blob: 4359093892e4a6ff6359cbee06dbe6de9f1a049e [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Tom Warren8981bff2014-01-24 12:46:15 -07002/*
Tom Warrena8480ef2015-06-25 09:50:44 -07003 * (C) Copyright 2013-2015
Tom Warren8981bff2014-01-24 12:46:15 -07004 * NVIDIA Corporation <www.nvidia.com>
Tom Warren8981bff2014-01-24 12:46:15 -07005 */
6
7/* Tegra124 Clock control functions */
8
9#include <common.h>
Simon Glass97589732020-05-10 11:40:02 -060010#include <init.h>
Simon Glass0f2af882020-05-10 11:40:05 -060011#include <log.h>
Tom Warren8981bff2014-01-24 12:46:15 -070012#include <asm/io.h>
13#include <asm/arch/clock.h>
14#include <asm/arch/sysctr.h>
15#include <asm/arch/tegra.h>
16#include <asm/arch-tegra/clk_rst.h>
17#include <asm/arch-tegra/timer.h>
18#include <div64.h>
19#include <fdtdec.h>
20
21/*
22 * Clock types that we can use as a source. The Tegra124 has muxes for the
23 * peripheral clocks, and in most cases there are four options for the clock
24 * source. This gives us a clock 'type' and exploits what commonality exists
25 * in the device.
26 *
27 * Letters are obvious, except for T which means CLK_M, and S which means the
28 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
29 * datasheet) and PLL_M are different things. The former is the basic
30 * clock supplied to the SOC from an external oscillator. The latter is the
31 * memory clock PLL.
32 *
33 * See definitions in clock_id in the header file.
34 */
35enum clock_type_id {
36 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
37 CLOCK_TYPE_MCPA, /* and so on */
38 CLOCK_TYPE_MCPT,
39 CLOCK_TYPE_PCM,
40 CLOCK_TYPE_PCMT,
41 CLOCK_TYPE_PDCT,
42 CLOCK_TYPE_ACPT,
43 CLOCK_TYPE_ASPTE,
44 CLOCK_TYPE_PMDACD2T,
45 CLOCK_TYPE_PCST,
Simon Glass93a19952015-04-14 21:03:34 -060046 CLOCK_TYPE_DP,
Tom Warren8981bff2014-01-24 12:46:15 -070047
48 CLOCK_TYPE_PC2CC3M,
49 CLOCK_TYPE_PC2CC3S_T,
50 CLOCK_TYPE_PC2CC3M_T,
51 CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */
52 CLOCK_TYPE_MC2CC3P_A,
53 CLOCK_TYPE_M,
54 CLOCK_TYPE_MCPTM2C2C3,
55 CLOCK_TYPE_PC2CC3T_S,
56 CLOCK_TYPE_AC2CC3P_TS2,
57
58 CLOCK_TYPE_COUNT,
59 CLOCK_TYPE_NONE = -1, /* invalid clock type */
60};
61
62enum {
63 CLOCK_MAX_MUX = 8 /* number of source options for each clock */
64};
65
66/*
67 * Clock source mux for each clock type. This just converts our enum into
68 * a list of mux sources for use by the code.
69 *
70 * Note:
71 * The extra column in each clock source array is used to store the mask
72 * bits in its register for the source.
73 */
74#define CLK(x) CLOCK_ID_ ## x
75static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
Simon Glassf4253352019-04-01 13:38:38 -070076 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(CLK_M),
Tom Warren8981bff2014-01-24 12:46:15 -070077 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
78 MASK_BITS_31_30},
79 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
80 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
81 MASK_BITS_31_30},
82 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
83 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
84 MASK_BITS_31_30},
85 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
86 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
87 MASK_BITS_31_30},
88 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
89 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
90 MASK_BITS_31_30},
91 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
92 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
93 MASK_BITS_31_30},
94 { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
95 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
96 MASK_BITS_31_30},
97 { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
98 CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
99 MASK_BITS_31_29},
100 { CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
101 CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
102 MASK_BITS_31_29},
103 { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
104 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
105 MASK_BITS_31_28},
Simon Glass93a19952015-04-14 21:03:34 -0600106 /* CLOCK_TYPE_DP */
107 { CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
108 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
109 MASK_BITS_31_28},
Tom Warren8981bff2014-01-24 12:46:15 -0700110
111 /* Additional clock types on Tegra114+ */
112 /* CLOCK_TYPE_PC2CC3M */
113 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
114 CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
115 MASK_BITS_31_29},
116 /* CLOCK_TYPE_PC2CC3S_T */
117 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
118 CLK(SFROM32KHZ), CLK(NONE), CLK(OSC), CLK(NONE),
119 MASK_BITS_31_29},
120 /* CLOCK_TYPE_PC2CC3M_T */
121 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
122 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
123 MASK_BITS_31_29},
124 /* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
125 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
126 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
127 MASK_BITS_31_29},
128 /* CLOCK_TYPE_MC2CC3P_A */
129 { CLK(MEMORY), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
130 CLK(PERIPH), CLK(NONE), CLK(AUDIO), CLK(NONE),
131 MASK_BITS_31_29},
132 /* CLOCK_TYPE_M */
133 { CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
134 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
135 MASK_BITS_31_30},
136 /* CLOCK_TYPE_MCPTM2C2C3 */
137 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
138 CLK(MEMORY2), CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE),
139 MASK_BITS_31_29},
140 /* CLOCK_TYPE_PC2CC3T_S */
141 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
142 CLK(OSC), CLK(NONE), CLK(SFROM32KHZ), CLK(NONE),
143 MASK_BITS_31_29},
144 /* CLOCK_TYPE_AC2CC3P_TS2 */
145 { CLK(AUDIO), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
146 CLK(PERIPH), CLK(NONE), CLK(OSC), CLK(SRC2),
147 MASK_BITS_31_29},
148};
149
150/*
151 * Clock type for each peripheral clock source. We put the name in each
152 * record just so it is easy to match things up
153 */
154#define TYPE(name, type) type
155static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
156 /* 0x00 */
157 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
158 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
159 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
160 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PC2CC3M),
161 TYPE(PERIPHC_PWM, CLOCK_TYPE_PC2CC3S_T),
162 TYPE(PERIPHC_05h, CLOCK_TYPE_NONE),
163 TYPE(PERIPHC_SBC2, CLOCK_TYPE_PC2CC3M_T),
164 TYPE(PERIPHC_SBC3, CLOCK_TYPE_PC2CC3M_T),
165
166 /* 0x08 */
167 TYPE(PERIPHC_08h, CLOCK_TYPE_NONE),
168 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PC2CC3M_T16),
169 TYPE(PERIPHC_I2C5, CLOCK_TYPE_PC2CC3M_T16),
170 TYPE(PERIPHC_0bh, CLOCK_TYPE_NONE),
171 TYPE(PERIPHC_0ch, CLOCK_TYPE_NONE),
172 TYPE(PERIPHC_SBC1, CLOCK_TYPE_PC2CC3M_T),
173 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
174 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
175
176 /* 0x10 */
177 TYPE(PERIPHC_10h, CLOCK_TYPE_NONE),
178 TYPE(PERIPHC_11h, CLOCK_TYPE_NONE),
179 TYPE(PERIPHC_VI, CLOCK_TYPE_MC2CC3P_A),
180 TYPE(PERIPHC_13h, CLOCK_TYPE_NONE),
181 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PC2CC3M_T),
182 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PC2CC3M_T),
183 TYPE(PERIPHC_16h, CLOCK_TYPE_NONE),
184 TYPE(PERIPHC_17h, CLOCK_TYPE_NONE),
185
186 /* 0x18 */
187 TYPE(PERIPHC_18h, CLOCK_TYPE_NONE),
188 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PC2CC3M_T),
189 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PC2CC3M_T),
190 TYPE(PERIPHC_1Bh, CLOCK_TYPE_NONE),
191 TYPE(PERIPHC_1Ch, CLOCK_TYPE_NONE),
192 TYPE(PERIPHC_HSI, CLOCK_TYPE_PC2CC3M_T),
193 TYPE(PERIPHC_UART1, CLOCK_TYPE_PC2CC3M_T),
194 TYPE(PERIPHC_UART2, CLOCK_TYPE_PC2CC3M_T),
195
196 /* 0x20 */
197 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MC2CC3P_A),
198 TYPE(PERIPHC_21h, CLOCK_TYPE_NONE),
199 TYPE(PERIPHC_22h, CLOCK_TYPE_NONE),
200 TYPE(PERIPHC_HDMI, CLOCK_TYPE_PMDACD2T),
201 TYPE(PERIPHC_24h, CLOCK_TYPE_NONE),
202 TYPE(PERIPHC_25h, CLOCK_TYPE_NONE),
203 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PC2CC3M_T16),
204 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPTM2C2C3),
205
206 /* 0x28 */
207 TYPE(PERIPHC_UART3, CLOCK_TYPE_PC2CC3M_T),
208 TYPE(PERIPHC_29h, CLOCK_TYPE_NONE),
209 TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A),
210 TYPE(PERIPHC_2bh, CLOCK_TYPE_NONE),
211 TYPE(PERIPHC_2ch, CLOCK_TYPE_NONE),
212 TYPE(PERIPHC_SBC4, CLOCK_TYPE_PC2CC3M_T),
213 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PC2CC3M_T16),
214 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PC2CC3M_T),
215
216 /* 0x30 */
217 TYPE(PERIPHC_UART4, CLOCK_TYPE_PC2CC3M_T),
218 TYPE(PERIPHC_UART5, CLOCK_TYPE_PC2CC3M_T),
219 TYPE(PERIPHC_VDE, CLOCK_TYPE_PC2CC3M_T),
220 TYPE(PERIPHC_OWR, CLOCK_TYPE_PC2CC3M_T),
221 TYPE(PERIPHC_NOR, CLOCK_TYPE_PC2CC3M_T),
222 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PC2CC3M_T),
223 TYPE(PERIPHC_I2S0, CLOCK_TYPE_AXPT),
224 TYPE(PERIPHC_DTV, CLOCK_TYPE_NONE),
225
226 /* 0x38 */
227 TYPE(PERIPHC_38h, CLOCK_TYPE_NONE),
228 TYPE(PERIPHC_39h, CLOCK_TYPE_NONE),
229 TYPE(PERIPHC_3ah, CLOCK_TYPE_NONE),
230 TYPE(PERIPHC_3bh, CLOCK_TYPE_NONE),
231 TYPE(PERIPHC_MSENC, CLOCK_TYPE_MC2CC3P_A),
232 TYPE(PERIPHC_TSEC, CLOCK_TYPE_PC2CC3M_T),
233 TYPE(PERIPHC_3eh, CLOCK_TYPE_NONE),
234 TYPE(PERIPHC_OSC, CLOCK_TYPE_NONE),
235
236 /* 0x40 */
237 TYPE(PERIPHC_40h, CLOCK_TYPE_NONE), /* start with 0x3b0 */
238 TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PC2CC3M_T),
239 TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PC2CC3T_S),
240 TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
241 TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
242 TYPE(PERIPHC_I2C4, CLOCK_TYPE_PC2CC3M_T16),
243 TYPE(PERIPHC_SBC5, CLOCK_TYPE_PC2CC3M_T),
244 TYPE(PERIPHC_SBC6, CLOCK_TYPE_PC2CC3M_T),
245
246 /* 0x48 */
247 TYPE(PERIPHC_AUDIO, CLOCK_TYPE_AC2CC3P_TS2),
248 TYPE(PERIPHC_49h, CLOCK_TYPE_NONE),
249 TYPE(PERIPHC_DAM0, CLOCK_TYPE_AC2CC3P_TS2),
250 TYPE(PERIPHC_DAM1, CLOCK_TYPE_AC2CC3P_TS2),
251 TYPE(PERIPHC_DAM2, CLOCK_TYPE_AC2CC3P_TS2),
252 TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
253 TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PC2CC3S_T),
254 TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
255
256 /* 0x50 */
257 TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
258 TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
259 TYPE(PERIPHC_52h, CLOCK_TYPE_NONE),
260 TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PC2CC3S_T),
261 TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
262 TYPE(PERIPHC_55h, CLOCK_TYPE_NONE),
263 TYPE(PERIPHC_56h, CLOCK_TYPE_NONE),
264 TYPE(PERIPHC_57h, CLOCK_TYPE_NONE),
265
266 /* 0x58 */
267 TYPE(PERIPHC_58h, CLOCK_TYPE_NONE),
Simon Glass93a19952015-04-14 21:03:34 -0600268 TYPE(PERIPHC_SOR, CLOCK_TYPE_NONE),
Tom Warren8981bff2014-01-24 12:46:15 -0700269 TYPE(PERIPHC_5ah, CLOCK_TYPE_NONE),
270 TYPE(PERIPHC_5bh, CLOCK_TYPE_NONE),
271 TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT),
272 TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
273 TYPE(PERIPHC_HDA, CLOCK_TYPE_PC2CC3M_T),
274 TYPE(PERIPHC_5fh, CLOCK_TYPE_NONE),
275
276 /* 0x60 */
277 TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
278 TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
279 TYPE(PERIPHC_XUSB_FS, CLOCK_TYPE_NONE),
280 TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
281 TYPE(PERIPHC_XUSB_SS, CLOCK_TYPE_NONE),
282 TYPE(PERIPHC_CILAB, CLOCK_TYPE_NONE),
283 TYPE(PERIPHC_CILCD, CLOCK_TYPE_NONE),
284 TYPE(PERIPHC_CILE, CLOCK_TYPE_NONE),
285
286 /* 0x68 */
287 TYPE(PERIPHC_DSIA_LP, CLOCK_TYPE_NONE),
288 TYPE(PERIPHC_DSIB_LP, CLOCK_TYPE_NONE),
289 TYPE(PERIPHC_ENTROPY, CLOCK_TYPE_NONE),
290 TYPE(PERIPHC_DVFS_REF, CLOCK_TYPE_NONE),
291 TYPE(PERIPHC_DVFS_SOC, CLOCK_TYPE_NONE),
292 TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
293 TYPE(PERIPHC_ADX0, CLOCK_TYPE_NONE),
294 TYPE(PERIPHC_AMX0, CLOCK_TYPE_NONE),
295
296 /* 0x70 */
297 TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
298 TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE),
299 TYPE(PERIPHC_72h, CLOCK_TYPE_NONE),
300 TYPE(PERIPHC_73h, CLOCK_TYPE_NONE),
301 TYPE(PERIPHC_74h, CLOCK_TYPE_NONE),
302 TYPE(PERIPHC_75h, CLOCK_TYPE_NONE),
303 TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
304 TYPE(PERIPHC_I2C6, CLOCK_TYPE_PC2CC3M_T16),
305
306 /* 0x78 */
307 TYPE(PERIPHC_78h, CLOCK_TYPE_NONE),
308 TYPE(PERIPHC_EMC_DLL, CLOCK_TYPE_MCPTM2C2C3),
309 TYPE(PERIPHC_HDMI_AUDIO, CLOCK_TYPE_NONE),
310 TYPE(PERIPHC_CLK72MHZ, CLOCK_TYPE_NONE),
311 TYPE(PERIPHC_ADX1, CLOCK_TYPE_AC2CC3P_TS2),
312 TYPE(PERIPHC_AMX1, CLOCK_TYPE_AC2CC3P_TS2),
313 TYPE(PERIPHC_VIC, CLOCK_TYPE_NONE),
314 TYPE(PERIPHC_7Fh, CLOCK_TYPE_NONE),
315};
316
317/*
318 * This array translates a periph_id to a periphc_internal_id
319 *
320 * Not present/matched up:
321 * uint vi_sensor; _VI_SENSOR_0, 0x1A8
322 * SPDIF - which is both 0x08 and 0x0c
323 *
324 */
325#define NONE(name) (-1)
326#define OFFSET(name, value) PERIPHC_ ## name
327static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
328 /* Low word: 31:0 */
329 NONE(CPU),
330 NONE(COP),
331 NONE(TRIGSYS),
332 NONE(ISPB),
333 NONE(RESERVED4),
334 NONE(TMR),
335 PERIPHC_UART1,
336 PERIPHC_UART2, /* and vfir 0x68 */
337
338 /* 8 */
339 NONE(GPIO),
340 PERIPHC_SDMMC2,
341 PERIPHC_SPDIF_IN,
342 PERIPHC_I2S1,
343 PERIPHC_I2C1,
344 NONE(RESERVED13),
345 PERIPHC_SDMMC1,
346 PERIPHC_SDMMC4,
347
348 /* 16 */
349 NONE(TCW),
350 PERIPHC_PWM,
351 PERIPHC_I2S2,
352 NONE(RESERVED19),
353 PERIPHC_VI,
354 NONE(RESERVED21),
355 NONE(USBD),
356 NONE(ISP),
357
358 /* 24 */
359 NONE(RESERVED24),
360 NONE(RESERVED25),
361 PERIPHC_DISP2,
362 PERIPHC_DISP1,
363 PERIPHC_HOST1X,
364 NONE(VCP),
365 PERIPHC_I2S0,
366 NONE(CACHE2),
367
368 /* Middle word: 63:32 */
369 NONE(MEM),
370 NONE(AHBDMA),
371 NONE(APBDMA),
372 NONE(RESERVED35),
373 NONE(RESERVED36),
374 NONE(STAT_MON),
375 NONE(RESERVED38),
376 NONE(FUSE),
377
378 /* 40 */
379 NONE(KFUSE),
380 PERIPHC_SBC1, /* SBCx = SPIx */
381 PERIPHC_NOR,
382 NONE(RESERVED43),
383 PERIPHC_SBC2,
384 NONE(XIO),
385 PERIPHC_SBC3,
386 PERIPHC_I2C5,
387
388 /* 48 */
389 NONE(DSI),
390 NONE(RESERVED49),
391 PERIPHC_HSI,
392 PERIPHC_HDMI,
393 NONE(CSI),
394 NONE(RESERVED53),
395 PERIPHC_I2C2,
396 PERIPHC_UART3,
397
398 /* 56 */
399 NONE(MIPI_CAL),
400 PERIPHC_EMC,
401 NONE(USB2),
402 NONE(USB3),
403 NONE(RESERVED60),
404 PERIPHC_VDE,
405 NONE(BSEA),
406 NONE(BSEV),
407
408 /* Upper word 95:64 */
409 NONE(RESERVED64),
410 PERIPHC_UART4,
411 PERIPHC_UART5,
412 PERIPHC_I2C3,
413 PERIPHC_SBC4,
414 PERIPHC_SDMMC3,
415 NONE(PCIE),
416 PERIPHC_OWR,
417
418 /* 72 */
419 NONE(AFI),
420 PERIPHC_CSITE,
421 NONE(PCIEXCLK),
422 NONE(AVPUCQ),
423 NONE(LA),
424 NONE(TRACECLKIN),
425 NONE(SOC_THERM),
426 NONE(DTV),
427
428 /* 80 */
429 NONE(RESERVED80),
430 PERIPHC_I2CSLOW,
431 NONE(DSIB),
432 PERIPHC_TSEC,
433 NONE(RESERVED84),
434 NONE(RESERVED85),
435 NONE(RESERVED86),
436 NONE(EMUCIF),
437
438 /* 88 */
439 NONE(RESERVED88),
440 NONE(XUSB_HOST),
441 NONE(RESERVED90),
442 PERIPHC_MSENC,
443 NONE(RESERVED92),
444 NONE(RESERVED93),
445 NONE(RESERVED94),
446 NONE(XUSB_DEV),
447
448 /* V word: 31:0 */
449 NONE(CPUG),
450 NONE(CPULP),
451 NONE(V_RESERVED2),
452 PERIPHC_MSELECT,
453 NONE(V_RESERVED4),
454 PERIPHC_I2S3,
455 PERIPHC_I2S4,
456 PERIPHC_I2C4,
457
458 /* 104 */
459 PERIPHC_SBC5,
460 PERIPHC_SBC6,
461 PERIPHC_AUDIO,
462 NONE(APBIF),
463 PERIPHC_DAM0,
464 PERIPHC_DAM1,
465 PERIPHC_DAM2,
466 PERIPHC_HDA2CODEC2X,
467
468 /* 112 */
469 NONE(ATOMICS),
470 NONE(V_RESERVED17),
471 NONE(V_RESERVED18),
472 NONE(V_RESERVED19),
473 NONE(V_RESERVED20),
474 NONE(V_RESERVED21),
475 NONE(V_RESERVED22),
476 PERIPHC_ACTMON,
477
478 /* 120 */
Simon Glass75b1c232015-06-05 14:39:39 -0600479 PERIPHC_EXTPERIPH1,
Tom Warren8981bff2014-01-24 12:46:15 -0700480 NONE(EXTPERIPH2),
481 NONE(EXTPERIPH3),
482 NONE(OOB),
483 PERIPHC_SATA,
484 PERIPHC_HDA,
485 NONE(TZRAM),
486 NONE(SE),
487
488 /* W word: 31:0 */
489 NONE(HDA2HDMICODEC),
490 NONE(SATACOLD),
491 NONE(W_RESERVED2),
492 NONE(W_RESERVED3),
493 NONE(W_RESERVED4),
494 NONE(W_RESERVED5),
495 NONE(W_RESERVED6),
496 NONE(W_RESERVED7),
497
498 /* 136 */
499 NONE(CEC),
500 NONE(W_RESERVED9),
501 NONE(W_RESERVED10),
502 NONE(W_RESERVED11),
503 NONE(W_RESERVED12),
504 NONE(W_RESERVED13),
505 NONE(XUSB_PADCTL),
506 NONE(W_RESERVED15),
507
508 /* 144 */
509 NONE(W_RESERVED16),
510 NONE(W_RESERVED17),
511 NONE(W_RESERVED18),
512 NONE(W_RESERVED19),
513 NONE(W_RESERVED20),
514 NONE(ENTROPY),
515 NONE(DDS),
516 NONE(W_RESERVED23),
517
518 /* 152 */
519 NONE(DP2),
520 NONE(AMX0),
521 NONE(ADX0),
522 NONE(DVFS),
523 NONE(XUSB_SS),
524 NONE(W_RESERVED29),
525 NONE(W_RESERVED30),
526 NONE(W_RESERVED31),
527
528 /* X word: 31:0 */
529 NONE(SPARE),
530 NONE(X_RESERVED1),
531 NONE(X_RESERVED2),
532 NONE(X_RESERVED3),
533 NONE(CAM_MCLK),
534 NONE(CAM_MCLK2),
535 PERIPHC_I2C6,
536 NONE(X_RESERVED7),
537
538 /* 168 */
539 NONE(X_RESERVED8),
540 NONE(X_RESERVED9),
541 NONE(X_RESERVED10),
542 NONE(VIM2_CLK),
543 NONE(X_RESERVED12),
544 NONE(X_RESERVED13),
545 NONE(EMC_DLL),
546 NONE(X_RESERVED15),
547
548 /* 176 */
549 NONE(HDMI_AUDIO),
550 NONE(CLK72MHZ),
551 NONE(VIC),
552 NONE(X_RESERVED19),
553 NONE(ADX1),
554 NONE(DPAUX),
Simon Glass93a19952015-04-14 21:03:34 -0600555 PERIPHC_SOR,
Tom Warren8981bff2014-01-24 12:46:15 -0700556 NONE(X_RESERVED23),
557
558 /* 184 */
559 NONE(GPU),
560 NONE(AMX1),
561 NONE(X_RESERVED26),
562 NONE(X_RESERVED27),
563 NONE(X_RESERVED28),
564 NONE(X_RESERVED29),
565 NONE(X_RESERVED30),
566 NONE(X_RESERVED31),
567};
568
569/*
Tom Warrena8480ef2015-06-25 09:50:44 -0700570 * PLL divider shift/mask tables for all PLL IDs.
571 */
572struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
573 /*
Simon Glassb6ba3fb2015-08-10 07:14:36 -0600574 * T124: same as T114, some deviations from T2x/T30. Adds PLLDP.
Tom Warrena8480ef2015-06-25 09:50:44 -0700575 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
576 * If lock_ena or lock_det are >31, they're not used in that PLL.
577 */
578
579 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x0F,
580 .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 }, /* PLLC */
581 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
582 .lock_ena = 0, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
583 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
584 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLP */
585 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
586 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLA */
587 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
588 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLU */
589 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
590 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLD */
591 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x0F,
592 .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLX */
593 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
594 .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
595 { .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
596 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLS (RESERVED) */
Simon Glassb6ba3fb2015-08-10 07:14:36 -0600597 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0xF,
598 .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLDP */
Tom Warrena8480ef2015-06-25 09:50:44 -0700599};
600
601/*
Tom Warren8981bff2014-01-24 12:46:15 -0700602 * Get the oscillator frequency, from the corresponding hardware configuration
603 * field. Note that Tegra30+ support 3 new higher freqs, but we map back
604 * to the old T20 freqs. Support for the higher oscillators is TBD.
605 */
606enum clock_osc_freq clock_get_osc_freq(void)
607{
608 struct clk_rst_ctlr *clkrst =
609 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
610 u32 reg;
611
612 reg = readl(&clkrst->crc_osc_ctrl);
613 reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
614
615 if (reg & 1) /* one of the newer freqs */
616 printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg);
617
618 return reg >> 2; /* Map to most common (T20) freqs */
619}
620
621/* Returns a pointer to the clock source register for a peripheral */
622u32 *get_periph_source_reg(enum periph_id periph_id)
623{
624 struct clk_rst_ctlr *clkrst =
625 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
626 enum periphc_internal_id internal_id;
627
628 /* Coresight is a special case */
629 if (periph_id == PERIPH_ID_CSI)
630 return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
631
632 assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
633 internal_id = periph_id_to_internal_id[periph_id];
634 assert(internal_id != -1);
Simon Glass93a19952015-04-14 21:03:34 -0600635 if (internal_id >= PERIPHC_X_FIRST) {
636 internal_id -= PERIPHC_X_FIRST;
637 return &clkrst->crc_clk_src_x[internal_id];
638 } else if (internal_id >= PERIPHC_VW_FIRST) {
Tom Warren8981bff2014-01-24 12:46:15 -0700639 internal_id -= PERIPHC_VW_FIRST;
640 return &clkrst->crc_clk_src_vw[internal_id];
641 } else {
642 return &clkrst->crc_clk_src[internal_id];
643 }
644}
645
Stephen Warren532543c2016-09-13 10:45:56 -0600646int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
647 int *divider_bits, int *type)
648{
649 enum periphc_internal_id internal_id;
650
651 if (!clock_periph_id_isvalid(periph_id))
652 return -1;
653
654 internal_id = periph_id_to_internal_id[periph_id];
655 if (!periphc_internal_id_isvalid(internal_id))
656 return -1;
657
658 *type = clock_periph_type[internal_id];
659 if (!clock_type_id_isvalid(*type))
660 return -1;
661
662 *mux_bits = clock_source[*type][CLOCK_MAX_MUX];
663
664 if (*type == CLOCK_TYPE_PC2CC3M_T16)
665 *divider_bits = 16;
666 else
667 *divider_bits = 8;
668
669 return 0;
670}
671
672enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
673{
674 enum periphc_internal_id internal_id;
675 int type;
676
677 if (!clock_periph_id_isvalid(periph_id))
678 return CLOCK_ID_NONE;
679
680 internal_id = periph_id_to_internal_id[periph_id];
681 if (!periphc_internal_id_isvalid(internal_id))
682 return CLOCK_ID_NONE;
683
684 type = clock_periph_type[internal_id];
685 if (!clock_type_id_isvalid(type))
686 return CLOCK_ID_NONE;
687
688 return clock_source[type][source];
689}
690
Tom Warren8981bff2014-01-24 12:46:15 -0700691/**
692 * Given a peripheral ID and the required source clock, this returns which
693 * value should be programmed into the source mux for that peripheral.
694 *
695 * There is special code here to handle the one source type with 5 sources.
696 *
697 * @param periph_id peripheral to start
698 * @param source PLL id of required parent clock
699 * @param mux_bits Set to number of bits in mux register: 2 or 4
700 * @param divider_bits Set to number of divider bits (8 or 16)
701 * @return mux value (0-4, or -1 if not found)
702 */
703int get_periph_clock_source(enum periph_id periph_id,
704 enum clock_id parent, int *mux_bits, int *divider_bits)
705{
706 enum clock_type_id type;
Stephen Warren532543c2016-09-13 10:45:56 -0600707 int mux, err;
Tom Warren8981bff2014-01-24 12:46:15 -0700708
Stephen Warren532543c2016-09-13 10:45:56 -0600709 err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
710 assert(!err);
Tom Warren8981bff2014-01-24 12:46:15 -0700711
712 for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
713 if (clock_source[type][mux] == parent)
714 return mux;
715
716 /* if we get here, either us or the caller has made a mistake */
717 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
718 parent);
719 return -1;
720}
721
722void clock_set_enable(enum periph_id periph_id, int enable)
723{
724 struct clk_rst_ctlr *clkrst =
725 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
726 u32 *clk;
727 u32 reg;
728
729 /* Enable/disable the clock to this peripheral */
730 assert(clock_periph_id_isvalid(periph_id));
731 if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
732 clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
Simon Glass93a19952015-04-14 21:03:34 -0600733 else if ((int)periph_id < PERIPH_ID_X_FIRST)
Tom Warren8981bff2014-01-24 12:46:15 -0700734 clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
Simon Glass93a19952015-04-14 21:03:34 -0600735 else
736 clk = &clkrst->crc_clk_out_enb_x;
Tom Warren8981bff2014-01-24 12:46:15 -0700737 reg = readl(clk);
738 if (enable)
739 reg |= PERIPH_MASK(periph_id);
740 else
741 reg &= ~PERIPH_MASK(periph_id);
742 writel(reg, clk);
743}
744
745void reset_set_enable(enum periph_id periph_id, int enable)
746{
747 struct clk_rst_ctlr *clkrst =
748 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
749 u32 *reset;
750 u32 reg;
751
752 /* Enable/disable reset to the peripheral */
753 assert(clock_periph_id_isvalid(periph_id));
754 if (periph_id < PERIPH_ID_VW_FIRST)
755 reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
Simon Glass93a19952015-04-14 21:03:34 -0600756 else if ((int)periph_id < PERIPH_ID_X_FIRST)
Tom Warren8981bff2014-01-24 12:46:15 -0700757 reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
Simon Glass93a19952015-04-14 21:03:34 -0600758 else
759 reset = &clkrst->crc_rst_devices_x;
Tom Warren8981bff2014-01-24 12:46:15 -0700760 reg = readl(reset);
761 if (enable)
762 reg |= PERIPH_MASK(periph_id);
763 else
764 reg &= ~PERIPH_MASK(periph_id);
765 writel(reg, reset);
766}
767
Masahiro Yamada366b24f2015-08-12 07:31:55 +0900768#if CONFIG_IS_ENABLED(OF_CONTROL)
Tom Warren8981bff2014-01-24 12:46:15 -0700769/*
770 * Convert a device tree clock ID to our peripheral ID. They are mostly
771 * the same but we are very cautious so we check that a valid clock ID is
772 * provided.
773 *
774 * @param clk_id Clock ID according to tegra124 device tree binding
775 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
776 */
777enum periph_id clk_id_to_periph_id(int clk_id)
778{
779 if (clk_id > PERIPH_ID_COUNT)
780 return PERIPH_ID_NONE;
781
782 switch (clk_id) {
783 case PERIPH_ID_RESERVED4:
784 case PERIPH_ID_RESERVED25:
785 case PERIPH_ID_RESERVED35:
786 case PERIPH_ID_RESERVED36:
787 case PERIPH_ID_RESERVED38:
788 case PERIPH_ID_RESERVED43:
789 case PERIPH_ID_RESERVED49:
790 case PERIPH_ID_RESERVED53:
791 case PERIPH_ID_RESERVED64:
792 case PERIPH_ID_RESERVED84:
793 case PERIPH_ID_RESERVED85:
794 case PERIPH_ID_RESERVED86:
795 case PERIPH_ID_RESERVED88:
796 case PERIPH_ID_RESERVED90:
797 case PERIPH_ID_RESERVED92:
798 case PERIPH_ID_RESERVED93:
799 case PERIPH_ID_RESERVED94:
800 case PERIPH_ID_V_RESERVED2:
801 case PERIPH_ID_V_RESERVED4:
802 case PERIPH_ID_V_RESERVED17:
803 case PERIPH_ID_V_RESERVED18:
804 case PERIPH_ID_V_RESERVED19:
805 case PERIPH_ID_V_RESERVED20:
806 case PERIPH_ID_V_RESERVED21:
807 case PERIPH_ID_V_RESERVED22:
808 case PERIPH_ID_W_RESERVED2:
809 case PERIPH_ID_W_RESERVED3:
810 case PERIPH_ID_W_RESERVED4:
811 case PERIPH_ID_W_RESERVED5:
812 case PERIPH_ID_W_RESERVED6:
813 case PERIPH_ID_W_RESERVED7:
814 case PERIPH_ID_W_RESERVED9:
815 case PERIPH_ID_W_RESERVED10:
816 case PERIPH_ID_W_RESERVED11:
817 case PERIPH_ID_W_RESERVED12:
818 case PERIPH_ID_W_RESERVED13:
819 case PERIPH_ID_W_RESERVED15:
820 case PERIPH_ID_W_RESERVED16:
821 case PERIPH_ID_W_RESERVED17:
822 case PERIPH_ID_W_RESERVED18:
823 case PERIPH_ID_W_RESERVED19:
824 case PERIPH_ID_W_RESERVED20:
825 case PERIPH_ID_W_RESERVED23:
826 case PERIPH_ID_W_RESERVED29:
827 case PERIPH_ID_W_RESERVED30:
828 case PERIPH_ID_W_RESERVED31:
829 return PERIPH_ID_NONE;
830 default:
831 return clk_id;
832 }
833}
Masahiro Yamada366b24f2015-08-12 07:31:55 +0900834#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
Tom Warren8981bff2014-01-24 12:46:15 -0700835
836void clock_early_init(void)
837{
838 struct clk_rst_ctlr *clkrst =
839 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
Tom Warrena8480ef2015-06-25 09:50:44 -0700840 struct clk_pll_info *pllinfo;
841 u32 data;
Tom Warren8981bff2014-01-24 12:46:15 -0700842
843 tegra30_set_up_pllp();
844
Thierry Redinga1dfa9a2015-09-08 11:38:03 +0200845 /* clear IDDQ before accessing any other PLLC registers */
846 pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
847 clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, PLLC_IDDQ);
848 udelay(2);
849
Tom Warren8981bff2014-01-24 12:46:15 -0700850 /*
851 * PLLC output frequency set to 600Mhz
852 * PLLD output frequency set to 925Mhz
853 */
854 switch (clock_get_osc_freq()) {
855 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
856 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
857 clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
858 break;
859
860 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
861 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
862 clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
863 break;
864
865 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
866 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
867 clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
868 break;
869 case CLOCK_OSC_FREQ_19_2:
870 default:
871 /*
872 * These are not supported. It is too early to print a
873 * message and the UART likely won't work anyway due to the
874 * oscillator being wrong.
875 */
876 break;
877 }
878
879 /* PLLC_MISC2: Set dynramp_stepA/B. MISC2 maps to pll_out[1] */
880 writel(0x00561600, &clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1]);
881
882 /* PLLC_MISC: Set LOCK_ENABLE */
Tom Warrena8480ef2015-06-25 09:50:44 -0700883 pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
884 setbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, (1 << pllinfo->lock_ena));
Tom Warren8981bff2014-01-24 12:46:15 -0700885 udelay(2);
886
Tom Warrena8480ef2015-06-25 09:50:44 -0700887 /* PLLD_MISC: Set CLKENABLE, CPCON 12, LFCON 1, and enable lock */
888 pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
889 data = (12 << pllinfo->kcp_shift) | (1 << pllinfo->kvco_shift);
890 data |= (1 << PLLD_CLKENABLE) | (1 << pllinfo->lock_ena);
891 writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
Tom Warren8981bff2014-01-24 12:46:15 -0700892 udelay(2);
893}
894
Simon Glass2b4029a2017-05-31 17:57:16 -0600895/*
896 * clock_early_init_done - Check if clock_early_init() has been called
897 *
898 * Check a register that we set up to see if clock_early_init() has already
899 * been called.
900 *
901 * @return true if clock_early_init() was called, false if not
902 */
903bool clock_early_init_done(void)
904{
905 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
906 u32 val;
907
908 val = readl(&clkrst->crc_sclk_brst_pol);
909
910 return val == 0x20002222;
911}
912
Tom Warren8981bff2014-01-24 12:46:15 -0700913void arch_timer_init(void)
914{
915 struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
916 u32 freq, val;
917
Thierry Reding4c3aaa72015-08-20 11:42:20 +0200918 freq = clock_get_rate(CLOCK_ID_CLK_M);
919 debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
Tom Warren8981bff2014-01-24 12:46:15 -0700920
921 /* ARM CNTFRQ */
922 asm("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (freq));
923
924 /* Only Tegra114+ has the System Counter regs */
925 debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
926 writel(freq, &sysctr->cntfid0);
927
928 val = readl(&sysctr->cntcr);
929 val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
930 writel(val, &sysctr->cntcr);
931 debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
932}
Thierry Reding4bf98692014-12-09 22:25:06 -0700933
934#define PLLE_SS_CNTL 0x68
935#define PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
936#define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
937#define PLLE_SS_CNTL_SSCINVERT (1 << 15)
938#define PLLE_SS_CNTL_SSCCENTER (1 << 14)
939#define PLLE_SS_CNTL_SSCBYP (1 << 12)
940#define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
941#define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
942#define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
943
944#define PLLE_BASE 0x0e8
945#define PLLE_BASE_ENABLE (1 << 30)
946#define PLLE_BASE_LOCK_OVERRIDE (1 << 29)
947#define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
948#define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
949#define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
950
951#define PLLE_MISC 0x0ec
952#define PLLE_MISC_IDDQ_SWCTL (1 << 14)
953#define PLLE_MISC_IDDQ_OVERRIDE (1 << 13)
954#define PLLE_MISC_LOCK_ENABLE (1 << 9)
955#define PLLE_MISC_PTS (1 << 8)
956#define PLLE_MISC_VREG_BG_CTRL(x) (((x) & 0x3) << 4)
957#define PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
958
959#define PLLE_AUX 0x48c
960#define PLLE_AUX_SEQ_ENABLE (1 << 24)
961#define PLLE_AUX_ENABLE_SWCTL (1 << 4)
962
963int tegra_plle_enable(void)
964{
965 unsigned int m = 1, n = 200, cpcon = 13;
966 u32 value;
967
968 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
969 value &= ~PLLE_BASE_LOCK_OVERRIDE;
970 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
971
972 value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
973 value |= PLLE_AUX_ENABLE_SWCTL;
974 value &= ~PLLE_AUX_SEQ_ENABLE;
975 writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
976
977 udelay(1);
978
979 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
980 value |= PLLE_MISC_IDDQ_SWCTL;
981 value &= ~PLLE_MISC_IDDQ_OVERRIDE;
982 value |= PLLE_MISC_LOCK_ENABLE;
983 value |= PLLE_MISC_PTS;
984 value |= PLLE_MISC_VREG_BG_CTRL(3);
985 value |= PLLE_MISC_VREG_CTRL(2);
986 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
987
988 udelay(5);
989
990 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
991 value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
992 PLLE_SS_CNTL_BYPASS_SS;
993 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
994
995 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
996 value &= ~PLLE_BASE_PLDIV_CML(0xf);
997 value &= ~PLLE_BASE_NDIV(0xff);
998 value &= ~PLLE_BASE_MDIV(0xff);
999 value |= PLLE_BASE_PLDIV_CML(cpcon);
1000 value |= PLLE_BASE_NDIV(n);
1001 value |= PLLE_BASE_MDIV(m);
1002 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1003
1004 udelay(1);
1005
1006 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1007 value |= PLLE_BASE_ENABLE;
1008 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1009
1010 /* wait for lock */
1011 udelay(300);
1012
1013 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1014 value &= ~PLLE_SS_CNTL_SSCINVERT;
1015 value &= ~PLLE_SS_CNTL_SSCCENTER;
1016
1017 value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
1018 value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1019 value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
1020
1021 value |= PLLE_SS_CNTL_SSCINCINTR(0x20);
1022 value |= PLLE_SS_CNTL_SSCINC(0x01);
1023 value |= PLLE_SS_CNTL_SSCMAX(0x25);
1024
1025 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1026
1027 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1028 value &= ~PLLE_SS_CNTL_SSCBYP;
1029 value &= ~PLLE_SS_CNTL_BYPASS_SS;
1030 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1031
1032 udelay(1);
1033
1034 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1035 value &= ~PLLE_SS_CNTL_INTERP_RESET;
1036 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1037
1038 udelay(1);
1039
1040 return 0;
1041}
Simon Glass93a19952015-04-14 21:03:34 -06001042
1043void clock_sor_enable_edp_clock(void)
1044{
1045 u32 *reg;
1046
1047 /* uses PLLP, has a non-standard bit layout. */
1048 reg = get_periph_source_reg(PERIPH_ID_SOR0);
1049 setbits_le32(reg, SOR0_CLK_SEL0);
1050}
1051
1052u32 clock_set_display_rate(u32 frequency)
1053{
1054 /**
1055 * plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
1056 * = (cf * n) >> p, where 1MHz < cf < 6MHz
1057 * = ((ref / m) * n) >> p
1058 *
1059 * Iterate the possible values of p (3 bits, 2^7) to find out a minimum
1060 * safe vco, then find best (m, n). since m has only 5 bits, we can
1061 * iterate all possible values. Note Tegra 124 supports 11 bits for n,
1062 * but our pll_fields has only 10 bits for n.
1063 *
1064 * Note values undershoot or overshoot target output frequency may not
1065 * work if the values are not in "safe" range by panel specification.
1066 */
1067 u32 ref = clock_get_rate(CLOCK_ID_OSC);
1068 u32 divm, divn, divp, cpcon;
1069 u32 cf, vco, rounded_rate = frequency;
1070 u32 diff, best_diff, best_m = 0, best_n = 0, best_p;
1071 const u32 max_m = 1 << 5, max_n = 1 << 10, max_p = 1 << 3,
1072 mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz,
1073 min_cf = 1 * mhz, max_cf = 6 * mhz;
1074 int mux_bits, divider_bits, source;
1075
1076 for (divp = 0, vco = frequency; vco < min_vco && divp < max_p; divp++)
1077 vco <<= 1;
1078
1079 if (vco < min_vco || vco > max_vco) {
1080 printf("%s: Cannot find out a supported VCO for Frequency (%u)\n",
1081 __func__, frequency);
1082 return 0;
1083 }
1084
1085 best_p = divp;
1086 best_diff = vco;
1087
1088 for (divm = 1; divm < max_m && best_diff; divm++) {
1089 cf = ref / divm;
1090 if (cf < min_cf)
1091 break;
1092 if (cf > max_cf)
1093 continue;
1094
1095 divn = vco / cf;
1096 if (divn >= max_n)
1097 continue;
1098
1099 diff = vco - divn * cf;
1100 if (divn + 1 < max_n && diff > cf / 2) {
1101 divn++;
1102 diff = cf - diff;
1103 }
1104
1105 if (diff >= best_diff)
1106 continue;
1107
1108 best_diff = diff;
1109 best_m = divm;
1110 best_n = divn;
1111 }
1112
1113 if (best_n < 50)
1114 cpcon = 2;
1115 else if (best_n < 300)
1116 cpcon = 3;
1117 else if (best_n < 600)
1118 cpcon = 8;
1119 else
1120 cpcon = 12;
1121
1122 if (best_diff) {
1123 printf("%s: Failed to match output frequency %u, best difference is %u\n",
1124 __func__, frequency, best_diff);
1125 rounded_rate = (ref / best_m * best_n) >> best_p;
1126 }
1127
1128 debug("%s: PLLD=%u ref=%u, m/n/p/cpcon=%u/%u/%u/%u\n",
1129 __func__, rounded_rate, ref, best_m, best_n, best_p, cpcon);
1130
1131 source = get_periph_clock_source(PERIPH_ID_DISP1, CLOCK_ID_DISPLAY,
1132 &mux_bits, &divider_bits);
1133 clock_ll_set_source_bits(PERIPH_ID_DISP1, mux_bits, source);
1134 clock_set_rate(CLOCK_ID_DISPLAY, best_n, best_m, best_p, cpcon);
1135
1136 return rounded_rate;
1137}
1138
1139void clock_set_up_plldp(void)
1140{
1141 struct clk_rst_ctlr *clkrst =
1142 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1143 u32 value;
1144
1145 value = PLLDP_SS_CFG_UNDOCUMENTED | PLLDP_SS_CFG_DITHER;
1146 writel(value | PLLDP_SS_CFG_CLAMP, &clkrst->crc_plldp_ss_cfg);
1147 clock_start_pll(CLOCK_ID_DP, 1, 90, 3, 0, 0);
1148 writel(value, &clkrst->crc_plldp_ss_cfg);
1149}
1150
1151struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
1152{
1153 struct clk_rst_ctlr *clkrst =
1154 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1155
1156 if (clkid == CLOCK_ID_DP)
1157 return &clkrst->plldp;
1158
1159 return NULL;
1160}
Stephen Warren1453d102016-09-13 10:45:55 -06001161
1162struct periph_clk_init periph_clk_init_table[] = {
1163 { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
1164 { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
1165 { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
1166 { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
1167 { PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
1168 { PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
1169 { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
1170 { PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
1171 { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
1172 { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
1173 { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
1174 { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
1175 { PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
1176 { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
1177 { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
1178 { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
1179 { PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
1180 { PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
1181 { PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
1182 { -1, },
1183};