const plat_psci_ops **
2124 Return : int
2125
2126This function may execute with the MMU and data caches enabled if the platform
2127port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2128called by the primary CPU.
2129
2130This function is called by PSCI initialization code. Its purpose is to let
2131the platform layer know about the warm boot entrypoint through the
2132``sec_entrypoint`` (first argument) and to export handler routines for
2133platform-specific psci power management actions by populating the passed
2134pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2135
2136A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002137the Arm FVP specific implementation of these handlers in
Paul Beesleyf8640672019-04-12 14:19:42 +01002138``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002139platform wants to support, the associated operation or operations in this
2140structure must be provided and implemented (Refer section 4 of
Paul Beesleyf8640672019-04-12 14:19:42 +01002141:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley610e7e12018-03-01 18:44:00 +00002142function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002143structure instead of providing an empty implementation.
2144
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002145plat_psci_ops.cpu_standby()
2146...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002147
2148Perform the platform-specific actions to enter the standby state for a cpu
2149indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002150wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002151For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2152the suspend state type specified in the ``power-state`` parameter should be
2153STANDBY and the target power domain level specified should be the CPU. The
2154handler should put the CPU into a low power retention state (usually by
2155issuing a wfi instruction) and ensure that it can be woken up from that
2156state by a normal interrupt. The generic code expects the handler to succeed.
2157
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002158plat_psci_ops.pwr_domain_on()
2159.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002160
2161Perform the platform specific actions to power on a CPU, specified
2162by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002163return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002164
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002165plat_psci_ops.pwr_domain_off()
2166..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002167
2168Perform the platform specific actions to prepare to power off the calling CPU
2169and its higher parent power domain levels as indicated by the ``target_state``
2170(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2171
2172The ``target_state`` encodes the platform coordinated target local power states
2173for the CPU power domain and its parent power domain levels. The handler
2174needs to perform power management operation corresponding to the local state
2175at each power level.
2176
2177For this handler, the local power state for the CPU power domain will be a
2178power down state where as it could be either power down, retention or run state
2179for the higher power domain levels depending on the result of state
2180coordination. The generic code expects the handler to succeed.
2181
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002182plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2183...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002184
2185This optional function may be used as a performance optimization to replace
2186or complement pwr_domain_suspend() on some platforms. Its calling semantics
2187are identical to pwr_domain_suspend(), except the PSCI implementation only
2188calls this function when suspending to a power down state, and it guarantees
2189that data caches are enabled.
2190
2191When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2192before calling pwr_domain_suspend(). If the target_state corresponds to a
2193power down state and it is safe to perform some or all of the platform
2194specific actions in that function with data caches enabled, it may be more
2195efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2196= 1, data caches remain enabled throughout, and so there is no advantage to
2197moving platform specific actions to this function.
2198
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002199plat_psci_ops.pwr_domain_suspend()
2200..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002201
2202Perform the platform specific actions to prepare to suspend the calling
2203CPU and its higher parent power domain levels as indicated by the
2204``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2205API implementation.
2206
2207The ``target_state`` has a similar meaning as described in
2208the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2209target local power states for the CPU power domain and its parent
2210power domain levels. The handler needs to perform power management operation
2211corresponding to the local state at each power level. The generic code
2212expects the handler to succeed.
2213
Douglas Raillarda84996b2017-08-02 16:57:32 +01002214The difference between turning a power domain off versus suspending it is that
2215in the former case, the power domain is expected to re-initialize its state
2216when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2217case, the power domain is expected to save enough state so that it can resume
2218execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002219``pwr_domain_suspend_finish()``).
2220
Douglas Raillarda84996b2017-08-02 16:57:32 +01002221When suspending a core, the platform can also choose to power off the GICv3
2222Redistributor and ITS through an implementation-defined sequence. To achieve
2223this safely, the ITS context must be saved first. The architectural part is
2224implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2225sequence is implementation defined and it is therefore the responsibility of
2226the platform code to implement the necessary sequence. Then the GIC
2227Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2228Powering off the Redistributor requires the implementation to support it and it
2229is the responsibility of the platform code to execute the right implementation
2230defined sequence.
2231
2232When a system suspend is requested, the platform can also make use of the
2233``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2234it has saved the context of the Redistributors and ITS of all the cores in the
2235system. The context of the Distributor can be large and may require it to be
2236allocated in a special area if it cannot fit in the platform's global static
2237data, for example in DRAM. The Distributor can then be powered down using an
2238implementation-defined sequence.
2239
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002240plat_psci_ops.pwr_domain_pwr_down_wfi()
2241.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002242
2243This is an optional function and, if implemented, is expected to perform
2244platform specific actions including the ``wfi`` invocation which allows the
2245CPU to powerdown. Since this function is invoked outside the PSCI locks,
2246the actions performed in this hook must be local to the CPU or the platform
2247must ensure that races between multiple CPUs cannot occur.
2248
2249The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2250operation and it encodes the platform coordinated target local power states for
2251the CPU power domain and its parent power domain levels. This function must
2252not return back to the caller.
2253
2254If this function is not implemented by the platform, PSCI generic
2255implementation invokes ``psci_power_down_wfi()`` for power down.
2256
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002257plat_psci_ops.pwr_domain_on_finish()
2258....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002259
2260This function is called by the PSCI implementation after the calling CPU is
2261powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2262It performs the platform-specific setup required to initialize enough state for
2263this CPU to enter the normal world and also provide secure runtime firmware
2264services.
2265
2266The ``target_state`` (first argument) is the prior state of the power domains
2267immediately before the CPU was turned on. It indicates which power domains
2268above the CPU might require initialization due to having previously been in
2269low power states. The generic code expects the handler to succeed.
2270
Madhukar Pappireddy33bd5142019-08-12 18:31:33 -05002271plat_psci_ops.pwr_domain_on_finish_late() [optional]
2272...........................................................
2273
2274This optional function is called by the PSCI implementation after the calling
2275CPU is fully powered on with respective data caches enabled. The calling CPU and
2276the associated cluster are guaranteed to be participating in coherency. This
2277function gives the flexibility to perform any platform-specific actions safely,
2278such as initialization or modification of shared data structures, without the
2279overhead of explicit cache maintainace operations.
2280
2281The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2282operation. The generic code expects the handler to succeed.
2283
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002284plat_psci_ops.pwr_domain_suspend_finish()
2285.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002286
2287This function is called by the PSCI implementation after the calling CPU is
2288powered on and released from reset in response to an asynchronous wakeup
2289event, for example a timer interrupt that was programmed by the CPU during the
2290``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2291setup required to restore the saved state for this CPU to resume execution
2292in the normal world and also provide secure runtime firmware services.
2293
2294The ``target_state`` (first argument) has a similar meaning as described in
2295the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2296to succeed.
2297
Douglas Raillarda84996b2017-08-02 16:57:32 +01002298If the Distributor, Redistributors or ITS have been powered off as part of a
2299suspend, their context must be restored in this function in the reverse order
2300to how they were saved during suspend sequence.
2301
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002302plat_psci_ops.system_off()
2303..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002304
2305This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2306call. It performs the platform-specific system poweroff sequence after
2307notifying the Secure Payload Dispatcher.
2308
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002309plat_psci_ops.system_reset()
2310............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002311
2312This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2313call. It performs the platform-specific system reset sequence after
2314notifying the Secure Payload Dispatcher.
2315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002316plat_psci_ops.validate_power_state()
2317....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002318
2319This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2320call to validate the ``power_state`` parameter of the PSCI API and if valid,
2321populate it in ``req_state`` (second argument) array as power domain level
2322specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002323return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002324normal world PSCI client.
2325
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002326plat_psci_ops.validate_ns_entrypoint()
2327......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002328
2329This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2330``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2331parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002332the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002333propagated back to the normal world PSCI client.
2334
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002335plat_psci_ops.get_sys_suspend_power_state()
2336...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002337
2338This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2339call to get the ``req_state`` parameter from platform which encodes the power
2340domain level specific local states to suspend to system affinity level. The
2341``req_state`` will be utilized to do the PSCI state coordination and
2342``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2343enter system suspend.
2344
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002345plat_psci_ops.get_pwr_lvl_state_idx()
2346.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002347
2348This is an optional function and, if implemented, is invoked by the PSCI
2349implementation to convert the ``local_state`` (first argument) at a specified
2350``pwr_lvl`` (second argument) to an index between 0 and
2351``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2352supports more than two local power states at each power domain level, that is
2353``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2354local power states.
2355
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002356plat_psci_ops.translate_power_state_by_mpidr()
2357..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002358
2359This is an optional function and, if implemented, verifies the ``power_state``
2360(second argument) parameter of the PSCI API corresponding to a target power
2361domain. The target power domain is identified by using both ``MPIDR`` (first
2362argument) and the power domain level encoded in ``power_state``. The power domain
2363level specific local states are to be extracted from ``power_state`` and be
2364populated in the ``output_state`` (third argument) array. The functionality
2365is similar to the ``validate_power_state`` function described above and is
2366envisaged to be used in case the validity of ``power_state`` depend on the
2367targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002368domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002369function is not implemented, then the generic implementation relies on
2370``validate_power_state`` function to translate the ``power_state``.
2371
2372This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002373power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002374APIs as described in Section 5.18 of `PSCI`_.
2375
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002376plat_psci_ops.get_node_hw_state()
2377.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002378
2379This is an optional function. If implemented this function is intended to return
2380the power state of a node (identified by the first parameter, the ``MPIDR``) in
2381the power domain topology (identified by the second parameter, ``power_level``),
2382as retrieved from a power controller or equivalent component on the platform.
2383Upon successful completion, the implementation must map and return the final
2384status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2385must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2386appropriate.
2387
2388Implementations are not expected to handle ``power_levels`` greater than
2389``PLAT_MAX_PWR_LVL``.
2390
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002391plat_psci_ops.system_reset2()
2392.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002393
2394This is an optional function. If implemented this function is
2395called during the ``SYSTEM_RESET2`` call to perform a reset
2396based on the first parameter ``reset_type`` as specified in
2397`PSCI`_. The parameter ``cookie`` can be used to pass additional
2398reset information. If the ``reset_type`` is not supported, the
2399function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2400resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2401and vendor reset can return other PSCI error codes as defined
2402in `PSCI`_. On success this function will not return.
2403
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002404plat_psci_ops.write_mem_protect()
2405.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002406
2407This is an optional function. If implemented it enables or disables the
2408``MEM_PROTECT`` functionality based on the value of ``val``.
2409A non-zero value enables ``MEM_PROTECT`` and a value of zero
2410disables it. Upon encountering failures it must return a negative value
2411and on success it must return 0.
2412
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002413plat_psci_ops.read_mem_protect()
2414................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002415
2416This is an optional function. If implemented it returns the current
2417state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2418failures it must return a negative value and on success it must
2419return 0.
2420
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002421plat_psci_ops.mem_protect_chk()
2422...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002423
2424This is an optional function. If implemented it checks if a memory
2425region defined by a base address ``base`` and with a size of ``length``
2426bytes is protected by ``MEM_PROTECT``. If the region is protected
2427then it must return 0, otherwise it must return a negative number.
2428
Paul Beesleyf8640672019-04-12 14:19:42 +01002429.. _porting_guide_imf_in_bl31:
2430
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002431Interrupt Management framework (in BL31)
2432----------------------------------------
2433
2434BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2435generated in either security state and targeted to EL1 or EL2 in the non-secure
2436state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesleyf8640672019-04-12 14:19:42 +01002437described in the :ref:`Interrupt Management Framework`
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002438
2439A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002440text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002441platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002442present in the platform. Arm standard platform layer supports both
2443`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2444and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2445FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002446``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
2447details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002448
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002449See also: `Interrupt Controller Abstraction APIs`__.
2450
Paul Beesleyea225122019-02-11 17:54:45 +00002451.. __: ../design/platform-interrupt-controller-API.rst
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002452
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002453Function : plat_interrupt_type_to_line() [mandatory]
2454~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002455
2456::
2457
2458 Argument : uint32_t, uint32_t
2459 Return : uint32_t
2460
Dan Handley610e7e12018-03-01 18:44:00 +00002461The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002462interrupt line. The specific line that is signaled depends on how the interrupt
2463controller (IC) reports different interrupt types from an execution context in
2464either security state. The IMF uses this API to determine which interrupt line
2465the platform IC uses to signal each type of interrupt supported by the framework
2466from a given security state. This API must be invoked at EL3.
2467
2468The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesleyf8640672019-04-12 14:19:42 +01002469:ref:`Interrupt Management Framework`) indicating the target type of the
2470interrupt, the second parameter is the security state of the originating
2471execution context. The return result is the bit position in the ``SCR_EL3``
2472register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002473
Dan Handley610e7e12018-03-01 18:44:00 +00002474In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002475configured as FIQs and Non-secure interrupts as IRQs from either security
2476state.
2477
Dan Handley610e7e12018-03-01 18:44:00 +00002478In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002479configured depends on the security state of the execution context when the
2480interrupt is signalled and are as follows:
2481
2482- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2483 NS-EL0/1/2 context.
2484- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2485 in the NS-EL0/1/2 context.
2486- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2487 context.
2488
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002489Function : plat_ic_get_pending_interrupt_type() [mandatory]
2490~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002491
2492::
2493
2494 Argument : void
2495 Return : uint32_t
2496
2497This API returns the type of the highest priority pending interrupt at the
2498platform IC. The IMF uses the interrupt type to retrieve the corresponding
2499handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2500pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2501``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2502
Dan Handley610e7e12018-03-01 18:44:00 +00002503In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002504Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2505the pending interrupt. The type of interrupt depends upon the id value as
2506follows.
2507
2508#. id < 1022 is reported as a S-EL1 interrupt
2509#. id = 1022 is reported as a Non-secure interrupt.
2510#. id = 1023 is reported as an invalid interrupt type.
2511
Dan Handley610e7e12018-03-01 18:44:00 +00002512In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002513``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2514is read to determine the id of the pending interrupt. The type of interrupt
2515depends upon the id value as follows.
2516
2517#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2518#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2519#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2520#. All other interrupt id's are reported as EL3 interrupt.
2521
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002522Function : plat_ic_get_pending_interrupt_id() [mandatory]
2523~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002524
2525::
2526
2527 Argument : void
2528 Return : uint32_t
2529
2530This API returns the id of the highest priority pending interrupt at the
2531platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2532pending.
2533
Dan Handley610e7e12018-03-01 18:44:00 +00002534In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002535Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2536pending interrupt. The id that is returned by API depends upon the value of
2537the id read from the interrupt controller as follows.
2538
2539#. id < 1022. id is returned as is.
2540#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2541 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2542 This id is returned by the API.
2543#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2544
Dan Handley610e7e12018-03-01 18:44:00 +00002545In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002546EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2547group 0 Register*, is read to determine the id of the pending interrupt. The id
2548that is returned by API depends upon the value of the id read from the
2549interrupt controller as follows.
2550
2551#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2552#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2553 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2554 Register* is read to determine the id of the group 1 interrupt. This id
2555 is returned by the API as long as it is a valid interrupt id
2556#. If the id is any of the special interrupt identifiers,
2557 ``INTR_ID_UNAVAILABLE`` is returned.
2558
2559When the API invoked from S-EL1 for GICv3 systems, the id read from system
2560register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002561Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002562``INTR_ID_UNAVAILABLE`` is returned.
2563
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002564Function : plat_ic_acknowledge_interrupt() [mandatory]
2565~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002566
2567::
2568
2569 Argument : void
2570 Return : uint32_t
2571
2572This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002573the highest pending interrupt has begun. It should return the raw, unmodified
2574value obtained from the interrupt controller when acknowledging an interrupt.
2575The actual interrupt number shall be extracted from this raw value using the API
2576`plat_ic_get_interrupt_id()`__.
2577
Paul Beesleyea225122019-02-11 17:54:45 +00002578.. __: ../design/platform-interrupt-controller-API.rst#function-unsigned-int-plat-ic-get-interrupt-id-unsigned-int-raw-optional
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002579
Dan Handley610e7e12018-03-01 18:44:00 +00002580This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002581Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2582priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002583It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002584
Dan Handley610e7e12018-03-01 18:44:00 +00002585In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002586from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2587Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2588reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2589group 1*. The read changes the state of the highest pending interrupt from
2590pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002591unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002592
2593The TSP uses this API to start processing of the secure physical timer
2594interrupt.
2595
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002596Function : plat_ic_end_of_interrupt() [mandatory]
2597~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002598
2599::
2600
2601 Argument : uint32_t
2602 Return : void
2603
2604This API is used by the CPU to indicate to the platform IC that processing of
2605the interrupt corresponding to the id (passed as the parameter) has
2606finished. The id should be the same as the id returned by the
2607``plat_ic_acknowledge_interrupt()`` API.
2608
Dan Handley610e7e12018-03-01 18:44:00 +00002609Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002610(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2611system register in case of GICv3 depending on where the API is invoked from,
2612EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2613controller.
2614
2615The TSP uses this API to finish processing of the secure physical timer
2616interrupt.
2617
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002618Function : plat_ic_get_interrupt_type() [mandatory]
2619~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002620
2621::
2622
2623 Argument : uint32_t
2624 Return : uint32_t
2625
2626This API returns the type of the interrupt id passed as the parameter.
2627``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2628interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2629returned depending upon how the interrupt has been configured by the platform
2630IC. This API must be invoked at EL3.
2631
Dan Handley610e7e12018-03-01 18:44:00 +00002632Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002633and Non-secure interrupts as Group1 interrupts. It reads the group value
2634corresponding to the interrupt id from the relevant *Interrupt Group Register*
2635(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2636
Dan Handley610e7e12018-03-01 18:44:00 +00002637In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002638Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2639(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2640as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2641
2642Crash Reporting mechanism (in BL31)
2643-----------------------------------
2644
2645BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002646of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002647on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002648``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2649
2650The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2651implementation of all of them. Platforms may include this file to their
2652makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002653output to be routed over the normal console infrastructure and get printed on
2654consoles configured to output in crash state. ``console_set_scope()`` can be
2655used to control whether a console is used for crash output.
Paul Beesleyba3ed402019-03-13 16:20:44 +00002656
2657.. note::
2658 Platforms are responsible for making sure that they only mark consoles for
2659 use in the crash scope that are able to support this, i.e. that are written
2660 in assembly and conform with the register clobber rules for putc()
2661 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002662
Julius Werneraae9bb12017-09-18 16:49:48 -07002663In some cases (such as debugging very early crashes that happen before the
2664normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002665more explicitly. These platforms may instead provide custom implementations for
2666these. They are executed outside of a C environment and without a stack. Many
2667console drivers provide functions named ``console_xxx_core_init/putc/flush``
2668that are designed to be used by these functions. See Arm platforms (like juno)
2669for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002670
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002671Function : plat_crash_console_init [mandatory]
2672~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002673
2674::
2675
2676 Argument : void
2677 Return : int
2678
2679This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002680console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002681initialization and returns 1 on success.
2682
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002683Function : plat_crash_console_putc [mandatory]
2684~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002685
2686::
2687
2688 Argument : int
2689 Return : int
2690
2691This API is used by the crash reporting mechanism to print a character on the
2692designated crash console. It must only use general purpose registers x1 and
2693x2 to do its work. The parameter and the return value are in general purpose
2694register x0.
2695
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002696Function : plat_crash_console_flush [mandatory]
2697~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002698
2699::
2700
2701 Argument : void
2702 Return : int
2703
2704This API is used by the crash reporting mechanism to force write of all buffered
2705data on the designated crash console. It should only use general purpose
Julius Werneraae9bb12017-09-18 16:49:48 -07002706registers x0 through x5 to do its work. The return value is 0 on successful
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002707completion; otherwise the return value is -1.
2708
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002709External Abort handling and RAS Support
2710---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002711
2712Function : plat_ea_handler
2713~~~~~~~~~~~~~~~~~~~~~~~~~~
2714
2715::
2716
2717 Argument : int
2718 Argument : uint64_t
2719 Argument : void *
2720 Argument : void *
2721 Argument : uint64_t
2722 Return : void
2723
2724This function is invoked by the RAS framework for the platform to handle an
2725External Abort received at EL3. The intention of the function is to attempt to
2726resolve the cause of External Abort and return; if that's not possible, to
2727initiate orderly shutdown of the system.
2728
2729The first parameter (``int ea_reason``) indicates the reason for External Abort.
2730Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2731
2732The second parameter (``uint64_t syndrome``) is the respective syndrome
2733presented to EL3 after having received the External Abort. Depending on the
2734nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2735can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2736
2737The third parameter (``void *cookie``) is unused for now. The fourth parameter
2738(``void *handle``) is a pointer to the preempted context. The fifth parameter
2739(``uint64_t flags``) indicates the preempted security state. These parameters
2740are received from the top-level exception handler.
2741
2742If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2743function iterates through RAS handlers registered by the platform. If any of the
2744RAS handlers resolve the External Abort, no further action is taken.
2745
2746If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2747could resolve the External Abort, the default implementation prints an error
2748message, and panics.
2749
2750Function : plat_handle_uncontainable_ea
2751~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2752
2753::
2754
2755 Argument : int
2756 Argument : uint64_t
2757 Return : void
2758
2759This function is invoked by the RAS framework when an External Abort of
2760Uncontainable type is received at EL3. Due to the critical nature of
2761Uncontainable errors, the intention of this function is to initiate orderly
2762shutdown of the system, and is not expected to return.
2763
2764This function must be implemented in assembly.
2765
2766The first and second parameters are the same as that of ``plat_ea_handler``.
2767
2768The default implementation of this function calls
2769``report_unhandled_exception``.
2770
2771Function : plat_handle_double_fault
2772~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2773
2774::
2775
2776 Argument : int
2777 Argument : uint64_t
2778 Return : void
2779
2780This function is invoked by the RAS framework when another External Abort is
2781received at EL3 while one is already being handled. I.e., a call to
2782``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2783this function is to initiate orderly shutdown of the system, and is not expected
2784recover or return.
2785
2786This function must be implemented in assembly.
2787
2788The first and second parameters are the same as that of ``plat_ea_handler``.
2789
2790The default implementation of this function calls
2791``report_unhandled_exception``.
2792
2793Function : plat_handle_el3_ea
2794~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2795
2796::
2797
2798 Return : void
2799
2800This function is invoked when an External Abort is received while executing in
2801EL3. Due to its critical nature, the intention of this function is to initiate
2802orderly shutdown of the system, and is not expected recover or return.
2803
2804This function must be implemented in assembly.
2805
2806The default implementation of this function calls
2807``report_unhandled_exception``.
2808
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002809Build flags
2810-----------
2811
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002812There are some build flags which can be defined by the platform to control
2813inclusion or exclusion of certain BL stages from the FIP image. These flags
2814need to be defined in the platform makefile which will get included by the
2815build system.
2816
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002817- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002818 By default, this flag is defined ``yes`` by the build system and ``BL33``
2819 build option should be supplied as a build option. The platform has the
2820 option of excluding the BL33 image in the ``fip`` image by defining this flag
2821 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
2822 are used, this flag will be set to ``no`` automatically.
2823
Paul Beesley07f0a312019-05-16 13:33:18 +01002824Platform include paths
2825----------------------
2826
2827Platforms are allowed to add more include paths to be passed to the compiler.
2828The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
2829particular for the file ``platform_def.h``.
2830
2831Example:
2832
2833.. code:: c
2834
2835 PLAT_INCLUDES += -Iinclude/plat/myplat/include
2836
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002837C Library
2838---------
2839
2840To avoid subtle toolchain behavioral dependencies, the header files provided
2841by the compiler are not used. The software is built with the ``-nostdinc`` flag
2842to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00002843required headers are included in the TF-A source tree. The library only
2844contains those C library definitions required by the local implementation. If
2845more functionality is required, the needed library functions will need to be
2846added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002847
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002848Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleyf2ec7142019-10-04 16:17:46 +00002849been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002850from `FreeBSD`_, others have been written specifically for TF-A as well. The
2851files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002852
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01002853SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
2854can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002855
2856Storage abstraction layer
2857-------------------------
2858
Louis Mayencourtb5469002019-07-15 13:56:03 +01002859In order to improve platform independence and portability a storage abstraction
2860layer is used to load data from non-volatile platform storage. Currently
2861storage access is only required by BL1 and BL2 phases and performed inside the
2862``load_image()`` function in ``bl_common.c``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002863
Louis Mayencourtb5469002019-07-15 13:56:03 +01002864.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002865
Dan Handley610e7e12018-03-01 18:44:00 +00002866It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002867development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01002868the default means to load data from storage (see :ref:`firmware_design_fip`).
2869The storage layer is described in the header file
2870``include/drivers/io/io_storage.h``. The implementation of the common library is
2871in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002872``drivers/io/``.
2873
Louis Mayencourtb5469002019-07-15 13:56:03 +01002874.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
2875
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002876Each IO driver must provide ``io_dev_*`` structures, as described in
2877``drivers/io/io_driver.h``. These are returned via a mandatory registration
2878function that is called on platform initialization. The semi-hosting driver
2879implementation in ``io_semihosting.c`` can be used as an example.
2880
Louis Mayencourtb5469002019-07-15 13:56:03 +01002881Each platform should register devices and their drivers via the storage
2882abstraction layer. These drivers then need to be initialized by bootloader
2883phases as required in their respective ``blx_platform_setup()`` functions.
2884
2885.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
2886
2887The storage abstraction layer provides mechanisms (``io_dev_init()``) to
2888initialize storage devices before IO operations are called.
2889
2890.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
2891
2892The basic operations supported by the layer
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002893include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
2894Drivers do not have to implement all operations, but each platform must
2895provide at least one driver for a device capable of supporting generic
2896operations such as loading a bootloader image.
2897
2898The current implementation only allows for known images to be loaded by the
2899firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00002900``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002901there). The platform layer (``plat_get_image_source()``) then returns a reference
2902to a device and a driver-specific ``spec`` which will be understood by the driver
2903to allow access to the image data.
2904
2905The layer is designed in such a way that is it possible to chain drivers with
2906other drivers. For example, file-system drivers may be implemented on top of
2907physical block devices, both represented by IO devices with corresponding
2908drivers. In such a case, the file-system "binding" with the block device may
2909be deferred until the file-system device is initialised.
2910
2911The abstraction currently depends on structures being statically allocated
2912by the drivers and callers, as the system does not yet provide a means of
2913dynamically allocating memory. This may also have the affect of limiting the
2914amount of open resources per driver.
2915
2916--------------
2917
Paul Beesley07f0a312019-05-16 13:33:18 +01002918*Copyright (c) 2013-2020, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002919
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002920.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley610e7e12018-03-01 18:44:00 +00002921.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002922.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00002923.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002924.. _SCC: http://www.simple-cc.org/