Aneesh V | cc56558 | 2011-07-21 09:10:09 -0400 | [diff] [blame] | 1 | /* |
| 2 | * EMIF programming |
| 3 | * |
| 4 | * (C) Copyright 2010 |
| 5 | * Texas Instruments, <www.ti.com> |
| 6 | * |
| 7 | * Aneesh V <aneesh@ti.com> |
| 8 | * |
| 9 | * See file CREDITS for list of people who contributed to this |
| 10 | * project. |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or |
| 13 | * modify it under the terms of the GNU General Public License as |
| 14 | * published by the Free Software Foundation; either version 2 of |
| 15 | * the License, or (at your option) any later version. |
| 16 | * |
| 17 | * This program is distributed in the hope that it will be useful, |
| 18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 20 | * GNU General Public License for more details. |
| 21 | * |
| 22 | * You should have received a copy of the GNU General Public License |
| 23 | * along with this program; if not, write to the Free Software |
| 24 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 25 | * MA 02111-1307 USA |
| 26 | */ |
| 27 | |
| 28 | #include <common.h> |
| 29 | #include <asm/arch/emif.h> |
| 30 | #include <asm/arch/clocks.h> |
| 31 | #include <asm/arch/sys_proto.h> |
| 32 | #include <asm/omap_common.h> |
| 33 | #include <asm/utils.h> |
| 34 | |
| 35 | static inline u32 emif_num(u32 base) |
| 36 | { |
| 37 | if (base == OMAP44XX_EMIF1) |
| 38 | return 1; |
| 39 | else if (base == OMAP44XX_EMIF2) |
| 40 | return 2; |
| 41 | else |
| 42 | return 0; |
| 43 | } |
| 44 | |
| 45 | static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr) |
| 46 | { |
| 47 | u32 mr; |
| 48 | struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| 49 | |
| 50 | mr_addr |= cs << OMAP44XX_REG_CS_SHIFT; |
| 51 | writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg); |
| 52 | if (omap_revision() == OMAP4430_ES2_0) |
| 53 | mr = readl(&emif->emif_lpddr2_mode_reg_data_es2); |
| 54 | else |
| 55 | mr = readl(&emif->emif_lpddr2_mode_reg_data); |
| 56 | debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base), |
| 57 | cs, mr_addr, mr); |
| 58 | return mr; |
| 59 | } |
| 60 | |
| 61 | static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val) |
| 62 | { |
| 63 | struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| 64 | |
| 65 | mr_addr |= cs << OMAP44XX_REG_CS_SHIFT; |
| 66 | writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg); |
| 67 | writel(mr_val, &emif->emif_lpddr2_mode_reg_data); |
| 68 | } |
| 69 | |
| 70 | void emif_reset_phy(u32 base) |
| 71 | { |
| 72 | struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| 73 | u32 iodft; |
| 74 | |
| 75 | iodft = readl(&emif->emif_iodft_tlgc); |
| 76 | iodft |= OMAP44XX_REG_RESET_PHY_MASK; |
| 77 | writel(iodft, &emif->emif_iodft_tlgc); |
| 78 | } |
| 79 | |
| 80 | static void do_lpddr2_init(u32 base, u32 cs) |
| 81 | { |
| 82 | u32 mr_addr; |
| 83 | |
| 84 | /* Wait till device auto initialization is complete */ |
| 85 | while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK) |
| 86 | ; |
| 87 | set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT); |
| 88 | /* |
| 89 | * tZQINIT = 1 us |
| 90 | * Enough loops assuming a maximum of 2GHz |
| 91 | */ |
| 92 | sdelay(2000); |
| 93 | set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3); |
| 94 | set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY); |
| 95 | /* |
| 96 | * Enable refresh along with writing MR2 |
| 97 | * Encoding of RL in MR2 is (RL - 2) |
| 98 | */ |
| 99 | mr_addr = LPDDR2_MR2 | OMAP44XX_REG_REFRESH_EN_MASK; |
| 100 | set_mr(base, cs, mr_addr, RL_FINAL - 2); |
| 101 | } |
| 102 | |
| 103 | static void lpddr2_init(u32 base, const struct emif_regs *regs) |
| 104 | { |
| 105 | struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| 106 | |
| 107 | /* Not NVM */ |
| 108 | clrbits_le32(&emif->emif_lpddr2_nvm_config, OMAP44XX_REG_CS1NVMEN_MASK); |
| 109 | |
| 110 | /* |
| 111 | * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM |
| 112 | * when EMIF_SDRAM_CONFIG register is written |
| 113 | */ |
| 114 | setbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK); |
| 115 | |
| 116 | /* |
| 117 | * Set the SDRAM_CONFIG and PHY_CTRL for the |
| 118 | * un-locked frequency & default RL |
| 119 | */ |
| 120 | writel(regs->sdram_config_init, &emif->emif_sdram_config); |
| 121 | writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1); |
| 122 | |
| 123 | do_lpddr2_init(base, CS0); |
| 124 | if (regs->sdram_config & OMAP44XX_REG_EBANK_MASK) |
| 125 | do_lpddr2_init(base, CS1); |
| 126 | |
| 127 | writel(regs->sdram_config, &emif->emif_sdram_config); |
| 128 | writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1); |
| 129 | |
| 130 | /* Enable refresh now */ |
| 131 | clrbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK); |
| 132 | |
| 133 | } |
| 134 | |
| 135 | static void emif_update_timings(u32 base, const struct emif_regs *regs) |
| 136 | { |
| 137 | struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| 138 | |
| 139 | writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw); |
| 140 | writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw); |
| 141 | writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw); |
| 142 | writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw); |
| 143 | if (omap_revision() == OMAP4430_ES1_0) { |
| 144 | /* ES1 bug EMIF should be in force idle during freq_update */ |
| 145 | writel(0, &emif->emif_pwr_mgmt_ctrl); |
| 146 | } else { |
| 147 | writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl); |
| 148 | writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw); |
| 149 | } |
| 150 | writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw); |
| 151 | writel(regs->zq_config, &emif->emif_zq_config); |
| 152 | writel(regs->temp_alert_config, &emif->emif_temp_alert_config); |
| 153 | writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw); |
Aneesh V | 639cfb6 | 2011-07-21 09:29:26 -0400 | [diff] [blame] | 154 | |
| 155 | if (omap_revision() >= OMAP4460_ES1_0) { |
| 156 | writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0, |
| 157 | &emif->emif_l3_config); |
| 158 | } else { |
| 159 | writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0, |
| 160 | &emif->emif_l3_config); |
Aneesh V | cc56558 | 2011-07-21 09:10:09 -0400 | [diff] [blame] | 161 | } |
| 162 | } |
| 163 | |
Aneesh V | c0e8852 | 2011-07-21 09:10:12 -0400 | [diff] [blame] | 164 | #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS |
| 165 | #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg)) |
| 166 | |
| 167 | static u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM; |
| 168 | static u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN; |
| 169 | static u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE; |
| 170 | |
| 171 | /* |
| 172 | * Organization and refresh requirements for LPDDR2 devices of different |
| 173 | * types and densities. Derived from JESD209-2 section 2.4 |
| 174 | */ |
| 175 | const struct lpddr2_addressing addressing_table[] = { |
| 176 | /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */ |
| 177 | {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */ |
| 178 | {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */ |
| 179 | {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */ |
| 180 | {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */ |
| 181 | {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */ |
| 182 | {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */ |
| 183 | {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */ |
| 184 | {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */ |
| 185 | {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */ |
| 186 | {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */ |
| 187 | }; |
| 188 | |
| 189 | static const u32 lpddr2_density_2_size_in_mbytes[] = { |
| 190 | 8, /* 64Mb */ |
| 191 | 16, /* 128Mb */ |
| 192 | 32, /* 256Mb */ |
| 193 | 64, /* 512Mb */ |
| 194 | 128, /* 1Gb */ |
| 195 | 256, /* 2Gb */ |
| 196 | 512, /* 4Gb */ |
| 197 | 1024, /* 8Gb */ |
| 198 | 2048, /* 16Gb */ |
| 199 | 4096 /* 32Gb */ |
| 200 | }; |
| 201 | |
| 202 | /* |
| 203 | * Calculate the period of DDR clock from frequency value and set the |
| 204 | * denominator and numerator in global variables for easy access later |
| 205 | */ |
| 206 | static void set_ddr_clk_period(u32 freq) |
| 207 | { |
| 208 | /* |
| 209 | * period = 1/freq |
| 210 | * period_in_ns = 10^9/freq |
| 211 | */ |
| 212 | *T_num = 1000000000; |
| 213 | *T_den = freq; |
| 214 | cancel_out(T_num, T_den, 200); |
| 215 | |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * Convert time in nano seconds to number of cycles of DDR clock |
| 220 | */ |
| 221 | static inline u32 ns_2_cycles(u32 ns) |
| 222 | { |
| 223 | return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num); |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * ns_2_cycles with the difference that the time passed is 2 times the actual |
| 228 | * value(to avoid fractions). The cycles returned is for the original value of |
| 229 | * the timing parameter |
| 230 | */ |
| 231 | static inline u32 ns_x2_2_cycles(u32 ns) |
| 232 | { |
| 233 | return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2); |
| 234 | } |
| 235 | |
| 236 | /* |
| 237 | * Find addressing table index based on the device's type(S2 or S4) and |
| 238 | * density |
| 239 | */ |
| 240 | s8 addressing_table_index(u8 type, u8 density, u8 width) |
| 241 | { |
| 242 | u8 index; |
| 243 | if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8)) |
| 244 | return -1; |
| 245 | |
| 246 | /* |
| 247 | * Look at the way ADDR_TABLE_INDEX* values have been defined |
| 248 | * in emif.h compared to LPDDR2_DENSITY_* values |
| 249 | * The table is layed out in the increasing order of density |
| 250 | * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed |
| 251 | * at the end |
| 252 | */ |
| 253 | if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb)) |
| 254 | index = ADDR_TABLE_INDEX1GS2; |
| 255 | else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb)) |
| 256 | index = ADDR_TABLE_INDEX2GS2; |
| 257 | else |
| 258 | index = density; |
| 259 | |
| 260 | debug("emif: addressing table index %d\n", index); |
| 261 | |
| 262 | return index; |
| 263 | } |
| 264 | |
| 265 | /* |
| 266 | * Find the the right timing table from the array of timing |
| 267 | * tables of the device using DDR clock frequency |
| 268 | */ |
| 269 | static const struct lpddr2_ac_timings *get_timings_table(const struct |
| 270 | lpddr2_ac_timings const *const *device_timings, |
| 271 | u32 freq) |
| 272 | { |
| 273 | u32 i, temp, freq_nearest; |
| 274 | const struct lpddr2_ac_timings *timings = 0; |
| 275 | |
| 276 | emif_assert(freq <= MAX_LPDDR2_FREQ); |
| 277 | emif_assert(device_timings); |
| 278 | |
| 279 | /* |
| 280 | * Start with the maximum allowed frequency - that is always safe |
| 281 | */ |
| 282 | freq_nearest = MAX_LPDDR2_FREQ; |
| 283 | /* |
| 284 | * Find the timings table that has the max frequency value: |
| 285 | * i. Above or equal to the DDR frequency - safe |
| 286 | * ii. The lowest that satisfies condition (i) - optimal |
| 287 | */ |
| 288 | for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) { |
| 289 | temp = device_timings[i]->max_freq; |
| 290 | if ((temp >= freq) && (temp <= freq_nearest)) { |
| 291 | freq_nearest = temp; |
| 292 | timings = device_timings[i]; |
| 293 | } |
| 294 | } |
| 295 | debug("emif: timings table: %d\n", freq_nearest); |
| 296 | return timings; |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * Finds the value of emif_sdram_config_reg |
| 301 | * All parameters are programmed based on the device on CS0. |
| 302 | * If there is a device on CS1, it will be same as that on CS0 or |
| 303 | * it will be NVM. We don't support NVM yet. |
| 304 | * If cs1_device pointer is NULL it is assumed that there is no device |
| 305 | * on CS1 |
| 306 | */ |
| 307 | static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device, |
| 308 | const struct lpddr2_device_details *cs1_device, |
| 309 | const struct lpddr2_addressing *addressing, |
| 310 | u8 RL) |
| 311 | { |
| 312 | u32 config_reg = 0; |
| 313 | |
| 314 | config_reg |= (cs0_device->type + 4) << OMAP44XX_REG_SDRAM_TYPE_SHIFT; |
| 315 | config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING << |
| 316 | OMAP44XX_REG_IBANK_POS_SHIFT; |
| 317 | |
| 318 | config_reg |= cs0_device->io_width << OMAP44XX_REG_NARROW_MODE_SHIFT; |
| 319 | |
| 320 | config_reg |= RL << OMAP44XX_REG_CL_SHIFT; |
| 321 | |
| 322 | config_reg |= addressing->row_sz[cs0_device->io_width] << |
| 323 | OMAP44XX_REG_ROWSIZE_SHIFT; |
| 324 | |
| 325 | config_reg |= addressing->num_banks << OMAP44XX_REG_IBANK_SHIFT; |
| 326 | |
| 327 | config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) << |
| 328 | OMAP44XX_REG_EBANK_SHIFT; |
| 329 | |
| 330 | config_reg |= addressing->col_sz[cs0_device->io_width] << |
| 331 | OMAP44XX_REG_PAGESIZE_SHIFT; |
| 332 | |
| 333 | return config_reg; |
| 334 | } |
| 335 | |
| 336 | static u32 get_sdram_ref_ctrl(u32 freq, |
| 337 | const struct lpddr2_addressing *addressing) |
| 338 | { |
| 339 | u32 ref_ctrl = 0, val = 0, freq_khz; |
| 340 | freq_khz = freq / 1000; |
| 341 | /* |
| 342 | * refresh rate to be set is 'tREFI * freq in MHz |
| 343 | * division by 10000 to account for khz and x10 in t_REFI_us_x10 |
| 344 | */ |
| 345 | val = addressing->t_REFI_us_x10 * freq_khz / 10000; |
| 346 | ref_ctrl |= val << OMAP44XX_REG_REFRESH_RATE_SHIFT; |
| 347 | |
| 348 | return ref_ctrl; |
| 349 | } |
| 350 | |
| 351 | static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings, |
| 352 | const struct lpddr2_min_tck *min_tck, |
| 353 | const struct lpddr2_addressing *addressing) |
| 354 | { |
| 355 | u32 tim1 = 0, val = 0; |
| 356 | val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1; |
| 357 | tim1 |= val << OMAP44XX_REG_T_WTR_SHIFT; |
| 358 | |
| 359 | if (addressing->num_banks == BANKS8) |
| 360 | val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) / |
| 361 | (4 * (*T_num)) - 1; |
| 362 | else |
| 363 | val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1; |
| 364 | |
| 365 | tim1 |= val << OMAP44XX_REG_T_RRD_SHIFT; |
| 366 | |
| 367 | val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1; |
| 368 | tim1 |= val << OMAP44XX_REG_T_RC_SHIFT; |
| 369 | |
| 370 | val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1; |
| 371 | tim1 |= val << OMAP44XX_REG_T_RAS_SHIFT; |
| 372 | |
| 373 | val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1; |
| 374 | tim1 |= val << OMAP44XX_REG_T_WR_SHIFT; |
| 375 | |
| 376 | val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1; |
| 377 | tim1 |= val << OMAP44XX_REG_T_RCD_SHIFT; |
| 378 | |
| 379 | val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1; |
| 380 | tim1 |= val << OMAP44XX_REG_T_RP_SHIFT; |
| 381 | |
| 382 | return tim1; |
| 383 | } |
| 384 | |
| 385 | static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings, |
| 386 | const struct lpddr2_min_tck *min_tck) |
| 387 | { |
| 388 | u32 tim2 = 0, val = 0; |
| 389 | val = max(min_tck->tCKE, timings->tCKE) - 1; |
| 390 | tim2 |= val << OMAP44XX_REG_T_CKE_SHIFT; |
| 391 | |
| 392 | val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1; |
| 393 | tim2 |= val << OMAP44XX_REG_T_RTP_SHIFT; |
| 394 | |
| 395 | /* |
| 396 | * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the |
| 397 | * same value |
| 398 | */ |
| 399 | val = ns_2_cycles(timings->tXSR) - 1; |
| 400 | tim2 |= val << OMAP44XX_REG_T_XSRD_SHIFT; |
| 401 | tim2 |= val << OMAP44XX_REG_T_XSNR_SHIFT; |
| 402 | |
| 403 | val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1; |
| 404 | tim2 |= val << OMAP44XX_REG_T_XP_SHIFT; |
| 405 | |
| 406 | return tim2; |
| 407 | } |
| 408 | |
| 409 | static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings, |
| 410 | const struct lpddr2_min_tck *min_tck, |
| 411 | const struct lpddr2_addressing *addressing) |
| 412 | { |
| 413 | u32 tim3 = 0, val = 0; |
| 414 | val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF); |
| 415 | tim3 |= val << OMAP44XX_REG_T_RAS_MAX_SHIFT; |
| 416 | |
| 417 | val = ns_2_cycles(timings->tRFCab) - 1; |
| 418 | tim3 |= val << OMAP44XX_REG_T_RFC_SHIFT; |
| 419 | |
| 420 | val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1; |
| 421 | tim3 |= val << OMAP44XX_REG_T_TDQSCKMAX_SHIFT; |
| 422 | |
| 423 | val = ns_2_cycles(timings->tZQCS) - 1; |
| 424 | tim3 |= val << OMAP44XX_REG_ZQ_ZQCS_SHIFT; |
| 425 | |
| 426 | val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1; |
| 427 | tim3 |= val << OMAP44XX_REG_T_CKESR_SHIFT; |
| 428 | |
| 429 | return tim3; |
| 430 | } |
| 431 | |
| 432 | static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device, |
| 433 | const struct lpddr2_addressing *addressing, |
| 434 | u8 volt_ramp) |
| 435 | { |
| 436 | u32 zq = 0, val = 0; |
| 437 | if (volt_ramp) |
| 438 | val = |
| 439 | EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 / |
| 440 | addressing->t_REFI_us_x10; |
| 441 | else |
| 442 | val = |
| 443 | EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 / |
| 444 | addressing->t_REFI_us_x10; |
| 445 | zq |= val << OMAP44XX_REG_ZQ_REFINTERVAL_SHIFT; |
| 446 | |
| 447 | zq |= (REG_ZQ_ZQCL_MULT - 1) << OMAP44XX_REG_ZQ_ZQCL_MULT_SHIFT; |
| 448 | |
| 449 | zq |= (REG_ZQ_ZQINIT_MULT - 1) << OMAP44XX_REG_ZQ_ZQINIT_MULT_SHIFT; |
| 450 | |
| 451 | zq |= REG_ZQ_SFEXITEN_ENABLE << OMAP44XX_REG_ZQ_SFEXITEN_SHIFT; |
| 452 | |
| 453 | /* |
| 454 | * Assuming that two chipselects have a single calibration resistor |
| 455 | * If there are indeed two calibration resistors, then this flag should |
| 456 | * be enabled to take advantage of dual calibration feature. |
| 457 | * This data should ideally come from board files. But considering |
| 458 | * that none of the boards today have calibration resistors per CS, |
| 459 | * it would be an unnecessary overhead. |
| 460 | */ |
| 461 | zq |= REG_ZQ_DUALCALEN_DISABLE << OMAP44XX_REG_ZQ_DUALCALEN_SHIFT; |
| 462 | |
| 463 | zq |= REG_ZQ_CS0EN_ENABLE << OMAP44XX_REG_ZQ_CS0EN_SHIFT; |
| 464 | |
| 465 | zq |= (cs1_device ? 1 : 0) << OMAP44XX_REG_ZQ_CS1EN_SHIFT; |
| 466 | |
| 467 | return zq; |
| 468 | } |
| 469 | |
| 470 | static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device, |
| 471 | const struct lpddr2_addressing *addressing, |
| 472 | u8 is_derated) |
| 473 | { |
| 474 | u32 alert = 0, interval; |
| 475 | interval = |
| 476 | TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10; |
| 477 | if (is_derated) |
| 478 | interval *= 4; |
| 479 | alert |= interval << OMAP44XX_REG_TA_REFINTERVAL_SHIFT; |
| 480 | |
| 481 | alert |= TEMP_ALERT_CONFIG_DEVCT_1 << OMAP44XX_REG_TA_DEVCNT_SHIFT; |
| 482 | |
| 483 | alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << OMAP44XX_REG_TA_DEVWDT_SHIFT; |
| 484 | |
| 485 | alert |= 1 << OMAP44XX_REG_TA_SFEXITEN_SHIFT; |
| 486 | |
| 487 | alert |= 1 << OMAP44XX_REG_TA_CS0EN_SHIFT; |
| 488 | |
| 489 | alert |= (cs1_device ? 1 : 0) << OMAP44XX_REG_TA_CS1EN_SHIFT; |
| 490 | |
| 491 | return alert; |
| 492 | } |
| 493 | |
| 494 | static u32 get_read_idle_ctrl_reg(u8 volt_ramp) |
| 495 | { |
| 496 | u32 idle = 0, val = 0; |
| 497 | if (volt_ramp) |
Aneesh V | 639cfb6 | 2011-07-21 09:29:26 -0400 | [diff] [blame] | 498 | val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1; |
Aneesh V | c0e8852 | 2011-07-21 09:10:12 -0400 | [diff] [blame] | 499 | else |
| 500 | /*Maximum value in normal conditions - suggested by hw team */ |
| 501 | val = 0x1FF; |
| 502 | idle |= val << OMAP44XX_REG_READ_IDLE_INTERVAL_SHIFT; |
| 503 | |
| 504 | idle |= EMIF_REG_READ_IDLE_LEN_VAL << OMAP44XX_REG_READ_IDLE_LEN_SHIFT; |
| 505 | |
| 506 | return idle; |
| 507 | } |
| 508 | |
| 509 | static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL) |
| 510 | { |
| 511 | u32 phy = 0, val = 0; |
| 512 | |
| 513 | phy |= (RL + 2) << OMAP44XX_REG_READ_LATENCY_SHIFT; |
| 514 | |
| 515 | if (freq <= 100000000) |
| 516 | val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS; |
| 517 | else if (freq <= 200000000) |
| 518 | val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ; |
| 519 | else |
| 520 | val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ; |
| 521 | phy |= val << OMAP44XX_REG_DLL_SLAVE_DLY_CTRL_SHIFT; |
| 522 | |
| 523 | /* Other fields are constant magic values. Hardcode them together */ |
| 524 | phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL << |
| 525 | OMAP44XX_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT; |
| 526 | |
| 527 | return phy; |
| 528 | } |
| 529 | |
| 530 | static u32 get_emif_mem_size(struct emif_device_details *devices) |
| 531 | { |
| 532 | u32 size_mbytes = 0, temp; |
| 533 | |
| 534 | if (!devices) |
| 535 | return 0; |
| 536 | |
| 537 | if (devices->cs0_device_details) { |
| 538 | temp = devices->cs0_device_details->density; |
| 539 | size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; |
| 540 | } |
| 541 | |
| 542 | if (devices->cs1_device_details) { |
| 543 | temp = devices->cs1_device_details->density; |
| 544 | size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; |
| 545 | } |
| 546 | /* convert to bytes */ |
| 547 | return size_mbytes << 20; |
| 548 | } |
| 549 | |
| 550 | /* Gets the encoding corresponding to a given DMM section size */ |
| 551 | u32 get_dmm_section_size_map(u32 section_size) |
| 552 | { |
| 553 | /* |
| 554 | * Section size mapping: |
| 555 | * 0x0: 16-MiB section |
| 556 | * 0x1: 32-MiB section |
| 557 | * 0x2: 64-MiB section |
| 558 | * 0x3: 128-MiB section |
| 559 | * 0x4: 256-MiB section |
| 560 | * 0x5: 512-MiB section |
| 561 | * 0x6: 1-GiB section |
| 562 | * 0x7: 2-GiB section |
| 563 | */ |
| 564 | section_size >>= 24; /* divide by 16 MB */ |
| 565 | return log_2_n_round_down(section_size); |
| 566 | } |
| 567 | |
| 568 | static void emif_calculate_regs( |
| 569 | const struct emif_device_details *emif_dev_details, |
| 570 | u32 freq, struct emif_regs *regs) |
| 571 | { |
| 572 | u32 temp, sys_freq; |
| 573 | const struct lpddr2_addressing *addressing; |
| 574 | const struct lpddr2_ac_timings *timings; |
| 575 | const struct lpddr2_min_tck *min_tck; |
| 576 | const struct lpddr2_device_details *cs0_dev_details = |
| 577 | emif_dev_details->cs0_device_details; |
| 578 | const struct lpddr2_device_details *cs1_dev_details = |
| 579 | emif_dev_details->cs1_device_details; |
| 580 | const struct lpddr2_device_timings *cs0_dev_timings = |
| 581 | emif_dev_details->cs0_device_timings; |
| 582 | |
| 583 | emif_assert(emif_dev_details); |
| 584 | emif_assert(regs); |
| 585 | /* |
| 586 | * You can not have a device on CS1 without one on CS0 |
| 587 | * So configuring EMIF without a device on CS0 doesn't |
| 588 | * make sense |
| 589 | */ |
| 590 | emif_assert(cs0_dev_details); |
| 591 | emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM); |
| 592 | /* |
| 593 | * If there is a device on CS1 it should be same type as CS0 |
| 594 | * (or NVM. But NVM is not supported in this driver yet) |
| 595 | */ |
| 596 | emif_assert((cs1_dev_details == NULL) || |
| 597 | (cs1_dev_details->type == LPDDR2_TYPE_NVM) || |
| 598 | (cs0_dev_details->type == cs1_dev_details->type)); |
| 599 | emif_assert(freq <= MAX_LPDDR2_FREQ); |
| 600 | |
| 601 | set_ddr_clk_period(freq); |
| 602 | |
| 603 | /* |
| 604 | * The device on CS0 is used for all timing calculations |
| 605 | * There is only one set of registers for timings per EMIF. So, if the |
| 606 | * second CS(CS1) has a device, it should have the same timings as the |
| 607 | * device on CS0 |
| 608 | */ |
| 609 | timings = get_timings_table(cs0_dev_timings->ac_timings, freq); |
| 610 | emif_assert(timings); |
| 611 | min_tck = cs0_dev_timings->min_tck; |
| 612 | |
| 613 | temp = addressing_table_index(cs0_dev_details->type, |
| 614 | cs0_dev_details->density, |
| 615 | cs0_dev_details->io_width); |
| 616 | |
| 617 | emif_assert((temp >= 0)); |
| 618 | addressing = &(addressing_table[temp]); |
| 619 | emif_assert(addressing); |
| 620 | |
| 621 | sys_freq = get_sys_clk_freq(); |
| 622 | |
| 623 | regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details, |
| 624 | cs1_dev_details, |
| 625 | addressing, RL_BOOT); |
| 626 | |
| 627 | regs->sdram_config = get_sdram_config_reg(cs0_dev_details, |
| 628 | cs1_dev_details, |
| 629 | addressing, RL_FINAL); |
| 630 | |
| 631 | regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing); |
| 632 | |
| 633 | regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing); |
| 634 | |
| 635 | regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck); |
| 636 | |
| 637 | regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing); |
| 638 | |
| 639 | regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE); |
| 640 | |
| 641 | regs->temp_alert_config = |
| 642 | get_temp_alert_config(cs1_dev_details, addressing, 0); |
| 643 | |
| 644 | regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing, |
| 645 | LPDDR2_VOLTAGE_STABLE); |
| 646 | |
| 647 | regs->emif_ddr_phy_ctlr_1_init = |
| 648 | get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT); |
| 649 | |
| 650 | regs->emif_ddr_phy_ctlr_1 = |
| 651 | get_ddr_phy_ctrl_1(freq, RL_FINAL); |
| 652 | |
| 653 | regs->freq = freq; |
| 654 | |
| 655 | print_timing_reg(regs->sdram_config_init); |
| 656 | print_timing_reg(regs->sdram_config); |
| 657 | print_timing_reg(regs->ref_ctrl); |
| 658 | print_timing_reg(regs->sdram_tim1); |
| 659 | print_timing_reg(regs->sdram_tim2); |
| 660 | print_timing_reg(regs->sdram_tim3); |
| 661 | print_timing_reg(regs->read_idle_ctrl); |
| 662 | print_timing_reg(regs->temp_alert_config); |
| 663 | print_timing_reg(regs->zq_config); |
| 664 | print_timing_reg(regs->emif_ddr_phy_ctlr_1); |
| 665 | print_timing_reg(regs->emif_ddr_phy_ctlr_1_init); |
| 666 | } |
| 667 | #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ |
| 668 | |
| 669 | #ifdef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS |
| 670 | /* Base AC Timing values specified by JESD209-2 for 400MHz operation */ |
| 671 | static const struct lpddr2_ac_timings timings_jedec_400_mhz = { |
| 672 | .max_freq = 400000000, |
| 673 | .RL = 6, |
| 674 | .tRPab = 21, |
| 675 | .tRCD = 18, |
| 676 | .tWR = 15, |
| 677 | .tRASmin = 42, |
| 678 | .tRRD = 10, |
| 679 | .tWTRx2 = 15, |
| 680 | .tXSR = 140, |
| 681 | .tXPx2 = 15, |
| 682 | .tRFCab = 130, |
| 683 | .tRTPx2 = 15, |
| 684 | .tCKE = 3, |
| 685 | .tCKESR = 15, |
| 686 | .tZQCS = 90, |
| 687 | .tZQCL = 360, |
| 688 | .tZQINIT = 1000, |
| 689 | .tDQSCKMAXx2 = 11, |
| 690 | .tRASmax = 70, |
| 691 | .tFAW = 50 |
| 692 | }; |
| 693 | |
| 694 | /* Base AC Timing values specified by JESD209-2 for 333 MHz operation */ |
| 695 | static const struct lpddr2_ac_timings timings_jedec_333_mhz = { |
| 696 | .max_freq = 333000000, |
| 697 | .RL = 5, |
| 698 | .tRPab = 21, |
| 699 | .tRCD = 18, |
| 700 | .tWR = 15, |
| 701 | .tRASmin = 42, |
| 702 | .tRRD = 10, |
| 703 | .tWTRx2 = 15, |
| 704 | .tXSR = 140, |
| 705 | .tXPx2 = 15, |
| 706 | .tRFCab = 130, |
| 707 | .tRTPx2 = 15, |
| 708 | .tCKE = 3, |
| 709 | .tCKESR = 15, |
| 710 | .tZQCS = 90, |
| 711 | .tZQCL = 360, |
| 712 | .tZQINIT = 1000, |
| 713 | .tDQSCKMAXx2 = 11, |
| 714 | .tRASmax = 70, |
| 715 | .tFAW = 50 |
| 716 | }; |
| 717 | |
| 718 | /* Base AC Timing values specified by JESD209-2 for 200 MHz operation */ |
| 719 | static const struct lpddr2_ac_timings timings_jedec_200_mhz = { |
| 720 | .max_freq = 200000000, |
| 721 | .RL = 3, |
| 722 | .tRPab = 21, |
| 723 | .tRCD = 18, |
| 724 | .tWR = 15, |
| 725 | .tRASmin = 42, |
| 726 | .tRRD = 10, |
| 727 | .tWTRx2 = 20, |
| 728 | .tXSR = 140, |
| 729 | .tXPx2 = 15, |
| 730 | .tRFCab = 130, |
| 731 | .tRTPx2 = 15, |
| 732 | .tCKE = 3, |
| 733 | .tCKESR = 15, |
| 734 | .tZQCS = 90, |
| 735 | .tZQCL = 360, |
| 736 | .tZQINIT = 1000, |
| 737 | .tDQSCKMAXx2 = 11, |
| 738 | .tRASmax = 70, |
| 739 | .tFAW = 50 |
| 740 | }; |
| 741 | |
| 742 | /* |
| 743 | * Min tCK values specified by JESD209-2 |
| 744 | * Min tCK specifies the minimum duration of some AC timing parameters in terms |
| 745 | * of the number of cycles. If the calculated number of cycles based on the |
| 746 | * absolute time value is less than the min tCK value, min tCK value should |
| 747 | * be used instead. This typically happens at low frequencies. |
| 748 | */ |
| 749 | static const struct lpddr2_min_tck min_tck_jedec = { |
| 750 | .tRL = 3, |
| 751 | .tRP_AB = 3, |
| 752 | .tRCD = 3, |
| 753 | .tWR = 3, |
| 754 | .tRAS_MIN = 3, |
| 755 | .tRRD = 2, |
| 756 | .tWTR = 2, |
| 757 | .tXP = 2, |
| 758 | .tRTP = 2, |
| 759 | .tCKE = 3, |
| 760 | .tCKESR = 3, |
| 761 | .tFAW = 8 |
| 762 | }; |
| 763 | |
| 764 | static const struct lpddr2_ac_timings const* |
| 765 | jedec_ac_timings[MAX_NUM_SPEEDBINS] = { |
| 766 | &timings_jedec_200_mhz, |
| 767 | &timings_jedec_333_mhz, |
| 768 | &timings_jedec_400_mhz |
| 769 | }; |
| 770 | |
| 771 | static const struct lpddr2_device_timings jedec_default_timings = { |
| 772 | .ac_timings = jedec_ac_timings, |
| 773 | .min_tck = &min_tck_jedec |
| 774 | }; |
| 775 | |
| 776 | void emif_get_device_timings(u32 emif_nr, |
| 777 | const struct lpddr2_device_timings **cs0_device_timings, |
| 778 | const struct lpddr2_device_timings **cs1_device_timings) |
| 779 | { |
| 780 | /* Assume Identical devices on EMIF1 & EMIF2 */ |
| 781 | *cs0_device_timings = &jedec_default_timings; |
| 782 | *cs1_device_timings = &jedec_default_timings; |
| 783 | } |
| 784 | #endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */ |
| 785 | |
Aneesh V | ced762a | 2011-07-21 09:10:15 -0400 | [diff] [blame] | 786 | #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION |
| 787 | const char *get_lpddr2_type(u8 type_id) |
| 788 | { |
| 789 | switch (type_id) { |
| 790 | case LPDDR2_TYPE_S4: |
| 791 | return "LPDDR2-S4"; |
| 792 | case LPDDR2_TYPE_S2: |
| 793 | return "LPDDR2-S2"; |
| 794 | default: |
| 795 | return NULL; |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | const char *get_lpddr2_io_width(u8 width_id) |
| 800 | { |
| 801 | switch (width_id) { |
| 802 | case LPDDR2_IO_WIDTH_8: |
| 803 | return "x8"; |
| 804 | case LPDDR2_IO_WIDTH_16: |
| 805 | return "x16"; |
| 806 | case LPDDR2_IO_WIDTH_32: |
| 807 | return "x32"; |
| 808 | default: |
| 809 | return NULL; |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | const char *get_lpddr2_manufacturer(u32 manufacturer) |
| 814 | { |
| 815 | switch (manufacturer) { |
| 816 | case LPDDR2_MANUFACTURER_SAMSUNG: |
| 817 | return "Samsung"; |
| 818 | case LPDDR2_MANUFACTURER_QIMONDA: |
| 819 | return "Qimonda"; |
| 820 | case LPDDR2_MANUFACTURER_ELPIDA: |
| 821 | return "Elpida"; |
| 822 | case LPDDR2_MANUFACTURER_ETRON: |
| 823 | return "Etron"; |
| 824 | case LPDDR2_MANUFACTURER_NANYA: |
| 825 | return "Nanya"; |
| 826 | case LPDDR2_MANUFACTURER_HYNIX: |
| 827 | return "Hynix"; |
| 828 | case LPDDR2_MANUFACTURER_MOSEL: |
| 829 | return "Mosel"; |
| 830 | case LPDDR2_MANUFACTURER_WINBOND: |
| 831 | return "Winbond"; |
| 832 | case LPDDR2_MANUFACTURER_ESMT: |
| 833 | return "ESMT"; |
| 834 | case LPDDR2_MANUFACTURER_SPANSION: |
| 835 | return "Spansion"; |
| 836 | case LPDDR2_MANUFACTURER_SST: |
| 837 | return "SST"; |
| 838 | case LPDDR2_MANUFACTURER_ZMOS: |
| 839 | return "ZMOS"; |
| 840 | case LPDDR2_MANUFACTURER_INTEL: |
| 841 | return "Intel"; |
| 842 | case LPDDR2_MANUFACTURER_NUMONYX: |
| 843 | return "Numonyx"; |
| 844 | case LPDDR2_MANUFACTURER_MICRON: |
| 845 | return "Micron"; |
| 846 | default: |
| 847 | return NULL; |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | static void display_sdram_details(u32 emif_nr, u32 cs, |
| 852 | struct lpddr2_device_details *device) |
| 853 | { |
| 854 | const char *mfg_str; |
| 855 | const char *type_str; |
| 856 | char density_str[10]; |
| 857 | u32 density; |
| 858 | |
| 859 | debug("EMIF%d CS%d\t", emif_nr, cs); |
| 860 | |
| 861 | if (!device) { |
| 862 | debug("None\n"); |
| 863 | return; |
| 864 | } |
| 865 | |
| 866 | mfg_str = get_lpddr2_manufacturer(device->manufacturer); |
| 867 | type_str = get_lpddr2_type(device->type); |
| 868 | |
| 869 | density = lpddr2_density_2_size_in_mbytes[device->density]; |
| 870 | if ((density / 1024 * 1024) == density) { |
| 871 | density /= 1024; |
| 872 | sprintf(density_str, "%d GB", density); |
| 873 | } else |
| 874 | sprintf(density_str, "%d MB", density); |
| 875 | if (mfg_str && type_str) |
| 876 | debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str); |
| 877 | } |
| 878 | |
| 879 | static u8 is_lpddr2_sdram_present(u32 base, u32 cs, |
| 880 | struct lpddr2_device_details *lpddr2_device) |
| 881 | { |
| 882 | u32 mr = 0, temp; |
| 883 | |
| 884 | mr = get_mr(base, cs, LPDDR2_MR0); |
| 885 | if (mr > 0xFF) { |
| 886 | /* Mode register value bigger than 8 bit */ |
| 887 | return 0; |
| 888 | } |
| 889 | |
| 890 | temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT; |
| 891 | if (temp) { |
| 892 | /* Not SDRAM */ |
| 893 | return 0; |
| 894 | } |
| 895 | temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT; |
| 896 | |
| 897 | if (temp) { |
| 898 | /* DNV supported - But DNV is only supported for NVM */ |
| 899 | return 0; |
| 900 | } |
| 901 | |
| 902 | mr = get_mr(base, cs, LPDDR2_MR4); |
| 903 | if (mr > 0xFF) { |
| 904 | /* Mode register value bigger than 8 bit */ |
| 905 | return 0; |
| 906 | } |
| 907 | |
| 908 | mr = get_mr(base, cs, LPDDR2_MR5); |
| 909 | if (mr >= 0xFF) { |
| 910 | /* Mode register value bigger than 8 bit */ |
| 911 | return 0; |
| 912 | } |
| 913 | |
| 914 | if (!get_lpddr2_manufacturer(mr)) { |
| 915 | /* Manufacturer not identified */ |
| 916 | return 0; |
| 917 | } |
| 918 | lpddr2_device->manufacturer = mr; |
| 919 | |
| 920 | mr = get_mr(base, cs, LPDDR2_MR6); |
| 921 | if (mr >= 0xFF) { |
| 922 | /* Mode register value bigger than 8 bit */ |
| 923 | return 0; |
| 924 | } |
| 925 | |
| 926 | mr = get_mr(base, cs, LPDDR2_MR7); |
| 927 | if (mr >= 0xFF) { |
| 928 | /* Mode register value bigger than 8 bit */ |
| 929 | return 0; |
| 930 | } |
| 931 | |
| 932 | mr = get_mr(base, cs, LPDDR2_MR8); |
| 933 | if (mr >= 0xFF) { |
| 934 | /* Mode register value bigger than 8 bit */ |
| 935 | return 0; |
| 936 | } |
| 937 | |
| 938 | temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT; |
| 939 | if (!get_lpddr2_type(temp)) { |
| 940 | /* Not SDRAM */ |
| 941 | return 0; |
| 942 | } |
| 943 | lpddr2_device->type = temp; |
| 944 | |
| 945 | temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT; |
| 946 | if (temp > LPDDR2_DENSITY_32Gb) { |
| 947 | /* Density not supported */ |
| 948 | return 0; |
| 949 | } |
| 950 | lpddr2_device->density = temp; |
| 951 | |
| 952 | temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT; |
| 953 | if (!get_lpddr2_io_width(temp)) { |
| 954 | /* IO width unsupported value */ |
| 955 | return 0; |
| 956 | } |
| 957 | lpddr2_device->io_width = temp; |
| 958 | |
| 959 | /* |
| 960 | * If all the above tests pass we should |
| 961 | * have a device on this chip-select |
| 962 | */ |
| 963 | return 1; |
| 964 | } |
| 965 | |
Aneesh V | 14f821a | 2011-09-08 11:05:53 -0400 | [diff] [blame^] | 966 | struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs, |
Aneesh V | ced762a | 2011-07-21 09:10:15 -0400 | [diff] [blame] | 967 | struct lpddr2_device_details *lpddr2_dev_details) |
| 968 | { |
| 969 | u32 phy; |
Aneesh V | 14f821a | 2011-09-08 11:05:53 -0400 | [diff] [blame^] | 970 | u32 base = (emif_nr == 1) ? OMAP44XX_EMIF1 : OMAP44XX_EMIF2; |
Aneesh V | ced762a | 2011-07-21 09:10:15 -0400 | [diff] [blame] | 971 | struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| 972 | |
| 973 | if (!lpddr2_dev_details) |
| 974 | return NULL; |
| 975 | |
| 976 | /* Do the minimum init for mode register accesses */ |
| 977 | if (!running_from_sdram()) { |
| 978 | phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT); |
| 979 | writel(phy, &emif->emif_ddr_phy_ctrl_1); |
| 980 | } |
| 981 | |
| 982 | if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details))) |
| 983 | return NULL; |
| 984 | |
| 985 | display_sdram_details(emif_num(base), cs, lpddr2_dev_details); |
| 986 | |
| 987 | return lpddr2_dev_details; |
| 988 | } |
Aneesh V | ced762a | 2011-07-21 09:10:15 -0400 | [diff] [blame] | 989 | #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */ |
| 990 | |
Aneesh V | cc56558 | 2011-07-21 09:10:09 -0400 | [diff] [blame] | 991 | static void do_sdram_init(u32 base) |
| 992 | { |
| 993 | const struct emif_regs *regs; |
| 994 | u32 in_sdram, emif_nr; |
| 995 | |
| 996 | debug(">>do_sdram_init() %x\n", base); |
| 997 | |
| 998 | in_sdram = running_from_sdram(); |
| 999 | emif_nr = (base == OMAP44XX_EMIF1) ? 1 : 2; |
| 1000 | |
Aneesh V | c0e8852 | 2011-07-21 09:10:12 -0400 | [diff] [blame] | 1001 | #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS |
Aneesh V | cc56558 | 2011-07-21 09:10:09 -0400 | [diff] [blame] | 1002 | emif_get_reg_dump(emif_nr, ®s); |
| 1003 | if (!regs) { |
| 1004 | debug("EMIF: reg dump not provided\n"); |
| 1005 | return; |
| 1006 | } |
Aneesh V | c0e8852 | 2011-07-21 09:10:12 -0400 | [diff] [blame] | 1007 | #else |
| 1008 | /* |
| 1009 | * The user has not provided the register values. We need to |
| 1010 | * calculate it based on the timings and the DDR frequency |
| 1011 | */ |
| 1012 | struct emif_device_details dev_details; |
| 1013 | struct emif_regs calculated_regs; |
| 1014 | |
| 1015 | /* |
| 1016 | * Get device details: |
| 1017 | * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set |
| 1018 | * - Obtained from user otherwise |
| 1019 | */ |
| 1020 | struct lpddr2_device_details cs0_dev_details, cs1_dev_details; |
Aneesh V | 14f821a | 2011-09-08 11:05:53 -0400 | [diff] [blame^] | 1021 | emif_reset_phy(base); |
| 1022 | dev_details.cs0_device_details = emif_get_device_details(base, CS0, |
| 1023 | &cs0_dev_details); |
| 1024 | dev_details.cs1_device_details = emif_get_device_details(base, CS1, |
| 1025 | &cs1_dev_details); |
| 1026 | emif_reset_phy(base); |
Aneesh V | c0e8852 | 2011-07-21 09:10:12 -0400 | [diff] [blame] | 1027 | |
| 1028 | /* Return if no devices on this EMIF */ |
| 1029 | if (!dev_details.cs0_device_details && |
| 1030 | !dev_details.cs1_device_details) { |
| 1031 | emif_sizes[emif_nr - 1] = 0; |
| 1032 | return; |
| 1033 | } |
Aneesh V | cc56558 | 2011-07-21 09:10:09 -0400 | [diff] [blame] | 1034 | |
Aneesh V | c0e8852 | 2011-07-21 09:10:12 -0400 | [diff] [blame] | 1035 | if (!in_sdram) |
| 1036 | emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details); |
| 1037 | |
| 1038 | /* |
| 1039 | * Get device timings: |
| 1040 | * - Default timings specified by JESD209-2 if |
| 1041 | * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set |
| 1042 | * - Obtained from user otherwise |
| 1043 | */ |
| 1044 | emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings, |
| 1045 | &dev_details.cs1_device_timings); |
| 1046 | |
| 1047 | /* Calculate the register values */ |
| 1048 | emif_calculate_regs(&dev_details, omap4_ddr_clk(), &calculated_regs); |
| 1049 | regs = &calculated_regs; |
| 1050 | #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ |
| 1051 | |
Aneesh V | cc56558 | 2011-07-21 09:10:09 -0400 | [diff] [blame] | 1052 | /* |
| 1053 | * Initializing the LPDDR2 device can not happen from SDRAM. |
| 1054 | * Changing the timing registers in EMIF can happen(going from one |
| 1055 | * OPP to another) |
| 1056 | */ |
| 1057 | if (!in_sdram) |
| 1058 | lpddr2_init(base, regs); |
| 1059 | |
| 1060 | /* Write to the shadow registers */ |
| 1061 | emif_update_timings(base, regs); |
| 1062 | |
| 1063 | debug("<<do_sdram_init() %x\n", base); |
| 1064 | } |
| 1065 | |
| 1066 | void sdram_init_pads(void) |
| 1067 | { |
| 1068 | u32 lpddr2io; |
| 1069 | struct control_lpddr2io_regs *lpddr2io_regs = |
| 1070 | (struct control_lpddr2io_regs *)LPDDR2_IO_REGS_BASE; |
| 1071 | u32 omap4_rev = omap_revision(); |
| 1072 | |
| 1073 | if (omap4_rev == OMAP4430_ES1_0) |
| 1074 | lpddr2io = CONTROL_LPDDR2IO_SLEW_125PS_DRV8_PULL_DOWN; |
| 1075 | else if (omap4_rev == OMAP4430_ES2_0) |
| 1076 | lpddr2io = CONTROL_LPDDR2IO_SLEW_325PS_DRV8_GATE_KEEPER; |
| 1077 | else |
| 1078 | return; /* Post ES2.1 reset values will work */ |
| 1079 | |
| 1080 | writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_0); |
| 1081 | writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_1); |
| 1082 | writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_2); |
| 1083 | writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_0); |
| 1084 | writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_1); |
| 1085 | writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_2); |
| 1086 | |
| 1087 | writel(CONTROL_EFUSE_2_NMOS_PMOS_PTV_CODE_1, CONTROL_EFUSE_2); |
| 1088 | } |
| 1089 | |
| 1090 | static void emif_post_init_config(u32 base) |
| 1091 | { |
| 1092 | struct emif_reg_struct *emif = (struct emif_reg_struct *)base; |
| 1093 | u32 omap4_rev = omap_revision(); |
| 1094 | |
| 1095 | /* reset phy on ES2.0 */ |
| 1096 | if (omap4_rev == OMAP4430_ES2_0) |
| 1097 | emif_reset_phy(base); |
| 1098 | |
| 1099 | /* Put EMIF back in smart idle on ES1.0 */ |
| 1100 | if (omap4_rev == OMAP4430_ES1_0) |
| 1101 | writel(0x80000000, &emif->emif_pwr_mgmt_ctrl); |
| 1102 | } |
| 1103 | |
| 1104 | static void dmm_init(u32 base) |
| 1105 | { |
| 1106 | const struct dmm_lisa_map_regs *lisa_map_regs; |
| 1107 | |
Aneesh V | c0e8852 | 2011-07-21 09:10:12 -0400 | [diff] [blame] | 1108 | #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS |
Aneesh V | cc56558 | 2011-07-21 09:10:09 -0400 | [diff] [blame] | 1109 | emif_get_dmm_regs(&lisa_map_regs); |
Aneesh V | c0e8852 | 2011-07-21 09:10:12 -0400 | [diff] [blame] | 1110 | #else |
| 1111 | u32 emif1_size, emif2_size, mapped_size, section_map = 0; |
| 1112 | u32 section_cnt, sys_addr; |
| 1113 | struct dmm_lisa_map_regs lis_map_regs_calculated = {0}; |
| 1114 | |
| 1115 | mapped_size = 0; |
| 1116 | section_cnt = 3; |
| 1117 | sys_addr = CONFIG_SYS_SDRAM_BASE; |
| 1118 | emif1_size = emif_sizes[0]; |
| 1119 | emif2_size = emif_sizes[1]; |
| 1120 | debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size); |
| 1121 | |
| 1122 | if (!emif1_size && !emif2_size) |
| 1123 | return; |
| 1124 | |
| 1125 | /* symmetric interleaved section */ |
| 1126 | if (emif1_size && emif2_size) { |
| 1127 | mapped_size = min(emif1_size, emif2_size); |
| 1128 | section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL; |
| 1129 | section_map |= 0 << OMAP44XX_SDRC_ADDR_SHIFT; |
| 1130 | /* only MSB */ |
| 1131 | section_map |= (sys_addr >> 24) << |
| 1132 | OMAP44XX_SYS_ADDR_SHIFT; |
| 1133 | section_map |= get_dmm_section_size_map(mapped_size * 2) |
| 1134 | << OMAP44XX_SYS_SIZE_SHIFT; |
| 1135 | lis_map_regs_calculated.dmm_lisa_map_3 = section_map; |
| 1136 | emif1_size -= mapped_size; |
| 1137 | emif2_size -= mapped_size; |
| 1138 | sys_addr += (mapped_size * 2); |
| 1139 | section_cnt--; |
| 1140 | } |
| 1141 | |
| 1142 | /* |
| 1143 | * Single EMIF section(we can have a maximum of 1 single EMIF |
| 1144 | * section- either EMIF1 or EMIF2 or none, but not both) |
| 1145 | */ |
| 1146 | if (emif1_size) { |
| 1147 | section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL; |
| 1148 | section_map |= get_dmm_section_size_map(emif1_size) |
| 1149 | << OMAP44XX_SYS_SIZE_SHIFT; |
| 1150 | /* only MSB */ |
| 1151 | section_map |= (mapped_size >> 24) << |
| 1152 | OMAP44XX_SDRC_ADDR_SHIFT; |
| 1153 | /* only MSB */ |
| 1154 | section_map |= (sys_addr >> 24) << OMAP44XX_SYS_ADDR_SHIFT; |
| 1155 | section_cnt--; |
| 1156 | } |
| 1157 | if (emif2_size) { |
| 1158 | section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL; |
| 1159 | section_map |= get_dmm_section_size_map(emif2_size) << |
| 1160 | OMAP44XX_SYS_SIZE_SHIFT; |
| 1161 | /* only MSB */ |
| 1162 | section_map |= mapped_size >> 24 << OMAP44XX_SDRC_ADDR_SHIFT; |
| 1163 | /* only MSB */ |
| 1164 | section_map |= sys_addr >> 24 << OMAP44XX_SYS_ADDR_SHIFT; |
| 1165 | section_cnt--; |
| 1166 | } |
| 1167 | |
| 1168 | if (section_cnt == 2) { |
| 1169 | /* Only 1 section - either symmetric or single EMIF */ |
| 1170 | lis_map_regs_calculated.dmm_lisa_map_3 = section_map; |
| 1171 | lis_map_regs_calculated.dmm_lisa_map_2 = 0; |
| 1172 | lis_map_regs_calculated.dmm_lisa_map_1 = 0; |
| 1173 | } else { |
| 1174 | /* 2 sections - 1 symmetric, 1 single EMIF */ |
| 1175 | lis_map_regs_calculated.dmm_lisa_map_2 = section_map; |
| 1176 | lis_map_regs_calculated.dmm_lisa_map_1 = 0; |
| 1177 | } |
| 1178 | |
| 1179 | /* TRAP for invalid TILER mappings in section 0 */ |
| 1180 | lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP; |
Aneesh V | cc56558 | 2011-07-21 09:10:09 -0400 | [diff] [blame] | 1181 | |
Aneesh V | c0e8852 | 2011-07-21 09:10:12 -0400 | [diff] [blame] | 1182 | lisa_map_regs = &lis_map_regs_calculated; |
| 1183 | #endif |
Aneesh V | cc56558 | 2011-07-21 09:10:09 -0400 | [diff] [blame] | 1184 | struct dmm_lisa_map_regs *hw_lisa_map_regs = |
| 1185 | (struct dmm_lisa_map_regs *)base; |
| 1186 | |
| 1187 | writel(0, &hw_lisa_map_regs->dmm_lisa_map_3); |
| 1188 | writel(0, &hw_lisa_map_regs->dmm_lisa_map_2); |
| 1189 | writel(0, &hw_lisa_map_regs->dmm_lisa_map_1); |
| 1190 | writel(0, &hw_lisa_map_regs->dmm_lisa_map_0); |
| 1191 | |
| 1192 | writel(lisa_map_regs->dmm_lisa_map_3, |
| 1193 | &hw_lisa_map_regs->dmm_lisa_map_3); |
| 1194 | writel(lisa_map_regs->dmm_lisa_map_2, |
| 1195 | &hw_lisa_map_regs->dmm_lisa_map_2); |
| 1196 | writel(lisa_map_regs->dmm_lisa_map_1, |
| 1197 | &hw_lisa_map_regs->dmm_lisa_map_1); |
| 1198 | writel(lisa_map_regs->dmm_lisa_map_0, |
| 1199 | &hw_lisa_map_regs->dmm_lisa_map_0); |
Aneesh V | 639cfb6 | 2011-07-21 09:29:26 -0400 | [diff] [blame] | 1200 | |
| 1201 | if (omap_revision() >= OMAP4460_ES1_0) { |
| 1202 | hw_lisa_map_regs = |
| 1203 | (struct dmm_lisa_map_regs *)OMAP44XX_MA_LISA_MAP_BASE; |
| 1204 | |
| 1205 | writel(lisa_map_regs->dmm_lisa_map_3, |
| 1206 | &hw_lisa_map_regs->dmm_lisa_map_3); |
| 1207 | writel(lisa_map_regs->dmm_lisa_map_2, |
| 1208 | &hw_lisa_map_regs->dmm_lisa_map_2); |
| 1209 | writel(lisa_map_regs->dmm_lisa_map_1, |
| 1210 | &hw_lisa_map_regs->dmm_lisa_map_1); |
| 1211 | writel(lisa_map_regs->dmm_lisa_map_0, |
| 1212 | &hw_lisa_map_regs->dmm_lisa_map_0); |
| 1213 | } |
Aneesh V | cc56558 | 2011-07-21 09:10:09 -0400 | [diff] [blame] | 1214 | } |
| 1215 | |
| 1216 | /* |
| 1217 | * SDRAM initialization: |
| 1218 | * SDRAM initialization has two parts: |
| 1219 | * 1. Configuring the SDRAM device |
| 1220 | * 2. Update the AC timings related parameters in the EMIF module |
| 1221 | * (1) should be done only once and should not be done while we are |
| 1222 | * running from SDRAM. |
| 1223 | * (2) can and should be done more than once if OPP changes. |
| 1224 | * Particularly, this may be needed when we boot without SPL and |
| 1225 | * and using Configuration Header(CH). ROM code supports only at 50% OPP |
| 1226 | * at boot (low power boot). So u-boot has to switch to OPP100 and update |
| 1227 | * the frequency. So, |
| 1228 | * Doing (1) and (2) makes sense - first time initialization |
| 1229 | * Doing (2) and not (1) makes sense - OPP change (when using CH) |
| 1230 | * Doing (1) and not (2) doen't make sense |
| 1231 | * See do_sdram_init() for the details |
| 1232 | */ |
| 1233 | void sdram_init(void) |
| 1234 | { |
| 1235 | u32 in_sdram, size_prog, size_detect; |
| 1236 | |
| 1237 | debug(">>sdram_init()\n"); |
| 1238 | |
| 1239 | if (omap4_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL) |
| 1240 | return; |
| 1241 | |
| 1242 | in_sdram = running_from_sdram(); |
| 1243 | debug("in_sdram = %d\n", in_sdram); |
| 1244 | |
| 1245 | if (!in_sdram) { |
| 1246 | sdram_init_pads(); |
| 1247 | bypass_dpll(&prcm->cm_clkmode_dpll_core); |
| 1248 | } |
| 1249 | |
| 1250 | do_sdram_init(OMAP44XX_EMIF1); |
| 1251 | do_sdram_init(OMAP44XX_EMIF2); |
| 1252 | |
| 1253 | if (!in_sdram) { |
| 1254 | dmm_init(OMAP44XX_DMM_LISA_MAP_BASE); |
| 1255 | emif_post_init_config(OMAP44XX_EMIF1); |
| 1256 | emif_post_init_config(OMAP44XX_EMIF2); |
| 1257 | |
| 1258 | } |
| 1259 | |
| 1260 | /* for the shadow registers to take effect */ |
| 1261 | freq_update_core(); |
| 1262 | |
| 1263 | /* Do some testing after the init */ |
| 1264 | if (!in_sdram) { |
| 1265 | size_prog = omap4_sdram_size(); |
| 1266 | size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, |
| 1267 | size_prog); |
| 1268 | /* Compare with the size programmed */ |
| 1269 | if (size_detect != size_prog) { |
| 1270 | printf("SDRAM: identified size not same as expected" |
| 1271 | " size identified: %x expected: %x\n", |
| 1272 | size_detect, |
| 1273 | size_prog); |
| 1274 | } else |
| 1275 | debug("get_ram_size() successful"); |
| 1276 | } |
| 1277 | |
| 1278 | debug("<<sdram_init()\n"); |
| 1279 | } |