blob: ceead9eb02a5ef0dcc604e8e2c2245fed9c8006e [file] [log] [blame]
Aneesh Vcc565582011-07-21 09:10:09 -04001/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
9 * See file CREDITS for list of people who contributed to this
10 * project.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of
15 * the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 * MA 02111-1307 USA
26 */
27
28#include <common.h>
29#include <asm/arch/emif.h>
30#include <asm/arch/clocks.h>
31#include <asm/arch/sys_proto.h>
32#include <asm/omap_common.h>
33#include <asm/utils.h>
34
35static inline u32 emif_num(u32 base)
36{
37 if (base == OMAP44XX_EMIF1)
38 return 1;
39 else if (base == OMAP44XX_EMIF2)
40 return 2;
41 else
42 return 0;
43}
44
45static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
46{
47 u32 mr;
48 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
49
50 mr_addr |= cs << OMAP44XX_REG_CS_SHIFT;
51 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
52 if (omap_revision() == OMAP4430_ES2_0)
53 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
54 else
55 mr = readl(&emif->emif_lpddr2_mode_reg_data);
56 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
57 cs, mr_addr, mr);
58 return mr;
59}
60
61static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
62{
63 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
64
65 mr_addr |= cs << OMAP44XX_REG_CS_SHIFT;
66 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
67 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
68}
69
70void emif_reset_phy(u32 base)
71{
72 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
73 u32 iodft;
74
75 iodft = readl(&emif->emif_iodft_tlgc);
76 iodft |= OMAP44XX_REG_RESET_PHY_MASK;
77 writel(iodft, &emif->emif_iodft_tlgc);
78}
79
80static void do_lpddr2_init(u32 base, u32 cs)
81{
82 u32 mr_addr;
83
84 /* Wait till device auto initialization is complete */
85 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
86 ;
87 set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT);
88 /*
89 * tZQINIT = 1 us
90 * Enough loops assuming a maximum of 2GHz
91 */
92 sdelay(2000);
93 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3);
94 set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY);
95 /*
96 * Enable refresh along with writing MR2
97 * Encoding of RL in MR2 is (RL - 2)
98 */
99 mr_addr = LPDDR2_MR2 | OMAP44XX_REG_REFRESH_EN_MASK;
100 set_mr(base, cs, mr_addr, RL_FINAL - 2);
101}
102
103static void lpddr2_init(u32 base, const struct emif_regs *regs)
104{
105 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
106
107 /* Not NVM */
108 clrbits_le32(&emif->emif_lpddr2_nvm_config, OMAP44XX_REG_CS1NVMEN_MASK);
109
110 /*
111 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
112 * when EMIF_SDRAM_CONFIG register is written
113 */
114 setbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK);
115
116 /*
117 * Set the SDRAM_CONFIG and PHY_CTRL for the
118 * un-locked frequency & default RL
119 */
120 writel(regs->sdram_config_init, &emif->emif_sdram_config);
121 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
122
123 do_lpddr2_init(base, CS0);
124 if (regs->sdram_config & OMAP44XX_REG_EBANK_MASK)
125 do_lpddr2_init(base, CS1);
126
127 writel(regs->sdram_config, &emif->emif_sdram_config);
128 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
129
130 /* Enable refresh now */
131 clrbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK);
132
133}
134
135static void emif_update_timings(u32 base, const struct emif_regs *regs)
136{
137 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
138
139 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
140 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
141 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
142 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
143 if (omap_revision() == OMAP4430_ES1_0) {
144 /* ES1 bug EMIF should be in force idle during freq_update */
145 writel(0, &emif->emif_pwr_mgmt_ctrl);
146 } else {
147 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
148 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
149 }
150 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
151 writel(regs->zq_config, &emif->emif_zq_config);
152 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
153 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
154 /*
155 * Workaround:
156 * In a specific situation, the OCP interface between the DMM and
157 * EMIF may hang.
158 * 1. A TILER port is used to perform 2D burst writes of
159 * width 1 and height 8
160 * 2. ELLAn port is used to perform reads
161 * 3. All accesses are routed to the same EMIF controller
162 *
163 * Work around to avoid this issue REG_SYS_THRESH_MAX value should
164 * be kept higher than default 0x7. As per recommondation 0x0A will
165 * be used for better performance with REG_LL_THRESH_MAX = 0x00
166 */
167 if (omap_revision() == OMAP4430_ES1_0) {
168 writel(EMIF_L3_CONFIG_VAL_SYS_THRESH_0A_LL_THRESH_00,
169 &emif->emif_l3_config);
170 }
171}
172
Aneesh Vc0e88522011-07-21 09:10:12 -0400173#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
174#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
175
176static u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM;
177static u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN;
178static u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE;
179
180/*
181 * Organization and refresh requirements for LPDDR2 devices of different
182 * types and densities. Derived from JESD209-2 section 2.4
183 */
184const struct lpddr2_addressing addressing_table[] = {
185 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
186 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
187 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
188 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
189 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
190 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
191 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
192 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
193 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
194 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
195 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
196};
197
198static const u32 lpddr2_density_2_size_in_mbytes[] = {
199 8, /* 64Mb */
200 16, /* 128Mb */
201 32, /* 256Mb */
202 64, /* 512Mb */
203 128, /* 1Gb */
204 256, /* 2Gb */
205 512, /* 4Gb */
206 1024, /* 8Gb */
207 2048, /* 16Gb */
208 4096 /* 32Gb */
209};
210
211/*
212 * Calculate the period of DDR clock from frequency value and set the
213 * denominator and numerator in global variables for easy access later
214 */
215static void set_ddr_clk_period(u32 freq)
216{
217 /*
218 * period = 1/freq
219 * period_in_ns = 10^9/freq
220 */
221 *T_num = 1000000000;
222 *T_den = freq;
223 cancel_out(T_num, T_den, 200);
224
225}
226
227/*
228 * Convert time in nano seconds to number of cycles of DDR clock
229 */
230static inline u32 ns_2_cycles(u32 ns)
231{
232 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
233}
234
235/*
236 * ns_2_cycles with the difference that the time passed is 2 times the actual
237 * value(to avoid fractions). The cycles returned is for the original value of
238 * the timing parameter
239 */
240static inline u32 ns_x2_2_cycles(u32 ns)
241{
242 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
243}
244
245/*
246 * Find addressing table index based on the device's type(S2 or S4) and
247 * density
248 */
249s8 addressing_table_index(u8 type, u8 density, u8 width)
250{
251 u8 index;
252 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
253 return -1;
254
255 /*
256 * Look at the way ADDR_TABLE_INDEX* values have been defined
257 * in emif.h compared to LPDDR2_DENSITY_* values
258 * The table is layed out in the increasing order of density
259 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
260 * at the end
261 */
262 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
263 index = ADDR_TABLE_INDEX1GS2;
264 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
265 index = ADDR_TABLE_INDEX2GS2;
266 else
267 index = density;
268
269 debug("emif: addressing table index %d\n", index);
270
271 return index;
272}
273
274/*
275 * Find the the right timing table from the array of timing
276 * tables of the device using DDR clock frequency
277 */
278static const struct lpddr2_ac_timings *get_timings_table(const struct
279 lpddr2_ac_timings const *const *device_timings,
280 u32 freq)
281{
282 u32 i, temp, freq_nearest;
283 const struct lpddr2_ac_timings *timings = 0;
284
285 emif_assert(freq <= MAX_LPDDR2_FREQ);
286 emif_assert(device_timings);
287
288 /*
289 * Start with the maximum allowed frequency - that is always safe
290 */
291 freq_nearest = MAX_LPDDR2_FREQ;
292 /*
293 * Find the timings table that has the max frequency value:
294 * i. Above or equal to the DDR frequency - safe
295 * ii. The lowest that satisfies condition (i) - optimal
296 */
297 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
298 temp = device_timings[i]->max_freq;
299 if ((temp >= freq) && (temp <= freq_nearest)) {
300 freq_nearest = temp;
301 timings = device_timings[i];
302 }
303 }
304 debug("emif: timings table: %d\n", freq_nearest);
305 return timings;
306}
307
308/*
309 * Finds the value of emif_sdram_config_reg
310 * All parameters are programmed based on the device on CS0.
311 * If there is a device on CS1, it will be same as that on CS0 or
312 * it will be NVM. We don't support NVM yet.
313 * If cs1_device pointer is NULL it is assumed that there is no device
314 * on CS1
315 */
316static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
317 const struct lpddr2_device_details *cs1_device,
318 const struct lpddr2_addressing *addressing,
319 u8 RL)
320{
321 u32 config_reg = 0;
322
323 config_reg |= (cs0_device->type + 4) << OMAP44XX_REG_SDRAM_TYPE_SHIFT;
324 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
325 OMAP44XX_REG_IBANK_POS_SHIFT;
326
327 config_reg |= cs0_device->io_width << OMAP44XX_REG_NARROW_MODE_SHIFT;
328
329 config_reg |= RL << OMAP44XX_REG_CL_SHIFT;
330
331 config_reg |= addressing->row_sz[cs0_device->io_width] <<
332 OMAP44XX_REG_ROWSIZE_SHIFT;
333
334 config_reg |= addressing->num_banks << OMAP44XX_REG_IBANK_SHIFT;
335
336 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
337 OMAP44XX_REG_EBANK_SHIFT;
338
339 config_reg |= addressing->col_sz[cs0_device->io_width] <<
340 OMAP44XX_REG_PAGESIZE_SHIFT;
341
342 return config_reg;
343}
344
345static u32 get_sdram_ref_ctrl(u32 freq,
346 const struct lpddr2_addressing *addressing)
347{
348 u32 ref_ctrl = 0, val = 0, freq_khz;
349 freq_khz = freq / 1000;
350 /*
351 * refresh rate to be set is 'tREFI * freq in MHz
352 * division by 10000 to account for khz and x10 in t_REFI_us_x10
353 */
354 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
355 ref_ctrl |= val << OMAP44XX_REG_REFRESH_RATE_SHIFT;
356
357 return ref_ctrl;
358}
359
360static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
361 const struct lpddr2_min_tck *min_tck,
362 const struct lpddr2_addressing *addressing)
363{
364 u32 tim1 = 0, val = 0;
365 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
366 tim1 |= val << OMAP44XX_REG_T_WTR_SHIFT;
367
368 if (addressing->num_banks == BANKS8)
369 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
370 (4 * (*T_num)) - 1;
371 else
372 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
373
374 tim1 |= val << OMAP44XX_REG_T_RRD_SHIFT;
375
376 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
377 tim1 |= val << OMAP44XX_REG_T_RC_SHIFT;
378
379 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
380 tim1 |= val << OMAP44XX_REG_T_RAS_SHIFT;
381
382 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
383 tim1 |= val << OMAP44XX_REG_T_WR_SHIFT;
384
385 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
386 tim1 |= val << OMAP44XX_REG_T_RCD_SHIFT;
387
388 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
389 tim1 |= val << OMAP44XX_REG_T_RP_SHIFT;
390
391 return tim1;
392}
393
394static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
395 const struct lpddr2_min_tck *min_tck)
396{
397 u32 tim2 = 0, val = 0;
398 val = max(min_tck->tCKE, timings->tCKE) - 1;
399 tim2 |= val << OMAP44XX_REG_T_CKE_SHIFT;
400
401 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
402 tim2 |= val << OMAP44XX_REG_T_RTP_SHIFT;
403
404 /*
405 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
406 * same value
407 */
408 val = ns_2_cycles(timings->tXSR) - 1;
409 tim2 |= val << OMAP44XX_REG_T_XSRD_SHIFT;
410 tim2 |= val << OMAP44XX_REG_T_XSNR_SHIFT;
411
412 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
413 tim2 |= val << OMAP44XX_REG_T_XP_SHIFT;
414
415 return tim2;
416}
417
418static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
419 const struct lpddr2_min_tck *min_tck,
420 const struct lpddr2_addressing *addressing)
421{
422 u32 tim3 = 0, val = 0;
423 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
424 tim3 |= val << OMAP44XX_REG_T_RAS_MAX_SHIFT;
425
426 val = ns_2_cycles(timings->tRFCab) - 1;
427 tim3 |= val << OMAP44XX_REG_T_RFC_SHIFT;
428
429 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
430 tim3 |= val << OMAP44XX_REG_T_TDQSCKMAX_SHIFT;
431
432 val = ns_2_cycles(timings->tZQCS) - 1;
433 tim3 |= val << OMAP44XX_REG_ZQ_ZQCS_SHIFT;
434
435 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
436 tim3 |= val << OMAP44XX_REG_T_CKESR_SHIFT;
437
438 return tim3;
439}
440
441static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
442 const struct lpddr2_addressing *addressing,
443 u8 volt_ramp)
444{
445 u32 zq = 0, val = 0;
446 if (volt_ramp)
447 val =
448 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
449 addressing->t_REFI_us_x10;
450 else
451 val =
452 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
453 addressing->t_REFI_us_x10;
454 zq |= val << OMAP44XX_REG_ZQ_REFINTERVAL_SHIFT;
455
456 zq |= (REG_ZQ_ZQCL_MULT - 1) << OMAP44XX_REG_ZQ_ZQCL_MULT_SHIFT;
457
458 zq |= (REG_ZQ_ZQINIT_MULT - 1) << OMAP44XX_REG_ZQ_ZQINIT_MULT_SHIFT;
459
460 zq |= REG_ZQ_SFEXITEN_ENABLE << OMAP44XX_REG_ZQ_SFEXITEN_SHIFT;
461
462 /*
463 * Assuming that two chipselects have a single calibration resistor
464 * If there are indeed two calibration resistors, then this flag should
465 * be enabled to take advantage of dual calibration feature.
466 * This data should ideally come from board files. But considering
467 * that none of the boards today have calibration resistors per CS,
468 * it would be an unnecessary overhead.
469 */
470 zq |= REG_ZQ_DUALCALEN_DISABLE << OMAP44XX_REG_ZQ_DUALCALEN_SHIFT;
471
472 zq |= REG_ZQ_CS0EN_ENABLE << OMAP44XX_REG_ZQ_CS0EN_SHIFT;
473
474 zq |= (cs1_device ? 1 : 0) << OMAP44XX_REG_ZQ_CS1EN_SHIFT;
475
476 return zq;
477}
478
479static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
480 const struct lpddr2_addressing *addressing,
481 u8 is_derated)
482{
483 u32 alert = 0, interval;
484 interval =
485 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
486 if (is_derated)
487 interval *= 4;
488 alert |= interval << OMAP44XX_REG_TA_REFINTERVAL_SHIFT;
489
490 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << OMAP44XX_REG_TA_DEVCNT_SHIFT;
491
492 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << OMAP44XX_REG_TA_DEVWDT_SHIFT;
493
494 alert |= 1 << OMAP44XX_REG_TA_SFEXITEN_SHIFT;
495
496 alert |= 1 << OMAP44XX_REG_TA_CS0EN_SHIFT;
497
498 alert |= (cs1_device ? 1 : 0) << OMAP44XX_REG_TA_CS1EN_SHIFT;
499
500 return alert;
501}
502
503static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
504{
505 u32 idle = 0, val = 0;
506 if (volt_ramp)
507 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 + 1;
508 else
509 /*Maximum value in normal conditions - suggested by hw team */
510 val = 0x1FF;
511 idle |= val << OMAP44XX_REG_READ_IDLE_INTERVAL_SHIFT;
512
513 idle |= EMIF_REG_READ_IDLE_LEN_VAL << OMAP44XX_REG_READ_IDLE_LEN_SHIFT;
514
515 return idle;
516}
517
518static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
519{
520 u32 phy = 0, val = 0;
521
522 phy |= (RL + 2) << OMAP44XX_REG_READ_LATENCY_SHIFT;
523
524 if (freq <= 100000000)
525 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
526 else if (freq <= 200000000)
527 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
528 else
529 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
530 phy |= val << OMAP44XX_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
531
532 /* Other fields are constant magic values. Hardcode them together */
533 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
534 OMAP44XX_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
535
536 return phy;
537}
538
539static u32 get_emif_mem_size(struct emif_device_details *devices)
540{
541 u32 size_mbytes = 0, temp;
542
543 if (!devices)
544 return 0;
545
546 if (devices->cs0_device_details) {
547 temp = devices->cs0_device_details->density;
548 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
549 }
550
551 if (devices->cs1_device_details) {
552 temp = devices->cs1_device_details->density;
553 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
554 }
555 /* convert to bytes */
556 return size_mbytes << 20;
557}
558
559/* Gets the encoding corresponding to a given DMM section size */
560u32 get_dmm_section_size_map(u32 section_size)
561{
562 /*
563 * Section size mapping:
564 * 0x0: 16-MiB section
565 * 0x1: 32-MiB section
566 * 0x2: 64-MiB section
567 * 0x3: 128-MiB section
568 * 0x4: 256-MiB section
569 * 0x5: 512-MiB section
570 * 0x6: 1-GiB section
571 * 0x7: 2-GiB section
572 */
573 section_size >>= 24; /* divide by 16 MB */
574 return log_2_n_round_down(section_size);
575}
576
577static void emif_calculate_regs(
578 const struct emif_device_details *emif_dev_details,
579 u32 freq, struct emif_regs *regs)
580{
581 u32 temp, sys_freq;
582 const struct lpddr2_addressing *addressing;
583 const struct lpddr2_ac_timings *timings;
584 const struct lpddr2_min_tck *min_tck;
585 const struct lpddr2_device_details *cs0_dev_details =
586 emif_dev_details->cs0_device_details;
587 const struct lpddr2_device_details *cs1_dev_details =
588 emif_dev_details->cs1_device_details;
589 const struct lpddr2_device_timings *cs0_dev_timings =
590 emif_dev_details->cs0_device_timings;
591
592 emif_assert(emif_dev_details);
593 emif_assert(regs);
594 /*
595 * You can not have a device on CS1 without one on CS0
596 * So configuring EMIF without a device on CS0 doesn't
597 * make sense
598 */
599 emif_assert(cs0_dev_details);
600 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
601 /*
602 * If there is a device on CS1 it should be same type as CS0
603 * (or NVM. But NVM is not supported in this driver yet)
604 */
605 emif_assert((cs1_dev_details == NULL) ||
606 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
607 (cs0_dev_details->type == cs1_dev_details->type));
608 emif_assert(freq <= MAX_LPDDR2_FREQ);
609
610 set_ddr_clk_period(freq);
611
612 /*
613 * The device on CS0 is used for all timing calculations
614 * There is only one set of registers for timings per EMIF. So, if the
615 * second CS(CS1) has a device, it should have the same timings as the
616 * device on CS0
617 */
618 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
619 emif_assert(timings);
620 min_tck = cs0_dev_timings->min_tck;
621
622 temp = addressing_table_index(cs0_dev_details->type,
623 cs0_dev_details->density,
624 cs0_dev_details->io_width);
625
626 emif_assert((temp >= 0));
627 addressing = &(addressing_table[temp]);
628 emif_assert(addressing);
629
630 sys_freq = get_sys_clk_freq();
631
632 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
633 cs1_dev_details,
634 addressing, RL_BOOT);
635
636 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
637 cs1_dev_details,
638 addressing, RL_FINAL);
639
640 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
641
642 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
643
644 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
645
646 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
647
648 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
649
650 regs->temp_alert_config =
651 get_temp_alert_config(cs1_dev_details, addressing, 0);
652
653 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
654 LPDDR2_VOLTAGE_STABLE);
655
656 regs->emif_ddr_phy_ctlr_1_init =
657 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
658
659 regs->emif_ddr_phy_ctlr_1 =
660 get_ddr_phy_ctrl_1(freq, RL_FINAL);
661
662 regs->freq = freq;
663
664 print_timing_reg(regs->sdram_config_init);
665 print_timing_reg(regs->sdram_config);
666 print_timing_reg(regs->ref_ctrl);
667 print_timing_reg(regs->sdram_tim1);
668 print_timing_reg(regs->sdram_tim2);
669 print_timing_reg(regs->sdram_tim3);
670 print_timing_reg(regs->read_idle_ctrl);
671 print_timing_reg(regs->temp_alert_config);
672 print_timing_reg(regs->zq_config);
673 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
674 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
675}
676#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
677
678#ifdef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS
679/* Base AC Timing values specified by JESD209-2 for 400MHz operation */
680static const struct lpddr2_ac_timings timings_jedec_400_mhz = {
681 .max_freq = 400000000,
682 .RL = 6,
683 .tRPab = 21,
684 .tRCD = 18,
685 .tWR = 15,
686 .tRASmin = 42,
687 .tRRD = 10,
688 .tWTRx2 = 15,
689 .tXSR = 140,
690 .tXPx2 = 15,
691 .tRFCab = 130,
692 .tRTPx2 = 15,
693 .tCKE = 3,
694 .tCKESR = 15,
695 .tZQCS = 90,
696 .tZQCL = 360,
697 .tZQINIT = 1000,
698 .tDQSCKMAXx2 = 11,
699 .tRASmax = 70,
700 .tFAW = 50
701};
702
703/* Base AC Timing values specified by JESD209-2 for 333 MHz operation */
704static const struct lpddr2_ac_timings timings_jedec_333_mhz = {
705 .max_freq = 333000000,
706 .RL = 5,
707 .tRPab = 21,
708 .tRCD = 18,
709 .tWR = 15,
710 .tRASmin = 42,
711 .tRRD = 10,
712 .tWTRx2 = 15,
713 .tXSR = 140,
714 .tXPx2 = 15,
715 .tRFCab = 130,
716 .tRTPx2 = 15,
717 .tCKE = 3,
718 .tCKESR = 15,
719 .tZQCS = 90,
720 .tZQCL = 360,
721 .tZQINIT = 1000,
722 .tDQSCKMAXx2 = 11,
723 .tRASmax = 70,
724 .tFAW = 50
725};
726
727/* Base AC Timing values specified by JESD209-2 for 200 MHz operation */
728static const struct lpddr2_ac_timings timings_jedec_200_mhz = {
729 .max_freq = 200000000,
730 .RL = 3,
731 .tRPab = 21,
732 .tRCD = 18,
733 .tWR = 15,
734 .tRASmin = 42,
735 .tRRD = 10,
736 .tWTRx2 = 20,
737 .tXSR = 140,
738 .tXPx2 = 15,
739 .tRFCab = 130,
740 .tRTPx2 = 15,
741 .tCKE = 3,
742 .tCKESR = 15,
743 .tZQCS = 90,
744 .tZQCL = 360,
745 .tZQINIT = 1000,
746 .tDQSCKMAXx2 = 11,
747 .tRASmax = 70,
748 .tFAW = 50
749};
750
751/*
752 * Min tCK values specified by JESD209-2
753 * Min tCK specifies the minimum duration of some AC timing parameters in terms
754 * of the number of cycles. If the calculated number of cycles based on the
755 * absolute time value is less than the min tCK value, min tCK value should
756 * be used instead. This typically happens at low frequencies.
757 */
758static const struct lpddr2_min_tck min_tck_jedec = {
759 .tRL = 3,
760 .tRP_AB = 3,
761 .tRCD = 3,
762 .tWR = 3,
763 .tRAS_MIN = 3,
764 .tRRD = 2,
765 .tWTR = 2,
766 .tXP = 2,
767 .tRTP = 2,
768 .tCKE = 3,
769 .tCKESR = 3,
770 .tFAW = 8
771};
772
773static const struct lpddr2_ac_timings const*
774 jedec_ac_timings[MAX_NUM_SPEEDBINS] = {
775 &timings_jedec_200_mhz,
776 &timings_jedec_333_mhz,
777 &timings_jedec_400_mhz
778};
779
780static const struct lpddr2_device_timings jedec_default_timings = {
781 .ac_timings = jedec_ac_timings,
782 .min_tck = &min_tck_jedec
783};
784
785void emif_get_device_timings(u32 emif_nr,
786 const struct lpddr2_device_timings **cs0_device_timings,
787 const struct lpddr2_device_timings **cs1_device_timings)
788{
789 /* Assume Identical devices on EMIF1 & EMIF2 */
790 *cs0_device_timings = &jedec_default_timings;
791 *cs1_device_timings = &jedec_default_timings;
792}
793#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */
794
Aneesh Vcc565582011-07-21 09:10:09 -0400795static void do_sdram_init(u32 base)
796{
797 const struct emif_regs *regs;
798 u32 in_sdram, emif_nr;
799
800 debug(">>do_sdram_init() %x\n", base);
801
802 in_sdram = running_from_sdram();
803 emif_nr = (base == OMAP44XX_EMIF1) ? 1 : 2;
804
Aneesh Vc0e88522011-07-21 09:10:12 -0400805#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh Vcc565582011-07-21 09:10:09 -0400806 emif_get_reg_dump(emif_nr, &regs);
807 if (!regs) {
808 debug("EMIF: reg dump not provided\n");
809 return;
810 }
Aneesh Vc0e88522011-07-21 09:10:12 -0400811#else
812 /*
813 * The user has not provided the register values. We need to
814 * calculate it based on the timings and the DDR frequency
815 */
816 struct emif_device_details dev_details;
817 struct emif_regs calculated_regs;
818
819 /*
820 * Get device details:
821 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
822 * - Obtained from user otherwise
823 */
824 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
825 emif_get_device_details(emif_nr, &cs0_dev_details,
826 &cs1_dev_details);
827 dev_details.cs0_device_details = &cs0_dev_details;
828 dev_details.cs1_device_details = &cs1_dev_details;
829
830 /* Return if no devices on this EMIF */
831 if (!dev_details.cs0_device_details &&
832 !dev_details.cs1_device_details) {
833 emif_sizes[emif_nr - 1] = 0;
834 return;
835 }
Aneesh Vcc565582011-07-21 09:10:09 -0400836
Aneesh Vc0e88522011-07-21 09:10:12 -0400837 if (!in_sdram)
838 emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
839
840 /*
841 * Get device timings:
842 * - Default timings specified by JESD209-2 if
843 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
844 * - Obtained from user otherwise
845 */
846 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
847 &dev_details.cs1_device_timings);
848
849 /* Calculate the register values */
850 emif_calculate_regs(&dev_details, omap4_ddr_clk(), &calculated_regs);
851 regs = &calculated_regs;
852#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
853
Aneesh Vcc565582011-07-21 09:10:09 -0400854 /*
855 * Initializing the LPDDR2 device can not happen from SDRAM.
856 * Changing the timing registers in EMIF can happen(going from one
857 * OPP to another)
858 */
859 if (!in_sdram)
860 lpddr2_init(base, regs);
861
862 /* Write to the shadow registers */
863 emif_update_timings(base, regs);
864
865 debug("<<do_sdram_init() %x\n", base);
866}
867
868void sdram_init_pads(void)
869{
870 u32 lpddr2io;
871 struct control_lpddr2io_regs *lpddr2io_regs =
872 (struct control_lpddr2io_regs *)LPDDR2_IO_REGS_BASE;
873 u32 omap4_rev = omap_revision();
874
875 if (omap4_rev == OMAP4430_ES1_0)
876 lpddr2io = CONTROL_LPDDR2IO_SLEW_125PS_DRV8_PULL_DOWN;
877 else if (omap4_rev == OMAP4430_ES2_0)
878 lpddr2io = CONTROL_LPDDR2IO_SLEW_325PS_DRV8_GATE_KEEPER;
879 else
880 return; /* Post ES2.1 reset values will work */
881
882 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_0);
883 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_1);
884 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_2);
885 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_0);
886 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_1);
887 writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_2);
888
889 writel(CONTROL_EFUSE_2_NMOS_PMOS_PTV_CODE_1, CONTROL_EFUSE_2);
890}
891
892static void emif_post_init_config(u32 base)
893{
894 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
895 u32 omap4_rev = omap_revision();
896
897 /* reset phy on ES2.0 */
898 if (omap4_rev == OMAP4430_ES2_0)
899 emif_reset_phy(base);
900
901 /* Put EMIF back in smart idle on ES1.0 */
902 if (omap4_rev == OMAP4430_ES1_0)
903 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
904}
905
906static void dmm_init(u32 base)
907{
908 const struct dmm_lisa_map_regs *lisa_map_regs;
909
Aneesh Vc0e88522011-07-21 09:10:12 -0400910#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh Vcc565582011-07-21 09:10:09 -0400911 emif_get_dmm_regs(&lisa_map_regs);
Aneesh Vc0e88522011-07-21 09:10:12 -0400912#else
913 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
914 u32 section_cnt, sys_addr;
915 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
916
917 mapped_size = 0;
918 section_cnt = 3;
919 sys_addr = CONFIG_SYS_SDRAM_BASE;
920 emif1_size = emif_sizes[0];
921 emif2_size = emif_sizes[1];
922 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
923
924 if (!emif1_size && !emif2_size)
925 return;
926
927 /* symmetric interleaved section */
928 if (emif1_size && emif2_size) {
929 mapped_size = min(emif1_size, emif2_size);
930 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
931 section_map |= 0 << OMAP44XX_SDRC_ADDR_SHIFT;
932 /* only MSB */
933 section_map |= (sys_addr >> 24) <<
934 OMAP44XX_SYS_ADDR_SHIFT;
935 section_map |= get_dmm_section_size_map(mapped_size * 2)
936 << OMAP44XX_SYS_SIZE_SHIFT;
937 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
938 emif1_size -= mapped_size;
939 emif2_size -= mapped_size;
940 sys_addr += (mapped_size * 2);
941 section_cnt--;
942 }
943
944 /*
945 * Single EMIF section(we can have a maximum of 1 single EMIF
946 * section- either EMIF1 or EMIF2 or none, but not both)
947 */
948 if (emif1_size) {
949 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
950 section_map |= get_dmm_section_size_map(emif1_size)
951 << OMAP44XX_SYS_SIZE_SHIFT;
952 /* only MSB */
953 section_map |= (mapped_size >> 24) <<
954 OMAP44XX_SDRC_ADDR_SHIFT;
955 /* only MSB */
956 section_map |= (sys_addr >> 24) << OMAP44XX_SYS_ADDR_SHIFT;
957 section_cnt--;
958 }
959 if (emif2_size) {
960 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
961 section_map |= get_dmm_section_size_map(emif2_size) <<
962 OMAP44XX_SYS_SIZE_SHIFT;
963 /* only MSB */
964 section_map |= mapped_size >> 24 << OMAP44XX_SDRC_ADDR_SHIFT;
965 /* only MSB */
966 section_map |= sys_addr >> 24 << OMAP44XX_SYS_ADDR_SHIFT;
967 section_cnt--;
968 }
969
970 if (section_cnt == 2) {
971 /* Only 1 section - either symmetric or single EMIF */
972 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
973 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
974 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
975 } else {
976 /* 2 sections - 1 symmetric, 1 single EMIF */
977 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
978 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
979 }
980
981 /* TRAP for invalid TILER mappings in section 0 */
982 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
Aneesh Vcc565582011-07-21 09:10:09 -0400983
Aneesh Vc0e88522011-07-21 09:10:12 -0400984 lisa_map_regs = &lis_map_regs_calculated;
985#endif
Aneesh Vcc565582011-07-21 09:10:09 -0400986 struct dmm_lisa_map_regs *hw_lisa_map_regs =
987 (struct dmm_lisa_map_regs *)base;
988
989 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
990 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
991 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
992 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
993
994 writel(lisa_map_regs->dmm_lisa_map_3,
995 &hw_lisa_map_regs->dmm_lisa_map_3);
996 writel(lisa_map_regs->dmm_lisa_map_2,
997 &hw_lisa_map_regs->dmm_lisa_map_2);
998 writel(lisa_map_regs->dmm_lisa_map_1,
999 &hw_lisa_map_regs->dmm_lisa_map_1);
1000 writel(lisa_map_regs->dmm_lisa_map_0,
1001 &hw_lisa_map_regs->dmm_lisa_map_0);
1002}
1003
1004/*
1005 * SDRAM initialization:
1006 * SDRAM initialization has two parts:
1007 * 1. Configuring the SDRAM device
1008 * 2. Update the AC timings related parameters in the EMIF module
1009 * (1) should be done only once and should not be done while we are
1010 * running from SDRAM.
1011 * (2) can and should be done more than once if OPP changes.
1012 * Particularly, this may be needed when we boot without SPL and
1013 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1014 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1015 * the frequency. So,
1016 * Doing (1) and (2) makes sense - first time initialization
1017 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1018 * Doing (1) and not (2) doen't make sense
1019 * See do_sdram_init() for the details
1020 */
1021void sdram_init(void)
1022{
1023 u32 in_sdram, size_prog, size_detect;
1024
1025 debug(">>sdram_init()\n");
1026
1027 if (omap4_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1028 return;
1029
1030 in_sdram = running_from_sdram();
1031 debug("in_sdram = %d\n", in_sdram);
1032
1033 if (!in_sdram) {
1034 sdram_init_pads();
1035 bypass_dpll(&prcm->cm_clkmode_dpll_core);
1036 }
1037
1038 do_sdram_init(OMAP44XX_EMIF1);
1039 do_sdram_init(OMAP44XX_EMIF2);
1040
1041 if (!in_sdram) {
1042 dmm_init(OMAP44XX_DMM_LISA_MAP_BASE);
1043 emif_post_init_config(OMAP44XX_EMIF1);
1044 emif_post_init_config(OMAP44XX_EMIF2);
1045
1046 }
1047
1048 /* for the shadow registers to take effect */
1049 freq_update_core();
1050
1051 /* Do some testing after the init */
1052 if (!in_sdram) {
1053 size_prog = omap4_sdram_size();
1054 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1055 size_prog);
1056 /* Compare with the size programmed */
1057 if (size_detect != size_prog) {
1058 printf("SDRAM: identified size not same as expected"
1059 " size identified: %x expected: %x\n",
1060 size_detect,
1061 size_prog);
1062 } else
1063 debug("get_ram_size() successful");
1064 }
1065
1066 debug("<<sdram_init()\n");
1067}