blob: 6b33b45e7ccc0470f258faa01f3551b4bc940f43 [file] [log] [blame]
Aneesh Vcc565582011-07-21 09:10:09 -04001/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
Wolfgang Denkd79de1d2013-07-08 09:37:19 +02009 * SPDX-License-Identifier: GPL-2.0+
Aneesh Vcc565582011-07-21 09:10:09 -040010 */
11
12#include <common.h>
Sricharan62a86502011-11-15 09:50:00 -050013#include <asm/emif.h>
Lokesh Vutla61c517f2013-05-30 02:54:32 +000014#include <asm/arch/clock.h>
Aneesh Vcc565582011-07-21 09:10:09 -040015#include <asm/arch/sys_proto.h>
16#include <asm/omap_common.h>
17#include <asm/utils.h>
SRICHARAN Rb9f10a52012-06-04 03:40:23 +000018#include <linux/compiler.h>
Aneesh Vcc565582011-07-21 09:10:09 -040019
Lokesh Vutla80242592012-11-15 21:06:33 +000020static int emif1_enabled = -1, emif2_enabled = -1;
21
Lokesh Vutlaba873772012-05-29 19:26:43 +000022void set_lpmode_selfrefresh(u32 base)
23{
24 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25 u32 reg;
26
27 reg = readl(&emif->emif_pwr_mgmt_ctrl);
28 reg &= ~EMIF_REG_LP_MODE_MASK;
29 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30 reg &= ~EMIF_REG_SR_TIM_MASK;
31 writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33 /* dummy read for the new SR_TIM to be loaded */
34 readl(&emif->emif_pwr_mgmt_ctrl);
35}
36
37void force_emif_self_refresh()
38{
39 set_lpmode_selfrefresh(EMIF1_BASE);
40 set_lpmode_selfrefresh(EMIF2_BASE);
41}
42
Sricharan62a86502011-11-15 09:50:00 -050043inline u32 emif_num(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -040044{
Sricharan62a86502011-11-15 09:50:00 -050045 if (base == EMIF1_BASE)
Aneesh Vcc565582011-07-21 09:10:09 -040046 return 1;
Sricharan62a86502011-11-15 09:50:00 -050047 else if (base == EMIF2_BASE)
Aneesh Vcc565582011-07-21 09:10:09 -040048 return 2;
49 else
50 return 0;
51}
52
53static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
54{
55 u32 mr;
56 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
57
Sricharan62a86502011-11-15 09:50:00 -050058 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh Vcc565582011-07-21 09:10:09 -040059 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
60 if (omap_revision() == OMAP4430_ES2_0)
61 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
62 else
63 mr = readl(&emif->emif_lpddr2_mode_reg_data);
64 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
65 cs, mr_addr, mr);
Steve Sakoman3dab3f62012-05-30 07:38:07 +000066 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
67 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
68 ((mr & 0xff000000) >> 24) == (mr & 0xff))
69 return mr & 0xff;
70 else
71 return mr;
Aneesh Vcc565582011-07-21 09:10:09 -040072}
73
74static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
75{
76 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
77
Sricharan62a86502011-11-15 09:50:00 -050078 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh Vcc565582011-07-21 09:10:09 -040079 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
80 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
81}
82
83void emif_reset_phy(u32 base)
84{
85 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
86 u32 iodft;
87
88 iodft = readl(&emif->emif_iodft_tlgc);
Sricharan62a86502011-11-15 09:50:00 -050089 iodft |= EMIF_REG_RESET_PHY_MASK;
Aneesh Vcc565582011-07-21 09:10:09 -040090 writel(iodft, &emif->emif_iodft_tlgc);
91}
92
93static void do_lpddr2_init(u32 base, u32 cs)
94{
95 u32 mr_addr;
Lokesh Vutla05dab552013-02-04 04:22:03 +000096 const struct lpddr2_mr_regs *mr_regs;
Aneesh Vcc565582011-07-21 09:10:09 -040097
Lokesh Vutla05dab552013-02-04 04:22:03 +000098 get_lpddr2_mr_regs(&mr_regs);
Aneesh Vcc565582011-07-21 09:10:09 -040099 /* Wait till device auto initialization is complete */
100 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
101 ;
Lokesh Vutla05dab552013-02-04 04:22:03 +0000102 set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
Aneesh Vcc565582011-07-21 09:10:09 -0400103 /*
104 * tZQINIT = 1 us
105 * Enough loops assuming a maximum of 2GHz
106 */
SRICHARAN R3d534962012-03-12 02:25:37 +0000107
Aneesh Vcc565582011-07-21 09:10:09 -0400108 sdelay(2000);
SRICHARAN R3d534962012-03-12 02:25:37 +0000109
Lokesh Vutla05dab552013-02-04 04:22:03 +0000110 set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
111 set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
SRICHARAN R3d534962012-03-12 02:25:37 +0000112
Aneesh Vcc565582011-07-21 09:10:09 -0400113 /*
114 * Enable refresh along with writing MR2
115 * Encoding of RL in MR2 is (RL - 2)
116 */
Sricharan62a86502011-11-15 09:50:00 -0500117 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
Lokesh Vutla05dab552013-02-04 04:22:03 +0000118 set_mr(base, cs, mr_addr, mr_regs->mr2);
SRICHARAN R3d534962012-03-12 02:25:37 +0000119
Lokesh Vutla05dab552013-02-04 04:22:03 +0000120 if (mr_regs->mr3 > 0)
121 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
Aneesh Vcc565582011-07-21 09:10:09 -0400122}
123
124static void lpddr2_init(u32 base, const struct emif_regs *regs)
125{
126 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
127
128 /* Not NVM */
Sricharan62a86502011-11-15 09:50:00 -0500129 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400130
131 /*
132 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
133 * when EMIF_SDRAM_CONFIG register is written
134 */
Sricharan62a86502011-11-15 09:50:00 -0500135 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400136
137 /*
138 * Set the SDRAM_CONFIG and PHY_CTRL for the
139 * un-locked frequency & default RL
140 */
141 writel(regs->sdram_config_init, &emif->emif_sdram_config);
Taras Kondratiuk50535eb2013-08-06 16:16:50 +0300142 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
SRICHARAN R3d534962012-03-12 02:25:37 +0000143
SRICHARAN Rb9f10a52012-06-04 03:40:23 +0000144 do_ext_phy_settings(base, regs);
Aneesh Vcc565582011-07-21 09:10:09 -0400145
146 do_lpddr2_init(base, CS0);
Sricharan62a86502011-11-15 09:50:00 -0500147 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
Aneesh Vcc565582011-07-21 09:10:09 -0400148 do_lpddr2_init(base, CS1);
149
150 writel(regs->sdram_config, &emif->emif_sdram_config);
151 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
152
153 /* Enable refresh now */
Sricharan62a86502011-11-15 09:50:00 -0500154 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400155
SRICHARAN Rb9f10a52012-06-04 03:40:23 +0000156 }
157
158__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
159{
Aneesh Vcc565582011-07-21 09:10:09 -0400160}
161
Sricharan62a86502011-11-15 09:50:00 -0500162void emif_update_timings(u32 base, const struct emif_regs *regs)
Aneesh Vcc565582011-07-21 09:10:09 -0400163{
164 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
165
Lokesh Vutlafc62e492016-03-05 17:32:28 +0530166 if (!is_dra7xx())
167 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
168 else
169 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
170
Aneesh Vcc565582011-07-21 09:10:09 -0400171 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
172 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
173 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
174 if (omap_revision() == OMAP4430_ES1_0) {
175 /* ES1 bug EMIF should be in force idle during freq_update */
176 writel(0, &emif->emif_pwr_mgmt_ctrl);
177 } else {
178 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
179 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
180 }
181 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
182 writel(regs->zq_config, &emif->emif_zq_config);
183 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
184 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
Aneesh V639cfb62011-07-21 09:29:26 -0400185
Nishanth Menon60475ff2014-01-14 10:54:42 -0600186 if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
Sricharan62a86502011-11-15 09:50:00 -0500187 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
188 &emif->emif_l3_config);
189 } else if (omap_revision() >= OMAP4460_ES1_0) {
Aneesh V639cfb62011-07-21 09:29:26 -0400190 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
191 &emif->emif_l3_config);
192 } else {
193 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
194 &emif->emif_l3_config);
Aneesh Vcc565582011-07-21 09:10:09 -0400195 }
196}
197
SRICHARAN Re02f5f82013-11-08 17:40:37 +0530198static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000199{
200 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
201
202 /* keep sdram in self-refresh */
203 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
204 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
205 __udelay(130);
206
207 /*
208 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
SRICHARAN Re02f5f82013-11-08 17:40:37 +0530209 * Invert clock adds an additional half cycle delay on the
210 * command interface. The additional half cycle, is usually
211 * meant to enable leveling in the situation that DQS is later
212 * than CK on the board.It also helps provide some additional
213 * margin for leveling.
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000214 */
SRICHARAN Re02f5f82013-11-08 17:40:37 +0530215 writel(regs->emif_ddr_phy_ctlr_1,
216 &emif->emif_ddr_phy_ctrl_1);
217
218 writel(regs->emif_ddr_phy_ctlr_1,
219 &emif->emif_ddr_phy_ctrl_1_shdw);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000220 __udelay(130);
221
222 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
SRICHARAN Re02f5f82013-11-08 17:40:37 +0530223 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000224
225 /* Launch Full leveling */
226 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
227
228 /* Wait till full leveling is complete */
229 readl(&emif->emif_rd_wr_lvl_ctl);
SRICHARAN Re02f5f82013-11-08 17:40:37 +0530230 __udelay(130);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000231
232 /* Read data eye leveling no of samples */
233 config_data_eye_leveling_samples(base);
234
SRICHARAN Re02f5f82013-11-08 17:40:37 +0530235 /*
236 * Launch 8 incremental WR_LVL- to compensate for
237 * PHY limitation.
238 */
239 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
240 &emif->emif_rd_wr_lvl_ctl);
241
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000242 __udelay(130);
243
244 /* Launch Incremental leveling */
245 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
SRICHARAN Re02f5f82013-11-08 17:40:37 +0530246 __udelay(130);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000247}
248
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530249static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
SRICHARAN Re02f5f82013-11-08 17:40:37 +0530250{
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530251 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
252 u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
253 u32 reg, i;
254
255 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
256
257 /* Update PHY_REG_RDDQS_RATIO */
258 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
259 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
260 reg = readl(emif_phy_status++);
261 writel(reg, emif_ext_phy_ctrl_reg++);
262 writel(reg, emif_ext_phy_ctrl_reg++);
263 }
264
265 /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
266 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
267 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
268 reg = readl(emif_phy_status++);
269 writel(reg, emif_ext_phy_ctrl_reg++);
270 writel(reg, emif_ext_phy_ctrl_reg++);
271 }
272
273 /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
274 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
275 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
276 reg = readl(emif_phy_status++);
277 writel(reg, emif_ext_phy_ctrl_reg++);
278 writel(reg, emif_ext_phy_ctrl_reg++);
279 }
280
281 /* Disable Leveling */
282 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
283 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
284 writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
Sricharan Rffa98182013-05-30 03:19:39 +0000285}
286
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530287static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000288{
289 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000290
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530291 /* Clear Error Status */
292 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
293 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
294 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
295
296 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
297 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
298 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
299
300 /* Disable refreshed before leveling */
Lokesh Vutla206ab3b2015-08-28 12:28:25 +0530301 clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
302 EMIF_REG_INITREF_DIS_MASK);
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530303
304 /* Start Full leveling */
305 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
306
307 __udelay(300);
308
309 /* Check for leveling timeout */
310 if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
311 printf("Leveling timeout on EMIF%d\n", emif_num(base));
312 return;
313 }
314
315 /* Enable refreshes after leveling */
Lokesh Vutla206ab3b2015-08-28 12:28:25 +0530316 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530317
318 debug("HW leveling success\n");
319 /*
320 * Update slave ratios in EXT_PHY_CTRLx registers
321 * as per HW leveling output
322 */
323 update_hwleveling_output(base, regs);
324}
325
326static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
327{
328 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
329
Lokesh Vutla46ca84e2016-03-05 17:32:29 +0530330 if (warm_reset()) {
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530331 emif_reset_phy(base);
Lokesh Vutla46ca84e2016-03-05 17:32:29 +0530332 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
333 }
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530334 do_ext_phy_settings(base, regs);
335
336 writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
337 &emif->emif_sdram_ref_ctrl);
338 /* Update timing registers */
339 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
340 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
341 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
342
343 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
344 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
345 writel(regs->zq_config, &emif->emif_zq_config);
346 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
347 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
348 writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
349
350 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
351 writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
352
353 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
354
355 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
356 writel(regs->sdram_config_init, &emif->emif_sdram_config);
357
358 __udelay(1000);
359
360 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
361
362 if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
363 dra7_ddr3_leveling(base, regs);
364}
365
366static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
367{
368 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
369
Lokesh Vutlab7eecd72015-02-16 10:15:56 +0530370 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
371 writel(regs->sdram_config_init, &emif->emif_sdram_config);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000372 /*
373 * Set SDRAM_CONFIG and PHY control registers to locked frequency
374 * and RL =7. As the default values of the Mode Registers are not
375 * defined, contents of mode Registers must be fully initialized.
376 * H/W takes care of this initialization
377 */
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000378 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
379
380 /* Update timing registers */
381 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
382 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
383 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
384
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000385 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
386
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530387 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
388 writel(regs->sdram_config_init, &emif->emif_sdram_config);
389 do_ext_phy_settings(base, regs);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000390
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000391 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530392 omap5_ddr3_leveling(base, regs);
393}
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000394
Lokesh Vutla979d2c32015-06-03 14:43:21 +0530395static void ddr3_init(u32 base, const struct emif_regs *regs)
396{
397 if (is_omap54xx())
398 omap5_ddr3_init(base, regs);
399 else
400 dra7_ddr3_init(base, regs);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000401}
402
Aneesh Vc0e88522011-07-21 09:10:12 -0400403#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
404#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
405
Aneesh Vc0e88522011-07-21 09:10:12 -0400406/*
407 * Organization and refresh requirements for LPDDR2 devices of different
408 * types and densities. Derived from JESD209-2 section 2.4
409 */
410const struct lpddr2_addressing addressing_table[] = {
411 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
412 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
413 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
414 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
415 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
416 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
417 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
418 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
419 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
420 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
421 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
422};
423
424static const u32 lpddr2_density_2_size_in_mbytes[] = {
425 8, /* 64Mb */
426 16, /* 128Mb */
427 32, /* 256Mb */
428 64, /* 512Mb */
429 128, /* 1Gb */
430 256, /* 2Gb */
431 512, /* 4Gb */
432 1024, /* 8Gb */
433 2048, /* 16Gb */
434 4096 /* 32Gb */
435};
436
437/*
438 * Calculate the period of DDR clock from frequency value and set the
439 * denominator and numerator in global variables for easy access later
440 */
441static void set_ddr_clk_period(u32 freq)
442{
443 /*
444 * period = 1/freq
445 * period_in_ns = 10^9/freq
446 */
447 *T_num = 1000000000;
448 *T_den = freq;
449 cancel_out(T_num, T_den, 200);
450
451}
452
453/*
454 * Convert time in nano seconds to number of cycles of DDR clock
455 */
456static inline u32 ns_2_cycles(u32 ns)
457{
458 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
459}
460
461/*
462 * ns_2_cycles with the difference that the time passed is 2 times the actual
463 * value(to avoid fractions). The cycles returned is for the original value of
464 * the timing parameter
465 */
466static inline u32 ns_x2_2_cycles(u32 ns)
467{
468 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
469}
470
471/*
472 * Find addressing table index based on the device's type(S2 or S4) and
473 * density
474 */
475s8 addressing_table_index(u8 type, u8 density, u8 width)
476{
477 u8 index;
478 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
479 return -1;
480
481 /*
482 * Look at the way ADDR_TABLE_INDEX* values have been defined
483 * in emif.h compared to LPDDR2_DENSITY_* values
484 * The table is layed out in the increasing order of density
485 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
486 * at the end
487 */
488 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
489 index = ADDR_TABLE_INDEX1GS2;
490 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
491 index = ADDR_TABLE_INDEX2GS2;
492 else
493 index = density;
494
495 debug("emif: addressing table index %d\n", index);
496
497 return index;
498}
499
500/*
501 * Find the the right timing table from the array of timing
502 * tables of the device using DDR clock frequency
503 */
504static const struct lpddr2_ac_timings *get_timings_table(const struct
505 lpddr2_ac_timings const *const *device_timings,
506 u32 freq)
507{
508 u32 i, temp, freq_nearest;
509 const struct lpddr2_ac_timings *timings = 0;
510
511 emif_assert(freq <= MAX_LPDDR2_FREQ);
512 emif_assert(device_timings);
513
514 /*
515 * Start with the maximum allowed frequency - that is always safe
516 */
517 freq_nearest = MAX_LPDDR2_FREQ;
518 /*
519 * Find the timings table that has the max frequency value:
520 * i. Above or equal to the DDR frequency - safe
521 * ii. The lowest that satisfies condition (i) - optimal
522 */
523 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
524 temp = device_timings[i]->max_freq;
525 if ((temp >= freq) && (temp <= freq_nearest)) {
526 freq_nearest = temp;
527 timings = device_timings[i];
528 }
529 }
530 debug("emif: timings table: %d\n", freq_nearest);
531 return timings;
532}
533
534/*
535 * Finds the value of emif_sdram_config_reg
536 * All parameters are programmed based on the device on CS0.
537 * If there is a device on CS1, it will be same as that on CS0 or
538 * it will be NVM. We don't support NVM yet.
539 * If cs1_device pointer is NULL it is assumed that there is no device
540 * on CS1
541 */
542static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
543 const struct lpddr2_device_details *cs1_device,
544 const struct lpddr2_addressing *addressing,
545 u8 RL)
546{
547 u32 config_reg = 0;
548
Sricharan62a86502011-11-15 09:50:00 -0500549 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400550 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
Sricharan62a86502011-11-15 09:50:00 -0500551 EMIF_REG_IBANK_POS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400552
Sricharan62a86502011-11-15 09:50:00 -0500553 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400554
Sricharan62a86502011-11-15 09:50:00 -0500555 config_reg |= RL << EMIF_REG_CL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400556
557 config_reg |= addressing->row_sz[cs0_device->io_width] <<
Sricharan62a86502011-11-15 09:50:00 -0500558 EMIF_REG_ROWSIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400559
Sricharan62a86502011-11-15 09:50:00 -0500560 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400561
562 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
Sricharan62a86502011-11-15 09:50:00 -0500563 EMIF_REG_EBANK_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400564
565 config_reg |= addressing->col_sz[cs0_device->io_width] <<
Sricharan62a86502011-11-15 09:50:00 -0500566 EMIF_REG_PAGESIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400567
568 return config_reg;
569}
570
571static u32 get_sdram_ref_ctrl(u32 freq,
572 const struct lpddr2_addressing *addressing)
573{
574 u32 ref_ctrl = 0, val = 0, freq_khz;
575 freq_khz = freq / 1000;
576 /*
577 * refresh rate to be set is 'tREFI * freq in MHz
578 * division by 10000 to account for khz and x10 in t_REFI_us_x10
579 */
580 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
Sricharan62a86502011-11-15 09:50:00 -0500581 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400582
583 return ref_ctrl;
584}
585
586static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
587 const struct lpddr2_min_tck *min_tck,
588 const struct lpddr2_addressing *addressing)
589{
590 u32 tim1 = 0, val = 0;
591 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500592 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400593
594 if (addressing->num_banks == BANKS8)
595 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
596 (4 * (*T_num)) - 1;
597 else
598 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
599
Sricharan62a86502011-11-15 09:50:00 -0500600 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400601
602 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500603 tim1 |= val << EMIF_REG_T_RC_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400604
605 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500606 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400607
608 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500609 tim1 |= val << EMIF_REG_T_WR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400610
611 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500612 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400613
614 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500615 tim1 |= val << EMIF_REG_T_RP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400616
617 return tim1;
618}
619
620static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
621 const struct lpddr2_min_tck *min_tck)
622{
623 u32 tim2 = 0, val = 0;
624 val = max(min_tck->tCKE, timings->tCKE) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500625 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400626
627 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500628 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400629
630 /*
631 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
632 * same value
633 */
634 val = ns_2_cycles(timings->tXSR) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500635 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
636 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400637
638 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500639 tim2 |= val << EMIF_REG_T_XP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400640
641 return tim2;
642}
643
644static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
645 const struct lpddr2_min_tck *min_tck,
646 const struct lpddr2_addressing *addressing)
647{
648 u32 tim3 = 0, val = 0;
649 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
Sricharan62a86502011-11-15 09:50:00 -0500650 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400651
652 val = ns_2_cycles(timings->tRFCab) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500653 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400654
655 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500656 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400657
658 val = ns_2_cycles(timings->tZQCS) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500659 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400660
661 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500662 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400663
664 return tim3;
665}
666
667static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
668 const struct lpddr2_addressing *addressing,
669 u8 volt_ramp)
670{
671 u32 zq = 0, val = 0;
672 if (volt_ramp)
673 val =
674 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
675 addressing->t_REFI_us_x10;
676 else
677 val =
678 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
679 addressing->t_REFI_us_x10;
Sricharan62a86502011-11-15 09:50:00 -0500680 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400681
Sricharan62a86502011-11-15 09:50:00 -0500682 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400683
Sricharan62a86502011-11-15 09:50:00 -0500684 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400685
Sricharan62a86502011-11-15 09:50:00 -0500686 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400687
688 /*
689 * Assuming that two chipselects have a single calibration resistor
690 * If there are indeed two calibration resistors, then this flag should
691 * be enabled to take advantage of dual calibration feature.
692 * This data should ideally come from board files. But considering
693 * that none of the boards today have calibration resistors per CS,
694 * it would be an unnecessary overhead.
695 */
Sricharan62a86502011-11-15 09:50:00 -0500696 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400697
Sricharan62a86502011-11-15 09:50:00 -0500698 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400699
Sricharan62a86502011-11-15 09:50:00 -0500700 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400701
702 return zq;
703}
704
705static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
706 const struct lpddr2_addressing *addressing,
707 u8 is_derated)
708{
709 u32 alert = 0, interval;
710 interval =
711 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
712 if (is_derated)
713 interval *= 4;
Sricharan62a86502011-11-15 09:50:00 -0500714 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400715
Sricharan62a86502011-11-15 09:50:00 -0500716 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400717
Sricharan62a86502011-11-15 09:50:00 -0500718 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400719
Sricharan62a86502011-11-15 09:50:00 -0500720 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400721
Sricharan62a86502011-11-15 09:50:00 -0500722 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400723
Sricharan62a86502011-11-15 09:50:00 -0500724 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400725
726 return alert;
727}
728
729static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
730{
731 u32 idle = 0, val = 0;
732 if (volt_ramp)
Aneesh V639cfb62011-07-21 09:29:26 -0400733 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
Aneesh Vc0e88522011-07-21 09:10:12 -0400734 else
735 /*Maximum value in normal conditions - suggested by hw team */
736 val = 0x1FF;
Sricharan62a86502011-11-15 09:50:00 -0500737 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400738
Sricharan62a86502011-11-15 09:50:00 -0500739 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400740
741 return idle;
742}
743
744static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
745{
746 u32 phy = 0, val = 0;
747
Sricharan62a86502011-11-15 09:50:00 -0500748 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400749
750 if (freq <= 100000000)
751 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
752 else if (freq <= 200000000)
753 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
754 else
755 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
Sricharan62a86502011-11-15 09:50:00 -0500756 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400757
758 /* Other fields are constant magic values. Hardcode them together */
759 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
Sricharan62a86502011-11-15 09:50:00 -0500760 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400761
762 return phy;
763}
764
Lokesh Vutlac323bd22013-04-04 19:51:14 +0000765static u32 get_emif_mem_size(u32 base)
Aneesh Vc0e88522011-07-21 09:10:12 -0400766{
767 u32 size_mbytes = 0, temp;
Lokesh Vutlac323bd22013-04-04 19:51:14 +0000768 struct emif_device_details dev_details;
769 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
770 u32 emif_nr = emif_num(base);
Aneesh Vc0e88522011-07-21 09:10:12 -0400771
Lokesh Vutlac323bd22013-04-04 19:51:14 +0000772 emif_reset_phy(base);
773 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
774 &cs0_dev_details);
775 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
776 &cs1_dev_details);
777 emif_reset_phy(base);
Aneesh Vc0e88522011-07-21 09:10:12 -0400778
Lokesh Vutlac323bd22013-04-04 19:51:14 +0000779 if (dev_details.cs0_device_details) {
780 temp = dev_details.cs0_device_details->density;
Aneesh Vc0e88522011-07-21 09:10:12 -0400781 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
782 }
783
Lokesh Vutlac323bd22013-04-04 19:51:14 +0000784 if (dev_details.cs1_device_details) {
785 temp = dev_details.cs1_device_details->density;
Aneesh Vc0e88522011-07-21 09:10:12 -0400786 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
787 }
788 /* convert to bytes */
789 return size_mbytes << 20;
790}
791
792/* Gets the encoding corresponding to a given DMM section size */
793u32 get_dmm_section_size_map(u32 section_size)
794{
795 /*
796 * Section size mapping:
797 * 0x0: 16-MiB section
798 * 0x1: 32-MiB section
799 * 0x2: 64-MiB section
800 * 0x3: 128-MiB section
801 * 0x4: 256-MiB section
802 * 0x5: 512-MiB section
803 * 0x6: 1-GiB section
804 * 0x7: 2-GiB section
805 */
806 section_size >>= 24; /* divide by 16 MB */
807 return log_2_n_round_down(section_size);
808}
809
810static void emif_calculate_regs(
811 const struct emif_device_details *emif_dev_details,
812 u32 freq, struct emif_regs *regs)
813{
814 u32 temp, sys_freq;
815 const struct lpddr2_addressing *addressing;
816 const struct lpddr2_ac_timings *timings;
817 const struct lpddr2_min_tck *min_tck;
818 const struct lpddr2_device_details *cs0_dev_details =
819 emif_dev_details->cs0_device_details;
820 const struct lpddr2_device_details *cs1_dev_details =
821 emif_dev_details->cs1_device_details;
822 const struct lpddr2_device_timings *cs0_dev_timings =
823 emif_dev_details->cs0_device_timings;
824
825 emif_assert(emif_dev_details);
826 emif_assert(regs);
827 /*
828 * You can not have a device on CS1 without one on CS0
829 * So configuring EMIF without a device on CS0 doesn't
830 * make sense
831 */
832 emif_assert(cs0_dev_details);
833 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
834 /*
835 * If there is a device on CS1 it should be same type as CS0
836 * (or NVM. But NVM is not supported in this driver yet)
837 */
838 emif_assert((cs1_dev_details == NULL) ||
839 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
840 (cs0_dev_details->type == cs1_dev_details->type));
841 emif_assert(freq <= MAX_LPDDR2_FREQ);
842
843 set_ddr_clk_period(freq);
844
845 /*
846 * The device on CS0 is used for all timing calculations
847 * There is only one set of registers for timings per EMIF. So, if the
848 * second CS(CS1) has a device, it should have the same timings as the
849 * device on CS0
850 */
851 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
852 emif_assert(timings);
853 min_tck = cs0_dev_timings->min_tck;
854
855 temp = addressing_table_index(cs0_dev_details->type,
856 cs0_dev_details->density,
857 cs0_dev_details->io_width);
858
859 emif_assert((temp >= 0));
860 addressing = &(addressing_table[temp]);
861 emif_assert(addressing);
862
863 sys_freq = get_sys_clk_freq();
864
865 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
866 cs1_dev_details,
867 addressing, RL_BOOT);
868
869 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
870 cs1_dev_details,
871 addressing, RL_FINAL);
872
873 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
874
875 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
876
877 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
878
879 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
880
881 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
882
883 regs->temp_alert_config =
884 get_temp_alert_config(cs1_dev_details, addressing, 0);
885
886 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
887 LPDDR2_VOLTAGE_STABLE);
888
889 regs->emif_ddr_phy_ctlr_1_init =
890 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
891
892 regs->emif_ddr_phy_ctlr_1 =
893 get_ddr_phy_ctrl_1(freq, RL_FINAL);
894
895 regs->freq = freq;
896
897 print_timing_reg(regs->sdram_config_init);
898 print_timing_reg(regs->sdram_config);
899 print_timing_reg(regs->ref_ctrl);
900 print_timing_reg(regs->sdram_tim1);
901 print_timing_reg(regs->sdram_tim2);
902 print_timing_reg(regs->sdram_tim3);
903 print_timing_reg(regs->read_idle_ctrl);
904 print_timing_reg(regs->temp_alert_config);
905 print_timing_reg(regs->zq_config);
906 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
907 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
908}
909#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
910
Aneesh Vced762a2011-07-21 09:10:15 -0400911#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
912const char *get_lpddr2_type(u8 type_id)
913{
914 switch (type_id) {
915 case LPDDR2_TYPE_S4:
916 return "LPDDR2-S4";
917 case LPDDR2_TYPE_S2:
918 return "LPDDR2-S2";
919 default:
920 return NULL;
921 }
922}
923
924const char *get_lpddr2_io_width(u8 width_id)
925{
926 switch (width_id) {
927 case LPDDR2_IO_WIDTH_8:
928 return "x8";
929 case LPDDR2_IO_WIDTH_16:
930 return "x16";
931 case LPDDR2_IO_WIDTH_32:
932 return "x32";
933 default:
934 return NULL;
935 }
936}
937
938const char *get_lpddr2_manufacturer(u32 manufacturer)
939{
940 switch (manufacturer) {
941 case LPDDR2_MANUFACTURER_SAMSUNG:
942 return "Samsung";
943 case LPDDR2_MANUFACTURER_QIMONDA:
944 return "Qimonda";
945 case LPDDR2_MANUFACTURER_ELPIDA:
946 return "Elpida";
947 case LPDDR2_MANUFACTURER_ETRON:
948 return "Etron";
949 case LPDDR2_MANUFACTURER_NANYA:
950 return "Nanya";
951 case LPDDR2_MANUFACTURER_HYNIX:
952 return "Hynix";
953 case LPDDR2_MANUFACTURER_MOSEL:
954 return "Mosel";
955 case LPDDR2_MANUFACTURER_WINBOND:
956 return "Winbond";
957 case LPDDR2_MANUFACTURER_ESMT:
958 return "ESMT";
959 case LPDDR2_MANUFACTURER_SPANSION:
960 return "Spansion";
961 case LPDDR2_MANUFACTURER_SST:
962 return "SST";
963 case LPDDR2_MANUFACTURER_ZMOS:
964 return "ZMOS";
965 case LPDDR2_MANUFACTURER_INTEL:
966 return "Intel";
967 case LPDDR2_MANUFACTURER_NUMONYX:
968 return "Numonyx";
969 case LPDDR2_MANUFACTURER_MICRON:
970 return "Micron";
971 default:
972 return NULL;
973 }
974}
975
976static void display_sdram_details(u32 emif_nr, u32 cs,
977 struct lpddr2_device_details *device)
978{
979 const char *mfg_str;
980 const char *type_str;
981 char density_str[10];
982 u32 density;
983
984 debug("EMIF%d CS%d\t", emif_nr, cs);
985
986 if (!device) {
987 debug("None\n");
988 return;
989 }
990
991 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
992 type_str = get_lpddr2_type(device->type);
993
994 density = lpddr2_density_2_size_in_mbytes[device->density];
995 if ((density / 1024 * 1024) == density) {
996 density /= 1024;
997 sprintf(density_str, "%d GB", density);
998 } else
999 sprintf(density_str, "%d MB", density);
1000 if (mfg_str && type_str)
1001 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1002}
1003
1004static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1005 struct lpddr2_device_details *lpddr2_device)
1006{
1007 u32 mr = 0, temp;
1008
1009 mr = get_mr(base, cs, LPDDR2_MR0);
1010 if (mr > 0xFF) {
1011 /* Mode register value bigger than 8 bit */
1012 return 0;
1013 }
1014
1015 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1016 if (temp) {
1017 /* Not SDRAM */
1018 return 0;
1019 }
1020 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1021
1022 if (temp) {
1023 /* DNV supported - But DNV is only supported for NVM */
1024 return 0;
1025 }
1026
1027 mr = get_mr(base, cs, LPDDR2_MR4);
1028 if (mr > 0xFF) {
1029 /* Mode register value bigger than 8 bit */
1030 return 0;
1031 }
1032
1033 mr = get_mr(base, cs, LPDDR2_MR5);
Steve Sakomance515a62012-05-30 07:38:08 +00001034 if (mr > 0xFF) {
Aneesh Vced762a2011-07-21 09:10:15 -04001035 /* Mode register value bigger than 8 bit */
1036 return 0;
1037 }
1038
1039 if (!get_lpddr2_manufacturer(mr)) {
1040 /* Manufacturer not identified */
1041 return 0;
1042 }
1043 lpddr2_device->manufacturer = mr;
1044
1045 mr = get_mr(base, cs, LPDDR2_MR6);
1046 if (mr >= 0xFF) {
1047 /* Mode register value bigger than 8 bit */
1048 return 0;
1049 }
1050
1051 mr = get_mr(base, cs, LPDDR2_MR7);
1052 if (mr >= 0xFF) {
1053 /* Mode register value bigger than 8 bit */
1054 return 0;
1055 }
1056
1057 mr = get_mr(base, cs, LPDDR2_MR8);
1058 if (mr >= 0xFF) {
1059 /* Mode register value bigger than 8 bit */
1060 return 0;
1061 }
1062
1063 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1064 if (!get_lpddr2_type(temp)) {
1065 /* Not SDRAM */
1066 return 0;
1067 }
1068 lpddr2_device->type = temp;
1069
1070 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1071 if (temp > LPDDR2_DENSITY_32Gb) {
1072 /* Density not supported */
1073 return 0;
1074 }
1075 lpddr2_device->density = temp;
1076
1077 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1078 if (!get_lpddr2_io_width(temp)) {
1079 /* IO width unsupported value */
1080 return 0;
1081 }
1082 lpddr2_device->io_width = temp;
1083
1084 /*
1085 * If all the above tests pass we should
1086 * have a device on this chip-select
1087 */
1088 return 1;
1089}
1090
Aneesh V14f821a2011-09-08 11:05:53 -04001091struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
Aneesh Vced762a2011-07-21 09:10:15 -04001092 struct lpddr2_device_details *lpddr2_dev_details)
1093{
1094 u32 phy;
Sricharan62a86502011-11-15 09:50:00 -05001095 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1096
Aneesh Vced762a2011-07-21 09:10:15 -04001097 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1098
1099 if (!lpddr2_dev_details)
1100 return NULL;
1101
1102 /* Do the minimum init for mode register accesses */
Lokesh Vutlaae642392012-05-29 19:26:42 +00001103 if (!(running_from_sdram() || warm_reset())) {
Aneesh Vced762a2011-07-21 09:10:15 -04001104 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1105 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1106 }
1107
1108 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1109 return NULL;
1110
1111 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1112
1113 return lpddr2_dev_details;
1114}
Aneesh Vced762a2011-07-21 09:10:15 -04001115#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1116
Aneesh Vcc565582011-07-21 09:10:09 -04001117static void do_sdram_init(u32 base)
1118{
1119 const struct emif_regs *regs;
1120 u32 in_sdram, emif_nr;
1121
1122 debug(">>do_sdram_init() %x\n", base);
1123
1124 in_sdram = running_from_sdram();
Sricharan62a86502011-11-15 09:50:00 -05001125 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
Aneesh Vcc565582011-07-21 09:10:09 -04001126
Aneesh Vc0e88522011-07-21 09:10:12 -04001127#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh Vcc565582011-07-21 09:10:09 -04001128 emif_get_reg_dump(emif_nr, &regs);
1129 if (!regs) {
1130 debug("EMIF: reg dump not provided\n");
1131 return;
1132 }
Aneesh Vc0e88522011-07-21 09:10:12 -04001133#else
1134 /*
1135 * The user has not provided the register values. We need to
1136 * calculate it based on the timings and the DDR frequency
1137 */
1138 struct emif_device_details dev_details;
1139 struct emif_regs calculated_regs;
1140
1141 /*
1142 * Get device details:
1143 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1144 * - Obtained from user otherwise
1145 */
1146 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
Aneesh V14f821a2011-09-08 11:05:53 -04001147 emif_reset_phy(base);
Aneesh V7d9fa572011-11-21 23:39:02 +00001148 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
Aneesh V14f821a2011-09-08 11:05:53 -04001149 &cs0_dev_details);
Aneesh V7d9fa572011-11-21 23:39:02 +00001150 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
Aneesh V14f821a2011-09-08 11:05:53 -04001151 &cs1_dev_details);
1152 emif_reset_phy(base);
Aneesh Vc0e88522011-07-21 09:10:12 -04001153
1154 /* Return if no devices on this EMIF */
1155 if (!dev_details.cs0_device_details &&
1156 !dev_details.cs1_device_details) {
Aneesh Vc0e88522011-07-21 09:10:12 -04001157 return;
1158 }
Aneesh Vcc565582011-07-21 09:10:09 -04001159
Aneesh Vc0e88522011-07-21 09:10:12 -04001160 /*
1161 * Get device timings:
1162 * - Default timings specified by JESD209-2 if
1163 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1164 * - Obtained from user otherwise
1165 */
1166 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1167 &dev_details.cs1_device_timings);
1168
1169 /* Calculate the register values */
Sricharan9784f1f2011-11-15 09:49:58 -05001170 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
Aneesh Vc0e88522011-07-21 09:10:12 -04001171 regs = &calculated_regs;
1172#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1173
Aneesh Vcc565582011-07-21 09:10:09 -04001174 /*
1175 * Initializing the LPDDR2 device can not happen from SDRAM.
1176 * Changing the timing registers in EMIF can happen(going from one
1177 * OPP to another)
1178 */
Lokesh Vutla80230c62015-06-04 10:08:50 +05301179 if (!in_sdram && (!warm_reset() || is_dra7xx())) {
Tom Rinibe8d6352015-06-05 15:51:11 +05301180 if (emif_sdram_type(regs->sdram_config) ==
1181 EMIF_SDRAM_TYPE_LPDDR2)
Lokesh Vutla0f42de62012-05-22 00:03:25 +00001182 lpddr2_init(base, regs);
1183 else
1184 ddr3_init(base, regs);
1185 }
Tom Rinibe8d6352015-06-05 15:51:11 +05301186 if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
Lokesh Vutla80230c62015-06-04 10:08:50 +05301187 EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
Lokesh Vutlab66f3dc2013-03-27 20:24:42 +00001188 set_lpmode_selfrefresh(base);
1189 emif_reset_phy(base);
Lokesh Vutla979d2c32015-06-03 14:43:21 +05301190 omap5_ddr3_leveling(base, regs);
Lokesh Vutlab66f3dc2013-03-27 20:24:42 +00001191 }
Aneesh Vcc565582011-07-21 09:10:09 -04001192
1193 /* Write to the shadow registers */
1194 emif_update_timings(base, regs);
1195
1196 debug("<<do_sdram_init() %x\n", base);
1197}
1198
Sricharan62a86502011-11-15 09:50:00 -05001199void emif_post_init_config(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -04001200{
1201 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
Sricharan62a86502011-11-15 09:50:00 -05001202 u32 omap_rev = omap_revision();
1203
Aneesh Vcc565582011-07-21 09:10:09 -04001204 /* reset phy on ES2.0 */
Sricharan62a86502011-11-15 09:50:00 -05001205 if (omap_rev == OMAP4430_ES2_0)
Aneesh Vcc565582011-07-21 09:10:09 -04001206 emif_reset_phy(base);
1207
1208 /* Put EMIF back in smart idle on ES1.0 */
Sricharan62a86502011-11-15 09:50:00 -05001209 if (omap_rev == OMAP4430_ES1_0)
Aneesh Vcc565582011-07-21 09:10:09 -04001210 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1211}
1212
Sricharan62a86502011-11-15 09:50:00 -05001213void dmm_init(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -04001214{
1215 const struct dmm_lisa_map_regs *lisa_map_regs;
Lokesh Vutla80242592012-11-15 21:06:33 +00001216 u32 i, section, valid;
Aneesh Vcc565582011-07-21 09:10:09 -04001217
Aneesh Vc0e88522011-07-21 09:10:12 -04001218#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh Vcc565582011-07-21 09:10:09 -04001219 emif_get_dmm_regs(&lisa_map_regs);
Aneesh Vc0e88522011-07-21 09:10:12 -04001220#else
1221 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1222 u32 section_cnt, sys_addr;
1223 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1224
1225 mapped_size = 0;
1226 section_cnt = 3;
1227 sys_addr = CONFIG_SYS_SDRAM_BASE;
Lokesh Vutlac323bd22013-04-04 19:51:14 +00001228 emif1_size = get_emif_mem_size(EMIF1_BASE);
1229 emif2_size = get_emif_mem_size(EMIF2_BASE);
Aneesh Vc0e88522011-07-21 09:10:12 -04001230 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1231
1232 if (!emif1_size && !emif2_size)
1233 return;
1234
1235 /* symmetric interleaved section */
1236 if (emif1_size && emif2_size) {
1237 mapped_size = min(emif1_size, emif2_size);
1238 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
Sricharan62a86502011-11-15 09:50:00 -05001239 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001240 /* only MSB */
1241 section_map |= (sys_addr >> 24) <<
Sricharan62a86502011-11-15 09:50:00 -05001242 EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001243 section_map |= get_dmm_section_size_map(mapped_size * 2)
Sricharan62a86502011-11-15 09:50:00 -05001244 << EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001245 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1246 emif1_size -= mapped_size;
1247 emif2_size -= mapped_size;
1248 sys_addr += (mapped_size * 2);
1249 section_cnt--;
1250 }
1251
1252 /*
1253 * Single EMIF section(we can have a maximum of 1 single EMIF
1254 * section- either EMIF1 or EMIF2 or none, but not both)
1255 */
1256 if (emif1_size) {
1257 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1258 section_map |= get_dmm_section_size_map(emif1_size)
Sricharan62a86502011-11-15 09:50:00 -05001259 << EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001260 /* only MSB */
1261 section_map |= (mapped_size >> 24) <<
Sricharan62a86502011-11-15 09:50:00 -05001262 EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001263 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001264 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001265 section_cnt--;
1266 }
1267 if (emif2_size) {
1268 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1269 section_map |= get_dmm_section_size_map(emif2_size) <<
Sricharan62a86502011-11-15 09:50:00 -05001270 EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001271 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001272 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001273 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001274 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001275 section_cnt--;
1276 }
1277
1278 if (section_cnt == 2) {
1279 /* Only 1 section - either symmetric or single EMIF */
1280 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1281 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1282 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1283 } else {
1284 /* 2 sections - 1 symmetric, 1 single EMIF */
1285 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1286 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1287 }
1288
1289 /* TRAP for invalid TILER mappings in section 0 */
1290 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
Aneesh Vcc565582011-07-21 09:10:09 -04001291
Lokesh Vutlaba66ce22013-06-19 10:50:45 +05301292 if (omap_revision() >= OMAP4460_ES1_0)
1293 lis_map_regs_calculated.is_ma_present = 1;
1294
Aneesh Vc0e88522011-07-21 09:10:12 -04001295 lisa_map_regs = &lis_map_regs_calculated;
1296#endif
Aneesh Vcc565582011-07-21 09:10:09 -04001297 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1298 (struct dmm_lisa_map_regs *)base;
1299
1300 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1301 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1302 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1303 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1304
1305 writel(lisa_map_regs->dmm_lisa_map_3,
1306 &hw_lisa_map_regs->dmm_lisa_map_3);
1307 writel(lisa_map_regs->dmm_lisa_map_2,
1308 &hw_lisa_map_regs->dmm_lisa_map_2);
1309 writel(lisa_map_regs->dmm_lisa_map_1,
1310 &hw_lisa_map_regs->dmm_lisa_map_1);
1311 writel(lisa_map_regs->dmm_lisa_map_0,
1312 &hw_lisa_map_regs->dmm_lisa_map_0);
Aneesh V639cfb62011-07-21 09:29:26 -04001313
Lokesh Vutla8caa56c2013-02-12 21:29:07 +00001314 if (lisa_map_regs->is_ma_present) {
Aneesh V639cfb62011-07-21 09:29:26 -04001315 hw_lisa_map_regs =
Sricharan62a86502011-11-15 09:50:00 -05001316 (struct dmm_lisa_map_regs *)MA_BASE;
Aneesh V639cfb62011-07-21 09:29:26 -04001317
1318 writel(lisa_map_regs->dmm_lisa_map_3,
1319 &hw_lisa_map_regs->dmm_lisa_map_3);
1320 writel(lisa_map_regs->dmm_lisa_map_2,
1321 &hw_lisa_map_regs->dmm_lisa_map_2);
1322 writel(lisa_map_regs->dmm_lisa_map_1,
1323 &hw_lisa_map_regs->dmm_lisa_map_1);
1324 writel(lisa_map_regs->dmm_lisa_map_0,
1325 &hw_lisa_map_regs->dmm_lisa_map_0);
1326 }
Lokesh Vutla80242592012-11-15 21:06:33 +00001327
1328 /*
1329 * EMIF should be configured only when
1330 * memory is mapped on it. Using emif1_enabled
1331 * and emif2_enabled variables for this.
1332 */
1333 emif1_enabled = 0;
1334 emif2_enabled = 0;
1335 for (i = 0; i < 4; i++) {
1336 section = __raw_readl(DMM_BASE + i*4);
1337 valid = (section & EMIF_SDRC_MAP_MASK) >>
1338 (EMIF_SDRC_MAP_SHIFT);
1339 if (valid == 3) {
1340 emif1_enabled = 1;
1341 emif2_enabled = 1;
1342 break;
Felipe Balbi9fdc0a22014-11-06 08:28:46 -06001343 }
1344
1345 if (valid == 1)
Lokesh Vutla80242592012-11-15 21:06:33 +00001346 emif1_enabled = 1;
Felipe Balbi9fdc0a22014-11-06 08:28:46 -06001347
1348 if (valid == 2)
Lokesh Vutla80242592012-11-15 21:06:33 +00001349 emif2_enabled = 1;
Lokesh Vutla80242592012-11-15 21:06:33 +00001350 }
Aneesh Vcc565582011-07-21 09:10:09 -04001351}
1352
SRICHARAN R4796b7a2013-11-08 17:40:38 +05301353static void do_bug0039_workaround(u32 base)
1354{
1355 u32 val, i, clkctrl;
1356 struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1357 const struct read_write_regs *bug_00339_regs;
1358 u32 iterations;
1359 u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1360 u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1361
1362 if (is_dra7xx())
1363 phy_status_base++;
1364
1365 bug_00339_regs = get_bug_regs(&iterations);
1366
1367 /* Put EMIF in to idle */
1368 clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1369 __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1370
1371 /* Copy the phy status registers in to phy ctrl shadow registers */
1372 for (i = 0; i < iterations; i++) {
1373 val = __raw_readl(phy_status_base +
1374 bug_00339_regs[i].read_reg - 1);
1375
1376 __raw_writel(val, phy_ctrl_base +
1377 ((bug_00339_regs[i].write_reg - 1) << 1));
1378
1379 __raw_writel(val, phy_ctrl_base +
1380 (bug_00339_regs[i].write_reg << 1) - 1);
1381 }
1382
1383 /* Disable leveling */
1384 writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1385
1386 __raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl);
1387}
1388
Aneesh Vcc565582011-07-21 09:10:09 -04001389/*
1390 * SDRAM initialization:
1391 * SDRAM initialization has two parts:
1392 * 1. Configuring the SDRAM device
1393 * 2. Update the AC timings related parameters in the EMIF module
1394 * (1) should be done only once and should not be done while we are
1395 * running from SDRAM.
1396 * (2) can and should be done more than once if OPP changes.
1397 * Particularly, this may be needed when we boot without SPL and
1398 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1399 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1400 * the frequency. So,
1401 * Doing (1) and (2) makes sense - first time initialization
1402 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1403 * Doing (1) and not (2) doen't make sense
1404 * See do_sdram_init() for the details
1405 */
1406void sdram_init(void)
1407{
1408 u32 in_sdram, size_prog, size_detect;
Tom Rinibe8d6352015-06-05 15:51:11 +05301409 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1410 u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
Aneesh Vcc565582011-07-21 09:10:09 -04001411
1412 debug(">>sdram_init()\n");
1413
Sricharan9310ff72011-11-15 09:49:55 -05001414 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
Aneesh Vcc565582011-07-21 09:10:09 -04001415 return;
1416
1417 in_sdram = running_from_sdram();
1418 debug("in_sdram = %d\n", in_sdram);
1419
Lokesh Vutlab66f3dc2013-03-27 20:24:42 +00001420 if (!in_sdram) {
1421 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
SRICHARAN Rfb6aa1f2013-02-04 04:22:00 +00001422 bypass_dpll((*prcm)->cm_clkmode_dpll_core);
Lokesh Vutlab66f3dc2013-03-27 20:24:42 +00001423 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
SRICHARAN Rfb6aa1f2013-02-04 04:22:00 +00001424 writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
Lokesh Vutlacdfc4ea2012-05-22 00:03:26 +00001425 }
Aneesh Vcc565582011-07-21 09:10:09 -04001426
Lokesh Vutlaae642392012-05-29 19:26:42 +00001427 if (!in_sdram)
Sricharan62a86502011-11-15 09:50:00 -05001428 dmm_init(DMM_BASE);
Lokesh Vutlaae642392012-05-29 19:26:42 +00001429
Lokesh Vutla80242592012-11-15 21:06:33 +00001430 if (emif1_enabled)
1431 do_sdram_init(EMIF1_BASE);
1432
1433 if (emif2_enabled)
1434 do_sdram_init(EMIF2_BASE);
1435
Lokesh Vutlaae642392012-05-29 19:26:42 +00001436 if (!(in_sdram || warm_reset())) {
Lokesh Vutla80242592012-11-15 21:06:33 +00001437 if (emif1_enabled)
1438 emif_post_init_config(EMIF1_BASE);
1439 if (emif2_enabled)
1440 emif_post_init_config(EMIF2_BASE);
Aneesh Vcc565582011-07-21 09:10:09 -04001441 }
1442
1443 /* for the shadow registers to take effect */
Lokesh Vutlafef54c32013-02-04 04:21:59 +00001444 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
Lokesh Vutlacdfc4ea2012-05-22 00:03:26 +00001445 freq_update_core();
Aneesh Vcc565582011-07-21 09:10:09 -04001446
1447 /* Do some testing after the init */
1448 if (!in_sdram) {
Sricharan9310ff72011-11-15 09:49:55 -05001449 size_prog = omap_sdram_size();
SRICHARAN Rb8a0bca2012-05-17 00:12:08 +00001450 size_prog = log_2_n_round_down(size_prog);
1451 size_prog = (1 << size_prog);
1452
Aneesh Vcc565582011-07-21 09:10:09 -04001453 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1454 size_prog);
1455 /* Compare with the size programmed */
1456 if (size_detect != size_prog) {
1457 printf("SDRAM: identified size not same as expected"
1458 " size identified: %x expected: %x\n",
1459 size_detect,
1460 size_prog);
1461 } else
1462 debug("get_ram_size() successful");
1463 }
1464
SRICHARAN R4796b7a2013-11-08 17:40:38 +05301465 if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
Sricharan R6ff822d2014-07-31 12:05:50 +05301466 (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
Lokesh Vutla4d3be732014-05-15 11:08:41 +05301467 if (emif1_enabled)
1468 do_bug0039_workaround(EMIF1_BASE);
1469 if (emif2_enabled)
1470 do_bug0039_workaround(EMIF2_BASE);
SRICHARAN R4796b7a2013-11-08 17:40:38 +05301471 }
1472
Aneesh Vcc565582011-07-21 09:10:09 -04001473 debug("<<sdram_init()\n");
1474}