blob: 9eb1279d4112699d93c9ca511d267b7af1aaeeba [file] [log] [blame]
Aneesh Vcc565582011-07-21 09:10:09 -04001/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
9 * See file CREDITS for list of people who contributed to this
10 * project.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of
15 * the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 * MA 02111-1307 USA
26 */
27
28#include <common.h>
Sricharan62a86502011-11-15 09:50:00 -050029#include <asm/emif.h>
Aneesh Vcc565582011-07-21 09:10:09 -040030#include <asm/arch/clocks.h>
31#include <asm/arch/sys_proto.h>
32#include <asm/omap_common.h>
33#include <asm/utils.h>
SRICHARAN Rb9f10a52012-06-04 03:40:23 +000034#include <linux/compiler.h>
Aneesh Vcc565582011-07-21 09:10:09 -040035
Lokesh Vutla80242592012-11-15 21:06:33 +000036static int emif1_enabled = -1, emif2_enabled = -1;
37
Lokesh Vutlaba873772012-05-29 19:26:43 +000038void set_lpmode_selfrefresh(u32 base)
39{
40 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
41 u32 reg;
42
43 reg = readl(&emif->emif_pwr_mgmt_ctrl);
44 reg &= ~EMIF_REG_LP_MODE_MASK;
45 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
46 reg &= ~EMIF_REG_SR_TIM_MASK;
47 writel(reg, &emif->emif_pwr_mgmt_ctrl);
48
49 /* dummy read for the new SR_TIM to be loaded */
50 readl(&emif->emif_pwr_mgmt_ctrl);
51}
52
53void force_emif_self_refresh()
54{
55 set_lpmode_selfrefresh(EMIF1_BASE);
56 set_lpmode_selfrefresh(EMIF2_BASE);
57}
58
Sricharan62a86502011-11-15 09:50:00 -050059inline u32 emif_num(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -040060{
Sricharan62a86502011-11-15 09:50:00 -050061 if (base == EMIF1_BASE)
Aneesh Vcc565582011-07-21 09:10:09 -040062 return 1;
Sricharan62a86502011-11-15 09:50:00 -050063 else if (base == EMIF2_BASE)
Aneesh Vcc565582011-07-21 09:10:09 -040064 return 2;
65 else
66 return 0;
67}
68
Lokesh Vutlafef54c32013-02-04 04:21:59 +000069/*
70 * Get SDRAM type connected to EMIF.
71 * Assuming similar SDRAM parts are connected to both EMIF's
72 * which is typically the case. So it is sufficient to get
73 * SDRAM type from EMIF1.
74 */
75u32 emif_sdram_type()
76{
77 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
78
79 return (readl(&emif->emif_sdram_config) &
80 EMIF_REG_SDRAM_TYPE_MASK) >> EMIF_REG_SDRAM_TYPE_SHIFT;
81}
Sricharan62a86502011-11-15 09:50:00 -050082
Aneesh Vcc565582011-07-21 09:10:09 -040083static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
84{
85 u32 mr;
86 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
87
Sricharan62a86502011-11-15 09:50:00 -050088 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh Vcc565582011-07-21 09:10:09 -040089 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
90 if (omap_revision() == OMAP4430_ES2_0)
91 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
92 else
93 mr = readl(&emif->emif_lpddr2_mode_reg_data);
94 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
95 cs, mr_addr, mr);
Steve Sakoman3dab3f62012-05-30 07:38:07 +000096 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
97 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
98 ((mr & 0xff000000) >> 24) == (mr & 0xff))
99 return mr & 0xff;
100 else
101 return mr;
Aneesh Vcc565582011-07-21 09:10:09 -0400102}
103
104static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
105{
106 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
107
Sricharan62a86502011-11-15 09:50:00 -0500108 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh Vcc565582011-07-21 09:10:09 -0400109 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
110 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
111}
112
113void emif_reset_phy(u32 base)
114{
115 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
116 u32 iodft;
117
118 iodft = readl(&emif->emif_iodft_tlgc);
Sricharan62a86502011-11-15 09:50:00 -0500119 iodft |= EMIF_REG_RESET_PHY_MASK;
Aneesh Vcc565582011-07-21 09:10:09 -0400120 writel(iodft, &emif->emif_iodft_tlgc);
121}
122
123static void do_lpddr2_init(u32 base, u32 cs)
124{
125 u32 mr_addr;
Lokesh Vutla05dab552013-02-04 04:22:03 +0000126 const struct lpddr2_mr_regs *mr_regs;
Aneesh Vcc565582011-07-21 09:10:09 -0400127
Lokesh Vutla05dab552013-02-04 04:22:03 +0000128 get_lpddr2_mr_regs(&mr_regs);
Aneesh Vcc565582011-07-21 09:10:09 -0400129 /* Wait till device auto initialization is complete */
130 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
131 ;
Lokesh Vutla05dab552013-02-04 04:22:03 +0000132 set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
Aneesh Vcc565582011-07-21 09:10:09 -0400133 /*
134 * tZQINIT = 1 us
135 * Enough loops assuming a maximum of 2GHz
136 */
SRICHARAN R3d534962012-03-12 02:25:37 +0000137
Aneesh Vcc565582011-07-21 09:10:09 -0400138 sdelay(2000);
SRICHARAN R3d534962012-03-12 02:25:37 +0000139
Lokesh Vutla05dab552013-02-04 04:22:03 +0000140 set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
141 set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
SRICHARAN R3d534962012-03-12 02:25:37 +0000142
Aneesh Vcc565582011-07-21 09:10:09 -0400143 /*
144 * Enable refresh along with writing MR2
145 * Encoding of RL in MR2 is (RL - 2)
146 */
Sricharan62a86502011-11-15 09:50:00 -0500147 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
Lokesh Vutla05dab552013-02-04 04:22:03 +0000148 set_mr(base, cs, mr_addr, mr_regs->mr2);
SRICHARAN R3d534962012-03-12 02:25:37 +0000149
Lokesh Vutla05dab552013-02-04 04:22:03 +0000150 if (mr_regs->mr3 > 0)
151 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
Aneesh Vcc565582011-07-21 09:10:09 -0400152}
153
154static void lpddr2_init(u32 base, const struct emif_regs *regs)
155{
156 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
157
158 /* Not NVM */
Sricharan62a86502011-11-15 09:50:00 -0500159 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400160
161 /*
162 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
163 * when EMIF_SDRAM_CONFIG register is written
164 */
Sricharan62a86502011-11-15 09:50:00 -0500165 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400166
167 /*
168 * Set the SDRAM_CONFIG and PHY_CTRL for the
169 * un-locked frequency & default RL
170 */
171 writel(regs->sdram_config_init, &emif->emif_sdram_config);
SRICHARAN R3d534962012-03-12 02:25:37 +0000172 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
173
SRICHARAN Rb9f10a52012-06-04 03:40:23 +0000174 do_ext_phy_settings(base, regs);
Aneesh Vcc565582011-07-21 09:10:09 -0400175
176 do_lpddr2_init(base, CS0);
Sricharan62a86502011-11-15 09:50:00 -0500177 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
Aneesh Vcc565582011-07-21 09:10:09 -0400178 do_lpddr2_init(base, CS1);
179
180 writel(regs->sdram_config, &emif->emif_sdram_config);
181 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
182
183 /* Enable refresh now */
Sricharan62a86502011-11-15 09:50:00 -0500184 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400185
SRICHARAN Rb9f10a52012-06-04 03:40:23 +0000186 }
187
188__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
189{
Aneesh Vcc565582011-07-21 09:10:09 -0400190}
191
Sricharan62a86502011-11-15 09:50:00 -0500192void emif_update_timings(u32 base, const struct emif_regs *regs)
Aneesh Vcc565582011-07-21 09:10:09 -0400193{
194 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
195
196 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
197 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
198 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
199 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
200 if (omap_revision() == OMAP4430_ES1_0) {
201 /* ES1 bug EMIF should be in force idle during freq_update */
202 writel(0, &emif->emif_pwr_mgmt_ctrl);
203 } else {
204 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
205 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
206 }
207 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
208 writel(regs->zq_config, &emif->emif_zq_config);
209 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
210 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
Aneesh V639cfb62011-07-21 09:29:26 -0400211
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000212 if (omap_revision() >= OMAP5430_ES1_0) {
Sricharan62a86502011-11-15 09:50:00 -0500213 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
214 &emif->emif_l3_config);
215 } else if (omap_revision() >= OMAP4460_ES1_0) {
Aneesh V639cfb62011-07-21 09:29:26 -0400216 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
217 &emif->emif_l3_config);
218 } else {
219 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
220 &emif->emif_l3_config);
Aneesh Vcc565582011-07-21 09:10:09 -0400221 }
222}
223
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000224static void ddr3_leveling(u32 base, const struct emif_regs *regs)
225{
226 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
227
228 /* keep sdram in self-refresh */
229 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
230 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
231 __udelay(130);
232
233 /*
234 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
235 * Invert clock adds an additional half cycle delay on the command
236 * interface. The additional half cycle, is usually meant to enable
237 * leveling in the situation that DQS is later than CK on the board.It
238 * also helps provide some additional margin for leveling.
239 */
240 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
241 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
242 __udelay(130);
243
244 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
245 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
246
247 /* Launch Full leveling */
248 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
249
250 /* Wait till full leveling is complete */
251 readl(&emif->emif_rd_wr_lvl_ctl);
252 __udelay(130);
253
254 /* Read data eye leveling no of samples */
255 config_data_eye_leveling_samples(base);
256
257 /* Launch 8 incremental WR_LVL- to compensate for PHY limitation */
258 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT, &emif->emif_rd_wr_lvl_ctl);
259 __udelay(130);
260
261 /* Launch Incremental leveling */
262 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
263 __udelay(130);
264}
265
266static void ddr3_init(u32 base, const struct emif_regs *regs)
267{
268 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000269
270 /*
271 * Set SDRAM_CONFIG and PHY control registers to locked frequency
272 * and RL =7. As the default values of the Mode Registers are not
273 * defined, contents of mode Registers must be fully initialized.
274 * H/W takes care of this initialization
275 */
276 writel(regs->sdram_config_init, &emif->emif_sdram_config);
277
278 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
279
280 /* Update timing registers */
281 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
282 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
283 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
284
285 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
286 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
287
Lokesh Vutla05dab552013-02-04 04:22:03 +0000288 do_ext_phy_settings(base, regs);
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000289
290 /* enable leveling */
291 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
292
293 ddr3_leveling(base, regs);
294}
295
Aneesh Vc0e88522011-07-21 09:10:12 -0400296#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
297#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
298
Aneesh Vc0e88522011-07-21 09:10:12 -0400299/*
300 * Organization and refresh requirements for LPDDR2 devices of different
301 * types and densities. Derived from JESD209-2 section 2.4
302 */
303const struct lpddr2_addressing addressing_table[] = {
304 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
305 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
306 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
307 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
308 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
309 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
310 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
311 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
312 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
313 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
314 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
315};
316
317static const u32 lpddr2_density_2_size_in_mbytes[] = {
318 8, /* 64Mb */
319 16, /* 128Mb */
320 32, /* 256Mb */
321 64, /* 512Mb */
322 128, /* 1Gb */
323 256, /* 2Gb */
324 512, /* 4Gb */
325 1024, /* 8Gb */
326 2048, /* 16Gb */
327 4096 /* 32Gb */
328};
329
330/*
331 * Calculate the period of DDR clock from frequency value and set the
332 * denominator and numerator in global variables for easy access later
333 */
334static void set_ddr_clk_period(u32 freq)
335{
336 /*
337 * period = 1/freq
338 * period_in_ns = 10^9/freq
339 */
340 *T_num = 1000000000;
341 *T_den = freq;
342 cancel_out(T_num, T_den, 200);
343
344}
345
346/*
347 * Convert time in nano seconds to number of cycles of DDR clock
348 */
349static inline u32 ns_2_cycles(u32 ns)
350{
351 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
352}
353
354/*
355 * ns_2_cycles with the difference that the time passed is 2 times the actual
356 * value(to avoid fractions). The cycles returned is for the original value of
357 * the timing parameter
358 */
359static inline u32 ns_x2_2_cycles(u32 ns)
360{
361 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
362}
363
364/*
365 * Find addressing table index based on the device's type(S2 or S4) and
366 * density
367 */
368s8 addressing_table_index(u8 type, u8 density, u8 width)
369{
370 u8 index;
371 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
372 return -1;
373
374 /*
375 * Look at the way ADDR_TABLE_INDEX* values have been defined
376 * in emif.h compared to LPDDR2_DENSITY_* values
377 * The table is layed out in the increasing order of density
378 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
379 * at the end
380 */
381 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
382 index = ADDR_TABLE_INDEX1GS2;
383 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
384 index = ADDR_TABLE_INDEX2GS2;
385 else
386 index = density;
387
388 debug("emif: addressing table index %d\n", index);
389
390 return index;
391}
392
393/*
394 * Find the the right timing table from the array of timing
395 * tables of the device using DDR clock frequency
396 */
397static const struct lpddr2_ac_timings *get_timings_table(const struct
398 lpddr2_ac_timings const *const *device_timings,
399 u32 freq)
400{
401 u32 i, temp, freq_nearest;
402 const struct lpddr2_ac_timings *timings = 0;
403
404 emif_assert(freq <= MAX_LPDDR2_FREQ);
405 emif_assert(device_timings);
406
407 /*
408 * Start with the maximum allowed frequency - that is always safe
409 */
410 freq_nearest = MAX_LPDDR2_FREQ;
411 /*
412 * Find the timings table that has the max frequency value:
413 * i. Above or equal to the DDR frequency - safe
414 * ii. The lowest that satisfies condition (i) - optimal
415 */
416 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
417 temp = device_timings[i]->max_freq;
418 if ((temp >= freq) && (temp <= freq_nearest)) {
419 freq_nearest = temp;
420 timings = device_timings[i];
421 }
422 }
423 debug("emif: timings table: %d\n", freq_nearest);
424 return timings;
425}
426
427/*
428 * Finds the value of emif_sdram_config_reg
429 * All parameters are programmed based on the device on CS0.
430 * If there is a device on CS1, it will be same as that on CS0 or
431 * it will be NVM. We don't support NVM yet.
432 * If cs1_device pointer is NULL it is assumed that there is no device
433 * on CS1
434 */
435static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
436 const struct lpddr2_device_details *cs1_device,
437 const struct lpddr2_addressing *addressing,
438 u8 RL)
439{
440 u32 config_reg = 0;
441
Sricharan62a86502011-11-15 09:50:00 -0500442 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400443 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
Sricharan62a86502011-11-15 09:50:00 -0500444 EMIF_REG_IBANK_POS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400445
Sricharan62a86502011-11-15 09:50:00 -0500446 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400447
Sricharan62a86502011-11-15 09:50:00 -0500448 config_reg |= RL << EMIF_REG_CL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400449
450 config_reg |= addressing->row_sz[cs0_device->io_width] <<
Sricharan62a86502011-11-15 09:50:00 -0500451 EMIF_REG_ROWSIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400452
Sricharan62a86502011-11-15 09:50:00 -0500453 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400454
455 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
Sricharan62a86502011-11-15 09:50:00 -0500456 EMIF_REG_EBANK_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400457
458 config_reg |= addressing->col_sz[cs0_device->io_width] <<
Sricharan62a86502011-11-15 09:50:00 -0500459 EMIF_REG_PAGESIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400460
461 return config_reg;
462}
463
464static u32 get_sdram_ref_ctrl(u32 freq,
465 const struct lpddr2_addressing *addressing)
466{
467 u32 ref_ctrl = 0, val = 0, freq_khz;
468 freq_khz = freq / 1000;
469 /*
470 * refresh rate to be set is 'tREFI * freq in MHz
471 * division by 10000 to account for khz and x10 in t_REFI_us_x10
472 */
473 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
Sricharan62a86502011-11-15 09:50:00 -0500474 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400475
476 return ref_ctrl;
477}
478
479static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
480 const struct lpddr2_min_tck *min_tck,
481 const struct lpddr2_addressing *addressing)
482{
483 u32 tim1 = 0, val = 0;
484 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500485 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400486
487 if (addressing->num_banks == BANKS8)
488 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
489 (4 * (*T_num)) - 1;
490 else
491 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
492
Sricharan62a86502011-11-15 09:50:00 -0500493 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400494
495 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500496 tim1 |= val << EMIF_REG_T_RC_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400497
498 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500499 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400500
501 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500502 tim1 |= val << EMIF_REG_T_WR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400503
504 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500505 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400506
507 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500508 tim1 |= val << EMIF_REG_T_RP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400509
510 return tim1;
511}
512
513static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
514 const struct lpddr2_min_tck *min_tck)
515{
516 u32 tim2 = 0, val = 0;
517 val = max(min_tck->tCKE, timings->tCKE) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500518 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400519
520 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500521 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400522
523 /*
524 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
525 * same value
526 */
527 val = ns_2_cycles(timings->tXSR) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500528 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
529 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400530
531 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500532 tim2 |= val << EMIF_REG_T_XP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400533
534 return tim2;
535}
536
537static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
538 const struct lpddr2_min_tck *min_tck,
539 const struct lpddr2_addressing *addressing)
540{
541 u32 tim3 = 0, val = 0;
542 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
Sricharan62a86502011-11-15 09:50:00 -0500543 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400544
545 val = ns_2_cycles(timings->tRFCab) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500546 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400547
548 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500549 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400550
551 val = ns_2_cycles(timings->tZQCS) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500552 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400553
554 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500555 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400556
557 return tim3;
558}
559
560static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
561 const struct lpddr2_addressing *addressing,
562 u8 volt_ramp)
563{
564 u32 zq = 0, val = 0;
565 if (volt_ramp)
566 val =
567 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
568 addressing->t_REFI_us_x10;
569 else
570 val =
571 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
572 addressing->t_REFI_us_x10;
Sricharan62a86502011-11-15 09:50:00 -0500573 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400574
Sricharan62a86502011-11-15 09:50:00 -0500575 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400576
Sricharan62a86502011-11-15 09:50:00 -0500577 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400578
Sricharan62a86502011-11-15 09:50:00 -0500579 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400580
581 /*
582 * Assuming that two chipselects have a single calibration resistor
583 * If there are indeed two calibration resistors, then this flag should
584 * be enabled to take advantage of dual calibration feature.
585 * This data should ideally come from board files. But considering
586 * that none of the boards today have calibration resistors per CS,
587 * it would be an unnecessary overhead.
588 */
Sricharan62a86502011-11-15 09:50:00 -0500589 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400590
Sricharan62a86502011-11-15 09:50:00 -0500591 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400592
Sricharan62a86502011-11-15 09:50:00 -0500593 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400594
595 return zq;
596}
597
598static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
599 const struct lpddr2_addressing *addressing,
600 u8 is_derated)
601{
602 u32 alert = 0, interval;
603 interval =
604 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
605 if (is_derated)
606 interval *= 4;
Sricharan62a86502011-11-15 09:50:00 -0500607 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400608
Sricharan62a86502011-11-15 09:50:00 -0500609 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400610
Sricharan62a86502011-11-15 09:50:00 -0500611 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400612
Sricharan62a86502011-11-15 09:50:00 -0500613 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400614
Sricharan62a86502011-11-15 09:50:00 -0500615 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400616
Sricharan62a86502011-11-15 09:50:00 -0500617 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400618
619 return alert;
620}
621
622static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
623{
624 u32 idle = 0, val = 0;
625 if (volt_ramp)
Aneesh V639cfb62011-07-21 09:29:26 -0400626 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
Aneesh Vc0e88522011-07-21 09:10:12 -0400627 else
628 /*Maximum value in normal conditions - suggested by hw team */
629 val = 0x1FF;
Sricharan62a86502011-11-15 09:50:00 -0500630 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400631
Sricharan62a86502011-11-15 09:50:00 -0500632 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400633
634 return idle;
635}
636
637static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
638{
639 u32 phy = 0, val = 0;
640
Sricharan62a86502011-11-15 09:50:00 -0500641 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400642
643 if (freq <= 100000000)
644 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
645 else if (freq <= 200000000)
646 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
647 else
648 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
Sricharan62a86502011-11-15 09:50:00 -0500649 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400650
651 /* Other fields are constant magic values. Hardcode them together */
652 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
Sricharan62a86502011-11-15 09:50:00 -0500653 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400654
655 return phy;
656}
657
658static u32 get_emif_mem_size(struct emif_device_details *devices)
659{
660 u32 size_mbytes = 0, temp;
661
662 if (!devices)
663 return 0;
664
665 if (devices->cs0_device_details) {
666 temp = devices->cs0_device_details->density;
667 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
668 }
669
670 if (devices->cs1_device_details) {
671 temp = devices->cs1_device_details->density;
672 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
673 }
674 /* convert to bytes */
675 return size_mbytes << 20;
676}
677
678/* Gets the encoding corresponding to a given DMM section size */
679u32 get_dmm_section_size_map(u32 section_size)
680{
681 /*
682 * Section size mapping:
683 * 0x0: 16-MiB section
684 * 0x1: 32-MiB section
685 * 0x2: 64-MiB section
686 * 0x3: 128-MiB section
687 * 0x4: 256-MiB section
688 * 0x5: 512-MiB section
689 * 0x6: 1-GiB section
690 * 0x7: 2-GiB section
691 */
692 section_size >>= 24; /* divide by 16 MB */
693 return log_2_n_round_down(section_size);
694}
695
696static void emif_calculate_regs(
697 const struct emif_device_details *emif_dev_details,
698 u32 freq, struct emif_regs *regs)
699{
700 u32 temp, sys_freq;
701 const struct lpddr2_addressing *addressing;
702 const struct lpddr2_ac_timings *timings;
703 const struct lpddr2_min_tck *min_tck;
704 const struct lpddr2_device_details *cs0_dev_details =
705 emif_dev_details->cs0_device_details;
706 const struct lpddr2_device_details *cs1_dev_details =
707 emif_dev_details->cs1_device_details;
708 const struct lpddr2_device_timings *cs0_dev_timings =
709 emif_dev_details->cs0_device_timings;
710
711 emif_assert(emif_dev_details);
712 emif_assert(regs);
713 /*
714 * You can not have a device on CS1 without one on CS0
715 * So configuring EMIF without a device on CS0 doesn't
716 * make sense
717 */
718 emif_assert(cs0_dev_details);
719 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
720 /*
721 * If there is a device on CS1 it should be same type as CS0
722 * (or NVM. But NVM is not supported in this driver yet)
723 */
724 emif_assert((cs1_dev_details == NULL) ||
725 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
726 (cs0_dev_details->type == cs1_dev_details->type));
727 emif_assert(freq <= MAX_LPDDR2_FREQ);
728
729 set_ddr_clk_period(freq);
730
731 /*
732 * The device on CS0 is used for all timing calculations
733 * There is only one set of registers for timings per EMIF. So, if the
734 * second CS(CS1) has a device, it should have the same timings as the
735 * device on CS0
736 */
737 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
738 emif_assert(timings);
739 min_tck = cs0_dev_timings->min_tck;
740
741 temp = addressing_table_index(cs0_dev_details->type,
742 cs0_dev_details->density,
743 cs0_dev_details->io_width);
744
745 emif_assert((temp >= 0));
746 addressing = &(addressing_table[temp]);
747 emif_assert(addressing);
748
749 sys_freq = get_sys_clk_freq();
750
751 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
752 cs1_dev_details,
753 addressing, RL_BOOT);
754
755 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
756 cs1_dev_details,
757 addressing, RL_FINAL);
758
759 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
760
761 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
762
763 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
764
765 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
766
767 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
768
769 regs->temp_alert_config =
770 get_temp_alert_config(cs1_dev_details, addressing, 0);
771
772 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
773 LPDDR2_VOLTAGE_STABLE);
774
775 regs->emif_ddr_phy_ctlr_1_init =
776 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
777
778 regs->emif_ddr_phy_ctlr_1 =
779 get_ddr_phy_ctrl_1(freq, RL_FINAL);
780
781 regs->freq = freq;
782
783 print_timing_reg(regs->sdram_config_init);
784 print_timing_reg(regs->sdram_config);
785 print_timing_reg(regs->ref_ctrl);
786 print_timing_reg(regs->sdram_tim1);
787 print_timing_reg(regs->sdram_tim2);
788 print_timing_reg(regs->sdram_tim3);
789 print_timing_reg(regs->read_idle_ctrl);
790 print_timing_reg(regs->temp_alert_config);
791 print_timing_reg(regs->zq_config);
792 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
793 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
794}
795#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
796
Aneesh Vced762a2011-07-21 09:10:15 -0400797#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
798const char *get_lpddr2_type(u8 type_id)
799{
800 switch (type_id) {
801 case LPDDR2_TYPE_S4:
802 return "LPDDR2-S4";
803 case LPDDR2_TYPE_S2:
804 return "LPDDR2-S2";
805 default:
806 return NULL;
807 }
808}
809
810const char *get_lpddr2_io_width(u8 width_id)
811{
812 switch (width_id) {
813 case LPDDR2_IO_WIDTH_8:
814 return "x8";
815 case LPDDR2_IO_WIDTH_16:
816 return "x16";
817 case LPDDR2_IO_WIDTH_32:
818 return "x32";
819 default:
820 return NULL;
821 }
822}
823
824const char *get_lpddr2_manufacturer(u32 manufacturer)
825{
826 switch (manufacturer) {
827 case LPDDR2_MANUFACTURER_SAMSUNG:
828 return "Samsung";
829 case LPDDR2_MANUFACTURER_QIMONDA:
830 return "Qimonda";
831 case LPDDR2_MANUFACTURER_ELPIDA:
832 return "Elpida";
833 case LPDDR2_MANUFACTURER_ETRON:
834 return "Etron";
835 case LPDDR2_MANUFACTURER_NANYA:
836 return "Nanya";
837 case LPDDR2_MANUFACTURER_HYNIX:
838 return "Hynix";
839 case LPDDR2_MANUFACTURER_MOSEL:
840 return "Mosel";
841 case LPDDR2_MANUFACTURER_WINBOND:
842 return "Winbond";
843 case LPDDR2_MANUFACTURER_ESMT:
844 return "ESMT";
845 case LPDDR2_MANUFACTURER_SPANSION:
846 return "Spansion";
847 case LPDDR2_MANUFACTURER_SST:
848 return "SST";
849 case LPDDR2_MANUFACTURER_ZMOS:
850 return "ZMOS";
851 case LPDDR2_MANUFACTURER_INTEL:
852 return "Intel";
853 case LPDDR2_MANUFACTURER_NUMONYX:
854 return "Numonyx";
855 case LPDDR2_MANUFACTURER_MICRON:
856 return "Micron";
857 default:
858 return NULL;
859 }
860}
861
862static void display_sdram_details(u32 emif_nr, u32 cs,
863 struct lpddr2_device_details *device)
864{
865 const char *mfg_str;
866 const char *type_str;
867 char density_str[10];
868 u32 density;
869
870 debug("EMIF%d CS%d\t", emif_nr, cs);
871
872 if (!device) {
873 debug("None\n");
874 return;
875 }
876
877 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
878 type_str = get_lpddr2_type(device->type);
879
880 density = lpddr2_density_2_size_in_mbytes[device->density];
881 if ((density / 1024 * 1024) == density) {
882 density /= 1024;
883 sprintf(density_str, "%d GB", density);
884 } else
885 sprintf(density_str, "%d MB", density);
886 if (mfg_str && type_str)
887 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
888}
889
890static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
891 struct lpddr2_device_details *lpddr2_device)
892{
893 u32 mr = 0, temp;
894
895 mr = get_mr(base, cs, LPDDR2_MR0);
896 if (mr > 0xFF) {
897 /* Mode register value bigger than 8 bit */
898 return 0;
899 }
900
901 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
902 if (temp) {
903 /* Not SDRAM */
904 return 0;
905 }
906 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
907
908 if (temp) {
909 /* DNV supported - But DNV is only supported for NVM */
910 return 0;
911 }
912
913 mr = get_mr(base, cs, LPDDR2_MR4);
914 if (mr > 0xFF) {
915 /* Mode register value bigger than 8 bit */
916 return 0;
917 }
918
919 mr = get_mr(base, cs, LPDDR2_MR5);
Steve Sakomance515a62012-05-30 07:38:08 +0000920 if (mr > 0xFF) {
Aneesh Vced762a2011-07-21 09:10:15 -0400921 /* Mode register value bigger than 8 bit */
922 return 0;
923 }
924
925 if (!get_lpddr2_manufacturer(mr)) {
926 /* Manufacturer not identified */
927 return 0;
928 }
929 lpddr2_device->manufacturer = mr;
930
931 mr = get_mr(base, cs, LPDDR2_MR6);
932 if (mr >= 0xFF) {
933 /* Mode register value bigger than 8 bit */
934 return 0;
935 }
936
937 mr = get_mr(base, cs, LPDDR2_MR7);
938 if (mr >= 0xFF) {
939 /* Mode register value bigger than 8 bit */
940 return 0;
941 }
942
943 mr = get_mr(base, cs, LPDDR2_MR8);
944 if (mr >= 0xFF) {
945 /* Mode register value bigger than 8 bit */
946 return 0;
947 }
948
949 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
950 if (!get_lpddr2_type(temp)) {
951 /* Not SDRAM */
952 return 0;
953 }
954 lpddr2_device->type = temp;
955
956 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
957 if (temp > LPDDR2_DENSITY_32Gb) {
958 /* Density not supported */
959 return 0;
960 }
961 lpddr2_device->density = temp;
962
963 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
964 if (!get_lpddr2_io_width(temp)) {
965 /* IO width unsupported value */
966 return 0;
967 }
968 lpddr2_device->io_width = temp;
969
970 /*
971 * If all the above tests pass we should
972 * have a device on this chip-select
973 */
974 return 1;
975}
976
Aneesh V14f821a2011-09-08 11:05:53 -0400977struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
Aneesh Vced762a2011-07-21 09:10:15 -0400978 struct lpddr2_device_details *lpddr2_dev_details)
979{
980 u32 phy;
Sricharan62a86502011-11-15 09:50:00 -0500981 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
982
Aneesh Vced762a2011-07-21 09:10:15 -0400983 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
984
985 if (!lpddr2_dev_details)
986 return NULL;
987
988 /* Do the minimum init for mode register accesses */
Lokesh Vutlaae642392012-05-29 19:26:42 +0000989 if (!(running_from_sdram() || warm_reset())) {
Aneesh Vced762a2011-07-21 09:10:15 -0400990 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
991 writel(phy, &emif->emif_ddr_phy_ctrl_1);
992 }
993
994 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
995 return NULL;
996
997 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
998
999 return lpddr2_dev_details;
1000}
Aneesh Vced762a2011-07-21 09:10:15 -04001001#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1002
Aneesh Vcc565582011-07-21 09:10:09 -04001003static void do_sdram_init(u32 base)
1004{
1005 const struct emif_regs *regs;
1006 u32 in_sdram, emif_nr;
1007
1008 debug(">>do_sdram_init() %x\n", base);
1009
1010 in_sdram = running_from_sdram();
Sricharan62a86502011-11-15 09:50:00 -05001011 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
Aneesh Vcc565582011-07-21 09:10:09 -04001012
Aneesh Vc0e88522011-07-21 09:10:12 -04001013#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh Vcc565582011-07-21 09:10:09 -04001014 emif_get_reg_dump(emif_nr, &regs);
1015 if (!regs) {
1016 debug("EMIF: reg dump not provided\n");
1017 return;
1018 }
Aneesh Vc0e88522011-07-21 09:10:12 -04001019#else
1020 /*
1021 * The user has not provided the register values. We need to
1022 * calculate it based on the timings and the DDR frequency
1023 */
1024 struct emif_device_details dev_details;
1025 struct emif_regs calculated_regs;
1026
1027 /*
1028 * Get device details:
1029 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1030 * - Obtained from user otherwise
1031 */
1032 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
Aneesh V14f821a2011-09-08 11:05:53 -04001033 emif_reset_phy(base);
Aneesh V7d9fa572011-11-21 23:39:02 +00001034 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
Aneesh V14f821a2011-09-08 11:05:53 -04001035 &cs0_dev_details);
Aneesh V7d9fa572011-11-21 23:39:02 +00001036 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
Aneesh V14f821a2011-09-08 11:05:53 -04001037 &cs1_dev_details);
1038 emif_reset_phy(base);
Aneesh Vc0e88522011-07-21 09:10:12 -04001039
1040 /* Return if no devices on this EMIF */
1041 if (!dev_details.cs0_device_details &&
1042 !dev_details.cs1_device_details) {
1043 emif_sizes[emif_nr - 1] = 0;
1044 return;
1045 }
Aneesh Vcc565582011-07-21 09:10:09 -04001046
Aneesh Vc0e88522011-07-21 09:10:12 -04001047 if (!in_sdram)
1048 emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
1049
1050 /*
1051 * Get device timings:
1052 * - Default timings specified by JESD209-2 if
1053 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1054 * - Obtained from user otherwise
1055 */
1056 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1057 &dev_details.cs1_device_timings);
1058
1059 /* Calculate the register values */
Sricharan9784f1f2011-11-15 09:49:58 -05001060 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
Aneesh Vc0e88522011-07-21 09:10:12 -04001061 regs = &calculated_regs;
1062#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1063
Aneesh Vcc565582011-07-21 09:10:09 -04001064 /*
1065 * Initializing the LPDDR2 device can not happen from SDRAM.
1066 * Changing the timing registers in EMIF can happen(going from one
1067 * OPP to another)
1068 */
Lokesh Vutlaae642392012-05-29 19:26:42 +00001069 if (!(in_sdram || warm_reset())) {
Lokesh Vutlafef54c32013-02-04 04:21:59 +00001070 if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
Lokesh Vutla0f42de62012-05-22 00:03:25 +00001071 lpddr2_init(base, regs);
1072 else
1073 ddr3_init(base, regs);
1074 }
Aneesh Vcc565582011-07-21 09:10:09 -04001075
1076 /* Write to the shadow registers */
1077 emif_update_timings(base, regs);
1078
1079 debug("<<do_sdram_init() %x\n", base);
1080}
1081
Sricharan62a86502011-11-15 09:50:00 -05001082void emif_post_init_config(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -04001083{
1084 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
Sricharan62a86502011-11-15 09:50:00 -05001085 u32 omap_rev = omap_revision();
1086
Aneesh Vcc565582011-07-21 09:10:09 -04001087 /* reset phy on ES2.0 */
Sricharan62a86502011-11-15 09:50:00 -05001088 if (omap_rev == OMAP4430_ES2_0)
Aneesh Vcc565582011-07-21 09:10:09 -04001089 emif_reset_phy(base);
1090
1091 /* Put EMIF back in smart idle on ES1.0 */
Sricharan62a86502011-11-15 09:50:00 -05001092 if (omap_rev == OMAP4430_ES1_0)
Aneesh Vcc565582011-07-21 09:10:09 -04001093 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1094}
1095
Sricharan62a86502011-11-15 09:50:00 -05001096void dmm_init(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -04001097{
1098 const struct dmm_lisa_map_regs *lisa_map_regs;
Lokesh Vutla80242592012-11-15 21:06:33 +00001099 u32 i, section, valid;
Aneesh Vcc565582011-07-21 09:10:09 -04001100
Aneesh Vc0e88522011-07-21 09:10:12 -04001101#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh Vcc565582011-07-21 09:10:09 -04001102 emif_get_dmm_regs(&lisa_map_regs);
Aneesh Vc0e88522011-07-21 09:10:12 -04001103#else
1104 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1105 u32 section_cnt, sys_addr;
1106 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1107
1108 mapped_size = 0;
1109 section_cnt = 3;
1110 sys_addr = CONFIG_SYS_SDRAM_BASE;
1111 emif1_size = emif_sizes[0];
1112 emif2_size = emif_sizes[1];
1113 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1114
1115 if (!emif1_size && !emif2_size)
1116 return;
1117
1118 /* symmetric interleaved section */
1119 if (emif1_size && emif2_size) {
1120 mapped_size = min(emif1_size, emif2_size);
1121 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
Sricharan62a86502011-11-15 09:50:00 -05001122 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001123 /* only MSB */
1124 section_map |= (sys_addr >> 24) <<
Sricharan62a86502011-11-15 09:50:00 -05001125 EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001126 section_map |= get_dmm_section_size_map(mapped_size * 2)
Sricharan62a86502011-11-15 09:50:00 -05001127 << EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001128 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1129 emif1_size -= mapped_size;
1130 emif2_size -= mapped_size;
1131 sys_addr += (mapped_size * 2);
1132 section_cnt--;
1133 }
1134
1135 /*
1136 * Single EMIF section(we can have a maximum of 1 single EMIF
1137 * section- either EMIF1 or EMIF2 or none, but not both)
1138 */
1139 if (emif1_size) {
1140 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1141 section_map |= get_dmm_section_size_map(emif1_size)
Sricharan62a86502011-11-15 09:50:00 -05001142 << EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001143 /* only MSB */
1144 section_map |= (mapped_size >> 24) <<
Sricharan62a86502011-11-15 09:50:00 -05001145 EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001146 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001147 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001148 section_cnt--;
1149 }
1150 if (emif2_size) {
1151 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1152 section_map |= get_dmm_section_size_map(emif2_size) <<
Sricharan62a86502011-11-15 09:50:00 -05001153 EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001154 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001155 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001156 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001157 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001158 section_cnt--;
1159 }
1160
1161 if (section_cnt == 2) {
1162 /* Only 1 section - either symmetric or single EMIF */
1163 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1164 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1165 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1166 } else {
1167 /* 2 sections - 1 symmetric, 1 single EMIF */
1168 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1169 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1170 }
1171
1172 /* TRAP for invalid TILER mappings in section 0 */
1173 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
Aneesh Vcc565582011-07-21 09:10:09 -04001174
Aneesh Vc0e88522011-07-21 09:10:12 -04001175 lisa_map_regs = &lis_map_regs_calculated;
1176#endif
Aneesh Vcc565582011-07-21 09:10:09 -04001177 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1178 (struct dmm_lisa_map_regs *)base;
1179
1180 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1181 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1182 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1183 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1184
1185 writel(lisa_map_regs->dmm_lisa_map_3,
1186 &hw_lisa_map_regs->dmm_lisa_map_3);
1187 writel(lisa_map_regs->dmm_lisa_map_2,
1188 &hw_lisa_map_regs->dmm_lisa_map_2);
1189 writel(lisa_map_regs->dmm_lisa_map_1,
1190 &hw_lisa_map_regs->dmm_lisa_map_1);
1191 writel(lisa_map_regs->dmm_lisa_map_0,
1192 &hw_lisa_map_regs->dmm_lisa_map_0);
Aneesh V639cfb62011-07-21 09:29:26 -04001193
Lokesh Vutla8caa56c2013-02-12 21:29:07 +00001194 if (lisa_map_regs->is_ma_present) {
Aneesh V639cfb62011-07-21 09:29:26 -04001195 hw_lisa_map_regs =
Sricharan62a86502011-11-15 09:50:00 -05001196 (struct dmm_lisa_map_regs *)MA_BASE;
Aneesh V639cfb62011-07-21 09:29:26 -04001197
1198 writel(lisa_map_regs->dmm_lisa_map_3,
1199 &hw_lisa_map_regs->dmm_lisa_map_3);
1200 writel(lisa_map_regs->dmm_lisa_map_2,
1201 &hw_lisa_map_regs->dmm_lisa_map_2);
1202 writel(lisa_map_regs->dmm_lisa_map_1,
1203 &hw_lisa_map_regs->dmm_lisa_map_1);
1204 writel(lisa_map_regs->dmm_lisa_map_0,
1205 &hw_lisa_map_regs->dmm_lisa_map_0);
1206 }
Lokesh Vutla80242592012-11-15 21:06:33 +00001207
1208 /*
1209 * EMIF should be configured only when
1210 * memory is mapped on it. Using emif1_enabled
1211 * and emif2_enabled variables for this.
1212 */
1213 emif1_enabled = 0;
1214 emif2_enabled = 0;
1215 for (i = 0; i < 4; i++) {
1216 section = __raw_readl(DMM_BASE + i*4);
1217 valid = (section & EMIF_SDRC_MAP_MASK) >>
1218 (EMIF_SDRC_MAP_SHIFT);
1219 if (valid == 3) {
1220 emif1_enabled = 1;
1221 emif2_enabled = 1;
1222 break;
1223 } else if (valid == 1) {
1224 emif1_enabled = 1;
1225 } else if (valid == 2) {
1226 emif2_enabled = 1;
1227 }
1228 }
1229
Aneesh Vcc565582011-07-21 09:10:09 -04001230}
1231
1232/*
1233 * SDRAM initialization:
1234 * SDRAM initialization has two parts:
1235 * 1. Configuring the SDRAM device
1236 * 2. Update the AC timings related parameters in the EMIF module
1237 * (1) should be done only once and should not be done while we are
1238 * running from SDRAM.
1239 * (2) can and should be done more than once if OPP changes.
1240 * Particularly, this may be needed when we boot without SPL and
1241 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1242 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1243 * the frequency. So,
1244 * Doing (1) and (2) makes sense - first time initialization
1245 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1246 * Doing (1) and not (2) doen't make sense
1247 * See do_sdram_init() for the details
1248 */
1249void sdram_init(void)
1250{
1251 u32 in_sdram, size_prog, size_detect;
Lokesh Vutlafef54c32013-02-04 04:21:59 +00001252 u32 sdram_type = emif_sdram_type();
Aneesh Vcc565582011-07-21 09:10:09 -04001253
1254 debug(">>sdram_init()\n");
1255
Sricharan9310ff72011-11-15 09:49:55 -05001256 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
Aneesh Vcc565582011-07-21 09:10:09 -04001257 return;
1258
1259 in_sdram = running_from_sdram();
1260 debug("in_sdram = %d\n", in_sdram);
1261
Lokesh Vutlaae642392012-05-29 19:26:42 +00001262 if (!(in_sdram || warm_reset())) {
Lokesh Vutlafef54c32013-02-04 04:21:59 +00001263 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
SRICHARAN Rfb6aa1f2013-02-04 04:22:00 +00001264 bypass_dpll((*prcm)->cm_clkmode_dpll_core);
Lokesh Vutlacdfc4ea2012-05-22 00:03:26 +00001265 else
SRICHARAN Rfb6aa1f2013-02-04 04:22:00 +00001266 writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
Lokesh Vutlacdfc4ea2012-05-22 00:03:26 +00001267 }
Aneesh Vcc565582011-07-21 09:10:09 -04001268
Lokesh Vutlaae642392012-05-29 19:26:42 +00001269 if (!in_sdram)
Sricharan62a86502011-11-15 09:50:00 -05001270 dmm_init(DMM_BASE);
Lokesh Vutlaae642392012-05-29 19:26:42 +00001271
Lokesh Vutla80242592012-11-15 21:06:33 +00001272 if (emif1_enabled)
1273 do_sdram_init(EMIF1_BASE);
1274
1275 if (emif2_enabled)
1276 do_sdram_init(EMIF2_BASE);
1277
Lokesh Vutlaae642392012-05-29 19:26:42 +00001278 if (!(in_sdram || warm_reset())) {
Lokesh Vutla80242592012-11-15 21:06:33 +00001279 if (emif1_enabled)
1280 emif_post_init_config(EMIF1_BASE);
1281 if (emif2_enabled)
1282 emif_post_init_config(EMIF2_BASE);
Aneesh Vcc565582011-07-21 09:10:09 -04001283 }
1284
1285 /* for the shadow registers to take effect */
Lokesh Vutlafef54c32013-02-04 04:21:59 +00001286 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
Lokesh Vutlacdfc4ea2012-05-22 00:03:26 +00001287 freq_update_core();
Aneesh Vcc565582011-07-21 09:10:09 -04001288
1289 /* Do some testing after the init */
1290 if (!in_sdram) {
Sricharan9310ff72011-11-15 09:49:55 -05001291 size_prog = omap_sdram_size();
SRICHARAN Rb8a0bca2012-05-17 00:12:08 +00001292 size_prog = log_2_n_round_down(size_prog);
1293 size_prog = (1 << size_prog);
1294
Aneesh Vcc565582011-07-21 09:10:09 -04001295 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1296 size_prog);
1297 /* Compare with the size programmed */
1298 if (size_detect != size_prog) {
1299 printf("SDRAM: identified size not same as expected"
1300 " size identified: %x expected: %x\n",
1301 size_detect,
1302 size_prog);
1303 } else
1304 debug("get_ram_size() successful");
1305 }
1306
1307 debug("<<sdram_init()\n");
1308}