blob: 0ea212f80e265b554890e96649c70d333d5d10c1 [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Tom Warren8981bff2014-01-24 12:46:15 -07002/*
Tom Warrena8480ef2015-06-25 09:50:44 -07003 * (C) Copyright 2013-2015
Tom Warren8981bff2014-01-24 12:46:15 -07004 * NVIDIA Corporation <www.nvidia.com>
Tom Warren8981bff2014-01-24 12:46:15 -07005 */
6
7/* Tegra124 Clock control functions */
8
Tom Rinidec7ea02024-05-20 13:35:03 -06009#include <config.h>
Simon Glass97589732020-05-10 11:40:02 -060010#include <init.h>
Simon Glass0f2af882020-05-10 11:40:05 -060011#include <log.h>
Tom Warren8981bff2014-01-24 12:46:15 -070012#include <asm/io.h>
13#include <asm/arch/clock.h>
14#include <asm/arch/sysctr.h>
15#include <asm/arch/tegra.h>
16#include <asm/arch-tegra/clk_rst.h>
17#include <asm/arch-tegra/timer.h>
18#include <div64.h>
19#include <fdtdec.h>
Simon Glassdbd79542020-05-10 11:40:11 -060020#include <linux/delay.h>
Tom Warren8981bff2014-01-24 12:46:15 -070021
Svyatoslav Ryhel19a5b032023-02-14 19:35:25 +020022#include <dt-bindings/clock/tegra124-car.h>
23#include <dt-bindings/clock/tegra124-car-common.h>
24
Tom Warren8981bff2014-01-24 12:46:15 -070025/*
26 * Clock types that we can use as a source. The Tegra124 has muxes for the
27 * peripheral clocks, and in most cases there are four options for the clock
28 * source. This gives us a clock 'type' and exploits what commonality exists
29 * in the device.
30 *
31 * Letters are obvious, except for T which means CLK_M, and S which means the
32 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
33 * datasheet) and PLL_M are different things. The former is the basic
34 * clock supplied to the SOC from an external oscillator. The latter is the
35 * memory clock PLL.
36 *
37 * See definitions in clock_id in the header file.
38 */
39enum clock_type_id {
40 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
41 CLOCK_TYPE_MCPA, /* and so on */
42 CLOCK_TYPE_MCPT,
43 CLOCK_TYPE_PCM,
44 CLOCK_TYPE_PCMT,
45 CLOCK_TYPE_PDCT,
46 CLOCK_TYPE_ACPT,
47 CLOCK_TYPE_ASPTE,
48 CLOCK_TYPE_PMDACD2T,
49 CLOCK_TYPE_PCST,
Simon Glass93a19952015-04-14 21:03:34 -060050 CLOCK_TYPE_DP,
Tom Warren8981bff2014-01-24 12:46:15 -070051
52 CLOCK_TYPE_PC2CC3M,
53 CLOCK_TYPE_PC2CC3S_T,
54 CLOCK_TYPE_PC2CC3M_T,
55 CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */
56 CLOCK_TYPE_MC2CC3P_A,
57 CLOCK_TYPE_M,
58 CLOCK_TYPE_MCPTM2C2C3,
59 CLOCK_TYPE_PC2CC3T_S,
60 CLOCK_TYPE_AC2CC3P_TS2,
61
62 CLOCK_TYPE_COUNT,
63 CLOCK_TYPE_NONE = -1, /* invalid clock type */
64};
65
66enum {
67 CLOCK_MAX_MUX = 8 /* number of source options for each clock */
68};
69
70/*
71 * Clock source mux for each clock type. This just converts our enum into
72 * a list of mux sources for use by the code.
73 *
74 * Note:
75 * The extra column in each clock source array is used to store the mask
76 * bits in its register for the source.
77 */
78#define CLK(x) CLOCK_ID_ ## x
79static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
Simon Glassf4253352019-04-01 13:38:38 -070080 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(CLK_M),
Tom Warren8981bff2014-01-24 12:46:15 -070081 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
82 MASK_BITS_31_30},
83 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
84 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
85 MASK_BITS_31_30},
86 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
87 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
88 MASK_BITS_31_30},
89 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
90 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
91 MASK_BITS_31_30},
92 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
93 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
94 MASK_BITS_31_30},
95 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
96 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
97 MASK_BITS_31_30},
98 { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
99 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
100 MASK_BITS_31_30},
101 { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
102 CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
103 MASK_BITS_31_29},
104 { CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
105 CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
106 MASK_BITS_31_29},
107 { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
108 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
109 MASK_BITS_31_28},
Simon Glass93a19952015-04-14 21:03:34 -0600110 /* CLOCK_TYPE_DP */
111 { CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
112 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
113 MASK_BITS_31_28},
Tom Warren8981bff2014-01-24 12:46:15 -0700114
115 /* Additional clock types on Tegra114+ */
116 /* CLOCK_TYPE_PC2CC3M */
117 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
118 CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
119 MASK_BITS_31_29},
120 /* CLOCK_TYPE_PC2CC3S_T */
121 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
122 CLK(SFROM32KHZ), CLK(NONE), CLK(OSC), CLK(NONE),
123 MASK_BITS_31_29},
124 /* CLOCK_TYPE_PC2CC3M_T */
125 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
126 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
127 MASK_BITS_31_29},
128 /* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
129 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
130 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
131 MASK_BITS_31_29},
132 /* CLOCK_TYPE_MC2CC3P_A */
133 { CLK(MEMORY), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
134 CLK(PERIPH), CLK(NONE), CLK(AUDIO), CLK(NONE),
135 MASK_BITS_31_29},
136 /* CLOCK_TYPE_M */
137 { CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
138 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
139 MASK_BITS_31_30},
140 /* CLOCK_TYPE_MCPTM2C2C3 */
141 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
142 CLK(MEMORY2), CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE),
143 MASK_BITS_31_29},
144 /* CLOCK_TYPE_PC2CC3T_S */
145 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
146 CLK(OSC), CLK(NONE), CLK(SFROM32KHZ), CLK(NONE),
147 MASK_BITS_31_29},
148 /* CLOCK_TYPE_AC2CC3P_TS2 */
149 { CLK(AUDIO), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
150 CLK(PERIPH), CLK(NONE), CLK(OSC), CLK(SRC2),
151 MASK_BITS_31_29},
152};
153
154/*
155 * Clock type for each peripheral clock source. We put the name in each
156 * record just so it is easy to match things up
157 */
158#define TYPE(name, type) type
159static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
160 /* 0x00 */
161 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
162 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
163 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
164 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PC2CC3M),
165 TYPE(PERIPHC_PWM, CLOCK_TYPE_PC2CC3S_T),
166 TYPE(PERIPHC_05h, CLOCK_TYPE_NONE),
167 TYPE(PERIPHC_SBC2, CLOCK_TYPE_PC2CC3M_T),
168 TYPE(PERIPHC_SBC3, CLOCK_TYPE_PC2CC3M_T),
169
170 /* 0x08 */
171 TYPE(PERIPHC_08h, CLOCK_TYPE_NONE),
172 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PC2CC3M_T16),
173 TYPE(PERIPHC_I2C5, CLOCK_TYPE_PC2CC3M_T16),
174 TYPE(PERIPHC_0bh, CLOCK_TYPE_NONE),
175 TYPE(PERIPHC_0ch, CLOCK_TYPE_NONE),
176 TYPE(PERIPHC_SBC1, CLOCK_TYPE_PC2CC3M_T),
177 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
178 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
179
180 /* 0x10 */
181 TYPE(PERIPHC_10h, CLOCK_TYPE_NONE),
182 TYPE(PERIPHC_11h, CLOCK_TYPE_NONE),
183 TYPE(PERIPHC_VI, CLOCK_TYPE_MC2CC3P_A),
184 TYPE(PERIPHC_13h, CLOCK_TYPE_NONE),
185 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PC2CC3M_T),
186 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PC2CC3M_T),
187 TYPE(PERIPHC_16h, CLOCK_TYPE_NONE),
188 TYPE(PERIPHC_17h, CLOCK_TYPE_NONE),
189
190 /* 0x18 */
191 TYPE(PERIPHC_18h, CLOCK_TYPE_NONE),
192 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PC2CC3M_T),
193 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PC2CC3M_T),
194 TYPE(PERIPHC_1Bh, CLOCK_TYPE_NONE),
195 TYPE(PERIPHC_1Ch, CLOCK_TYPE_NONE),
196 TYPE(PERIPHC_HSI, CLOCK_TYPE_PC2CC3M_T),
197 TYPE(PERIPHC_UART1, CLOCK_TYPE_PC2CC3M_T),
198 TYPE(PERIPHC_UART2, CLOCK_TYPE_PC2CC3M_T),
199
200 /* 0x20 */
201 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MC2CC3P_A),
202 TYPE(PERIPHC_21h, CLOCK_TYPE_NONE),
203 TYPE(PERIPHC_22h, CLOCK_TYPE_NONE),
204 TYPE(PERIPHC_HDMI, CLOCK_TYPE_PMDACD2T),
205 TYPE(PERIPHC_24h, CLOCK_TYPE_NONE),
206 TYPE(PERIPHC_25h, CLOCK_TYPE_NONE),
207 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PC2CC3M_T16),
208 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPTM2C2C3),
209
210 /* 0x28 */
211 TYPE(PERIPHC_UART3, CLOCK_TYPE_PC2CC3M_T),
212 TYPE(PERIPHC_29h, CLOCK_TYPE_NONE),
213 TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A),
214 TYPE(PERIPHC_2bh, CLOCK_TYPE_NONE),
215 TYPE(PERIPHC_2ch, CLOCK_TYPE_NONE),
216 TYPE(PERIPHC_SBC4, CLOCK_TYPE_PC2CC3M_T),
217 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PC2CC3M_T16),
218 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PC2CC3M_T),
219
220 /* 0x30 */
221 TYPE(PERIPHC_UART4, CLOCK_TYPE_PC2CC3M_T),
222 TYPE(PERIPHC_UART5, CLOCK_TYPE_PC2CC3M_T),
223 TYPE(PERIPHC_VDE, CLOCK_TYPE_PC2CC3M_T),
224 TYPE(PERIPHC_OWR, CLOCK_TYPE_PC2CC3M_T),
225 TYPE(PERIPHC_NOR, CLOCK_TYPE_PC2CC3M_T),
226 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PC2CC3M_T),
227 TYPE(PERIPHC_I2S0, CLOCK_TYPE_AXPT),
228 TYPE(PERIPHC_DTV, CLOCK_TYPE_NONE),
229
230 /* 0x38 */
231 TYPE(PERIPHC_38h, CLOCK_TYPE_NONE),
232 TYPE(PERIPHC_39h, CLOCK_TYPE_NONE),
233 TYPE(PERIPHC_3ah, CLOCK_TYPE_NONE),
234 TYPE(PERIPHC_3bh, CLOCK_TYPE_NONE),
235 TYPE(PERIPHC_MSENC, CLOCK_TYPE_MC2CC3P_A),
236 TYPE(PERIPHC_TSEC, CLOCK_TYPE_PC2CC3M_T),
237 TYPE(PERIPHC_3eh, CLOCK_TYPE_NONE),
238 TYPE(PERIPHC_OSC, CLOCK_TYPE_NONE),
239
240 /* 0x40 */
241 TYPE(PERIPHC_40h, CLOCK_TYPE_NONE), /* start with 0x3b0 */
242 TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PC2CC3M_T),
243 TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PC2CC3T_S),
244 TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
245 TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
246 TYPE(PERIPHC_I2C4, CLOCK_TYPE_PC2CC3M_T16),
247 TYPE(PERIPHC_SBC5, CLOCK_TYPE_PC2CC3M_T),
248 TYPE(PERIPHC_SBC6, CLOCK_TYPE_PC2CC3M_T),
249
250 /* 0x48 */
251 TYPE(PERIPHC_AUDIO, CLOCK_TYPE_AC2CC3P_TS2),
252 TYPE(PERIPHC_49h, CLOCK_TYPE_NONE),
253 TYPE(PERIPHC_DAM0, CLOCK_TYPE_AC2CC3P_TS2),
254 TYPE(PERIPHC_DAM1, CLOCK_TYPE_AC2CC3P_TS2),
255 TYPE(PERIPHC_DAM2, CLOCK_TYPE_AC2CC3P_TS2),
256 TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
257 TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PC2CC3S_T),
258 TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
259
260 /* 0x50 */
261 TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
262 TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
263 TYPE(PERIPHC_52h, CLOCK_TYPE_NONE),
264 TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PC2CC3S_T),
265 TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
266 TYPE(PERIPHC_55h, CLOCK_TYPE_NONE),
267 TYPE(PERIPHC_56h, CLOCK_TYPE_NONE),
268 TYPE(PERIPHC_57h, CLOCK_TYPE_NONE),
269
270 /* 0x58 */
271 TYPE(PERIPHC_58h, CLOCK_TYPE_NONE),
Simon Glass93a19952015-04-14 21:03:34 -0600272 TYPE(PERIPHC_SOR, CLOCK_TYPE_NONE),
Tom Warren8981bff2014-01-24 12:46:15 -0700273 TYPE(PERIPHC_5ah, CLOCK_TYPE_NONE),
274 TYPE(PERIPHC_5bh, CLOCK_TYPE_NONE),
275 TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT),
276 TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
277 TYPE(PERIPHC_HDA, CLOCK_TYPE_PC2CC3M_T),
278 TYPE(PERIPHC_5fh, CLOCK_TYPE_NONE),
279
280 /* 0x60 */
281 TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
282 TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
283 TYPE(PERIPHC_XUSB_FS, CLOCK_TYPE_NONE),
284 TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
285 TYPE(PERIPHC_XUSB_SS, CLOCK_TYPE_NONE),
286 TYPE(PERIPHC_CILAB, CLOCK_TYPE_NONE),
287 TYPE(PERIPHC_CILCD, CLOCK_TYPE_NONE),
288 TYPE(PERIPHC_CILE, CLOCK_TYPE_NONE),
289
290 /* 0x68 */
291 TYPE(PERIPHC_DSIA_LP, CLOCK_TYPE_NONE),
292 TYPE(PERIPHC_DSIB_LP, CLOCK_TYPE_NONE),
293 TYPE(PERIPHC_ENTROPY, CLOCK_TYPE_NONE),
294 TYPE(PERIPHC_DVFS_REF, CLOCK_TYPE_NONE),
295 TYPE(PERIPHC_DVFS_SOC, CLOCK_TYPE_NONE),
296 TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
297 TYPE(PERIPHC_ADX0, CLOCK_TYPE_NONE),
298 TYPE(PERIPHC_AMX0, CLOCK_TYPE_NONE),
299
300 /* 0x70 */
301 TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
302 TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE),
303 TYPE(PERIPHC_72h, CLOCK_TYPE_NONE),
304 TYPE(PERIPHC_73h, CLOCK_TYPE_NONE),
305 TYPE(PERIPHC_74h, CLOCK_TYPE_NONE),
306 TYPE(PERIPHC_75h, CLOCK_TYPE_NONE),
307 TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
308 TYPE(PERIPHC_I2C6, CLOCK_TYPE_PC2CC3M_T16),
309
310 /* 0x78 */
311 TYPE(PERIPHC_78h, CLOCK_TYPE_NONE),
312 TYPE(PERIPHC_EMC_DLL, CLOCK_TYPE_MCPTM2C2C3),
313 TYPE(PERIPHC_HDMI_AUDIO, CLOCK_TYPE_NONE),
314 TYPE(PERIPHC_CLK72MHZ, CLOCK_TYPE_NONE),
315 TYPE(PERIPHC_ADX1, CLOCK_TYPE_AC2CC3P_TS2),
316 TYPE(PERIPHC_AMX1, CLOCK_TYPE_AC2CC3P_TS2),
317 TYPE(PERIPHC_VIC, CLOCK_TYPE_NONE),
318 TYPE(PERIPHC_7Fh, CLOCK_TYPE_NONE),
319};
320
321/*
322 * This array translates a periph_id to a periphc_internal_id
323 *
324 * Not present/matched up:
325 * uint vi_sensor; _VI_SENSOR_0, 0x1A8
326 * SPDIF - which is both 0x08 and 0x0c
327 *
328 */
329#define NONE(name) (-1)
330#define OFFSET(name, value) PERIPHC_ ## name
331static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
332 /* Low word: 31:0 */
333 NONE(CPU),
334 NONE(COP),
335 NONE(TRIGSYS),
336 NONE(ISPB),
337 NONE(RESERVED4),
338 NONE(TMR),
339 PERIPHC_UART1,
340 PERIPHC_UART2, /* and vfir 0x68 */
341
342 /* 8 */
343 NONE(GPIO),
344 PERIPHC_SDMMC2,
345 PERIPHC_SPDIF_IN,
346 PERIPHC_I2S1,
347 PERIPHC_I2C1,
348 NONE(RESERVED13),
349 PERIPHC_SDMMC1,
350 PERIPHC_SDMMC4,
351
352 /* 16 */
353 NONE(TCW),
354 PERIPHC_PWM,
355 PERIPHC_I2S2,
356 NONE(RESERVED19),
357 PERIPHC_VI,
358 NONE(RESERVED21),
359 NONE(USBD),
360 NONE(ISP),
361
362 /* 24 */
363 NONE(RESERVED24),
364 NONE(RESERVED25),
365 PERIPHC_DISP2,
366 PERIPHC_DISP1,
367 PERIPHC_HOST1X,
368 NONE(VCP),
369 PERIPHC_I2S0,
370 NONE(CACHE2),
371
372 /* Middle word: 63:32 */
373 NONE(MEM),
374 NONE(AHBDMA),
375 NONE(APBDMA),
376 NONE(RESERVED35),
377 NONE(RESERVED36),
378 NONE(STAT_MON),
379 NONE(RESERVED38),
380 NONE(FUSE),
381
382 /* 40 */
383 NONE(KFUSE),
384 PERIPHC_SBC1, /* SBCx = SPIx */
385 PERIPHC_NOR,
386 NONE(RESERVED43),
387 PERIPHC_SBC2,
388 NONE(XIO),
389 PERIPHC_SBC3,
390 PERIPHC_I2C5,
391
392 /* 48 */
393 NONE(DSI),
394 NONE(RESERVED49),
395 PERIPHC_HSI,
396 PERIPHC_HDMI,
397 NONE(CSI),
398 NONE(RESERVED53),
399 PERIPHC_I2C2,
400 PERIPHC_UART3,
401
402 /* 56 */
403 NONE(MIPI_CAL),
404 PERIPHC_EMC,
405 NONE(USB2),
406 NONE(USB3),
407 NONE(RESERVED60),
408 PERIPHC_VDE,
409 NONE(BSEA),
410 NONE(BSEV),
411
412 /* Upper word 95:64 */
413 NONE(RESERVED64),
414 PERIPHC_UART4,
415 PERIPHC_UART5,
416 PERIPHC_I2C3,
417 PERIPHC_SBC4,
418 PERIPHC_SDMMC3,
419 NONE(PCIE),
420 PERIPHC_OWR,
421
422 /* 72 */
423 NONE(AFI),
424 PERIPHC_CSITE,
425 NONE(PCIEXCLK),
426 NONE(AVPUCQ),
427 NONE(LA),
428 NONE(TRACECLKIN),
429 NONE(SOC_THERM),
430 NONE(DTV),
431
432 /* 80 */
433 NONE(RESERVED80),
434 PERIPHC_I2CSLOW,
435 NONE(DSIB),
436 PERIPHC_TSEC,
437 NONE(RESERVED84),
438 NONE(RESERVED85),
439 NONE(RESERVED86),
440 NONE(EMUCIF),
441
442 /* 88 */
443 NONE(RESERVED88),
444 NONE(XUSB_HOST),
445 NONE(RESERVED90),
446 PERIPHC_MSENC,
447 NONE(RESERVED92),
448 NONE(RESERVED93),
449 NONE(RESERVED94),
450 NONE(XUSB_DEV),
451
452 /* V word: 31:0 */
453 NONE(CPUG),
454 NONE(CPULP),
455 NONE(V_RESERVED2),
456 PERIPHC_MSELECT,
457 NONE(V_RESERVED4),
458 PERIPHC_I2S3,
459 PERIPHC_I2S4,
460 PERIPHC_I2C4,
461
462 /* 104 */
463 PERIPHC_SBC5,
464 PERIPHC_SBC6,
465 PERIPHC_AUDIO,
466 NONE(APBIF),
467 PERIPHC_DAM0,
468 PERIPHC_DAM1,
469 PERIPHC_DAM2,
470 PERIPHC_HDA2CODEC2X,
471
472 /* 112 */
473 NONE(ATOMICS),
474 NONE(V_RESERVED17),
475 NONE(V_RESERVED18),
476 NONE(V_RESERVED19),
477 NONE(V_RESERVED20),
478 NONE(V_RESERVED21),
479 NONE(V_RESERVED22),
480 PERIPHC_ACTMON,
481
482 /* 120 */
Simon Glass75b1c232015-06-05 14:39:39 -0600483 PERIPHC_EXTPERIPH1,
Tom Warren8981bff2014-01-24 12:46:15 -0700484 NONE(EXTPERIPH2),
485 NONE(EXTPERIPH3),
486 NONE(OOB),
487 PERIPHC_SATA,
488 PERIPHC_HDA,
489 NONE(TZRAM),
490 NONE(SE),
491
492 /* W word: 31:0 */
493 NONE(HDA2HDMICODEC),
494 NONE(SATACOLD),
495 NONE(W_RESERVED2),
496 NONE(W_RESERVED3),
497 NONE(W_RESERVED4),
498 NONE(W_RESERVED5),
499 NONE(W_RESERVED6),
500 NONE(W_RESERVED7),
501
502 /* 136 */
503 NONE(CEC),
504 NONE(W_RESERVED9),
505 NONE(W_RESERVED10),
506 NONE(W_RESERVED11),
507 NONE(W_RESERVED12),
508 NONE(W_RESERVED13),
509 NONE(XUSB_PADCTL),
510 NONE(W_RESERVED15),
511
512 /* 144 */
513 NONE(W_RESERVED16),
514 NONE(W_RESERVED17),
515 NONE(W_RESERVED18),
516 NONE(W_RESERVED19),
517 NONE(W_RESERVED20),
518 NONE(ENTROPY),
519 NONE(DDS),
520 NONE(W_RESERVED23),
521
522 /* 152 */
523 NONE(DP2),
524 NONE(AMX0),
525 NONE(ADX0),
526 NONE(DVFS),
527 NONE(XUSB_SS),
528 NONE(W_RESERVED29),
529 NONE(W_RESERVED30),
530 NONE(W_RESERVED31),
531
532 /* X word: 31:0 */
533 NONE(SPARE),
534 NONE(X_RESERVED1),
535 NONE(X_RESERVED2),
536 NONE(X_RESERVED3),
537 NONE(CAM_MCLK),
538 NONE(CAM_MCLK2),
539 PERIPHC_I2C6,
540 NONE(X_RESERVED7),
541
542 /* 168 */
543 NONE(X_RESERVED8),
544 NONE(X_RESERVED9),
545 NONE(X_RESERVED10),
546 NONE(VIM2_CLK),
547 NONE(X_RESERVED12),
548 NONE(X_RESERVED13),
549 NONE(EMC_DLL),
550 NONE(X_RESERVED15),
551
552 /* 176 */
553 NONE(HDMI_AUDIO),
554 NONE(CLK72MHZ),
555 NONE(VIC),
556 NONE(X_RESERVED19),
557 NONE(ADX1),
558 NONE(DPAUX),
Simon Glass93a19952015-04-14 21:03:34 -0600559 PERIPHC_SOR,
Tom Warren8981bff2014-01-24 12:46:15 -0700560 NONE(X_RESERVED23),
561
562 /* 184 */
563 NONE(GPU),
564 NONE(AMX1),
565 NONE(X_RESERVED26),
566 NONE(X_RESERVED27),
567 NONE(X_RESERVED28),
568 NONE(X_RESERVED29),
569 NONE(X_RESERVED30),
570 NONE(X_RESERVED31),
571};
572
573/*
Tom Warrena8480ef2015-06-25 09:50:44 -0700574 * PLL divider shift/mask tables for all PLL IDs.
575 */
576struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
577 /*
Simon Glassb6ba3fb2015-08-10 07:14:36 -0600578 * T124: same as T114, some deviations from T2x/T30. Adds PLLDP.
Tom Warrena8480ef2015-06-25 09:50:44 -0700579 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
580 * If lock_ena or lock_det are >31, they're not used in that PLL.
581 */
582
583 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x0F,
584 .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 }, /* PLLC */
585 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
586 .lock_ena = 0, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
587 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
588 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLP */
589 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
590 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLA */
591 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
592 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLU */
593 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
594 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLD */
595 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x0F,
596 .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLX */
597 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
598 .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
599 { .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
600 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLS (RESERVED) */
Svyatoslav Ryhel007d4972024-11-15 21:13:15 +0200601 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
602 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLD2 */
Simon Glassb6ba3fb2015-08-10 07:14:36 -0600603 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0xF,
604 .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLDP */
Tom Warrena8480ef2015-06-25 09:50:44 -0700605};
606
607/*
Tom Warren8981bff2014-01-24 12:46:15 -0700608 * Get the oscillator frequency, from the corresponding hardware configuration
Svyatoslav Ryhel7f4ab332023-02-01 10:53:01 +0200609 * field. Note that T30+ supports 3 new higher freqs.
Tom Warren8981bff2014-01-24 12:46:15 -0700610 */
611enum clock_osc_freq clock_get_osc_freq(void)
612{
613 struct clk_rst_ctlr *clkrst =
614 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
615 u32 reg;
616
617 reg = readl(&clkrst->crc_osc_ctrl);
Svyatoslav Ryhel7f4ab332023-02-01 10:53:01 +0200618 return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
Tom Warren8981bff2014-01-24 12:46:15 -0700619}
620
621/* Returns a pointer to the clock source register for a peripheral */
622u32 *get_periph_source_reg(enum periph_id periph_id)
623{
624 struct clk_rst_ctlr *clkrst =
625 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
626 enum periphc_internal_id internal_id;
627
628 /* Coresight is a special case */
629 if (periph_id == PERIPH_ID_CSI)
630 return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
631
632 assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
633 internal_id = periph_id_to_internal_id[periph_id];
634 assert(internal_id != -1);
Simon Glass93a19952015-04-14 21:03:34 -0600635 if (internal_id >= PERIPHC_X_FIRST) {
636 internal_id -= PERIPHC_X_FIRST;
637 return &clkrst->crc_clk_src_x[internal_id];
638 } else if (internal_id >= PERIPHC_VW_FIRST) {
Tom Warren8981bff2014-01-24 12:46:15 -0700639 internal_id -= PERIPHC_VW_FIRST;
640 return &clkrst->crc_clk_src_vw[internal_id];
641 } else {
642 return &clkrst->crc_clk_src[internal_id];
643 }
644}
645
Stephen Warren532543c2016-09-13 10:45:56 -0600646int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
647 int *divider_bits, int *type)
648{
649 enum periphc_internal_id internal_id;
650
651 if (!clock_periph_id_isvalid(periph_id))
652 return -1;
653
654 internal_id = periph_id_to_internal_id[periph_id];
655 if (!periphc_internal_id_isvalid(internal_id))
656 return -1;
657
658 *type = clock_periph_type[internal_id];
659 if (!clock_type_id_isvalid(*type))
660 return -1;
661
662 *mux_bits = clock_source[*type][CLOCK_MAX_MUX];
663
664 if (*type == CLOCK_TYPE_PC2CC3M_T16)
665 *divider_bits = 16;
666 else
667 *divider_bits = 8;
668
669 return 0;
670}
671
672enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
673{
674 enum periphc_internal_id internal_id;
675 int type;
676
677 if (!clock_periph_id_isvalid(periph_id))
678 return CLOCK_ID_NONE;
679
680 internal_id = periph_id_to_internal_id[periph_id];
681 if (!periphc_internal_id_isvalid(internal_id))
682 return CLOCK_ID_NONE;
683
684 type = clock_periph_type[internal_id];
685 if (!clock_type_id_isvalid(type))
686 return CLOCK_ID_NONE;
687
688 return clock_source[type][source];
689}
690
Tom Warren8981bff2014-01-24 12:46:15 -0700691/**
692 * Given a peripheral ID and the required source clock, this returns which
693 * value should be programmed into the source mux for that peripheral.
694 *
695 * There is special code here to handle the one source type with 5 sources.
696 *
697 * @param periph_id peripheral to start
698 * @param source PLL id of required parent clock
699 * @param mux_bits Set to number of bits in mux register: 2 or 4
700 * @param divider_bits Set to number of divider bits (8 or 16)
Heinrich Schuchardt47b4c022022-01-19 18:05:50 +0100701 * Return: mux value (0-4, or -1 if not found)
Tom Warren8981bff2014-01-24 12:46:15 -0700702 */
703int get_periph_clock_source(enum periph_id periph_id,
704 enum clock_id parent, int *mux_bits, int *divider_bits)
705{
706 enum clock_type_id type;
Stephen Warren532543c2016-09-13 10:45:56 -0600707 int mux, err;
Tom Warren8981bff2014-01-24 12:46:15 -0700708
Stephen Warren532543c2016-09-13 10:45:56 -0600709 err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
710 assert(!err);
Tom Warren8981bff2014-01-24 12:46:15 -0700711
712 for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
713 if (clock_source[type][mux] == parent)
714 return mux;
715
716 /* if we get here, either us or the caller has made a mistake */
717 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
718 parent);
719 return -1;
720}
721
722void clock_set_enable(enum periph_id periph_id, int enable)
723{
724 struct clk_rst_ctlr *clkrst =
725 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
726 u32 *clk;
727 u32 reg;
728
729 /* Enable/disable the clock to this peripheral */
730 assert(clock_periph_id_isvalid(periph_id));
731 if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
732 clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
Simon Glass93a19952015-04-14 21:03:34 -0600733 else if ((int)periph_id < PERIPH_ID_X_FIRST)
Tom Warren8981bff2014-01-24 12:46:15 -0700734 clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
Simon Glass93a19952015-04-14 21:03:34 -0600735 else
736 clk = &clkrst->crc_clk_out_enb_x;
Tom Warren8981bff2014-01-24 12:46:15 -0700737 reg = readl(clk);
738 if (enable)
739 reg |= PERIPH_MASK(periph_id);
740 else
741 reg &= ~PERIPH_MASK(periph_id);
742 writel(reg, clk);
743}
744
745void reset_set_enable(enum periph_id periph_id, int enable)
746{
747 struct clk_rst_ctlr *clkrst =
748 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
749 u32 *reset;
750 u32 reg;
751
752 /* Enable/disable reset to the peripheral */
753 assert(clock_periph_id_isvalid(periph_id));
754 if (periph_id < PERIPH_ID_VW_FIRST)
755 reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
Simon Glass93a19952015-04-14 21:03:34 -0600756 else if ((int)periph_id < PERIPH_ID_X_FIRST)
Tom Warren8981bff2014-01-24 12:46:15 -0700757 reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
Simon Glass93a19952015-04-14 21:03:34 -0600758 else
759 reset = &clkrst->crc_rst_devices_x;
Tom Warren8981bff2014-01-24 12:46:15 -0700760 reg = readl(reset);
761 if (enable)
762 reg |= PERIPH_MASK(periph_id);
763 else
764 reg &= ~PERIPH_MASK(periph_id);
765 writel(reg, reset);
766}
767
Masahiro Yamada366b24f2015-08-12 07:31:55 +0900768#if CONFIG_IS_ENABLED(OF_CONTROL)
Tom Warren8981bff2014-01-24 12:46:15 -0700769/*
770 * Convert a device tree clock ID to our peripheral ID. They are mostly
771 * the same but we are very cautious so we check that a valid clock ID is
772 * provided.
773 *
774 * @param clk_id Clock ID according to tegra124 device tree binding
Heinrich Schuchardt47b4c022022-01-19 18:05:50 +0100775 * Return: peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
Tom Warren8981bff2014-01-24 12:46:15 -0700776 */
777enum periph_id clk_id_to_periph_id(int clk_id)
778{
779 if (clk_id > PERIPH_ID_COUNT)
780 return PERIPH_ID_NONE;
781
782 switch (clk_id) {
783 case PERIPH_ID_RESERVED4:
784 case PERIPH_ID_RESERVED25:
785 case PERIPH_ID_RESERVED35:
786 case PERIPH_ID_RESERVED36:
787 case PERIPH_ID_RESERVED38:
788 case PERIPH_ID_RESERVED43:
789 case PERIPH_ID_RESERVED49:
790 case PERIPH_ID_RESERVED53:
791 case PERIPH_ID_RESERVED64:
792 case PERIPH_ID_RESERVED84:
793 case PERIPH_ID_RESERVED85:
794 case PERIPH_ID_RESERVED86:
795 case PERIPH_ID_RESERVED88:
796 case PERIPH_ID_RESERVED90:
797 case PERIPH_ID_RESERVED92:
798 case PERIPH_ID_RESERVED93:
799 case PERIPH_ID_RESERVED94:
800 case PERIPH_ID_V_RESERVED2:
801 case PERIPH_ID_V_RESERVED4:
802 case PERIPH_ID_V_RESERVED17:
803 case PERIPH_ID_V_RESERVED18:
804 case PERIPH_ID_V_RESERVED19:
805 case PERIPH_ID_V_RESERVED20:
806 case PERIPH_ID_V_RESERVED21:
807 case PERIPH_ID_V_RESERVED22:
808 case PERIPH_ID_W_RESERVED2:
809 case PERIPH_ID_W_RESERVED3:
810 case PERIPH_ID_W_RESERVED4:
811 case PERIPH_ID_W_RESERVED5:
812 case PERIPH_ID_W_RESERVED6:
813 case PERIPH_ID_W_RESERVED7:
814 case PERIPH_ID_W_RESERVED9:
815 case PERIPH_ID_W_RESERVED10:
816 case PERIPH_ID_W_RESERVED11:
817 case PERIPH_ID_W_RESERVED12:
818 case PERIPH_ID_W_RESERVED13:
819 case PERIPH_ID_W_RESERVED15:
820 case PERIPH_ID_W_RESERVED16:
821 case PERIPH_ID_W_RESERVED17:
822 case PERIPH_ID_W_RESERVED18:
823 case PERIPH_ID_W_RESERVED19:
824 case PERIPH_ID_W_RESERVED20:
825 case PERIPH_ID_W_RESERVED23:
826 case PERIPH_ID_W_RESERVED29:
827 case PERIPH_ID_W_RESERVED30:
828 case PERIPH_ID_W_RESERVED31:
829 return PERIPH_ID_NONE;
830 default:
831 return clk_id;
832 }
833}
Svyatoslav Ryhel19a5b032023-02-14 19:35:25 +0200834
835/*
836 * Convert a device tree clock ID to our PLL ID.
837 *
838 * @param clk_id Clock ID according to tegra124 device tree binding
839 * Return: clock ID, or CLOCK_ID_NONE if the clock ID is invalid
840 */
841enum clock_id clk_id_to_pll_id(int clk_id)
842{
843 switch (clk_id) {
844 case TEGRA124_CLK_PLL_C:
845 return CLOCK_ID_CGENERAL;
846 case TEGRA124_CLK_PLL_M:
847 return CLOCK_ID_MEMORY;
848 case TEGRA124_CLK_PLL_P:
849 return CLOCK_ID_PERIPH;
850 case TEGRA124_CLK_PLL_A:
851 return CLOCK_ID_AUDIO;
852 case TEGRA124_CLK_PLL_U:
853 return CLOCK_ID_USB;
854 case TEGRA124_CLK_PLL_D:
855 case TEGRA124_CLK_PLL_D_OUT0:
856 return CLOCK_ID_DISPLAY;
Svyatoslav Ryhel007d4972024-11-15 21:13:15 +0200857 case TEGRA124_CLK_PLL_D2:
858 case TEGRA124_CLK_PLL_D2_OUT0:
859 return CLOCK_ID_DISPLAY2;
Svyatoslav Ryhel19a5b032023-02-14 19:35:25 +0200860 case TEGRA124_CLK_PLL_X:
861 return CLOCK_ID_XCPU;
862 case TEGRA124_CLK_PLL_E:
863 return CLOCK_ID_EPCI;
864 case TEGRA124_CLK_CLK_32K:
865 return CLOCK_ID_32KHZ;
866 case TEGRA124_CLK_CLK_M:
867 return CLOCK_ID_CLK_M;
868 default:
869 return CLOCK_ID_NONE;
870 }
871}
Masahiro Yamada366b24f2015-08-12 07:31:55 +0900872#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
Tom Warren8981bff2014-01-24 12:46:15 -0700873
874void clock_early_init(void)
875{
876 struct clk_rst_ctlr *clkrst =
877 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
Tom Warrena8480ef2015-06-25 09:50:44 -0700878 struct clk_pll_info *pllinfo;
879 u32 data;
Tom Warren8981bff2014-01-24 12:46:15 -0700880
881 tegra30_set_up_pllp();
882
Thierry Redinga1dfa9a2015-09-08 11:38:03 +0200883 /* clear IDDQ before accessing any other PLLC registers */
884 pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
885 clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, PLLC_IDDQ);
886 udelay(2);
887
Tom Warren8981bff2014-01-24 12:46:15 -0700888 /*
889 * PLLC output frequency set to 600Mhz
890 * PLLD output frequency set to 925Mhz
891 */
892 switch (clock_get_osc_freq()) {
893 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
Svyatoslav Ryhel7f4ab332023-02-01 10:53:01 +0200894 case CLOCK_OSC_FREQ_48_0: /* OSC is 48Mhz */
Tom Warren8981bff2014-01-24 12:46:15 -0700895 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
896 clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
897 break;
898
899 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
900 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
901 clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
902 break;
903
904 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
Svyatoslav Ryhel7f4ab332023-02-01 10:53:01 +0200905 case CLOCK_OSC_FREQ_16_8: /* OSC is 16.8Mhz */
Tom Warren8981bff2014-01-24 12:46:15 -0700906 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
907 clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
908 break;
909 case CLOCK_OSC_FREQ_19_2:
Svyatoslav Ryhel7f4ab332023-02-01 10:53:01 +0200910 case CLOCK_OSC_FREQ_38_4:
Tom Warren8981bff2014-01-24 12:46:15 -0700911 default:
912 /*
913 * These are not supported. It is too early to print a
914 * message and the UART likely won't work anyway due to the
915 * oscillator being wrong.
916 */
917 break;
918 }
919
920 /* PLLC_MISC2: Set dynramp_stepA/B. MISC2 maps to pll_out[1] */
921 writel(0x00561600, &clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1]);
922
923 /* PLLC_MISC: Set LOCK_ENABLE */
Tom Warrena8480ef2015-06-25 09:50:44 -0700924 pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
925 setbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, (1 << pllinfo->lock_ena));
Tom Warren8981bff2014-01-24 12:46:15 -0700926 udelay(2);
927
Tom Warrena8480ef2015-06-25 09:50:44 -0700928 /* PLLD_MISC: Set CLKENABLE, CPCON 12, LFCON 1, and enable lock */
929 pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
930 data = (12 << pllinfo->kcp_shift) | (1 << pllinfo->kvco_shift);
931 data |= (1 << PLLD_CLKENABLE) | (1 << pllinfo->lock_ena);
932 writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
Tom Warren8981bff2014-01-24 12:46:15 -0700933 udelay(2);
934}
935
Simon Glass2b4029a2017-05-31 17:57:16 -0600936/*
937 * clock_early_init_done - Check if clock_early_init() has been called
938 *
939 * Check a register that we set up to see if clock_early_init() has already
940 * been called.
941 *
Heinrich Schuchardt47b4c022022-01-19 18:05:50 +0100942 * Return: true if clock_early_init() was called, false if not
Simon Glass2b4029a2017-05-31 17:57:16 -0600943 */
944bool clock_early_init_done(void)
945{
946 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
947 u32 val;
948
949 val = readl(&clkrst->crc_sclk_brst_pol);
950
951 return val == 0x20002222;
952}
953
Tom Warren8981bff2014-01-24 12:46:15 -0700954void arch_timer_init(void)
955{
956 struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
957 u32 freq, val;
958
Thierry Reding4c3aaa72015-08-20 11:42:20 +0200959 freq = clock_get_rate(CLOCK_ID_CLK_M);
960 debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
Tom Warren8981bff2014-01-24 12:46:15 -0700961
962 /* ARM CNTFRQ */
963 asm("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (freq));
964
965 /* Only Tegra114+ has the System Counter regs */
966 debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
967 writel(freq, &sysctr->cntfid0);
968
969 val = readl(&sysctr->cntcr);
970 val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
971 writel(val, &sysctr->cntcr);
972 debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
973}
Thierry Reding4bf98692014-12-09 22:25:06 -0700974
975#define PLLE_SS_CNTL 0x68
976#define PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
977#define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
978#define PLLE_SS_CNTL_SSCINVERT (1 << 15)
979#define PLLE_SS_CNTL_SSCCENTER (1 << 14)
980#define PLLE_SS_CNTL_SSCBYP (1 << 12)
981#define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
982#define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
983#define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
984
985#define PLLE_BASE 0x0e8
986#define PLLE_BASE_ENABLE (1 << 30)
987#define PLLE_BASE_LOCK_OVERRIDE (1 << 29)
988#define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
989#define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
990#define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
991
992#define PLLE_MISC 0x0ec
993#define PLLE_MISC_IDDQ_SWCTL (1 << 14)
994#define PLLE_MISC_IDDQ_OVERRIDE (1 << 13)
995#define PLLE_MISC_LOCK_ENABLE (1 << 9)
996#define PLLE_MISC_PTS (1 << 8)
997#define PLLE_MISC_VREG_BG_CTRL(x) (((x) & 0x3) << 4)
998#define PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
999
1000#define PLLE_AUX 0x48c
1001#define PLLE_AUX_SEQ_ENABLE (1 << 24)
1002#define PLLE_AUX_ENABLE_SWCTL (1 << 4)
1003
1004int tegra_plle_enable(void)
1005{
1006 unsigned int m = 1, n = 200, cpcon = 13;
1007 u32 value;
1008
1009 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1010 value &= ~PLLE_BASE_LOCK_OVERRIDE;
1011 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1012
1013 value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
1014 value |= PLLE_AUX_ENABLE_SWCTL;
1015 value &= ~PLLE_AUX_SEQ_ENABLE;
1016 writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1017
1018 udelay(1);
1019
1020 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1021 value |= PLLE_MISC_IDDQ_SWCTL;
1022 value &= ~PLLE_MISC_IDDQ_OVERRIDE;
1023 value |= PLLE_MISC_LOCK_ENABLE;
1024 value |= PLLE_MISC_PTS;
1025 value |= PLLE_MISC_VREG_BG_CTRL(3);
1026 value |= PLLE_MISC_VREG_CTRL(2);
1027 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1028
1029 udelay(5);
1030
1031 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1032 value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
1033 PLLE_SS_CNTL_BYPASS_SS;
1034 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1035
1036 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1037 value &= ~PLLE_BASE_PLDIV_CML(0xf);
1038 value &= ~PLLE_BASE_NDIV(0xff);
1039 value &= ~PLLE_BASE_MDIV(0xff);
1040 value |= PLLE_BASE_PLDIV_CML(cpcon);
1041 value |= PLLE_BASE_NDIV(n);
1042 value |= PLLE_BASE_MDIV(m);
1043 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1044
1045 udelay(1);
1046
1047 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1048 value |= PLLE_BASE_ENABLE;
1049 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1050
1051 /* wait for lock */
1052 udelay(300);
1053
1054 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1055 value &= ~PLLE_SS_CNTL_SSCINVERT;
1056 value &= ~PLLE_SS_CNTL_SSCCENTER;
1057
1058 value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
1059 value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1060 value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
1061
1062 value |= PLLE_SS_CNTL_SSCINCINTR(0x20);
1063 value |= PLLE_SS_CNTL_SSCINC(0x01);
1064 value |= PLLE_SS_CNTL_SSCMAX(0x25);
1065
1066 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1067
1068 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1069 value &= ~PLLE_SS_CNTL_SSCBYP;
1070 value &= ~PLLE_SS_CNTL_BYPASS_SS;
1071 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1072
1073 udelay(1);
1074
1075 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1076 value &= ~PLLE_SS_CNTL_INTERP_RESET;
1077 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1078
1079 udelay(1);
1080
1081 return 0;
1082}
Simon Glass93a19952015-04-14 21:03:34 -06001083
1084void clock_sor_enable_edp_clock(void)
1085{
1086 u32 *reg;
1087
1088 /* uses PLLP, has a non-standard bit layout. */
1089 reg = get_periph_source_reg(PERIPH_ID_SOR0);
1090 setbits_le32(reg, SOR0_CLK_SEL0);
1091}
1092
1093u32 clock_set_display_rate(u32 frequency)
1094{
1095 /**
1096 * plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
1097 * = (cf * n) >> p, where 1MHz < cf < 6MHz
1098 * = ((ref / m) * n) >> p
1099 *
1100 * Iterate the possible values of p (3 bits, 2^7) to find out a minimum
1101 * safe vco, then find best (m, n). since m has only 5 bits, we can
1102 * iterate all possible values. Note Tegra 124 supports 11 bits for n,
1103 * but our pll_fields has only 10 bits for n.
1104 *
1105 * Note values undershoot or overshoot target output frequency may not
1106 * work if the values are not in "safe" range by panel specification.
1107 */
1108 u32 ref = clock_get_rate(CLOCK_ID_OSC);
1109 u32 divm, divn, divp, cpcon;
1110 u32 cf, vco, rounded_rate = frequency;
1111 u32 diff, best_diff, best_m = 0, best_n = 0, best_p;
1112 const u32 max_m = 1 << 5, max_n = 1 << 10, max_p = 1 << 3,
1113 mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz,
1114 min_cf = 1 * mhz, max_cf = 6 * mhz;
1115 int mux_bits, divider_bits, source;
1116
1117 for (divp = 0, vco = frequency; vco < min_vco && divp < max_p; divp++)
1118 vco <<= 1;
1119
1120 if (vco < min_vco || vco > max_vco) {
1121 printf("%s: Cannot find out a supported VCO for Frequency (%u)\n",
1122 __func__, frequency);
1123 return 0;
1124 }
1125
1126 best_p = divp;
1127 best_diff = vco;
1128
1129 for (divm = 1; divm < max_m && best_diff; divm++) {
1130 cf = ref / divm;
1131 if (cf < min_cf)
1132 break;
1133 if (cf > max_cf)
1134 continue;
1135
1136 divn = vco / cf;
1137 if (divn >= max_n)
1138 continue;
1139
1140 diff = vco - divn * cf;
1141 if (divn + 1 < max_n && diff > cf / 2) {
1142 divn++;
1143 diff = cf - diff;
1144 }
1145
1146 if (diff >= best_diff)
1147 continue;
1148
1149 best_diff = diff;
1150 best_m = divm;
1151 best_n = divn;
1152 }
1153
1154 if (best_n < 50)
1155 cpcon = 2;
1156 else if (best_n < 300)
1157 cpcon = 3;
1158 else if (best_n < 600)
1159 cpcon = 8;
1160 else
1161 cpcon = 12;
1162
1163 if (best_diff) {
1164 printf("%s: Failed to match output frequency %u, best difference is %u\n",
1165 __func__, frequency, best_diff);
1166 rounded_rate = (ref / best_m * best_n) >> best_p;
1167 }
1168
1169 debug("%s: PLLD=%u ref=%u, m/n/p/cpcon=%u/%u/%u/%u\n",
1170 __func__, rounded_rate, ref, best_m, best_n, best_p, cpcon);
1171
1172 source = get_periph_clock_source(PERIPH_ID_DISP1, CLOCK_ID_DISPLAY,
1173 &mux_bits, &divider_bits);
1174 clock_ll_set_source_bits(PERIPH_ID_DISP1, mux_bits, source);
1175 clock_set_rate(CLOCK_ID_DISPLAY, best_n, best_m, best_p, cpcon);
1176
1177 return rounded_rate;
1178}
1179
1180void clock_set_up_plldp(void)
1181{
1182 struct clk_rst_ctlr *clkrst =
1183 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1184 u32 value;
1185
1186 value = PLLDP_SS_CFG_UNDOCUMENTED | PLLDP_SS_CFG_DITHER;
1187 writel(value | PLLDP_SS_CFG_CLAMP, &clkrst->crc_plldp_ss_cfg);
1188 clock_start_pll(CLOCK_ID_DP, 1, 90, 3, 0, 0);
1189 writel(value, &clkrst->crc_plldp_ss_cfg);
1190}
1191
1192struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
1193{
1194 struct clk_rst_ctlr *clkrst =
1195 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1196
Svyatoslav Ryhelc93b5182023-07-03 18:06:54 +03001197 switch (clkid) {
1198 case CLOCK_ID_XCPU:
1199 case CLOCK_ID_EPCI:
1200 case CLOCK_ID_SFROM32KHZ:
1201 return &clkrst->crc_pll_simple[clkid - CLOCK_ID_FIRST_SIMPLE];
Svyatoslav Ryhel007d4972024-11-15 21:13:15 +02001202 case CLOCK_ID_DISPLAY2:
1203 return &clkrst->plld2;
Svyatoslav Ryhelc93b5182023-07-03 18:06:54 +03001204 case CLOCK_ID_DP:
Simon Glass93a19952015-04-14 21:03:34 -06001205 return &clkrst->plldp;
Svyatoslav Ryhelc93b5182023-07-03 18:06:54 +03001206 default:
1207 return NULL;
1208 }
Simon Glass93a19952015-04-14 21:03:34 -06001209}
Stephen Warren1453d102016-09-13 10:45:55 -06001210
1211struct periph_clk_init periph_clk_init_table[] = {
1212 { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
1213 { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
1214 { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
1215 { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
1216 { PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
1217 { PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
1218 { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
1219 { PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
1220 { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
1221 { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
1222 { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
1223 { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
Svyatoslav Ryhelc226fc72023-02-14 19:35:28 +02001224 { PERIPH_ID_PWM, CLOCK_ID_PERIPH },
Stephen Warren1453d102016-09-13 10:45:55 -06001225 { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
1226 { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
1227 { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
1228 { PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
1229 { PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
1230 { PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
1231 { -1, },
1232};