blob: 458615ec3d48c794b1b40b836b4deb4095af74b7 [file] [log] [blame]
Paul Beesleyfc9ee362019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
Douglas Raillardd7c21b72017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley610e7e12018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillardd7c21b72017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
16`include/plat/common/platform.h`_. The firmware provides a default implementation
17of variables and functions to fulfill the optional requirements. These
18implementations are all weakly defined; they are provided to ease the porting
19effort. Each platform port can override them with its own implementation if the
20default implementation is inadequate.
21
Douglas Raillardd7c21b72017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Dan Handley610e7e12018-03-01 18:44:00 +000026This document should be read in conjunction with the TF-A `User Guide`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010027
Soby Mathew02bdbb92018-09-26 11:17:23 +010028Please refer to the `Platform compatibility policy`_ for the policy regarding
29compatibility and deprecation of these porting interfaces.
30
Antonio Nino Diaz645feb42019-02-13 14:07:38 +000031Only Arm development platforms (such as FVP and Juno) may use the
32functions/definitions in ``include/plat/arm/common/`` and the corresponding
33source files in ``plat/arm/common/``. This is done so that there are no
34dependencies between platforms maintained by different people/companies. If you
35want to use any of the functionality present in ``plat/arm`` files, please
36create a pull request that moves the code to ``plat/common`` so that it can be
37discussed.
38
Douglas Raillardd7c21b72017-06-28 15:23:03 +010039Common modifications
40--------------------
41
42This section covers the modifications that should be made by the platform for
43each BL stage to correctly port the firmware stack. They are categorized as
44either mandatory or optional.
45
46Common mandatory modifications
47------------------------------
48
49A platform port must enable the Memory Management Unit (MMU) as well as the
50instruction and data caches for each BL stage. Setting up the translation
51tables is the responsibility of the platform port because memory maps differ
52across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleux1861b7a2017-07-20 16:11:01 +010053provided to help in this setup.
54
55Note that although this library supports non-identity mappings, this is intended
56only for re-mapping peripheral physical addresses and allows platforms with high
57I/O addresses to reduce their virtual address space. All other addresses
58corresponding to code and data must currently use an identity mapping.
59
Dan Handley610e7e12018-03-01 18:44:00 +000060Also, the only translation granule size supported in TF-A is 4KB, as various
61parts of the code assume that is the case. It is not possible to switch to
6216 KB or 64 KB granule sizes at the moment.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010063
Dan Handley610e7e12018-03-01 18:44:00 +000064In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillardd7c21b72017-06-28 15:23:03 +010065platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
66an identity mapping for all addresses.
67
68If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
69block of identity mapped secure memory with Device-nGnRE attributes aligned to
70page boundary (4K) for each BL stage. All sections which allocate coherent
71memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
72section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
73possible for the firmware to place variables in it using the following C code
74directive:
75
76::
77
78 __section("bakery_lock")
79
80Or alternatively the following assembler code directive:
81
82::
83
84 .section bakery_lock
85
86The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
87used to allocate any data structures that are accessed both when a CPU is
88executing with its MMU and caches enabled, and when it's running with its MMU
89and caches disabled. Examples are given below.
90
91The following variables, functions and constants must be defined by the platform
92for the firmware to work correctly.
93
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +010094File : platform_def.h [mandatory]
95~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +010096
97Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz50a4d1a2019-02-01 12:22:22 +000098include path with the following constants defined. This will require updating
99the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100100
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100101Platform ports may optionally use the file `include/plat/common/common_def.h`_,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100102which provides typical values for some of the constants below. These values are
103likely to be suitable for all platform ports.
104
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100105- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100106
107 Defines the linker format used by the platform, for example
108 ``elf64-littleaarch64``.
109
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100110- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100111
112 Defines the processor architecture for the linker by the platform, for
113 example ``aarch64``.
114
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100115- **#define : PLATFORM_STACK_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100116
117 Defines the normal stack memory available to each CPU. This constant is used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100118 by `plat/common/aarch64/platform_mp_stack.S`_ and
119 `plat/common/aarch64/platform_up_stack.S`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100120
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100121- **define : CACHE_WRITEBACK_GRANULE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100122
123 Defines the size in bits of the largest cache line across all the cache
124 levels in the platform.
125
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100126- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100127
128 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
129 function.
130
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100131- **#define : PLATFORM_CORE_COUNT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100132
133 Defines the total number of CPUs implemented by the platform across all
134 clusters in the system.
135
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100136- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100137
138 Defines the total number of nodes in the power domain topology
139 tree at all the power domain levels used by the platform.
140 This macro is used by the PSCI implementation to allocate
141 data structures to represent power domain topology.
142
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100143- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100144
145 Defines the maximum power domain level that the power management operations
146 should apply to. More often, but not always, the power domain level
147 corresponds to affinity level. This macro allows the PSCI implementation
148 to know the highest power domain level that it should consider for power
149 management operations in the system that the platform implements. For
150 example, the Base AEM FVP implements two clusters with a configurable
151 number of CPUs and it reports the maximum power domain level as 1.
152
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100153- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100154
155 Defines the local power state corresponding to the deepest power down
156 possible at every power domain level in the platform. The local power
157 states for each level may be sparsely allocated between 0 and this value
158 with 0 being reserved for the RUN state. The PSCI implementation uses this
159 value to initialize the local power states of the power domain nodes and
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100160 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100162- **#define : PLAT_MAX_RET_STATE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100163
164 Defines the local power state corresponding to the deepest retention state
165 possible at every power domain level in the platform. This macro should be
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100166 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100167 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100168 power states within PSCI_CPU_SUSPEND call.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100169
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100170- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100171
172 Defines the maximum number of local power states per power domain level
173 that the platform supports. The default value of this macro is 2 since
174 most platforms just support a maximum of two local power states at each
175 power domain level (power-down and retention). If the platform needs to
176 account for more local power states, then it must redefine this macro.
177
178 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100179 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100180
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100181- **#define : BL1_RO_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100182
183 Defines the base address in secure ROM where BL1 originally lives. Must be
184 aligned on a page-size boundary.
185
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100186- **#define : BL1_RO_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100187
188 Defines the maximum address in secure ROM that BL1's actual content (i.e.
189 excluding any data section allocated at runtime) can occupy.
190
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100191- **#define : BL1_RW_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100192
193 Defines the base address in secure RAM where BL1's read-write data will live
194 at runtime. Must be aligned on a page-size boundary.
195
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100196- **#define : BL1_RW_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100197
198 Defines the maximum address in secure RAM that BL1's read-write data can
199 occupy at runtime.
200
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100201- **#define : BL2_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100202
203 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000204 Must be aligned on a page-size boundary. This constant is not applicable
205 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100206
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100207- **#define : BL2_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100208
209 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000210 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
211
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100212- **#define : BL2_RO_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000213
214 Defines the base address in secure XIP memory where BL2 RO section originally
215 lives. Must be aligned on a page-size boundary. This constant is only needed
216 when BL2_IN_XIP_MEM is set to '1'.
217
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100218- **#define : BL2_RO_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000219
220 Defines the maximum address in secure XIP memory that BL2's actual content
221 (i.e. excluding any data section allocated at runtime) can occupy. This
222 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
223
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100224- **#define : BL2_RW_BASE**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000225
226 Defines the base address in secure RAM where BL2's read-write data will live
227 at runtime. Must be aligned on a page-size boundary. This constant is only
228 needed when BL2_IN_XIP_MEM is set to '1'.
229
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100230- **#define : BL2_RW_LIMIT**
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000231
232 Defines the maximum address in secure RAM that BL2's read-write data can
233 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
234 to '1'.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100235
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100236- **#define : BL31_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100237
238 Defines the base address in secure RAM where BL2 loads the BL31 binary
239 image. Must be aligned on a page-size boundary.
240
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100241- **#define : BL31_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100242
243 Defines the maximum address in secure RAM that the BL31 image can occupy.
244
245For every image, the platform must define individual identifiers that will be
246used by BL1 or BL2 to load the corresponding image into memory from non-volatile
247storage. For the sake of performance, integer numbers will be used as
248identifiers. The platform will use those identifiers to return the relevant
249information about the image to be loaded (file handler, load address,
250authentication information, etc.). The following image identifiers are
251mandatory:
252
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100253- **#define : BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100254
255 BL2 image identifier, used by BL1 to load BL2.
256
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100257- **#define : BL31_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100258
259 BL31 image identifier, used by BL2 to load BL31.
260
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100261- **#define : BL33_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100262
263 BL33 image identifier, used by BL2 to load BL33.
264
265If Trusted Board Boot is enabled, the following certificate identifiers must
266also be defined:
267
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100268- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100269
270 BL2 content certificate identifier, used by BL1 to load the BL2 content
271 certificate.
272
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100273- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100274
275 Trusted key certificate identifier, used by BL2 to load the trusted key
276 certificate.
277
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100278- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100279
280 BL31 key certificate identifier, used by BL2 to load the BL31 key
281 certificate.
282
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100283- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100284
285 BL31 content certificate identifier, used by BL2 to load the BL31 content
286 certificate.
287
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100288- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100289
290 BL33 key certificate identifier, used by BL2 to load the BL33 key
291 certificate.
292
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100293- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100294
295 BL33 content certificate identifier, used by BL2 to load the BL33 content
296 certificate.
297
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100298- **#define : FWU_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100299
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100300 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100301 FWU content certificate.
302
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100303- **#define : PLAT_CRYPTOCELL_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100304
Dan Handley610e7e12018-03-01 18:44:00 +0000305 This defines the base address of Arm® TrustZone® CryptoCell and must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100306 defined if CryptoCell crypto driver is used for Trusted Board Boot. For
Dan Handley610e7e12018-03-01 18:44:00 +0000307 capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100308 set.
309
310If the AP Firmware Updater Configuration image, BL2U is used, the following
311must also be defined:
312
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100313- **#define : BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100314
315 Defines the base address in secure memory where BL1 copies the BL2U binary
316 image. Must be aligned on a page-size boundary.
317
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100318- **#define : BL2U_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100319
320 Defines the maximum address in secure memory that the BL2U image can occupy.
321
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100322- **#define : BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100323
324 BL2U image identifier, used by BL1 to fetch an image descriptor
325 corresponding to BL2U.
326
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100327If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100328must also be defined:
329
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100330- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100331
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100332 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
333 corresponding to SCP_BL2U.
Dan Handley610e7e12018-03-01 18:44:00 +0000334 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100335
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100336If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100337also be defined:
338
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100339- **#define : NS_BL1U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100341 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100342 Must be aligned on a page-size boundary.
Dan Handley610e7e12018-03-01 18:44:00 +0000343 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100344
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100345- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100346
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100347 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
348 corresponding to NS_BL1U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100349
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100350If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100351be defined:
352
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100353- **#define : NS_BL2U_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100354
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100355 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100356 Must be aligned on a page-size boundary.
Dan Handley610e7e12018-03-01 18:44:00 +0000357 NOTE: TF-A does not provide source code for this image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100359- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100360
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100361 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
362 corresponding to NS_BL2U.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100363
364For the the Firmware update capability of TRUSTED BOARD BOOT, the following
365macros may also be defined:
366
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100367- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100368
369 Total number of images that can be loaded simultaneously. If the platform
370 doesn't specify any value, it defaults to 10.
371
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100372If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100373also be defined:
374
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100375- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100376
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100377 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000378 from platform storage before being transferred to the SCP.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100379
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100380- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100381
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100382 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100383 certificate (mandatory when Trusted Board Boot is enabled).
384
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100385- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100386
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100387 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100388 content certificate (mandatory when Trusted Board Boot is enabled).
389
390If a BL32 image is supported by the platform, the following constants must
391also be defined:
392
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100393- **#define : BL32_IMAGE_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100394
395 BL32 image identifier, used by BL2 to load BL32.
396
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100397- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100398
399 BL32 key certificate identifier, used by BL2 to load the BL32 key
400 certificate (mandatory when Trusted Board Boot is enabled).
401
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100402- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100403
404 BL32 content certificate identifier, used by BL2 to load the BL32 content
405 certificate (mandatory when Trusted Board Boot is enabled).
406
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100407- **#define : BL32_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100408
409 Defines the base address in secure memory where BL2 loads the BL32 binary
410 image. Must be aligned on a page-size boundary.
411
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100412- **#define : BL32_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100413
414 Defines the maximum address that the BL32 image can occupy.
415
416If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
417platform, the following constants must also be defined:
418
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100419- **#define : TSP_SEC_MEM_BASE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100420
421 Defines the base address of the secure memory used by the TSP image on the
422 platform. This must be at the same address or below ``BL32_BASE``.
423
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100424- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100425
426 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000427 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
428 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
429 and ``BL32_LIMIT``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100430
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100431- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100432
433 Defines the ID of the secure physical generic timer interrupt used by the
434 TSP's interrupt handling code.
435
436If the platform port uses the translation table library code, the following
437constants must also be defined:
438
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100439- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100440
441 Optional flag that can be set per-image to enable the dynamic allocation of
442 regions even when the MMU is enabled. If not defined, only static
443 functionality will be available, if defined and set to 1 it will also
444 include the dynamic functionality.
445
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100446- **#define : MAX_XLAT_TABLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100447
448 Defines the maximum number of translation tables that are allocated by the
449 translation table library code. To minimize the amount of runtime memory
450 used, choose the smallest value needed to map the required virtual addresses
451 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
452 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
453 as well.
454
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100455- **#define : MAX_MMAP_REGIONS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100456
457 Defines the maximum number of regions that are allocated by the translation
458 table library code. A region consists of physical base address, virtual base
459 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
460 defined in the ``mmap_region_t`` structure. The platform defines the regions
461 that should be mapped. Then, the translation table library will create the
462 corresponding tables and descriptors at runtime. To minimize the amount of
463 runtime memory used, choose the smallest value needed to register the
464 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
465 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
466 the dynamic regions as well.
467
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100468- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100469
470 Defines the total size of the virtual address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000471 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100472
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100473- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100474
475 Defines the total size of the physical address space in bytes. For example,
David Cunadoc1503122018-02-16 21:12:58 +0000476 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100477
478If the platform port uses the IO storage framework, the following constants
479must also be defined:
480
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100481- **#define : MAX_IO_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100482
483 Defines the maximum number of registered IO devices. Attempting to register
484 more devices than this value using ``io_register_device()`` will fail with
485 -ENOMEM.
486
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100487- **#define : MAX_IO_HANDLES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100488
489 Defines the maximum number of open IO handles. Attempting to open more IO
490 entities than this value using ``io_open()`` will fail with -ENOMEM.
491
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100492- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100493
494 Defines the maximum number of registered IO block devices. Attempting to
495 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100496 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100497 With this macro, multiple block devices could be supported at the same
498 time.
499
500If the platform needs to allocate data within the per-cpu data framework in
501BL31, it should define the following macro. Currently this is only required if
502the platform decides not to use the coherent memory section by undefining the
503``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
504required memory within the the per-cpu data to minimize wastage.
505
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100506- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100507
508 Defines the memory (in bytes) to be reserved within the per-cpu data
509 structure for use by the platform layer.
510
511The following constants are optional. They should be defined when the platform
Dan Handley610e7e12018-03-01 18:44:00 +0000512memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100513
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100514- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100515
516 Defines the maximum address in secure RAM that the BL31's progbits sections
517 can occupy.
518
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100519- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100520
521 Defines the maximum address that the TSP's progbits sections can occupy.
522
523If the platform port uses the PL061 GPIO driver, the following constant may
524optionally be defined:
525
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100526- **PLAT_PL061_MAX_GPIOS**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100527 Maximum number of GPIOs required by the platform. This allows control how
528 much memory is allocated for PL061 GPIO controllers. The default value is
529
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100530 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100531
532If the platform port uses the partition driver, the following constant may
533optionally be defined:
534
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100535- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100536 Maximum number of partition entries required by the platform. This allows
537 control how much memory is allocated for partition entries. The default
538 value is 128.
539 `For example, define the build flag in platform.mk`_:
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100540 PLAT_PARTITION_MAX_ENTRIES := 12
541 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100542
543The following constant is optional. It should be defined to override the default
544behaviour of the ``assert()`` function (for example, to save memory).
545
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100546- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100547 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
548 ``assert()`` prints the name of the file, the line number and the asserted
549 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
550 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
551 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
552 defined, it defaults to ``LOG_LEVEL``.
553
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000554If the platform port uses the Activity Monitor Unit, the following constants
555may be defined:
556
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100557- **PLAT_AMU_GROUP1_COUNTERS_MASK**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000558 This mask reflects the set of group counters that should be enabled. The
559 maximum number of group 1 counters supported by AMUv1 is 16 so the mask
560 can be at most 0xffff. If the platform does not define this mask, no group 1
561 counters are enabled. If the platform defines this mask, the following
562 constant needs to also be defined.
563
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100564- **PLAT_AMU_GROUP1_NR_COUNTERS**
Dimitris Papastamos60346db2017-12-13 10:54:37 +0000565 This value is used to allocate an array to save and restore the counters
566 specified by ``PLAT_AMU_GROUP1_COUNTERS_MASK`` on CPU suspend.
567 This value should be equal to the highest bit position set in the
568 mask, plus 1. The maximum number of group 1 counters in AMUv1 is 16.
569
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100570File : plat_macros.S [mandatory]
571~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100572
573Each platform must ensure a file of this name is in the system include path with
Dan Handley610e7e12018-03-01 18:44:00 +0000574the following macro defined. In the Arm development platforms, this file is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100575found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
576
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100577- **Macro : plat_crash_print_regs**
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100578
579 This macro allows the crash reporting routine to print relevant platform
580 registers in case of an unhandled exception in BL31. This aids in debugging
581 and this macro can be defined to be empty in case register reporting is not
582 desired.
583
584 For instance, GIC or interconnect registers may be helpful for
585 troubleshooting.
586
587Handling Reset
588--------------
589
590BL1 by default implements the reset vector where execution starts from a cold
591or warm boot. BL31 can be optionally set as a reset vector using the
592``RESET_TO_BL31`` make variable.
593
594For each CPU, the reset vector code is responsible for the following tasks:
595
596#. Distinguishing between a cold boot and a warm boot.
597
598#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
599 the CPU is placed in a platform-specific state until the primary CPU
600 performs the necessary steps to remove it from this state.
601
602#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
603 specific address in the BL31 image in the same processor mode as it was
604 when released from reset.
605
606The following functions need to be implemented by the platform port to enable
607reset vector code to perform the above tasks.
608
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100609Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
610~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100611
612::
613
614 Argument : void
615 Return : uintptr_t
616
617This function is called with the MMU and caches disabled
618(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
619distinguishing between a warm and cold reset for the current CPU using
620platform-specific means. If it's a warm reset, then it returns the warm
621reset entrypoint point provided to ``plat_setup_psci_ops()`` during
622BL31 initialization. If it's a cold reset then this function must return zero.
623
624This function does not follow the Procedure Call Standard used by the
Dan Handley610e7e12018-03-01 18:44:00 +0000625Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100626not assume that callee saved registers are preserved across a call to this
627function.
628
629This function fulfills requirement 1 and 3 listed above.
630
631Note that for platforms that support programming the reset address, it is
632expected that a CPU will start executing code directly at the right address,
633both on a cold and warm reset. In this case, there is no need to identify the
634type of reset nor to query the warm reset entrypoint. Therefore, implementing
635this function is not required on such platforms.
636
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100637Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
638~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100639
640::
641
642 Argument : void
643
644This function is called with the MMU and data caches disabled. It is responsible
645for placing the executing secondary CPU in a platform-specific state until the
646primary CPU performs the necessary actions to bring it out of that state and
647allow entry into the OS. This function must not return.
648
Dan Handley610e7e12018-03-01 18:44:00 +0000649In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100650itself off. The primary CPU is responsible for powering up the secondary CPUs
651when normal world software requires them. When booting an EL3 payload instead,
652they stay powered on and are put in a holding pen until their mailbox gets
653populated.
654
655This function fulfills requirement 2 above.
656
657Note that for platforms that can't release secondary CPUs out of reset, only the
658primary CPU will execute the cold boot code. Therefore, implementing this
659function is not required on such platforms.
660
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100661Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
662~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100663
664::
665
666 Argument : void
667 Return : unsigned int
668
669This function identifies whether the current CPU is the primary CPU or a
670secondary CPU. A return value of zero indicates that the CPU is not the
671primary CPU, while a non-zero return value indicates that the CPU is the
672primary CPU.
673
674Note that for platforms that can't release secondary CPUs out of reset, only the
675primary CPU will execute the cold boot code. Therefore, there is no need to
676distinguish between primary and secondary CPUs and implementing this function is
677not required.
678
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100679Function : platform_mem_init() [mandatory]
680~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100681
682::
683
684 Argument : void
685 Return : void
686
687This function is called before any access to data is made by the firmware, in
688order to carry out any essential memory initialization.
689
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100690Function: plat_get_rotpk_info()
691~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100692
693::
694
695 Argument : void *, void **, unsigned int *, unsigned int *
696 Return : int
697
698This function is mandatory when Trusted Board Boot is enabled. It returns a
699pointer to the ROTPK stored in the platform (or a hash of it) and its length.
700The ROTPK must be encoded in DER format according to the following ASN.1
701structure:
702
703::
704
705 AlgorithmIdentifier ::= SEQUENCE {
706 algorithm OBJECT IDENTIFIER,
707 parameters ANY DEFINED BY algorithm OPTIONAL
708 }
709
710 SubjectPublicKeyInfo ::= SEQUENCE {
711 algorithm AlgorithmIdentifier,
712 subjectPublicKey BIT STRING
713 }
714
715In case the function returns a hash of the key:
716
717::
718
719 DigestInfo ::= SEQUENCE {
720 digestAlgorithm AlgorithmIdentifier,
721 digest OCTET STRING
722 }
723
724The function returns 0 on success. Any other value is treated as error by the
725Trusted Board Boot. The function also reports extra information related
726to the ROTPK in the flags parameter:
727
728::
729
730 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
731 hash.
732 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
733 verification while the platform ROTPK is not deployed.
734 When this flag is set, the function does not need to
735 return a platform ROTPK, and the authentication
736 framework uses the ROTPK in the certificate without
737 verifying it against the platform value. This flag
738 must not be used in a deployed production environment.
739
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100740Function: plat_get_nv_ctr()
741~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100742
743::
744
745 Argument : void *, unsigned int *
746 Return : int
747
748This function is mandatory when Trusted Board Boot is enabled. It returns the
749non-volatile counter value stored in the platform in the second argument. The
750cookie in the first argument may be used to select the counter in case the
751platform provides more than one (for example, on platforms that use the default
752TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100753TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100754
755The function returns 0 on success. Any other value means the counter value could
756not be retrieved from the platform.
757
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100758Function: plat_set_nv_ctr()
759~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100760
761::
762
763 Argument : void *, unsigned int
764 Return : int
765
766This function is mandatory when Trusted Board Boot is enabled. It sets a new
767counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100768select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100769the updated counter value to be written to the NV counter.
770
771The function returns 0 on success. Any other value means the counter value could
772not be updated.
773
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100774Function: plat_set_nv_ctr2()
775~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100776
777::
778
779 Argument : void *, const auth_img_desc_t *, unsigned int
780 Return : int
781
782This function is optional when Trusted Board Boot is enabled. If this
783interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
784first argument passed is a cookie and is typically used to
785differentiate between a Non Trusted NV Counter and a Trusted NV
786Counter. The second argument is a pointer to an authentication image
787descriptor and may be used to decide if the counter is allowed to be
788updated or not. The third argument is the updated counter value to
789be written to the NV counter.
790
791The function returns 0 on success. Any other value means the counter value
792either could not be updated or the authentication image descriptor indicates
793that it is not allowed to be updated.
794
795Common mandatory function modifications
796---------------------------------------
797
798The following functions are mandatory functions which need to be implemented
799by the platform port.
800
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100801Function : plat_my_core_pos()
802~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100803
804::
805
806 Argument : void
807 Return : unsigned int
808
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000809This function returns the index of the calling CPU which is used as a
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100810CPU-specific linear index into blocks of memory (for example while allocating
811per-CPU stacks). This function will be invoked very early in the
812initialization sequence which mandates that this function should be
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000813implemented in assembly and should not rely on the availability of a C
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100814runtime environment. This function can clobber x0 - x8 and must preserve
815x9 - x29.
816
817This function plays a crucial role in the power domain topology framework in
818PSCI and details of this can be found in `Power Domain Topology Design`_.
819
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100820Function : plat_core_pos_by_mpidr()
821~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100822
823::
824
825 Argument : u_register_t
826 Return : int
827
828This function validates the ``MPIDR`` of a CPU and converts it to an index,
829which can be used as a CPU-specific linear index into blocks of memory. In
830case the ``MPIDR`` is invalid, this function returns -1. This function will only
831be invoked by BL31 after the power domain topology is initialized and can
Dan Handley610e7e12018-03-01 18:44:00 +0000832utilize the C runtime environment. For further details about how TF-A
833represents the power domain topology and how this relates to the linear CPU
834index, please refer `Power Domain Topology Design`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100835
Ambroise Vincentd207f562019-04-10 12:50:27 +0100836Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
837~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
838
839::
840
841 Arguments : void **heap_addr, size_t *heap_size
842 Return : int
843
844This function is invoked during Mbed TLS library initialisation to get a heap,
845by means of a starting address and a size. This heap will then be used
846internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
847must be able to provide a heap to it.
848
849A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
850which a heap is statically reserved during compile time inside every image
851(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
852the function simply returns the address and size of this "pre-allocated" heap.
853For a platform to use this default implementation, only a call to the helper
854from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
855
856However, by writting their own implementation, platforms have the potential to
857optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
858shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
859twice.
860
861On success the function should return 0 and a negative error code otherwise.
862
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100863Common optional modifications
864-----------------------------
865
866The following are helper functions implemented by the firmware that perform
867common platform-specific tasks. A platform may choose to override these
868definitions.
869
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100870Function : plat_set_my_stack()
871~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100872
873::
874
875 Argument : void
876 Return : void
877
878This function sets the current stack pointer to the normal memory stack that
879has been allocated for the current CPU. For BL images that only require a
880stack for the primary CPU, the UP version of the function is used. The size
881of the stack allocated to each CPU is specified by the platform defined
882constant ``PLATFORM_STACK_SIZE``.
883
884Common implementations of this function for the UP and MP BL images are
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100885provided in `plat/common/aarch64/platform_up_stack.S`_ and
886`plat/common/aarch64/platform_mp_stack.S`_
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100887
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100888Function : plat_get_my_stack()
889~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100890
891::
892
893 Argument : void
894 Return : uintptr_t
895
896This function returns the base address of the normal memory stack that
897has been allocated for the current CPU. For BL images that only require a
898stack for the primary CPU, the UP version of the function is used. The size
899of the stack allocated to each CPU is specified by the platform defined
900constant ``PLATFORM_STACK_SIZE``.
901
902Common implementations of this function for the UP and MP BL images are
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100903provided in `plat/common/aarch64/platform_up_stack.S`_ and
904`plat/common/aarch64/platform_mp_stack.S`_
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100905
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100906Function : plat_report_exception()
907~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100908
909::
910
911 Argument : unsigned int
912 Return : void
913
914A platform may need to report various information about its status when an
915exception is taken, for example the current exception level, the CPU security
916state (secure/non-secure), the exception type, and so on. This function is
917called in the following circumstances:
918
919- In BL1, whenever an exception is taken.
920- In BL2, whenever an exception is taken.
921
922The default implementation doesn't do anything, to avoid making assumptions
923about the way the platform displays its status information.
924
925For AArch64, this function receives the exception type as its argument.
926Possible values for exceptions types are listed in the
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100927`include/common/bl_common.h`_ header file. Note that these constants are not
Dan Handley610e7e12018-03-01 18:44:00 +0000928related to any architectural exception code; they are just a TF-A convention.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100929
930For AArch32, this function receives the exception mode as its argument.
931Possible values for exception modes are listed in the
932`include/lib/aarch32/arch.h`_ header file.
933
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100934Function : plat_reset_handler()
935~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100936
937::
938
939 Argument : void
940 Return : void
941
942A platform may need to do additional initialization after reset. This function
943allows the platform to do the platform specific intializations. Platform
Paul Beesley1fbc97b2019-01-11 18:26:51 +0000944specific errata workarounds could also be implemented here. The API should
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100945preserve the values of callee saved registers x19 to x29.
946
947The default implementation doesn't do anything. If a platform needs to override
948the default implementation, refer to the `Firmware Design`_ for general
949guidelines.
950
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100951Function : plat_disable_acp()
952~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100953
954::
955
956 Argument : void
957 Return : void
958
John Tsichritzis6dda9762018-07-23 09:18:04 +0100959This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100960present) during a cluster power down sequence. The default weak implementation
John Tsichritzis6dda9762018-07-23 09:18:04 +0100961doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100962it has restrictions for stack usage and it can use the registers x0 - x17 as
963scratch registers. It should preserve the value in x18 register as it is used
964by the caller to store the return address.
965
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100966Function : plat_error_handler()
967~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100968
969::
970
971 Argument : int
972 Return : void
973
974This API is called when the generic code encounters an error situation from
975which it cannot continue. It allows the platform to perform error reporting or
976recovery actions (for example, reset the system). This function must not return.
977
978The parameter indicates the type of error using standard codes from ``errno.h``.
979Possible errors reported by the generic code are:
980
981- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
982 Board Boot is enabled)
983- ``-ENOENT``: the requested image or certificate could not be found or an IO
984 error was detected
Dan Handley610e7e12018-03-01 18:44:00 +0000985- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
986 error is usually an indication of an incorrect array size
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100987
988The default implementation simply spins.
989
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +0100990Function : plat_panic_handler()
991~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100992
993::
994
995 Argument : void
996 Return : void
997
998This API is called when the generic code encounters an unexpected error
999situation from which it cannot recover. This function must not return,
1000and must be implemented in assembly because it may be called before the C
1001environment is initialized.
1002
1003Note: The address from where it was called is stored in x30 (Link Register).
1004The default implementation simply spins.
1005
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001006Function : plat_get_bl_image_load_info()
1007~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001008
1009::
1010
1011 Argument : void
1012 Return : bl_load_info_t *
1013
1014This function returns pointer to the list of images that the platform has
Soby Mathew97b1bff2018-09-27 16:46:41 +01001015populated to load. This function is invoked in BL2 to load the
1016BL3xx images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001017
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001018Function : plat_get_next_bl_params()
1019~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001020
1021::
1022
1023 Argument : void
1024 Return : bl_params_t *
1025
1026This function returns a pointer to the shared memory that the platform has
Dan Handley610e7e12018-03-01 18:44:00 +00001027kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew97b1bff2018-09-27 16:46:41 +01001028function is invoked in BL2 to pass this information to the next BL
1029image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001030
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001031Function : plat_get_stack_protector_canary()
1032~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001033
1034::
1035
1036 Argument : void
1037 Return : u_register_t
1038
1039This function returns a random value that is used to initialize the canary used
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001040when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001041value will weaken the protection as the attacker could easily write the right
1042value as part of the attack most of the time. Therefore, it should return a
1043true random number.
1044
1045Note: For the protection to be effective, the global data need to be placed at
1046a lower address than the stack bases. Failure to do so would allow an attacker
1047to overwrite the canary as part of the stack buffer overflow attack.
1048
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001049Function : plat_flush_next_bl_params()
1050~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001051
1052::
1053
1054 Argument : void
1055 Return : void
1056
1057This function flushes to main memory all the image params that are passed to
Soby Mathew97b1bff2018-09-27 16:46:41 +01001058next image. This function is invoked in BL2 to flush this information
1059to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001060
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001061Function : plat_log_get_prefix()
1062~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewaaf15f52017-09-04 11:49:29 +01001063
1064::
1065
1066 Argument : unsigned int
1067 Return : const char *
1068
1069This function defines the prefix string corresponding to the `log_level` to be
Dan Handley610e7e12018-03-01 18:44:00 +00001070prepended to all the log output from TF-A. The `log_level` (argument) will
1071correspond to one of the standard log levels defined in debug.h. The platform
1072can override the common implementation to define a different prefix string for
John Tsichritzis30f89642018-06-07 16:31:34 +01001073the log output. The implementation should be robust to future changes that
Dan Handley610e7e12018-03-01 18:44:00 +00001074increase the number of log levels.
Soby Mathewaaf15f52017-09-04 11:49:29 +01001075
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001076Modifications specific to a Boot Loader stage
1077---------------------------------------------
1078
1079Boot Loader Stage 1 (BL1)
1080-------------------------
1081
1082BL1 implements the reset vector where execution starts from after a cold or
1083warm boot. For each CPU, BL1 is responsible for the following tasks:
1084
1085#. Handling the reset as described in section 2.2
1086
1087#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1088 only this CPU executes the remaining BL1 code, including loading and passing
1089 control to the BL2 stage.
1090
1091#. Identifying and starting the Firmware Update process (if required).
1092
1093#. Loading the BL2 image from non-volatile storage into secure memory at the
1094 address specified by the platform defined constant ``BL2_BASE``.
1095
1096#. Populating a ``meminfo`` structure with the following information in memory,
1097 accessible by BL2 immediately upon entry.
1098
1099 ::
1100
1101 meminfo.total_base = Base address of secure RAM visible to BL2
1102 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001103
Soby Mathew97b1bff2018-09-27 16:46:41 +01001104 By default, BL1 places this ``meminfo`` structure at the end of secure
1105 memory visible to BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001106
Soby Mathewb1bf0442018-02-16 14:52:52 +00001107 It is possible for the platform to decide where it wants to place the
1108 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1109 BL2 by overriding the weak default implementation of
1110 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001111
1112The following functions need to be implemented by the platform port to enable
1113BL1 to perform the above tasks.
1114
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001115Function : bl1_early_platform_setup() [mandatory]
1116~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001117
1118::
1119
1120 Argument : void
1121 Return : void
1122
1123This function executes with the MMU and data caches disabled. It is only called
1124by the primary CPU.
1125
Dan Handley610e7e12018-03-01 18:44:00 +00001126On Arm standard platforms, this function:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001127
1128- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1129
1130- Initializes a UART (PL011 console), which enables access to the ``printf``
1131 family of functions in BL1.
1132
1133- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1134 the CCI slave interface corresponding to the cluster that includes the
1135 primary CPU.
1136
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001137Function : bl1_plat_arch_setup() [mandatory]
1138~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001139
1140::
1141
1142 Argument : void
1143 Return : void
1144
1145This function performs any platform-specific and architectural setup that the
1146platform requires. Platform-specific setup might include configuration of
1147memory controllers and the interconnect.
1148
Dan Handley610e7e12018-03-01 18:44:00 +00001149In Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001150
1151This function helps fulfill requirement 2 above.
1152
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001153Function : bl1_platform_setup() [mandatory]
1154~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001155
1156::
1157
1158 Argument : void
1159 Return : void
1160
1161This function executes with the MMU and data caches enabled. It is responsible
1162for performing any remaining platform-specific setup that can occur after the
1163MMU and data cache have been enabled.
1164
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001165if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001166sequence used by plat_try_next_boot_source().
Roberto Vargas0cd866c2017-12-12 10:39:44 +00001167
Dan Handley610e7e12018-03-01 18:44:00 +00001168In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001169layer used to load the next bootloader image.
1170
1171This function helps fulfill requirement 4 above.
1172
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001173Function : bl1_plat_sec_mem_layout() [mandatory]
1174~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001175
1176::
1177
1178 Argument : void
1179 Return : meminfo *
1180
1181This function should only be called on the cold boot path. It executes with the
1182MMU and data caches enabled. The pointer returned by this function must point to
1183a ``meminfo`` structure containing the extents and availability of secure RAM for
1184the BL1 stage.
1185
1186::
1187
1188 meminfo.total_base = Base address of secure RAM visible to BL1
1189 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001190
1191This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1192populates a similar structure to tell BL2 the extents of memory available for
1193its own use.
1194
1195This function helps fulfill requirements 4 and 5 above.
1196
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001197Function : bl1_plat_prepare_exit() [optional]
1198~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001199
1200::
1201
1202 Argument : entry_point_info_t *
1203 Return : void
1204
1205This function is called prior to exiting BL1 in response to the
1206``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1207platform specific clean up or bookkeeping operations before transferring
1208control to the next image. It receives the address of the ``entry_point_info_t``
1209structure passed from BL2. This function runs with MMU disabled.
1210
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001211Function : bl1_plat_set_ep_info() [optional]
1212~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001213
1214::
1215
1216 Argument : unsigned int image_id, entry_point_info_t *ep_info
1217 Return : void
1218
1219This function allows platforms to override ``ep_info`` for the given ``image_id``.
1220
1221The default implementation just returns.
1222
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001223Function : bl1_plat_get_next_image_id() [optional]
1224~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001225
1226::
1227
1228 Argument : void
1229 Return : unsigned int
1230
1231This and the following function must be overridden to enable the FWU feature.
1232
1233BL1 calls this function after platform setup to identify the next image to be
1234loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1235with the normal boot sequence, which loads and executes BL2. If the platform
1236returns a different image id, BL1 assumes that Firmware Update is required.
1237
Dan Handley610e7e12018-03-01 18:44:00 +00001238The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001239platforms override this function to detect if firmware update is required, and
1240if so, return the first image in the firmware update process.
1241
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001242Function : bl1_plat_get_image_desc() [optional]
1243~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001244
1245::
1246
1247 Argument : unsigned int image_id
1248 Return : image_desc_t *
1249
1250BL1 calls this function to get the image descriptor information ``image_desc_t``
1251for the provided ``image_id`` from the platform.
1252
Dan Handley610e7e12018-03-01 18:44:00 +00001253The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001254standard platforms return an image descriptor corresponding to BL2 or one of
1255the firmware update images defined in the Trusted Board Boot Requirements
1256specification.
1257
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001258Function : bl1_plat_handle_pre_image_load() [optional]
1259~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001260
1261::
1262
Soby Mathew2f38ce32018-02-08 17:45:12 +00001263 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001264 Return : int
1265
1266This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001267corresponding to ``image_id``. This function is invoked in BL1, both in cold
1268boot and FWU code path, before loading the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001269
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001270Function : bl1_plat_handle_post_image_load() [optional]
1271~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001272
1273::
1274
Soby Mathew2f38ce32018-02-08 17:45:12 +00001275 Argument : unsigned int image_id
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001276 Return : int
1277
1278This function can be used by the platforms to update/use image information
Soby Mathew2f38ce32018-02-08 17:45:12 +00001279corresponding to ``image_id``. This function is invoked in BL1, both in cold
1280boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada43d20b32018-02-01 16:46:18 +09001281
Soby Mathewb1bf0442018-02-16 14:52:52 +00001282The default weak implementation of this function calculates the amount of
1283Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1284structure at the beginning of this free memory and populates it. The address
1285of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1286information to BL2.
1287
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001288Function : bl1_plat_fwu_done() [optional]
1289~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001290
1291::
1292
1293 Argument : unsigned int image_id, uintptr_t image_src,
1294 unsigned int image_size
1295 Return : void
1296
1297BL1 calls this function when the FWU process is complete. It must not return.
1298The platform may override this function to take platform specific action, for
1299example to initiate the normal boot flow.
1300
1301The default implementation spins forever.
1302
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001303Function : bl1_plat_mem_check() [mandatory]
1304~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001305
1306::
1307
1308 Argument : uintptr_t mem_base, unsigned int mem_size,
1309 unsigned int flags
1310 Return : int
1311
1312BL1 calls this function while handling FWU related SMCs, more specifically when
1313copying or authenticating an image. Its responsibility is to ensure that the
1314region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1315that this memory corresponds to either a secure or non-secure memory region as
1316indicated by the security state of the ``flags`` argument.
1317
1318This function can safely assume that the value resulting from the addition of
1319``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1320overflow.
1321
1322This function must return 0 on success, a non-null error code otherwise.
1323
1324The default implementation of this function asserts therefore platforms must
1325override it when using the FWU feature.
1326
1327Boot Loader Stage 2 (BL2)
1328-------------------------
1329
1330The BL2 stage is executed only by the primary CPU, which is determined in BL1
1331using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew97b1bff2018-09-27 16:46:41 +01001332``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1333``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1334non-volatile storage to secure/non-secure RAM. After all the images are loaded
1335then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1336images to be passed to the next BL image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001337
1338The following functions must be implemented by the platform port to enable BL2
1339to perform the above tasks.
1340
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001341Function : bl2_early_platform_setup2() [mandatory]
1342~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001343
1344::
1345
Soby Mathew97b1bff2018-09-27 16:46:41 +01001346 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001347 Return : void
1348
1349This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001350by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1351are platform specific.
1352
1353On Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001354
Soby Mathew97b1bff2018-09-27 16:46:41 +01001355 arg0 - Points to load address of HW_CONFIG if present
1356
1357 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1358 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001359
Dan Handley610e7e12018-03-01 18:44:00 +00001360On Arm standard platforms, this function also:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001361
1362- Initializes a UART (PL011 console), which enables access to the ``printf``
1363 family of functions in BL2.
1364
1365- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001366 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1367 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001368
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001369Function : bl2_plat_arch_setup() [mandatory]
1370~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001371
1372::
1373
1374 Argument : void
1375 Return : void
1376
1377This function executes with the MMU and data caches disabled. It is only called
1378by the primary CPU.
1379
1380The purpose of this function is to perform any architectural initialization
1381that varies across platforms.
1382
Dan Handley610e7e12018-03-01 18:44:00 +00001383On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001384
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001385Function : bl2_platform_setup() [mandatory]
1386~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001387
1388::
1389
1390 Argument : void
1391 Return : void
1392
1393This function may execute with the MMU and data caches enabled if the platform
1394port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1395called by the primary CPU.
1396
1397The purpose of this function is to perform any platform initialization
1398specific to BL2.
1399
Dan Handley610e7e12018-03-01 18:44:00 +00001400In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001401configuration of the TrustZone controller to allow non-secure masters access
1402to most of DRAM. Part of DRAM is reserved for secure world use.
1403
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001404Function : bl2_plat_handle_pre_image_load() [optional]
1405~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001406
1407::
1408
1409 Argument : unsigned int
1410 Return : int
1411
1412This function can be used by the platforms to update/use image information
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001413for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew97b1bff2018-09-27 16:46:41 +01001414loading each image.
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001415
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001416Function : bl2_plat_handle_post_image_load() [optional]
1417~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada02a0d3d2018-02-01 16:45:51 +09001418
1419::
1420
1421 Argument : unsigned int
1422 Return : int
1423
1424This function can be used by the platforms to update/use image information
1425for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew97b1bff2018-09-27 16:46:41 +01001426loading each image.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001427
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001428Function : bl2_plat_preload_setup [optional]
1429~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001430
1431::
John Tsichritzisee10e792018-06-06 09:38:10 +01001432
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001433 Argument : void
1434 Return : void
1435
1436This optional function performs any BL2 platform initialization
1437required before image loading, that is not done later in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001438bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001439boot sources is required, it initializes the boot sequence used by
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001440plat_try_next_boot_source().
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001441
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001442Function : plat_try_next_boot_source() [optional]
1443~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001444
1445::
John Tsichritzisee10e792018-06-06 09:38:10 +01001446
Roberto Vargasbc1ae1f2017-09-26 12:53:01 +01001447 Argument : void
1448 Return : int
1449
1450This optional function passes to the next boot source in the redundancy
1451sequence.
1452
1453This function moves the current boot redundancy source to the next
1454element in the boot sequence. If there are no more boot sources then it
1455must return 0, otherwise it must return 1. The default implementation
1456of this always returns 0.
1457
Roberto Vargasb1584272017-11-20 13:36:10 +00001458Boot Loader Stage 2 (BL2) at EL3
1459--------------------------------
1460
Dan Handley610e7e12018-03-01 18:44:00 +00001461When the platform has a non-TF-A Boot ROM it is desirable to jump
1462directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Roberto Vargasb1584272017-11-20 13:36:10 +00001463execute at EL3 instead of executing at EL1. Refer to the `Firmware
1464Design`_ for more information.
1465
1466All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001467bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1468their work is done now by bl2_el3_early_platform_setup and
1469bl2_el3_plat_arch_setup. These functions should generally implement
1470the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargasb1584272017-11-20 13:36:10 +00001471
1472
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001473Function : bl2_el3_early_platform_setup() [mandatory]
1474~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001475
1476::
John Tsichritzisee10e792018-06-06 09:38:10 +01001477
Roberto Vargasb1584272017-11-20 13:36:10 +00001478 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1479 Return : void
1480
1481This function executes with the MMU and data caches disabled. It is only called
1482by the primary CPU. This function receives four parameters which can be used
1483by the platform to pass any needed information from the Boot ROM to BL2.
1484
Dan Handley610e7e12018-03-01 18:44:00 +00001485On Arm standard platforms, this function does the following:
Roberto Vargasb1584272017-11-20 13:36:10 +00001486
1487- Initializes a UART (PL011 console), which enables access to the ``printf``
1488 family of functions in BL2.
1489
1490- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001491 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1492 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargasb1584272017-11-20 13:36:10 +00001493
1494- Initializes the private variables that define the memory layout used.
1495
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001496Function : bl2_el3_plat_arch_setup() [mandatory]
1497~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001498
1499::
John Tsichritzisee10e792018-06-06 09:38:10 +01001500
Roberto Vargasb1584272017-11-20 13:36:10 +00001501 Argument : void
1502 Return : void
1503
1504This function executes with the MMU and data caches disabled. It is only called
1505by the primary CPU.
1506
1507The purpose of this function is to perform any architectural initialization
1508that varies across platforms.
1509
Dan Handley610e7e12018-03-01 18:44:00 +00001510On Arm standard platforms, this function enables the MMU.
Roberto Vargasb1584272017-11-20 13:36:10 +00001511
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001512Function : bl2_el3_plat_prepare_exit() [optional]
1513~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargasb1584272017-11-20 13:36:10 +00001514
1515::
John Tsichritzisee10e792018-06-06 09:38:10 +01001516
Roberto Vargasb1584272017-11-20 13:36:10 +00001517 Argument : void
1518 Return : void
1519
1520This function is called prior to exiting BL2 and run the next image.
1521It should be used to perform platform specific clean up or bookkeeping
1522operations before transferring control to the next image. This function
1523runs with MMU disabled.
1524
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001525FWU Boot Loader Stage 2 (BL2U)
1526------------------------------
1527
1528The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
1529process and is executed only by the primary CPU. BL1 passes control to BL2U at
1530``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
1531
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001532#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
1533 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
1534 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
1535 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001536 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
1537 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
1538
1539#. Any platform specific setup required to perform the FWU process. For
Dan Handley610e7e12018-03-01 18:44:00 +00001540 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001541 normal world can access DDR memory.
1542
1543The following functions must be implemented by the platform port to enable
1544BL2U to perform the tasks mentioned above.
1545
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001546Function : bl2u_early_platform_setup() [mandatory]
1547~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001548
1549::
1550
1551 Argument : meminfo *mem_info, void *plat_info
1552 Return : void
1553
1554This function executes with the MMU and data caches disabled. It is only
1555called by the primary CPU. The arguments to this function is the address
1556of the ``meminfo`` structure and platform specific info provided by BL1.
1557
1558The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
1559private storage as the original memory may be subsequently overwritten by BL2U.
1560
Dan Handley610e7e12018-03-01 18:44:00 +00001561On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001562to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001563variable.
1564
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001565Function : bl2u_plat_arch_setup() [mandatory]
1566~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001567
1568::
1569
1570 Argument : void
1571 Return : void
1572
1573This function executes with the MMU and data caches disabled. It is only
1574called by the primary CPU.
1575
1576The purpose of this function is to perform any architectural initialization
1577that varies across platforms, for example enabling the MMU (since the memory
1578map differs across platforms).
1579
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001580Function : bl2u_platform_setup() [mandatory]
1581~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001582
1583::
1584
1585 Argument : void
1586 Return : void
1587
1588This function may execute with the MMU and data caches enabled if the platform
1589port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
1590called by the primary CPU.
1591
1592The purpose of this function is to perform any platform initialization
1593specific to BL2U.
1594
Dan Handley610e7e12018-03-01 18:44:00 +00001595In Arm standard platforms, this function performs security setup, including
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001596configuration of the TrustZone controller to allow non-secure masters access
1597to most of DRAM. Part of DRAM is reserved for secure world use.
1598
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001599Function : bl2u_plat_handle_scp_bl2u() [optional]
1600~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001601
1602::
1603
1604 Argument : void
1605 Return : int
1606
1607This function is used to perform any platform-specific actions required to
1608handle the SCP firmware. Typically it transfers the image into SCP memory using
1609a platform-specific protocol and waits until SCP executes it and signals to the
1610Application Processor (AP) for BL2U execution to continue.
1611
1612This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001613This function is included if SCP_BL2U_BASE is defined.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001614
1615Boot Loader Stage 3-1 (BL31)
1616----------------------------
1617
1618During cold boot, the BL31 stage is executed only by the primary CPU. This is
1619determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
1620control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
1621CPUs. BL31 executes at EL3 and is responsible for:
1622
1623#. Re-initializing all architectural and platform state. Although BL1 performs
1624 some of this initialization, BL31 remains resident in EL3 and must ensure
1625 that EL3 architectural and platform state is completely initialized. It
1626 should make no assumptions about the system state when it receives control.
1627
1628#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew97b1bff2018-09-27 16:46:41 +01001629 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
1630 populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001631
1632#. Providing runtime firmware services. Currently, BL31 only implements a
1633 subset of the Power State Coordination Interface (PSCI) API as a runtime
1634 service. See Section 3.3 below for details of porting the PSCI
1635 implementation.
1636
1637#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001638 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001639 services to specify the security state in which the next image should be
Soby Mathew97b1bff2018-09-27 16:46:41 +01001640 executed and run the corresponding image. On ARM platforms, BL31 uses the
1641 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001642
1643If BL31 is a reset vector, It also needs to handle the reset as specified in
1644section 2.2 before the tasks described above.
1645
1646The following functions must be implemented by the platform port to enable BL31
1647to perform the above tasks.
1648
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001649Function : bl31_early_platform_setup2() [mandatory]
1650~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001651
1652::
1653
Soby Mathew97b1bff2018-09-27 16:46:41 +01001654 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001655 Return : void
1656
1657This function executes with the MMU and data caches disabled. It is only called
Soby Mathew97b1bff2018-09-27 16:46:41 +01001658by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
1659platform specific.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001660
Soby Mathew97b1bff2018-09-27 16:46:41 +01001661In Arm standard platforms, the arguments received are :
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001662
Soby Mathew97b1bff2018-09-27 16:46:41 +01001663 arg0 - The pointer to the head of `bl_params_t` list
1664 which is list of executable images following BL31,
1665
1666 arg1 - Points to load address of SOC_FW_CONFIG if present
1667
1668 arg2 - Points to load address of HW_CONFIG if present
1669
1670 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
1671 used in release builds.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001672
Soby Mathew97b1bff2018-09-27 16:46:41 +01001673The function runs through the `bl_param_t` list and extracts the entry point
1674information for BL32 and BL33. It also performs the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001675
1676- Initialize a UART (PL011 console), which enables access to the ``printf``
1677 family of functions in BL31.
1678
1679- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
1680 CCI slave interface corresponding to the cluster that includes the primary
1681 CPU.
1682
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001683Function : bl31_plat_arch_setup() [mandatory]
1684~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001685
1686::
1687
1688 Argument : void
1689 Return : void
1690
1691This function executes with the MMU and data caches disabled. It is only called
1692by the primary CPU.
1693
1694The purpose of this function is to perform any architectural initialization
1695that varies across platforms.
1696
Dan Handley610e7e12018-03-01 18:44:00 +00001697On Arm standard platforms, this function enables the MMU.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001698
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001699Function : bl31_platform_setup() [mandatory]
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001700~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1701
1702::
1703
1704 Argument : void
1705 Return : void
1706
1707This function may execute with the MMU and data caches enabled if the platform
1708port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
1709called by the primary CPU.
1710
1711The purpose of this function is to complete platform initialization so that both
1712BL31 runtime services and normal world software can function correctly.
1713
Dan Handley610e7e12018-03-01 18:44:00 +00001714On Arm standard platforms, this function does the following:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001715
1716- Initialize the generic interrupt controller.
1717
1718 Depending on the GIC driver selected by the platform, the appropriate GICv2
1719 or GICv3 initialization will be done, which mainly consists of:
1720
1721 - Enable secure interrupts in the GIC CPU interface.
1722 - Disable the legacy interrupt bypass mechanism.
1723 - Configure the priority mask register to allow interrupts of all priorities
1724 to be signaled to the CPU interface.
1725 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
1726 - Target all secure SPIs to CPU0.
1727 - Enable these secure interrupts in the GIC distributor.
1728 - Configure all other interrupts as non-secure.
1729 - Enable signaling of secure interrupts in the GIC distributor.
1730
1731- Enable system-level implementation of the generic timer counter through the
1732 memory mapped interface.
1733
1734- Grant access to the system counter timer module
1735
1736- Initialize the power controller device.
1737
1738 In particular, initialise the locks that prevent concurrent accesses to the
1739 power controller device.
1740
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001741Function : bl31_plat_runtime_setup() [optional]
1742~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001743
1744::
1745
1746 Argument : void
1747 Return : void
1748
1749The purpose of this function is allow the platform to perform any BL31 runtime
1750setup just prior to BL31 exit during cold boot. The default weak
Julius Werneraae9bb12017-09-18 16:49:48 -07001751implementation of this function will invoke ``console_switch_state()`` to switch
1752console output to consoles marked for use in the ``runtime`` state.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001753
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001754Function : bl31_plat_get_next_image_ep_info() [mandatory]
1755~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001756
1757::
1758
Sandrine Bailleux842117d2018-05-14 14:25:47 +02001759 Argument : uint32_t
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001760 Return : entry_point_info *
1761
1762This function may execute with the MMU and data caches enabled if the platform
1763port does the necessary initializations in ``bl31_plat_arch_setup()``.
1764
1765This function is called by ``bl31_main()`` to retrieve information provided by
1766BL2 for the next image in the security state specified by the argument. BL31
1767uses this information to pass control to that image in the specified security
1768state. This function must return a pointer to the ``entry_point_info`` structure
1769(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
1770should return NULL otherwise.
1771
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001772Function : bl31_plat_enable_mmu [optional]
1773~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1774
1775::
1776
1777 Argument : uint32_t
1778 Return : void
1779
1780This function enables the MMU. The boot code calls this function with MMU and
1781caches disabled. This function should program necessary registers to enable
1782translation, and upon return, the MMU on the calling PE must be enabled.
1783
1784The function must honor flags passed in the first argument. These flags are
1785defined by the translation library, and can be found in the file
1786``include/lib/xlat_tables/xlat_mmu_helpers.h``.
1787
1788On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley1fbc97b2019-01-11 18:26:51 +00001789is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharane834ee12018-04-27 15:17:03 +01001790
Antonio Nino Diaz25cda672019-02-19 11:53:51 +00001791Function : plat_init_apiakey [optional]
1792~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1793
1794::
1795
1796 Argument : void
1797 Return : uint64_t *
1798
1799This function populates the ``plat_apiakey`` array that contains the values used
1800to set the ``APIAKey{Hi,Lo}_EL1`` registers. It returns a pointer to this array.
1801
1802The value should be obtained from a reliable source of randomness.
1803
1804This function is only needed if ARMv8.3 pointer authentication is used in the
1805Trusted Firmware by building with ``ENABLE_PAUTH=1``.
1806
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001807Function : plat_get_syscnt_freq2() [mandatory]
1808~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001809
1810::
1811
1812 Argument : void
1813 Return : unsigned int
1814
1815This function is used by the architecture setup code to retrieve the counter
1816frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley610e7e12018-03-01 18:44:00 +00001817``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001818of the system counter, which is retrieved from the first entry in the frequency
1819modes table.
1820
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001821#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
1822~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001823
1824When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
1825bytes) aligned to the cache line boundary that should be allocated per-cpu to
1826accommodate all the bakery locks.
1827
1828If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
1829calculates the size of the ``bakery_lock`` input section, aligns it to the
1830nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
1831and stores the result in a linker symbol. This constant prevents a platform
1832from relying on the linker and provide a more efficient mechanism for
1833accessing per-cpu bakery lock information.
1834
1835If this constant is defined and its value is not equal to the value
1836calculated by the linker then a link time assertion is raised. A compile time
1837assertion is raised if the value of the constant is not aligned to the cache
1838line boundary.
1839
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001840SDEI porting requirements
1841~~~~~~~~~~~~~~~~~~~~~~~~~
1842
1843The SDEI dispatcher requires the platform to provide the following macros
1844and functions, of which some are optional, and some others mandatory.
1845
1846Macros
1847......
1848
1849Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
1850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1851
1852This macro must be defined to the EL3 exception priority level associated with
1853Normal SDEI events on the platform. This must have a higher value (therefore of
1854lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
1855
1856Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
1857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1858
1859This macro must be defined to the EL3 exception priority level associated with
1860Critical SDEI events on the platform. This must have a lower value (therefore of
1861higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
1862
Jeenu Viswambharan7af48132018-01-16 09:29:30 +00001863**Note**: SDEI exception priorities must be the lowest among Secure priorities.
1864Among the SDEI exceptions, Critical SDEI priority must be higher than Normal
1865SDEI priority.
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001866
1867Functions
1868.........
1869
1870Function: int plat_sdei_validate_entry_point(uintptr_t ep) [optional]
1871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1872
1873::
1874
1875 Argument: uintptr_t
1876 Return: int
1877
1878This function validates the address of client entry points provided for both
1879event registration and *Complete and Resume* SDEI calls. The function takes one
1880argument, which is the address of the handler the SDEI client requested to
1881register. The function must return ``0`` for successful validation, or ``-1``
1882upon failure.
1883
Dan Handley610e7e12018-03-01 18:44:00 +00001884The default implementation always returns ``0``. On Arm platforms, this function
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +01001885is implemented to translate the entry point to physical address, and further to
1886ensure that the address is located in Non-secure DRAM.
1887
1888Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
1889^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1890
1891::
1892
1893 Argument: uint64_t
1894 Argument: unsigned int
1895 Return: void
1896
1897SDEI specification requires that a PE comes out of reset with the events masked.
1898The client therefore is expected to call ``PE_UNMASK`` to unmask SDEI events on
1899the PE. No SDEI events can be dispatched until such time.
1900
1901Should a PE receive an interrupt that was bound to an SDEI event while the
1902events are masked on the PE, the dispatcher implementation invokes the function
1903``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
1904interrupt and the interrupt ID are passed as parameters.
1905
1906The default implementation only prints out a warning message.
1907
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001908Power State Coordination Interface (in BL31)
1909--------------------------------------------
1910
Dan Handley610e7e12018-03-01 18:44:00 +00001911The TF-A implementation of the PSCI API is based around the concept of a
1912*power domain*. A *power domain* is a CPU or a logical group of CPUs which
1913share some state on which power management operations can be performed as
1914specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
1915a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
1916*power domains* are arranged in a hierarchical tree structure and each
1917*power domain* can be identified in a system by the cpu index of any CPU that
1918is part of that domain and a *power domain level*. A processing element (for
1919example, a CPU) is at level 0. If the *power domain* node above a CPU is a
1920logical grouping of CPUs that share some state, then level 1 is that group of
1921CPUs (for example, a cluster), and level 2 is a group of clusters (for
1922example, the system). More details on the power domain topology and its
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001923organization can be found in `Power Domain Topology Design`_.
1924
1925BL31's platform initialization code exports a pointer to the platform-specific
1926power management operations required for the PSCI implementation to function
1927correctly. This information is populated in the ``plat_psci_ops`` structure. The
1928PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
1929power management operations on the power domains. For example, the target
1930CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
1931handler (if present) is called for the CPU power domain.
1932
1933The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
1934describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz56b68ad2019-02-28 13:35:21 +00001935defines a generic representation of the power-state parameter, which is an
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001936array of local power states where each index corresponds to a power domain
1937level. Each entry contains the local power state the power domain at that power
1938level could enter. It depends on the ``validate_power_state()`` handler to
1939convert the power-state parameter (possibly encoding a composite power state)
1940passed in a PSCI ``CPU_SUSPEND`` call to this representation.
1941
1942The following functions form part of platform port of PSCI functionality.
1943
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001944Function : plat_psci_stat_accounting_start() [optional]
1945~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001946
1947::
1948
1949 Argument : const psci_power_state_t *
1950 Return : void
1951
1952This is an optional hook that platforms can implement for residency statistics
1953accounting before entering a low power state. The ``pwr_domain_state`` field of
1954``state_info`` (first argument) can be inspected if stat accounting is done
1955differently at CPU level versus higher levels. As an example, if the element at
1956index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
1957state, special hardware logic may be programmed in order to keep track of the
1958residency statistics. For higher levels (array indices > 0), the residency
1959statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
1960default implementation will use PMF to capture timestamps.
1961
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001962Function : plat_psci_stat_accounting_stop() [optional]
1963~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001964
1965::
1966
1967 Argument : const psci_power_state_t *
1968 Return : void
1969
1970This is an optional hook that platforms can implement for residency statistics
1971accounting after exiting from a low power state. The ``pwr_domain_state`` field
1972of ``state_info`` (first argument) can be inspected if stat accounting is done
1973differently at CPU level versus higher levels. As an example, if the element at
1974index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
1975state, special hardware logic may be programmed in order to keep track of the
1976residency statistics. For higher levels (array indices > 0), the residency
1977statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
1978default implementation will use PMF to capture timestamps.
1979
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01001980Function : plat_psci_stat_get_residency() [optional]
1981~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001982
1983::
1984
1985 Argument : unsigned int, const psci_power_state_t *, int
1986 Return : u_register_t
1987
1988This is an optional interface that is is invoked after resuming from a low power
1989state and provides the time spent resident in that low power state by the power
1990domain at a particular power domain level. When a CPU wakes up from suspend,
1991all its parent power domain levels are also woken up. The generic PSCI code
1992invokes this function for each parent power domain that is resumed and it
1993identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
1994argument) describes the low power state that the power domain has resumed from.
1995The current CPU is the first CPU in the power domain to resume from the low
1996power state and the ``last_cpu_idx`` (third parameter) is the index of the last
1997CPU in the power domain to suspend and may be needed to calculate the residency
1998for that power domain.
1999
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002000Function : plat_get_target_pwr_state() [optional]
2001~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002002
2003::
2004
2005 Argument : unsigned int, const plat_local_state_t *, unsigned int
2006 Return : plat_local_state_t
2007
2008The PSCI generic code uses this function to let the platform participate in
2009state coordination during a power management operation. The function is passed
2010a pointer to an array of platform specific local power state ``states`` (second
2011argument) which contains the requested power state for each CPU at a particular
2012power domain level ``lvl`` (first argument) within the power domain. The function
2013is expected to traverse this array of upto ``ncpus`` (third argument) and return
2014a coordinated target power state by the comparing all the requested power
2015states. The target power state should not be deeper than any of the requested
2016power states.
2017
2018A weak definition of this API is provided by default wherein it assumes
2019that the platform assigns a local state value in order of increasing depth
2020of the power state i.e. for two power states X & Y, if X < Y
2021then X represents a shallower power state than Y. As a result, the
2022coordinated target local power state for a power domain will be the minimum
2023of the requested local power state values.
2024
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002025Function : plat_get_power_domain_tree_desc() [mandatory]
2026~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002027
2028::
2029
2030 Argument : void
2031 Return : const unsigned char *
2032
2033This function returns a pointer to the byte array containing the power domain
2034topology tree description. The format and method to construct this array are
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002035described in `Power Domain Topology Design`_. The BL31 PSCI initialization code
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002036requires this array to be described by the platform, either statically or
2037dynamically, to initialize the power domain topology tree. In case the array
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002038is populated dynamically, then plat_core_pos_by_mpidr() and
2039plat_my_core_pos() should also be implemented suitably so that the topology
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002040tree description matches the CPU indices returned by these APIs. These APIs
2041together form the platform interface for the PSCI topology framework.
2042
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002043Function : plat_setup_psci_ops() [mandatory]
2044~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002045
2046::
2047
2048 Argument : uintptr_t, const plat_psci_ops **
2049 Return : int
2050
2051This function may execute with the MMU and data caches enabled if the platform
2052port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2053called by the primary CPU.
2054
2055This function is called by PSCI initialization code. Its purpose is to let
2056the platform layer know about the warm boot entrypoint through the
2057``sec_entrypoint`` (first argument) and to export handler routines for
2058platform-specific psci power management actions by populating the passed
2059pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2060
2061A description of each member of this structure is given below. Please refer to
Dan Handley610e7e12018-03-01 18:44:00 +00002062the Arm FVP specific implementation of these handlers in
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002063`plat/arm/board/fvp/fvp_pm.c`_ as an example. For each PSCI function that the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002064platform wants to support, the associated operation or operations in this
2065structure must be provided and implemented (Refer section 4 of
Dan Handley610e7e12018-03-01 18:44:00 +00002066`Firmware Design`_ for the PSCI API supported in TF-A). To disable a PSCI
2067function in a platform port, the operation should be removed from this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002068structure instead of providing an empty implementation.
2069
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002070plat_psci_ops.cpu_standby()
2071...........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002072
2073Perform the platform-specific actions to enter the standby state for a cpu
2074indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002075wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002076For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2077the suspend state type specified in the ``power-state`` parameter should be
2078STANDBY and the target power domain level specified should be the CPU. The
2079handler should put the CPU into a low power retention state (usually by
2080issuing a wfi instruction) and ensure that it can be woken up from that
2081state by a normal interrupt. The generic code expects the handler to succeed.
2082
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002083plat_psci_ops.pwr_domain_on()
2084.............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002085
2086Perform the platform specific actions to power on a CPU, specified
2087by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002088return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002089
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002090plat_psci_ops.pwr_domain_off()
2091..............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002092
2093Perform the platform specific actions to prepare to power off the calling CPU
2094and its higher parent power domain levels as indicated by the ``target_state``
2095(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2096
2097The ``target_state`` encodes the platform coordinated target local power states
2098for the CPU power domain and its parent power domain levels. The handler
2099needs to perform power management operation corresponding to the local state
2100at each power level.
2101
2102For this handler, the local power state for the CPU power domain will be a
2103power down state where as it could be either power down, retention or run state
2104for the higher power domain levels depending on the result of state
2105coordination. The generic code expects the handler to succeed.
2106
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002107plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2108...........................................................
Varun Wadekarae87f4b2017-07-10 16:02:05 -07002109
2110This optional function may be used as a performance optimization to replace
2111or complement pwr_domain_suspend() on some platforms. Its calling semantics
2112are identical to pwr_domain_suspend(), except the PSCI implementation only
2113calls this function when suspending to a power down state, and it guarantees
2114that data caches are enabled.
2115
2116When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2117before calling pwr_domain_suspend(). If the target_state corresponds to a
2118power down state and it is safe to perform some or all of the platform
2119specific actions in that function with data caches enabled, it may be more
2120efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2121= 1, data caches remain enabled throughout, and so there is no advantage to
2122moving platform specific actions to this function.
2123
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002124plat_psci_ops.pwr_domain_suspend()
2125..................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002126
2127Perform the platform specific actions to prepare to suspend the calling
2128CPU and its higher parent power domain levels as indicated by the
2129``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2130API implementation.
2131
2132The ``target_state`` has a similar meaning as described in
2133the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2134target local power states for the CPU power domain and its parent
2135power domain levels. The handler needs to perform power management operation
2136corresponding to the local state at each power level. The generic code
2137expects the handler to succeed.
2138
Douglas Raillarda84996b2017-08-02 16:57:32 +01002139The difference between turning a power domain off versus suspending it is that
2140in the former case, the power domain is expected to re-initialize its state
2141when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2142case, the power domain is expected to save enough state so that it can resume
2143execution by restoring this state when its powered on (see
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002144``pwr_domain_suspend_finish()``).
2145
Douglas Raillarda84996b2017-08-02 16:57:32 +01002146When suspending a core, the platform can also choose to power off the GICv3
2147Redistributor and ITS through an implementation-defined sequence. To achieve
2148this safely, the ITS context must be saved first. The architectural part is
2149implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2150sequence is implementation defined and it is therefore the responsibility of
2151the platform code to implement the necessary sequence. Then the GIC
2152Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2153Powering off the Redistributor requires the implementation to support it and it
2154is the responsibility of the platform code to execute the right implementation
2155defined sequence.
2156
2157When a system suspend is requested, the platform can also make use of the
2158``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2159it has saved the context of the Redistributors and ITS of all the cores in the
2160system. The context of the Distributor can be large and may require it to be
2161allocated in a special area if it cannot fit in the platform's global static
2162data, for example in DRAM. The Distributor can then be powered down using an
2163implementation-defined sequence.
2164
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002165plat_psci_ops.pwr_domain_pwr_down_wfi()
2166.......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002167
2168This is an optional function and, if implemented, is expected to perform
2169platform specific actions including the ``wfi`` invocation which allows the
2170CPU to powerdown. Since this function is invoked outside the PSCI locks,
2171the actions performed in this hook must be local to the CPU or the platform
2172must ensure that races between multiple CPUs cannot occur.
2173
2174The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2175operation and it encodes the platform coordinated target local power states for
2176the CPU power domain and its parent power domain levels. This function must
2177not return back to the caller.
2178
2179If this function is not implemented by the platform, PSCI generic
2180implementation invokes ``psci_power_down_wfi()`` for power down.
2181
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002182plat_psci_ops.pwr_domain_on_finish()
2183....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002184
2185This function is called by the PSCI implementation after the calling CPU is
2186powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2187It performs the platform-specific setup required to initialize enough state for
2188this CPU to enter the normal world and also provide secure runtime firmware
2189services.
2190
2191The ``target_state`` (first argument) is the prior state of the power domains
2192immediately before the CPU was turned on. It indicates which power domains
2193above the CPU might require initialization due to having previously been in
2194low power states. The generic code expects the handler to succeed.
2195
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002196plat_psci_ops.pwr_domain_suspend_finish()
2197.........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002198
2199This function is called by the PSCI implementation after the calling CPU is
2200powered on and released from reset in response to an asynchronous wakeup
2201event, for example a timer interrupt that was programmed by the CPU during the
2202``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2203setup required to restore the saved state for this CPU to resume execution
2204in the normal world and also provide secure runtime firmware services.
2205
2206The ``target_state`` (first argument) has a similar meaning as described in
2207the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2208to succeed.
2209
Douglas Raillarda84996b2017-08-02 16:57:32 +01002210If the Distributor, Redistributors or ITS have been powered off as part of a
2211suspend, their context must be restored in this function in the reverse order
2212to how they were saved during suspend sequence.
2213
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002214plat_psci_ops.system_off()
2215..........................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002216
2217This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2218call. It performs the platform-specific system poweroff sequence after
2219notifying the Secure Payload Dispatcher.
2220
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002221plat_psci_ops.system_reset()
2222............................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002223
2224This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2225call. It performs the platform-specific system reset sequence after
2226notifying the Secure Payload Dispatcher.
2227
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002228plat_psci_ops.validate_power_state()
2229....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002230
2231This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2232call to validate the ``power_state`` parameter of the PSCI API and if valid,
2233populate it in ``req_state`` (second argument) array as power domain level
2234specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002235return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002236normal world PSCI client.
2237
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002238plat_psci_ops.validate_ns_entrypoint()
2239......................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002240
2241This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2242``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2243parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002244the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002245propagated back to the normal world PSCI client.
2246
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002247plat_psci_ops.get_sys_suspend_power_state()
2248...........................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002249
2250This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2251call to get the ``req_state`` parameter from platform which encodes the power
2252domain level specific local states to suspend to system affinity level. The
2253``req_state`` will be utilized to do the PSCI state coordination and
2254``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2255enter system suspend.
2256
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002257plat_psci_ops.get_pwr_lvl_state_idx()
2258.....................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002259
2260This is an optional function and, if implemented, is invoked by the PSCI
2261implementation to convert the ``local_state`` (first argument) at a specified
2262``pwr_lvl`` (second argument) to an index between 0 and
2263``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2264supports more than two local power states at each power domain level, that is
2265``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2266local power states.
2267
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002268plat_psci_ops.translate_power_state_by_mpidr()
2269..............................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002270
2271This is an optional function and, if implemented, verifies the ``power_state``
2272(second argument) parameter of the PSCI API corresponding to a target power
2273domain. The target power domain is identified by using both ``MPIDR`` (first
2274argument) and the power domain level encoded in ``power_state``. The power domain
2275level specific local states are to be extracted from ``power_state`` and be
2276populated in the ``output_state`` (third argument) array. The functionality
2277is similar to the ``validate_power_state`` function described above and is
2278envisaged to be used in case the validity of ``power_state`` depend on the
2279targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002280domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002281function is not implemented, then the generic implementation relies on
2282``validate_power_state`` function to translate the ``power_state``.
2283
2284This function can also be used in case the platform wants to support local
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002285power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002286APIs as described in Section 5.18 of `PSCI`_.
2287
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002288plat_psci_ops.get_node_hw_state()
2289.................................
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002290
2291This is an optional function. If implemented this function is intended to return
2292the power state of a node (identified by the first parameter, the ``MPIDR``) in
2293the power domain topology (identified by the second parameter, ``power_level``),
2294as retrieved from a power controller or equivalent component on the platform.
2295Upon successful completion, the implementation must map and return the final
2296status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2297must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2298appropriate.
2299
2300Implementations are not expected to handle ``power_levels`` greater than
2301``PLAT_MAX_PWR_LVL``.
2302
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002303plat_psci_ops.system_reset2()
2304.............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002305
2306This is an optional function. If implemented this function is
2307called during the ``SYSTEM_RESET2`` call to perform a reset
2308based on the first parameter ``reset_type`` as specified in
2309`PSCI`_. The parameter ``cookie`` can be used to pass additional
2310reset information. If the ``reset_type`` is not supported, the
2311function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2312resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2313and vendor reset can return other PSCI error codes as defined
2314in `PSCI`_. On success this function will not return.
2315
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002316plat_psci_ops.write_mem_protect()
2317.................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002318
2319This is an optional function. If implemented it enables or disables the
2320``MEM_PROTECT`` functionality based on the value of ``val``.
2321A non-zero value enables ``MEM_PROTECT`` and a value of zero
2322disables it. Upon encountering failures it must return a negative value
2323and on success it must return 0.
2324
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002325plat_psci_ops.read_mem_protect()
2326................................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002327
2328This is an optional function. If implemented it returns the current
2329state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2330failures it must return a negative value and on success it must
2331return 0.
2332
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002333plat_psci_ops.mem_protect_chk()
2334...............................
Roberto Vargasd963e3e2017-09-12 10:28:35 +01002335
2336This is an optional function. If implemented it checks if a memory
2337region defined by a base address ``base`` and with a size of ``length``
2338bytes is protected by ``MEM_PROTECT``. If the region is protected
2339then it must return 0, otherwise it must return a negative number.
2340
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002341Interrupt Management framework (in BL31)
2342----------------------------------------
2343
2344BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2345generated in either security state and targeted to EL1 or EL2 in the non-secure
2346state or EL3/S-EL1 in the secure state. The design of this framework is
2347described in the `IMF Design Guide`_
2348
2349A platform should export the following APIs to support the IMF. The following
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002350text briefly describes each API and its implementation in Arm standard
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002351platforms. The API implementation depends upon the type of interrupt controller
Dan Handley610e7e12018-03-01 18:44:00 +00002352present in the platform. Arm standard platform layer supports both
2353`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
2354and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
2355FVP can be configured to use either GICv2 or GICv3 depending on the build flag
2356``FVP_USE_GIC_DRIVER`` (See FVP platform specific build options in
2357`User Guide`_ for more details).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002358
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002359See also: `Interrupt Controller Abstraction APIs`__.
2360
Paul Beesleyea225122019-02-11 17:54:45 +00002361.. __: ../design/platform-interrupt-controller-API.rst
Jeenu Viswambharanb1e957e2017-09-22 08:32:09 +01002362
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002363Function : plat_interrupt_type_to_line() [mandatory]
2364~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002365
2366::
2367
2368 Argument : uint32_t, uint32_t
2369 Return : uint32_t
2370
Dan Handley610e7e12018-03-01 18:44:00 +00002371The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002372interrupt line. The specific line that is signaled depends on how the interrupt
2373controller (IC) reports different interrupt types from an execution context in
2374either security state. The IMF uses this API to determine which interrupt line
2375the platform IC uses to signal each type of interrupt supported by the framework
2376from a given security state. This API must be invoked at EL3.
2377
2378The first parameter will be one of the ``INTR_TYPE_*`` values (see
2379`IMF Design Guide`_) indicating the target type of the interrupt, the second parameter is the
2380security state of the originating execution context. The return result is the
2381bit position in the ``SCR_EL3`` register of the respective interrupt trap: IRQ=1,
2382FIQ=2.
2383
Dan Handley610e7e12018-03-01 18:44:00 +00002384In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002385configured as FIQs and Non-secure interrupts as IRQs from either security
2386state.
2387
Dan Handley610e7e12018-03-01 18:44:00 +00002388In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002389configured depends on the security state of the execution context when the
2390interrupt is signalled and are as follows:
2391
2392- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
2393 NS-EL0/1/2 context.
2394- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
2395 in the NS-EL0/1/2 context.
2396- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
2397 context.
2398
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002399Function : plat_ic_get_pending_interrupt_type() [mandatory]
2400~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002401
2402::
2403
2404 Argument : void
2405 Return : uint32_t
2406
2407This API returns the type of the highest priority pending interrupt at the
2408platform IC. The IMF uses the interrupt type to retrieve the corresponding
2409handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
2410pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
2411``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
2412
Dan Handley610e7e12018-03-01 18:44:00 +00002413In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002414Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
2415the pending interrupt. The type of interrupt depends upon the id value as
2416follows.
2417
2418#. id < 1022 is reported as a S-EL1 interrupt
2419#. id = 1022 is reported as a Non-secure interrupt.
2420#. id = 1023 is reported as an invalid interrupt type.
2421
Dan Handley610e7e12018-03-01 18:44:00 +00002422In the case of Arm standard platforms using GICv3, the system register
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002423``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
2424is read to determine the id of the pending interrupt. The type of interrupt
2425depends upon the id value as follows.
2426
2427#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
2428#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
2429#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
2430#. All other interrupt id's are reported as EL3 interrupt.
2431
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002432Function : plat_ic_get_pending_interrupt_id() [mandatory]
2433~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002434
2435::
2436
2437 Argument : void
2438 Return : uint32_t
2439
2440This API returns the id of the highest priority pending interrupt at the
2441platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
2442pending.
2443
Dan Handley610e7e12018-03-01 18:44:00 +00002444In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002445Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
2446pending interrupt. The id that is returned by API depends upon the value of
2447the id read from the interrupt controller as follows.
2448
2449#. id < 1022. id is returned as is.
2450#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
2451 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
2452 This id is returned by the API.
2453#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
2454
Dan Handley610e7e12018-03-01 18:44:00 +00002455In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002456EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
2457group 0 Register*, is read to determine the id of the pending interrupt. The id
2458that is returned by API depends upon the value of the id read from the
2459interrupt controller as follows.
2460
2461#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
2462#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
2463 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
2464 Register* is read to determine the id of the group 1 interrupt. This id
2465 is returned by the API as long as it is a valid interrupt id
2466#. If the id is any of the special interrupt identifiers,
2467 ``INTR_ID_UNAVAILABLE`` is returned.
2468
2469When the API invoked from S-EL1 for GICv3 systems, the id read from system
2470register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002471Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002472``INTR_ID_UNAVAILABLE`` is returned.
2473
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002474Function : plat_ic_acknowledge_interrupt() [mandatory]
2475~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002476
2477::
2478
2479 Argument : void
2480 Return : uint32_t
2481
2482This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002483the highest pending interrupt has begun. It should return the raw, unmodified
2484value obtained from the interrupt controller when acknowledging an interrupt.
2485The actual interrupt number shall be extracted from this raw value using the API
2486`plat_ic_get_interrupt_id()`__.
2487
Paul Beesleyea225122019-02-11 17:54:45 +00002488.. __: ../design/platform-interrupt-controller-API.rst#function-unsigned-int-plat-ic-get-interrupt-id-unsigned-int-raw-optional
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002489
Dan Handley610e7e12018-03-01 18:44:00 +00002490This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002491Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
2492priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002493It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002494
Dan Handley610e7e12018-03-01 18:44:00 +00002495In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002496from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
2497Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
2498reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
2499group 1*. The read changes the state of the highest pending interrupt from
2500pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan055af4b2017-10-24 15:13:59 +01002501unmodified.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002502
2503The TSP uses this API to start processing of the secure physical timer
2504interrupt.
2505
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002506Function : plat_ic_end_of_interrupt() [mandatory]
2507~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002508
2509::
2510
2511 Argument : uint32_t
2512 Return : void
2513
2514This API is used by the CPU to indicate to the platform IC that processing of
2515the interrupt corresponding to the id (passed as the parameter) has
2516finished. The id should be the same as the id returned by the
2517``plat_ic_acknowledge_interrupt()`` API.
2518
Dan Handley610e7e12018-03-01 18:44:00 +00002519Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002520(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
2521system register in case of GICv3 depending on where the API is invoked from,
2522EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
2523controller.
2524
2525The TSP uses this API to finish processing of the secure physical timer
2526interrupt.
2527
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002528Function : plat_ic_get_interrupt_type() [mandatory]
2529~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002530
2531::
2532
2533 Argument : uint32_t
2534 Return : uint32_t
2535
2536This API returns the type of the interrupt id passed as the parameter.
2537``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
2538interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
2539returned depending upon how the interrupt has been configured by the platform
2540IC. This API must be invoked at EL3.
2541
Dan Handley610e7e12018-03-01 18:44:00 +00002542Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002543and Non-secure interrupts as Group1 interrupts. It reads the group value
2544corresponding to the interrupt id from the relevant *Interrupt Group Register*
2545(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
2546
Dan Handley610e7e12018-03-01 18:44:00 +00002547In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002548Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
2549(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
2550as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
2551
2552Crash Reporting mechanism (in BL31)
2553-----------------------------------
2554
2555BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002556of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley1fbc97b2019-01-11 18:26:51 +00002557on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002558``plat_crash_console_putc`` and ``plat_crash_console_flush``.
2559
2560The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
2561implementation of all of them. Platforms may include this file to their
2562makefiles in order to benefit from them. By default, they will cause the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002563output to be routed over the normal console infrastructure and get printed on
2564consoles configured to output in crash state. ``console_set_scope()`` can be
2565used to control whether a console is used for crash output.
Julius Werner1338c9c2018-11-19 14:25:55 -08002566NOTE: Platforms are responsible for making sure that they only mark consoles for
2567use in the crash scope that are able to support this, i.e. that are written in
2568assembly and conform with the register clobber rules for putc() (x0-x2, x16-x17)
2569and flush() (x0-x3, x16-x17) crash callbacks.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002570
Julius Werneraae9bb12017-09-18 16:49:48 -07002571In some cases (such as debugging very early crashes that happen before the
2572normal boot console can be set up), platforms may want to control crash output
Julius Werner1338c9c2018-11-19 14:25:55 -08002573more explicitly. These platforms may instead provide custom implementations for
2574these. They are executed outside of a C environment and without a stack. Many
2575console drivers provide functions named ``console_xxx_core_init/putc/flush``
2576that are designed to be used by these functions. See Arm platforms (like juno)
2577for an example of this.
Antonio Nino Diaz4bac0452018-10-16 14:32:34 +01002578
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002579Function : plat_crash_console_init [mandatory]
2580~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002581
2582::
2583
2584 Argument : void
2585 Return : int
2586
2587This API is used by the crash reporting mechanism to initialize the crash
Julius Werneraae9bb12017-09-18 16:49:48 -07002588console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002589initialization and returns 1 on success.
2590
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002591Function : plat_crash_console_putc [mandatory]
2592~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002593
2594::
2595
2596 Argument : int
2597 Return : int
2598
2599This API is used by the crash reporting mechanism to print a character on the
2600designated crash console. It must only use general purpose registers x1 and
2601x2 to do its work. The parameter and the return value are in general purpose
2602register x0.
2603
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002604Function : plat_crash_console_flush [mandatory]
2605~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002606
2607::
2608
2609 Argument : void
2610 Return : int
2611
2612This API is used by the crash reporting mechanism to force write of all buffered
2613data on the designated crash console. It should only use general purpose
Julius Werneraae9bb12017-09-18 16:49:48 -07002614registers x0 through x5 to do its work. The return value is 0 on successful
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002615completion; otherwise the return value is -1.
2616
Jeenu Viswambharane34bf582018-10-12 08:48:36 +01002617External Abort handling and RAS Support
2618---------------------------------------
Jeenu Viswambharanbf235bc2018-07-12 10:00:01 +01002619
2620Function : plat_ea_handler
2621~~~~~~~~~~~~~~~~~~~~~~~~~~
2622
2623::
2624
2625 Argument : int
2626 Argument : uint64_t
2627 Argument : void *
2628 Argument : void *
2629 Argument : uint64_t
2630 Return : void
2631
2632This function is invoked by the RAS framework for the platform to handle an
2633External Abort received at EL3. The intention of the function is to attempt to
2634resolve the cause of External Abort and return; if that's not possible, to
2635initiate orderly shutdown of the system.
2636
2637The first parameter (``int ea_reason``) indicates the reason for External Abort.
2638Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
2639
2640The second parameter (``uint64_t syndrome``) is the respective syndrome
2641presented to EL3 after having received the External Abort. Depending on the
2642nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
2643can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
2644
2645The third parameter (``void *cookie``) is unused for now. The fourth parameter
2646(``void *handle``) is a pointer to the preempted context. The fifth parameter
2647(``uint64_t flags``) indicates the preempted security state. These parameters
2648are received from the top-level exception handler.
2649
2650If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
2651function iterates through RAS handlers registered by the platform. If any of the
2652RAS handlers resolve the External Abort, no further action is taken.
2653
2654If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
2655could resolve the External Abort, the default implementation prints an error
2656message, and panics.
2657
2658Function : plat_handle_uncontainable_ea
2659~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2660
2661::
2662
2663 Argument : int
2664 Argument : uint64_t
2665 Return : void
2666
2667This function is invoked by the RAS framework when an External Abort of
2668Uncontainable type is received at EL3. Due to the critical nature of
2669Uncontainable errors, the intention of this function is to initiate orderly
2670shutdown of the system, and is not expected to return.
2671
2672This function must be implemented in assembly.
2673
2674The first and second parameters are the same as that of ``plat_ea_handler``.
2675
2676The default implementation of this function calls
2677``report_unhandled_exception``.
2678
2679Function : plat_handle_double_fault
2680~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2681
2682::
2683
2684 Argument : int
2685 Argument : uint64_t
2686 Return : void
2687
2688This function is invoked by the RAS framework when another External Abort is
2689received at EL3 while one is already being handled. I.e., a call to
2690``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
2691this function is to initiate orderly shutdown of the system, and is not expected
2692recover or return.
2693
2694This function must be implemented in assembly.
2695
2696The first and second parameters are the same as that of ``plat_ea_handler``.
2697
2698The default implementation of this function calls
2699``report_unhandled_exception``.
2700
2701Function : plat_handle_el3_ea
2702~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2703
2704::
2705
2706 Return : void
2707
2708This function is invoked when an External Abort is received while executing in
2709EL3. Due to its critical nature, the intention of this function is to initiate
2710orderly shutdown of the system, and is not expected recover or return.
2711
2712This function must be implemented in assembly.
2713
2714The default implementation of this function calls
2715``report_unhandled_exception``.
2716
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002717Build flags
2718-----------
2719
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002720There are some build flags which can be defined by the platform to control
2721inclusion or exclusion of certain BL stages from the FIP image. These flags
2722need to be defined in the platform makefile which will get included by the
2723build system.
2724
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002725- **NEED_BL33**
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002726 By default, this flag is defined ``yes`` by the build system and ``BL33``
2727 build option should be supplied as a build option. The platform has the
2728 option of excluding the BL33 image in the ``fip`` image by defining this flag
2729 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
2730 are used, this flag will be set to ``no`` automatically.
2731
2732C Library
2733---------
2734
2735To avoid subtle toolchain behavioral dependencies, the header files provided
2736by the compiler are not used. The software is built with the ``-nostdinc`` flag
2737to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley610e7e12018-03-01 18:44:00 +00002738required headers are included in the TF-A source tree. The library only
2739contains those C library definitions required by the local implementation. If
2740more functionality is required, the needed library functions will need to be
2741added to the local implementation.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002742
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002743Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
2744been written specifically for TF-A. Fome implementation files have been obtained
2745from `FreeBSD`_, others have been written specifically for TF-A as well. The
2746files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002747
Sandrine Bailleux6f0ecd72019-02-08 14:46:42 +01002748SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
2749can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002750
2751Storage abstraction layer
2752-------------------------
2753
2754In order to improve platform independence and portability an storage abstraction
2755layer is used to load data from non-volatile platform storage.
2756
2757Each platform should register devices and their drivers via the Storage layer.
2758These drivers then need to be initialized by bootloader phases as
2759required in their respective ``blx_platform_setup()`` functions. Currently
2760storage access is only required by BL1 and BL2 phases. The ``load_image()``
2761function uses the storage layer to access non-volatile platform storage.
2762
Dan Handley610e7e12018-03-01 18:44:00 +00002763It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002764development platforms the Firmware Image Package (FIP) driver is provided as
2765the default means to load data from storage (see the "Firmware Image Package"
2766section in the `User Guide`_). The storage layer is described in the header file
2767``include/drivers/io/io_storage.h``. The implementation of the common library
2768is in ``drivers/io/io_storage.c`` and the driver files are located in
2769``drivers/io/``.
2770
2771Each IO driver must provide ``io_dev_*`` structures, as described in
2772``drivers/io/io_driver.h``. These are returned via a mandatory registration
2773function that is called on platform initialization. The semi-hosting driver
2774implementation in ``io_semihosting.c`` can be used as an example.
2775
2776The Storage layer provides mechanisms to initialize storage devices before
2777IO operations are called. The basic operations supported by the layer
2778include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
2779Drivers do not have to implement all operations, but each platform must
2780provide at least one driver for a device capable of supporting generic
2781operations such as loading a bootloader image.
2782
2783The current implementation only allows for known images to be loaded by the
2784firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00002785``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002786there). The platform layer (``plat_get_image_source()``) then returns a reference
2787to a device and a driver-specific ``spec`` which will be understood by the driver
2788to allow access to the image data.
2789
2790The layer is designed in such a way that is it possible to chain drivers with
2791other drivers. For example, file-system drivers may be implemented on top of
2792physical block devices, both represented by IO devices with corresponding
2793drivers. In such a case, the file-system "binding" with the block device may
2794be deferred until the file-system device is initialised.
2795
2796The abstraction currently depends on structures being statically allocated
2797by the drivers and callers, as the system does not yet provide a means of
2798dynamically allocating memory. This may also have the affect of limiting the
2799amount of open resources per driver.
2800
2801--------------
2802
Antonio Nino Diaz645feb42019-02-13 14:07:38 +00002803*Copyright (c) 2013-2019, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002804
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002805.. _include/plat/common/platform.h: ../include/plat/common/platform.h
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002806.. _include/plat/arm/common/plat_arm.h: ../include/plat/arm/common/plat_arm.h%5D
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002807.. _User Guide: user-guide.rst
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002808.. _include/plat/common/common_def.h: ../include/plat/common/common_def.h
2809.. _include/plat/arm/common/arm_def.h: ../include/plat/arm/common/arm_def.h
2810.. _plat/common/aarch64/platform_mp_stack.S: ../plat/common/aarch64/platform_mp_stack.S
2811.. _plat/common/aarch64/platform_up_stack.S: ../plat/common/aarch64/platform_up_stack.S
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002812.. _For example, define the build flag in platform.mk: PLAT_PL061_MAX_GPIOS%20:=%20160
2813.. _Power Domain Topology Design: psci-pd-tree.rst
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002814.. _include/common/bl_common.h: ../include/common/bl_common.h
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002815.. _include/lib/aarch32/arch.h: ../include/lib/aarch32/arch.h
2816.. _Firmware Design: firmware-design.rst
2817.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Sandrine Bailleux8d1a0552019-02-08 14:44:53 +01002818.. _plat/arm/board/fvp/fvp_pm.c: ../plat/arm/board/fvp/fvp_pm.c
Soby Mathewf1e6c492018-10-02 14:01:03 +01002819.. _Platform compatibility policy: ./platform-compatibility-policy.rst
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002820.. _IMF Design Guide: interrupt-framework-design.rst
Dan Handley610e7e12018-03-01 18:44:00 +00002821.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillardd7c21b72017-06-28 15:23:03 +01002822.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesley2437ddc2019-02-08 16:43:05 +00002823.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diazcf0f8052018-08-17 10:45:47 +01002824.. _SCC: http://www.simple-cc.org/