blob: 9ede3f5442c1a405387c9ea6c070a6123846cb80 [file] [log] [blame]
Aneesh Vcc565582011-07-21 09:10:09 -04001/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
9 * See file CREDITS for list of people who contributed to this
10 * project.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of
15 * the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 * MA 02111-1307 USA
26 */
27
28#include <common.h>
Sricharan62a86502011-11-15 09:50:00 -050029#include <asm/emif.h>
Lokesh Vutla61c517f2013-05-30 02:54:32 +000030#include <asm/arch/clock.h>
Aneesh Vcc565582011-07-21 09:10:09 -040031#include <asm/arch/sys_proto.h>
32#include <asm/omap_common.h>
33#include <asm/utils.h>
SRICHARAN Rb9f10a52012-06-04 03:40:23 +000034#include <linux/compiler.h>
Aneesh Vcc565582011-07-21 09:10:09 -040035
Lokesh Vutla80242592012-11-15 21:06:33 +000036static int emif1_enabled = -1, emif2_enabled = -1;
37
Lokesh Vutlaba873772012-05-29 19:26:43 +000038void set_lpmode_selfrefresh(u32 base)
39{
40 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
41 u32 reg;
42
43 reg = readl(&emif->emif_pwr_mgmt_ctrl);
44 reg &= ~EMIF_REG_LP_MODE_MASK;
45 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
46 reg &= ~EMIF_REG_SR_TIM_MASK;
47 writel(reg, &emif->emif_pwr_mgmt_ctrl);
48
49 /* dummy read for the new SR_TIM to be loaded */
50 readl(&emif->emif_pwr_mgmt_ctrl);
51}
52
53void force_emif_self_refresh()
54{
55 set_lpmode_selfrefresh(EMIF1_BASE);
56 set_lpmode_selfrefresh(EMIF2_BASE);
57}
58
Sricharan62a86502011-11-15 09:50:00 -050059inline u32 emif_num(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -040060{
Sricharan62a86502011-11-15 09:50:00 -050061 if (base == EMIF1_BASE)
Aneesh Vcc565582011-07-21 09:10:09 -040062 return 1;
Sricharan62a86502011-11-15 09:50:00 -050063 else if (base == EMIF2_BASE)
Aneesh Vcc565582011-07-21 09:10:09 -040064 return 2;
65 else
66 return 0;
67}
68
Lokesh Vutlafef54c32013-02-04 04:21:59 +000069/*
70 * Get SDRAM type connected to EMIF.
71 * Assuming similar SDRAM parts are connected to both EMIF's
72 * which is typically the case. So it is sufficient to get
73 * SDRAM type from EMIF1.
74 */
75u32 emif_sdram_type()
76{
77 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
78
79 return (readl(&emif->emif_sdram_config) &
80 EMIF_REG_SDRAM_TYPE_MASK) >> EMIF_REG_SDRAM_TYPE_SHIFT;
81}
Sricharan62a86502011-11-15 09:50:00 -050082
Aneesh Vcc565582011-07-21 09:10:09 -040083static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
84{
85 u32 mr;
86 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
87
Sricharan62a86502011-11-15 09:50:00 -050088 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh Vcc565582011-07-21 09:10:09 -040089 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
90 if (omap_revision() == OMAP4430_ES2_0)
91 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
92 else
93 mr = readl(&emif->emif_lpddr2_mode_reg_data);
94 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
95 cs, mr_addr, mr);
Steve Sakoman3dab3f62012-05-30 07:38:07 +000096 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
97 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
98 ((mr & 0xff000000) >> 24) == (mr & 0xff))
99 return mr & 0xff;
100 else
101 return mr;
Aneesh Vcc565582011-07-21 09:10:09 -0400102}
103
104static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
105{
106 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
107
Sricharan62a86502011-11-15 09:50:00 -0500108 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh Vcc565582011-07-21 09:10:09 -0400109 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
110 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
111}
112
113void emif_reset_phy(u32 base)
114{
115 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
116 u32 iodft;
117
118 iodft = readl(&emif->emif_iodft_tlgc);
Sricharan62a86502011-11-15 09:50:00 -0500119 iodft |= EMIF_REG_RESET_PHY_MASK;
Aneesh Vcc565582011-07-21 09:10:09 -0400120 writel(iodft, &emif->emif_iodft_tlgc);
121}
122
123static void do_lpddr2_init(u32 base, u32 cs)
124{
125 u32 mr_addr;
Lokesh Vutla05dab552013-02-04 04:22:03 +0000126 const struct lpddr2_mr_regs *mr_regs;
Aneesh Vcc565582011-07-21 09:10:09 -0400127
Lokesh Vutla05dab552013-02-04 04:22:03 +0000128 get_lpddr2_mr_regs(&mr_regs);
Aneesh Vcc565582011-07-21 09:10:09 -0400129 /* Wait till device auto initialization is complete */
130 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
131 ;
Lokesh Vutla05dab552013-02-04 04:22:03 +0000132 set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
Aneesh Vcc565582011-07-21 09:10:09 -0400133 /*
134 * tZQINIT = 1 us
135 * Enough loops assuming a maximum of 2GHz
136 */
SRICHARAN R3d534962012-03-12 02:25:37 +0000137
Aneesh Vcc565582011-07-21 09:10:09 -0400138 sdelay(2000);
SRICHARAN R3d534962012-03-12 02:25:37 +0000139
Lokesh Vutla05dab552013-02-04 04:22:03 +0000140 set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
141 set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
SRICHARAN R3d534962012-03-12 02:25:37 +0000142
Aneesh Vcc565582011-07-21 09:10:09 -0400143 /*
144 * Enable refresh along with writing MR2
145 * Encoding of RL in MR2 is (RL - 2)
146 */
Sricharan62a86502011-11-15 09:50:00 -0500147 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
Lokesh Vutla05dab552013-02-04 04:22:03 +0000148 set_mr(base, cs, mr_addr, mr_regs->mr2);
SRICHARAN R3d534962012-03-12 02:25:37 +0000149
Lokesh Vutla05dab552013-02-04 04:22:03 +0000150 if (mr_regs->mr3 > 0)
151 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
Aneesh Vcc565582011-07-21 09:10:09 -0400152}
153
154static void lpddr2_init(u32 base, const struct emif_regs *regs)
155{
156 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
157
158 /* Not NVM */
Sricharan62a86502011-11-15 09:50:00 -0500159 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400160
161 /*
162 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
163 * when EMIF_SDRAM_CONFIG register is written
164 */
Sricharan62a86502011-11-15 09:50:00 -0500165 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400166
167 /*
168 * Set the SDRAM_CONFIG and PHY_CTRL for the
169 * un-locked frequency & default RL
170 */
171 writel(regs->sdram_config_init, &emif->emif_sdram_config);
SRICHARAN R3d534962012-03-12 02:25:37 +0000172 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
173
SRICHARAN Rb9f10a52012-06-04 03:40:23 +0000174 do_ext_phy_settings(base, regs);
Aneesh Vcc565582011-07-21 09:10:09 -0400175
176 do_lpddr2_init(base, CS0);
Sricharan62a86502011-11-15 09:50:00 -0500177 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
Aneesh Vcc565582011-07-21 09:10:09 -0400178 do_lpddr2_init(base, CS1);
179
180 writel(regs->sdram_config, &emif->emif_sdram_config);
181 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
182
183 /* Enable refresh now */
Sricharan62a86502011-11-15 09:50:00 -0500184 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400185
SRICHARAN Rb9f10a52012-06-04 03:40:23 +0000186 }
187
188__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
189{
Aneesh Vcc565582011-07-21 09:10:09 -0400190}
191
Sricharan62a86502011-11-15 09:50:00 -0500192void emif_update_timings(u32 base, const struct emif_regs *regs)
Aneesh Vcc565582011-07-21 09:10:09 -0400193{
194 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
195
196 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
197 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
198 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
199 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
200 if (omap_revision() == OMAP4430_ES1_0) {
201 /* ES1 bug EMIF should be in force idle during freq_update */
202 writel(0, &emif->emif_pwr_mgmt_ctrl);
203 } else {
204 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
205 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
206 }
207 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
208 writel(regs->zq_config, &emif->emif_zq_config);
209 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
210 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
Aneesh V639cfb62011-07-21 09:29:26 -0400211
Sricharan Rffa98182013-05-30 03:19:39 +0000212 if ((omap_revision() >= OMAP5430_ES1_0) ||
213 (omap_revision() == DRA752_ES1_0)) {
Sricharan62a86502011-11-15 09:50:00 -0500214 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
215 &emif->emif_l3_config);
216 } else if (omap_revision() >= OMAP4460_ES1_0) {
Aneesh V639cfb62011-07-21 09:29:26 -0400217 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
218 &emif->emif_l3_config);
219 } else {
220 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
221 &emif->emif_l3_config);
Aneesh Vcc565582011-07-21 09:10:09 -0400222 }
223}
224
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000225static void ddr3_leveling(u32 base, const struct emif_regs *regs)
226{
227 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
228
229 /* keep sdram in self-refresh */
230 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
231 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
232 __udelay(130);
233
234 /*
235 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
236 * Invert clock adds an additional half cycle delay on the command
237 * interface. The additional half cycle, is usually meant to enable
238 * leveling in the situation that DQS is later than CK on the board.It
239 * also helps provide some additional margin for leveling.
240 */
241 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
242 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
243 __udelay(130);
244
245 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
246 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
247
248 /* Launch Full leveling */
249 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
250
251 /* Wait till full leveling is complete */
252 readl(&emif->emif_rd_wr_lvl_ctl);
253 __udelay(130);
254
255 /* Read data eye leveling no of samples */
256 config_data_eye_leveling_samples(base);
257
258 /* Launch 8 incremental WR_LVL- to compensate for PHY limitation */
259 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT, &emif->emif_rd_wr_lvl_ctl);
260 __udelay(130);
261
262 /* Launch Incremental leveling */
263 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
264 __udelay(130);
265}
266
Sricharan Rffa98182013-05-30 03:19:39 +0000267static void ddr3_sw_leveling(u32 base, const struct emif_regs *regs)
268{
269 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
270
271 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
272 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
273 config_data_eye_leveling_samples(base);
274
275 writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
276 writel(regs->sdram_config, &emif->emif_sdram_config);
277}
278
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000279static void ddr3_init(u32 base, const struct emif_regs *regs)
280{
281 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000282
283 /*
284 * Set SDRAM_CONFIG and PHY control registers to locked frequency
285 * and RL =7. As the default values of the Mode Registers are not
286 * defined, contents of mode Registers must be fully initialized.
287 * H/W takes care of this initialization
288 */
Sricharan Rffa98182013-05-30 03:19:39 +0000289 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000290 writel(regs->sdram_config_init, &emif->emif_sdram_config);
291
292 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
293
294 /* Update timing registers */
295 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
296 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
297 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
298
299 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
300 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
301
Lokesh Vutla05dab552013-02-04 04:22:03 +0000302 do_ext_phy_settings(base, regs);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000303
304 /* enable leveling */
305 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
306
Sricharan Rffa98182013-05-30 03:19:39 +0000307 if (omap_revision() == DRA752_ES1_0)
308 ddr3_sw_leveling(base, regs);
309 else
310 ddr3_leveling(base, regs);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000311}
312
Aneesh Vc0e88522011-07-21 09:10:12 -0400313#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
314#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
315
Aneesh Vc0e88522011-07-21 09:10:12 -0400316/*
317 * Organization and refresh requirements for LPDDR2 devices of different
318 * types and densities. Derived from JESD209-2 section 2.4
319 */
320const struct lpddr2_addressing addressing_table[] = {
321 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
322 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
323 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
324 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
325 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
326 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
327 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
328 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
329 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
330 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
331 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
332};
333
334static const u32 lpddr2_density_2_size_in_mbytes[] = {
335 8, /* 64Mb */
336 16, /* 128Mb */
337 32, /* 256Mb */
338 64, /* 512Mb */
339 128, /* 1Gb */
340 256, /* 2Gb */
341 512, /* 4Gb */
342 1024, /* 8Gb */
343 2048, /* 16Gb */
344 4096 /* 32Gb */
345};
346
347/*
348 * Calculate the period of DDR clock from frequency value and set the
349 * denominator and numerator in global variables for easy access later
350 */
351static void set_ddr_clk_period(u32 freq)
352{
353 /*
354 * period = 1/freq
355 * period_in_ns = 10^9/freq
356 */
357 *T_num = 1000000000;
358 *T_den = freq;
359 cancel_out(T_num, T_den, 200);
360
361}
362
363/*
364 * Convert time in nano seconds to number of cycles of DDR clock
365 */
366static inline u32 ns_2_cycles(u32 ns)
367{
368 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
369}
370
371/*
372 * ns_2_cycles with the difference that the time passed is 2 times the actual
373 * value(to avoid fractions). The cycles returned is for the original value of
374 * the timing parameter
375 */
376static inline u32 ns_x2_2_cycles(u32 ns)
377{
378 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
379}
380
381/*
382 * Find addressing table index based on the device's type(S2 or S4) and
383 * density
384 */
385s8 addressing_table_index(u8 type, u8 density, u8 width)
386{
387 u8 index;
388 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
389 return -1;
390
391 /*
392 * Look at the way ADDR_TABLE_INDEX* values have been defined
393 * in emif.h compared to LPDDR2_DENSITY_* values
394 * The table is layed out in the increasing order of density
395 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
396 * at the end
397 */
398 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
399 index = ADDR_TABLE_INDEX1GS2;
400 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
401 index = ADDR_TABLE_INDEX2GS2;
402 else
403 index = density;
404
405 debug("emif: addressing table index %d\n", index);
406
407 return index;
408}
409
410/*
411 * Find the the right timing table from the array of timing
412 * tables of the device using DDR clock frequency
413 */
414static const struct lpddr2_ac_timings *get_timings_table(const struct
415 lpddr2_ac_timings const *const *device_timings,
416 u32 freq)
417{
418 u32 i, temp, freq_nearest;
419 const struct lpddr2_ac_timings *timings = 0;
420
421 emif_assert(freq <= MAX_LPDDR2_FREQ);
422 emif_assert(device_timings);
423
424 /*
425 * Start with the maximum allowed frequency - that is always safe
426 */
427 freq_nearest = MAX_LPDDR2_FREQ;
428 /*
429 * Find the timings table that has the max frequency value:
430 * i. Above or equal to the DDR frequency - safe
431 * ii. The lowest that satisfies condition (i) - optimal
432 */
433 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
434 temp = device_timings[i]->max_freq;
435 if ((temp >= freq) && (temp <= freq_nearest)) {
436 freq_nearest = temp;
437 timings = device_timings[i];
438 }
439 }
440 debug("emif: timings table: %d\n", freq_nearest);
441 return timings;
442}
443
444/*
445 * Finds the value of emif_sdram_config_reg
446 * All parameters are programmed based on the device on CS0.
447 * If there is a device on CS1, it will be same as that on CS0 or
448 * it will be NVM. We don't support NVM yet.
449 * If cs1_device pointer is NULL it is assumed that there is no device
450 * on CS1
451 */
452static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
453 const struct lpddr2_device_details *cs1_device,
454 const struct lpddr2_addressing *addressing,
455 u8 RL)
456{
457 u32 config_reg = 0;
458
Sricharan62a86502011-11-15 09:50:00 -0500459 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400460 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
Sricharan62a86502011-11-15 09:50:00 -0500461 EMIF_REG_IBANK_POS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400462
Sricharan62a86502011-11-15 09:50:00 -0500463 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400464
Sricharan62a86502011-11-15 09:50:00 -0500465 config_reg |= RL << EMIF_REG_CL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400466
467 config_reg |= addressing->row_sz[cs0_device->io_width] <<
Sricharan62a86502011-11-15 09:50:00 -0500468 EMIF_REG_ROWSIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400469
Sricharan62a86502011-11-15 09:50:00 -0500470 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400471
472 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
Sricharan62a86502011-11-15 09:50:00 -0500473 EMIF_REG_EBANK_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400474
475 config_reg |= addressing->col_sz[cs0_device->io_width] <<
Sricharan62a86502011-11-15 09:50:00 -0500476 EMIF_REG_PAGESIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400477
478 return config_reg;
479}
480
481static u32 get_sdram_ref_ctrl(u32 freq,
482 const struct lpddr2_addressing *addressing)
483{
484 u32 ref_ctrl = 0, val = 0, freq_khz;
485 freq_khz = freq / 1000;
486 /*
487 * refresh rate to be set is 'tREFI * freq in MHz
488 * division by 10000 to account for khz and x10 in t_REFI_us_x10
489 */
490 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
Sricharan62a86502011-11-15 09:50:00 -0500491 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400492
493 return ref_ctrl;
494}
495
496static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
497 const struct lpddr2_min_tck *min_tck,
498 const struct lpddr2_addressing *addressing)
499{
500 u32 tim1 = 0, val = 0;
501 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500502 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400503
504 if (addressing->num_banks == BANKS8)
505 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
506 (4 * (*T_num)) - 1;
507 else
508 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
509
Sricharan62a86502011-11-15 09:50:00 -0500510 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400511
512 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500513 tim1 |= val << EMIF_REG_T_RC_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400514
515 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500516 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400517
518 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500519 tim1 |= val << EMIF_REG_T_WR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400520
521 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500522 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400523
524 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500525 tim1 |= val << EMIF_REG_T_RP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400526
527 return tim1;
528}
529
530static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
531 const struct lpddr2_min_tck *min_tck)
532{
533 u32 tim2 = 0, val = 0;
534 val = max(min_tck->tCKE, timings->tCKE) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500535 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400536
537 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500538 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400539
540 /*
541 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
542 * same value
543 */
544 val = ns_2_cycles(timings->tXSR) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500545 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
546 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400547
548 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500549 tim2 |= val << EMIF_REG_T_XP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400550
551 return tim2;
552}
553
554static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
555 const struct lpddr2_min_tck *min_tck,
556 const struct lpddr2_addressing *addressing)
557{
558 u32 tim3 = 0, val = 0;
559 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
Sricharan62a86502011-11-15 09:50:00 -0500560 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400561
562 val = ns_2_cycles(timings->tRFCab) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500563 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400564
565 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500566 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400567
568 val = ns_2_cycles(timings->tZQCS) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500569 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400570
571 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500572 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400573
574 return tim3;
575}
576
577static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
578 const struct lpddr2_addressing *addressing,
579 u8 volt_ramp)
580{
581 u32 zq = 0, val = 0;
582 if (volt_ramp)
583 val =
584 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
585 addressing->t_REFI_us_x10;
586 else
587 val =
588 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
589 addressing->t_REFI_us_x10;
Sricharan62a86502011-11-15 09:50:00 -0500590 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400591
Sricharan62a86502011-11-15 09:50:00 -0500592 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400593
Sricharan62a86502011-11-15 09:50:00 -0500594 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400595
Sricharan62a86502011-11-15 09:50:00 -0500596 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400597
598 /*
599 * Assuming that two chipselects have a single calibration resistor
600 * If there are indeed two calibration resistors, then this flag should
601 * be enabled to take advantage of dual calibration feature.
602 * This data should ideally come from board files. But considering
603 * that none of the boards today have calibration resistors per CS,
604 * it would be an unnecessary overhead.
605 */
Sricharan62a86502011-11-15 09:50:00 -0500606 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400607
Sricharan62a86502011-11-15 09:50:00 -0500608 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400609
Sricharan62a86502011-11-15 09:50:00 -0500610 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400611
612 return zq;
613}
614
615static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
616 const struct lpddr2_addressing *addressing,
617 u8 is_derated)
618{
619 u32 alert = 0, interval;
620 interval =
621 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
622 if (is_derated)
623 interval *= 4;
Sricharan62a86502011-11-15 09:50:00 -0500624 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400625
Sricharan62a86502011-11-15 09:50:00 -0500626 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400627
Sricharan62a86502011-11-15 09:50:00 -0500628 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400629
Sricharan62a86502011-11-15 09:50:00 -0500630 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400631
Sricharan62a86502011-11-15 09:50:00 -0500632 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400633
Sricharan62a86502011-11-15 09:50:00 -0500634 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400635
636 return alert;
637}
638
639static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
640{
641 u32 idle = 0, val = 0;
642 if (volt_ramp)
Aneesh V639cfb62011-07-21 09:29:26 -0400643 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
Aneesh Vc0e88522011-07-21 09:10:12 -0400644 else
645 /*Maximum value in normal conditions - suggested by hw team */
646 val = 0x1FF;
Sricharan62a86502011-11-15 09:50:00 -0500647 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400648
Sricharan62a86502011-11-15 09:50:00 -0500649 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400650
651 return idle;
652}
653
654static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
655{
656 u32 phy = 0, val = 0;
657
Sricharan62a86502011-11-15 09:50:00 -0500658 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400659
660 if (freq <= 100000000)
661 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
662 else if (freq <= 200000000)
663 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
664 else
665 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
Sricharan62a86502011-11-15 09:50:00 -0500666 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400667
668 /* Other fields are constant magic values. Hardcode them together */
669 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
Sricharan62a86502011-11-15 09:50:00 -0500670 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400671
672 return phy;
673}
674
Lokesh Vutlac323bd22013-04-04 19:51:14 +0000675static u32 get_emif_mem_size(u32 base)
Aneesh Vc0e88522011-07-21 09:10:12 -0400676{
677 u32 size_mbytes = 0, temp;
Lokesh Vutlac323bd22013-04-04 19:51:14 +0000678 struct emif_device_details dev_details;
679 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
680 u32 emif_nr = emif_num(base);
Aneesh Vc0e88522011-07-21 09:10:12 -0400681
Lokesh Vutlac323bd22013-04-04 19:51:14 +0000682 emif_reset_phy(base);
683 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
684 &cs0_dev_details);
685 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
686 &cs1_dev_details);
687 emif_reset_phy(base);
Aneesh Vc0e88522011-07-21 09:10:12 -0400688
Lokesh Vutlac323bd22013-04-04 19:51:14 +0000689 if (dev_details.cs0_device_details) {
690 temp = dev_details.cs0_device_details->density;
Aneesh Vc0e88522011-07-21 09:10:12 -0400691 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
692 }
693
Lokesh Vutlac323bd22013-04-04 19:51:14 +0000694 if (dev_details.cs1_device_details) {
695 temp = dev_details.cs1_device_details->density;
Aneesh Vc0e88522011-07-21 09:10:12 -0400696 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
697 }
698 /* convert to bytes */
699 return size_mbytes << 20;
700}
701
702/* Gets the encoding corresponding to a given DMM section size */
703u32 get_dmm_section_size_map(u32 section_size)
704{
705 /*
706 * Section size mapping:
707 * 0x0: 16-MiB section
708 * 0x1: 32-MiB section
709 * 0x2: 64-MiB section
710 * 0x3: 128-MiB section
711 * 0x4: 256-MiB section
712 * 0x5: 512-MiB section
713 * 0x6: 1-GiB section
714 * 0x7: 2-GiB section
715 */
716 section_size >>= 24; /* divide by 16 MB */
717 return log_2_n_round_down(section_size);
718}
719
720static void emif_calculate_regs(
721 const struct emif_device_details *emif_dev_details,
722 u32 freq, struct emif_regs *regs)
723{
724 u32 temp, sys_freq;
725 const struct lpddr2_addressing *addressing;
726 const struct lpddr2_ac_timings *timings;
727 const struct lpddr2_min_tck *min_tck;
728 const struct lpddr2_device_details *cs0_dev_details =
729 emif_dev_details->cs0_device_details;
730 const struct lpddr2_device_details *cs1_dev_details =
731 emif_dev_details->cs1_device_details;
732 const struct lpddr2_device_timings *cs0_dev_timings =
733 emif_dev_details->cs0_device_timings;
734
735 emif_assert(emif_dev_details);
736 emif_assert(regs);
737 /*
738 * You can not have a device on CS1 without one on CS0
739 * So configuring EMIF without a device on CS0 doesn't
740 * make sense
741 */
742 emif_assert(cs0_dev_details);
743 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
744 /*
745 * If there is a device on CS1 it should be same type as CS0
746 * (or NVM. But NVM is not supported in this driver yet)
747 */
748 emif_assert((cs1_dev_details == NULL) ||
749 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
750 (cs0_dev_details->type == cs1_dev_details->type));
751 emif_assert(freq <= MAX_LPDDR2_FREQ);
752
753 set_ddr_clk_period(freq);
754
755 /*
756 * The device on CS0 is used for all timing calculations
757 * There is only one set of registers for timings per EMIF. So, if the
758 * second CS(CS1) has a device, it should have the same timings as the
759 * device on CS0
760 */
761 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
762 emif_assert(timings);
763 min_tck = cs0_dev_timings->min_tck;
764
765 temp = addressing_table_index(cs0_dev_details->type,
766 cs0_dev_details->density,
767 cs0_dev_details->io_width);
768
769 emif_assert((temp >= 0));
770 addressing = &(addressing_table[temp]);
771 emif_assert(addressing);
772
773 sys_freq = get_sys_clk_freq();
774
775 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
776 cs1_dev_details,
777 addressing, RL_BOOT);
778
779 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
780 cs1_dev_details,
781 addressing, RL_FINAL);
782
783 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
784
785 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
786
787 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
788
789 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
790
791 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
792
793 regs->temp_alert_config =
794 get_temp_alert_config(cs1_dev_details, addressing, 0);
795
796 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
797 LPDDR2_VOLTAGE_STABLE);
798
799 regs->emif_ddr_phy_ctlr_1_init =
800 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
801
802 regs->emif_ddr_phy_ctlr_1 =
803 get_ddr_phy_ctrl_1(freq, RL_FINAL);
804
805 regs->freq = freq;
806
807 print_timing_reg(regs->sdram_config_init);
808 print_timing_reg(regs->sdram_config);
809 print_timing_reg(regs->ref_ctrl);
810 print_timing_reg(regs->sdram_tim1);
811 print_timing_reg(regs->sdram_tim2);
812 print_timing_reg(regs->sdram_tim3);
813 print_timing_reg(regs->read_idle_ctrl);
814 print_timing_reg(regs->temp_alert_config);
815 print_timing_reg(regs->zq_config);
816 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
817 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
818}
819#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
820
Aneesh Vced762a2011-07-21 09:10:15 -0400821#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
822const char *get_lpddr2_type(u8 type_id)
823{
824 switch (type_id) {
825 case LPDDR2_TYPE_S4:
826 return "LPDDR2-S4";
827 case LPDDR2_TYPE_S2:
828 return "LPDDR2-S2";
829 default:
830 return NULL;
831 }
832}
833
834const char *get_lpddr2_io_width(u8 width_id)
835{
836 switch (width_id) {
837 case LPDDR2_IO_WIDTH_8:
838 return "x8";
839 case LPDDR2_IO_WIDTH_16:
840 return "x16";
841 case LPDDR2_IO_WIDTH_32:
842 return "x32";
843 default:
844 return NULL;
845 }
846}
847
848const char *get_lpddr2_manufacturer(u32 manufacturer)
849{
850 switch (manufacturer) {
851 case LPDDR2_MANUFACTURER_SAMSUNG:
852 return "Samsung";
853 case LPDDR2_MANUFACTURER_QIMONDA:
854 return "Qimonda";
855 case LPDDR2_MANUFACTURER_ELPIDA:
856 return "Elpida";
857 case LPDDR2_MANUFACTURER_ETRON:
858 return "Etron";
859 case LPDDR2_MANUFACTURER_NANYA:
860 return "Nanya";
861 case LPDDR2_MANUFACTURER_HYNIX:
862 return "Hynix";
863 case LPDDR2_MANUFACTURER_MOSEL:
864 return "Mosel";
865 case LPDDR2_MANUFACTURER_WINBOND:
866 return "Winbond";
867 case LPDDR2_MANUFACTURER_ESMT:
868 return "ESMT";
869 case LPDDR2_MANUFACTURER_SPANSION:
870 return "Spansion";
871 case LPDDR2_MANUFACTURER_SST:
872 return "SST";
873 case LPDDR2_MANUFACTURER_ZMOS:
874 return "ZMOS";
875 case LPDDR2_MANUFACTURER_INTEL:
876 return "Intel";
877 case LPDDR2_MANUFACTURER_NUMONYX:
878 return "Numonyx";
879 case LPDDR2_MANUFACTURER_MICRON:
880 return "Micron";
881 default:
882 return NULL;
883 }
884}
885
886static void display_sdram_details(u32 emif_nr, u32 cs,
887 struct lpddr2_device_details *device)
888{
889 const char *mfg_str;
890 const char *type_str;
891 char density_str[10];
892 u32 density;
893
894 debug("EMIF%d CS%d\t", emif_nr, cs);
895
896 if (!device) {
897 debug("None\n");
898 return;
899 }
900
901 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
902 type_str = get_lpddr2_type(device->type);
903
904 density = lpddr2_density_2_size_in_mbytes[device->density];
905 if ((density / 1024 * 1024) == density) {
906 density /= 1024;
907 sprintf(density_str, "%d GB", density);
908 } else
909 sprintf(density_str, "%d MB", density);
910 if (mfg_str && type_str)
911 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
912}
913
914static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
915 struct lpddr2_device_details *lpddr2_device)
916{
917 u32 mr = 0, temp;
918
919 mr = get_mr(base, cs, LPDDR2_MR0);
920 if (mr > 0xFF) {
921 /* Mode register value bigger than 8 bit */
922 return 0;
923 }
924
925 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
926 if (temp) {
927 /* Not SDRAM */
928 return 0;
929 }
930 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
931
932 if (temp) {
933 /* DNV supported - But DNV is only supported for NVM */
934 return 0;
935 }
936
937 mr = get_mr(base, cs, LPDDR2_MR4);
938 if (mr > 0xFF) {
939 /* Mode register value bigger than 8 bit */
940 return 0;
941 }
942
943 mr = get_mr(base, cs, LPDDR2_MR5);
Steve Sakomance515a62012-05-30 07:38:08 +0000944 if (mr > 0xFF) {
Aneesh Vced762a2011-07-21 09:10:15 -0400945 /* Mode register value bigger than 8 bit */
946 return 0;
947 }
948
949 if (!get_lpddr2_manufacturer(mr)) {
950 /* Manufacturer not identified */
951 return 0;
952 }
953 lpddr2_device->manufacturer = mr;
954
955 mr = get_mr(base, cs, LPDDR2_MR6);
956 if (mr >= 0xFF) {
957 /* Mode register value bigger than 8 bit */
958 return 0;
959 }
960
961 mr = get_mr(base, cs, LPDDR2_MR7);
962 if (mr >= 0xFF) {
963 /* Mode register value bigger than 8 bit */
964 return 0;
965 }
966
967 mr = get_mr(base, cs, LPDDR2_MR8);
968 if (mr >= 0xFF) {
969 /* Mode register value bigger than 8 bit */
970 return 0;
971 }
972
973 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
974 if (!get_lpddr2_type(temp)) {
975 /* Not SDRAM */
976 return 0;
977 }
978 lpddr2_device->type = temp;
979
980 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
981 if (temp > LPDDR2_DENSITY_32Gb) {
982 /* Density not supported */
983 return 0;
984 }
985 lpddr2_device->density = temp;
986
987 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
988 if (!get_lpddr2_io_width(temp)) {
989 /* IO width unsupported value */
990 return 0;
991 }
992 lpddr2_device->io_width = temp;
993
994 /*
995 * If all the above tests pass we should
996 * have a device on this chip-select
997 */
998 return 1;
999}
1000
Aneesh V14f821a2011-09-08 11:05:53 -04001001struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
Aneesh Vced762a2011-07-21 09:10:15 -04001002 struct lpddr2_device_details *lpddr2_dev_details)
1003{
1004 u32 phy;
Sricharan62a86502011-11-15 09:50:00 -05001005 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1006
Aneesh Vced762a2011-07-21 09:10:15 -04001007 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1008
1009 if (!lpddr2_dev_details)
1010 return NULL;
1011
1012 /* Do the minimum init for mode register accesses */
Lokesh Vutlaae642392012-05-29 19:26:42 +00001013 if (!(running_from_sdram() || warm_reset())) {
Aneesh Vced762a2011-07-21 09:10:15 -04001014 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1015 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1016 }
1017
1018 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1019 return NULL;
1020
1021 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1022
1023 return lpddr2_dev_details;
1024}
Aneesh Vced762a2011-07-21 09:10:15 -04001025#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1026
Aneesh Vcc565582011-07-21 09:10:09 -04001027static void do_sdram_init(u32 base)
1028{
1029 const struct emif_regs *regs;
1030 u32 in_sdram, emif_nr;
1031
1032 debug(">>do_sdram_init() %x\n", base);
1033
1034 in_sdram = running_from_sdram();
Sricharan62a86502011-11-15 09:50:00 -05001035 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
Aneesh Vcc565582011-07-21 09:10:09 -04001036
Aneesh Vc0e88522011-07-21 09:10:12 -04001037#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh Vcc565582011-07-21 09:10:09 -04001038 emif_get_reg_dump(emif_nr, &regs);
1039 if (!regs) {
1040 debug("EMIF: reg dump not provided\n");
1041 return;
1042 }
Aneesh Vc0e88522011-07-21 09:10:12 -04001043#else
1044 /*
1045 * The user has not provided the register values. We need to
1046 * calculate it based on the timings and the DDR frequency
1047 */
1048 struct emif_device_details dev_details;
1049 struct emif_regs calculated_regs;
1050
1051 /*
1052 * Get device details:
1053 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1054 * - Obtained from user otherwise
1055 */
1056 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
Aneesh V14f821a2011-09-08 11:05:53 -04001057 emif_reset_phy(base);
Aneesh V7d9fa572011-11-21 23:39:02 +00001058 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
Aneesh V14f821a2011-09-08 11:05:53 -04001059 &cs0_dev_details);
Aneesh V7d9fa572011-11-21 23:39:02 +00001060 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
Aneesh V14f821a2011-09-08 11:05:53 -04001061 &cs1_dev_details);
1062 emif_reset_phy(base);
Aneesh Vc0e88522011-07-21 09:10:12 -04001063
1064 /* Return if no devices on this EMIF */
1065 if (!dev_details.cs0_device_details &&
1066 !dev_details.cs1_device_details) {
Aneesh Vc0e88522011-07-21 09:10:12 -04001067 return;
1068 }
Aneesh Vcc565582011-07-21 09:10:09 -04001069
Aneesh Vc0e88522011-07-21 09:10:12 -04001070 /*
1071 * Get device timings:
1072 * - Default timings specified by JESD209-2 if
1073 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1074 * - Obtained from user otherwise
1075 */
1076 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1077 &dev_details.cs1_device_timings);
1078
1079 /* Calculate the register values */
Sricharan9784f1f2011-11-15 09:49:58 -05001080 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
Aneesh Vc0e88522011-07-21 09:10:12 -04001081 regs = &calculated_regs;
1082#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1083
Aneesh Vcc565582011-07-21 09:10:09 -04001084 /*
1085 * Initializing the LPDDR2 device can not happen from SDRAM.
1086 * Changing the timing registers in EMIF can happen(going from one
1087 * OPP to another)
1088 */
Lokesh Vutlaae642392012-05-29 19:26:42 +00001089 if (!(in_sdram || warm_reset())) {
Lokesh Vutlafef54c32013-02-04 04:21:59 +00001090 if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
Lokesh Vutla0f42de62012-05-22 00:03:25 +00001091 lpddr2_init(base, regs);
1092 else
1093 ddr3_init(base, regs);
1094 }
Lokesh Vutlab66f3dc2013-03-27 20:24:42 +00001095 if (warm_reset() && (emif_sdram_type() == EMIF_SDRAM_TYPE_DDR3)) {
1096 set_lpmode_selfrefresh(base);
1097 emif_reset_phy(base);
Sricharan Rffa98182013-05-30 03:19:39 +00001098 if (omap_revision() == DRA752_ES1_0)
1099 ddr3_sw_leveling(base, regs);
1100 else
1101 ddr3_leveling(base, regs);
Lokesh Vutlab66f3dc2013-03-27 20:24:42 +00001102 }
Aneesh Vcc565582011-07-21 09:10:09 -04001103
1104 /* Write to the shadow registers */
1105 emif_update_timings(base, regs);
1106
1107 debug("<<do_sdram_init() %x\n", base);
1108}
1109
Sricharan62a86502011-11-15 09:50:00 -05001110void emif_post_init_config(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -04001111{
1112 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
Sricharan62a86502011-11-15 09:50:00 -05001113 u32 omap_rev = omap_revision();
1114
Aneesh Vcc565582011-07-21 09:10:09 -04001115 /* reset phy on ES2.0 */
Sricharan62a86502011-11-15 09:50:00 -05001116 if (omap_rev == OMAP4430_ES2_0)
Aneesh Vcc565582011-07-21 09:10:09 -04001117 emif_reset_phy(base);
1118
1119 /* Put EMIF back in smart idle on ES1.0 */
Sricharan62a86502011-11-15 09:50:00 -05001120 if (omap_rev == OMAP4430_ES1_0)
Aneesh Vcc565582011-07-21 09:10:09 -04001121 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1122}
1123
Sricharan62a86502011-11-15 09:50:00 -05001124void dmm_init(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -04001125{
1126 const struct dmm_lisa_map_regs *lisa_map_regs;
Lokesh Vutla80242592012-11-15 21:06:33 +00001127 u32 i, section, valid;
Aneesh Vcc565582011-07-21 09:10:09 -04001128
Aneesh Vc0e88522011-07-21 09:10:12 -04001129#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh Vcc565582011-07-21 09:10:09 -04001130 emif_get_dmm_regs(&lisa_map_regs);
Aneesh Vc0e88522011-07-21 09:10:12 -04001131#else
1132 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1133 u32 section_cnt, sys_addr;
1134 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1135
1136 mapped_size = 0;
1137 section_cnt = 3;
1138 sys_addr = CONFIG_SYS_SDRAM_BASE;
Lokesh Vutlac323bd22013-04-04 19:51:14 +00001139 emif1_size = get_emif_mem_size(EMIF1_BASE);
1140 emif2_size = get_emif_mem_size(EMIF2_BASE);
Aneesh Vc0e88522011-07-21 09:10:12 -04001141 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1142
1143 if (!emif1_size && !emif2_size)
1144 return;
1145
1146 /* symmetric interleaved section */
1147 if (emif1_size && emif2_size) {
1148 mapped_size = min(emif1_size, emif2_size);
1149 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
Sricharan62a86502011-11-15 09:50:00 -05001150 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001151 /* only MSB */
1152 section_map |= (sys_addr >> 24) <<
Sricharan62a86502011-11-15 09:50:00 -05001153 EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001154 section_map |= get_dmm_section_size_map(mapped_size * 2)
Sricharan62a86502011-11-15 09:50:00 -05001155 << EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001156 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1157 emif1_size -= mapped_size;
1158 emif2_size -= mapped_size;
1159 sys_addr += (mapped_size * 2);
1160 section_cnt--;
1161 }
1162
1163 /*
1164 * Single EMIF section(we can have a maximum of 1 single EMIF
1165 * section- either EMIF1 or EMIF2 or none, but not both)
1166 */
1167 if (emif1_size) {
1168 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1169 section_map |= get_dmm_section_size_map(emif1_size)
Sricharan62a86502011-11-15 09:50:00 -05001170 << EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001171 /* only MSB */
1172 section_map |= (mapped_size >> 24) <<
Sricharan62a86502011-11-15 09:50:00 -05001173 EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001174 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001175 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001176 section_cnt--;
1177 }
1178 if (emif2_size) {
1179 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1180 section_map |= get_dmm_section_size_map(emif2_size) <<
Sricharan62a86502011-11-15 09:50:00 -05001181 EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001182 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001183 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001184 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001185 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001186 section_cnt--;
1187 }
1188
1189 if (section_cnt == 2) {
1190 /* Only 1 section - either symmetric or single EMIF */
1191 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1192 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1193 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1194 } else {
1195 /* 2 sections - 1 symmetric, 1 single EMIF */
1196 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1197 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1198 }
1199
1200 /* TRAP for invalid TILER mappings in section 0 */
1201 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
Aneesh Vcc565582011-07-21 09:10:09 -04001202
Lokesh Vutlaba66ce22013-06-19 10:50:45 +05301203 if (omap_revision() >= OMAP4460_ES1_0)
1204 lis_map_regs_calculated.is_ma_present = 1;
1205
Aneesh Vc0e88522011-07-21 09:10:12 -04001206 lisa_map_regs = &lis_map_regs_calculated;
1207#endif
Aneesh Vcc565582011-07-21 09:10:09 -04001208 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1209 (struct dmm_lisa_map_regs *)base;
1210
1211 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1212 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1213 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1214 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1215
1216 writel(lisa_map_regs->dmm_lisa_map_3,
1217 &hw_lisa_map_regs->dmm_lisa_map_3);
1218 writel(lisa_map_regs->dmm_lisa_map_2,
1219 &hw_lisa_map_regs->dmm_lisa_map_2);
1220 writel(lisa_map_regs->dmm_lisa_map_1,
1221 &hw_lisa_map_regs->dmm_lisa_map_1);
1222 writel(lisa_map_regs->dmm_lisa_map_0,
1223 &hw_lisa_map_regs->dmm_lisa_map_0);
Aneesh V639cfb62011-07-21 09:29:26 -04001224
Lokesh Vutla8caa56c2013-02-12 21:29:07 +00001225 if (lisa_map_regs->is_ma_present) {
Aneesh V639cfb62011-07-21 09:29:26 -04001226 hw_lisa_map_regs =
Sricharan62a86502011-11-15 09:50:00 -05001227 (struct dmm_lisa_map_regs *)MA_BASE;
Aneesh V639cfb62011-07-21 09:29:26 -04001228
1229 writel(lisa_map_regs->dmm_lisa_map_3,
1230 &hw_lisa_map_regs->dmm_lisa_map_3);
1231 writel(lisa_map_regs->dmm_lisa_map_2,
1232 &hw_lisa_map_regs->dmm_lisa_map_2);
1233 writel(lisa_map_regs->dmm_lisa_map_1,
1234 &hw_lisa_map_regs->dmm_lisa_map_1);
1235 writel(lisa_map_regs->dmm_lisa_map_0,
1236 &hw_lisa_map_regs->dmm_lisa_map_0);
1237 }
Lokesh Vutla80242592012-11-15 21:06:33 +00001238
1239 /*
1240 * EMIF should be configured only when
1241 * memory is mapped on it. Using emif1_enabled
1242 * and emif2_enabled variables for this.
1243 */
1244 emif1_enabled = 0;
1245 emif2_enabled = 0;
1246 for (i = 0; i < 4; i++) {
1247 section = __raw_readl(DMM_BASE + i*4);
1248 valid = (section & EMIF_SDRC_MAP_MASK) >>
1249 (EMIF_SDRC_MAP_SHIFT);
1250 if (valid == 3) {
1251 emif1_enabled = 1;
1252 emif2_enabled = 1;
1253 break;
1254 } else if (valid == 1) {
1255 emif1_enabled = 1;
1256 } else if (valid == 2) {
1257 emif2_enabled = 1;
1258 }
1259 }
1260
Aneesh Vcc565582011-07-21 09:10:09 -04001261}
1262
1263/*
1264 * SDRAM initialization:
1265 * SDRAM initialization has two parts:
1266 * 1. Configuring the SDRAM device
1267 * 2. Update the AC timings related parameters in the EMIF module
1268 * (1) should be done only once and should not be done while we are
1269 * running from SDRAM.
1270 * (2) can and should be done more than once if OPP changes.
1271 * Particularly, this may be needed when we boot without SPL and
1272 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1273 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1274 * the frequency. So,
1275 * Doing (1) and (2) makes sense - first time initialization
1276 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1277 * Doing (1) and not (2) doen't make sense
1278 * See do_sdram_init() for the details
1279 */
1280void sdram_init(void)
1281{
1282 u32 in_sdram, size_prog, size_detect;
Lokesh Vutlafef54c32013-02-04 04:21:59 +00001283 u32 sdram_type = emif_sdram_type();
Aneesh Vcc565582011-07-21 09:10:09 -04001284
1285 debug(">>sdram_init()\n");
1286
Sricharan9310ff72011-11-15 09:49:55 -05001287 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
Aneesh Vcc565582011-07-21 09:10:09 -04001288 return;
1289
1290 in_sdram = running_from_sdram();
1291 debug("in_sdram = %d\n", in_sdram);
1292
Lokesh Vutlab66f3dc2013-03-27 20:24:42 +00001293 if (!in_sdram) {
1294 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
SRICHARAN Rfb6aa1f2013-02-04 04:22:00 +00001295 bypass_dpll((*prcm)->cm_clkmode_dpll_core);
Lokesh Vutlab66f3dc2013-03-27 20:24:42 +00001296 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
SRICHARAN Rfb6aa1f2013-02-04 04:22:00 +00001297 writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
Lokesh Vutlacdfc4ea2012-05-22 00:03:26 +00001298 }
Aneesh Vcc565582011-07-21 09:10:09 -04001299
Lokesh Vutlaae642392012-05-29 19:26:42 +00001300 if (!in_sdram)
Sricharan62a86502011-11-15 09:50:00 -05001301 dmm_init(DMM_BASE);
Lokesh Vutlaae642392012-05-29 19:26:42 +00001302
Lokesh Vutla80242592012-11-15 21:06:33 +00001303 if (emif1_enabled)
1304 do_sdram_init(EMIF1_BASE);
1305
1306 if (emif2_enabled)
1307 do_sdram_init(EMIF2_BASE);
1308
Lokesh Vutlaae642392012-05-29 19:26:42 +00001309 if (!(in_sdram || warm_reset())) {
Lokesh Vutla80242592012-11-15 21:06:33 +00001310 if (emif1_enabled)
1311 emif_post_init_config(EMIF1_BASE);
1312 if (emif2_enabled)
1313 emif_post_init_config(EMIF2_BASE);
Aneesh Vcc565582011-07-21 09:10:09 -04001314 }
1315
1316 /* for the shadow registers to take effect */
Lokesh Vutlafef54c32013-02-04 04:21:59 +00001317 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
Lokesh Vutlacdfc4ea2012-05-22 00:03:26 +00001318 freq_update_core();
Aneesh Vcc565582011-07-21 09:10:09 -04001319
1320 /* Do some testing after the init */
1321 if (!in_sdram) {
Sricharan9310ff72011-11-15 09:49:55 -05001322 size_prog = omap_sdram_size();
SRICHARAN Rb8a0bca2012-05-17 00:12:08 +00001323 size_prog = log_2_n_round_down(size_prog);
1324 size_prog = (1 << size_prog);
1325
Aneesh Vcc565582011-07-21 09:10:09 -04001326 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1327 size_prog);
1328 /* Compare with the size programmed */
1329 if (size_detect != size_prog) {
1330 printf("SDRAM: identified size not same as expected"
1331 " size identified: %x expected: %x\n",
1332 size_detect,
1333 size_prog);
1334 } else
1335 debug("get_ram_size() successful");
1336 }
1337
1338 debug("<<sdram_init()\n");
1339}