blob: 88253cf8ce3e5bf1128d70f08d22bacdfddb09b4 [file] [log] [blame]
Aneesh Vcc565582011-07-21 09:10:09 -04001/*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
9 * See file CREDITS for list of people who contributed to this
10 * project.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of
15 * the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
25 * MA 02111-1307 USA
26 */
27
28#include <common.h>
Sricharan62a86502011-11-15 09:50:00 -050029#include <asm/emif.h>
Aneesh Vcc565582011-07-21 09:10:09 -040030#include <asm/arch/clocks.h>
31#include <asm/arch/sys_proto.h>
32#include <asm/omap_common.h>
33#include <asm/utils.h>
SRICHARAN Rb9f10a52012-06-04 03:40:23 +000034#include <linux/compiler.h>
Aneesh Vcc565582011-07-21 09:10:09 -040035
Lokesh Vutla80242592012-11-15 21:06:33 +000036static int emif1_enabled = -1, emif2_enabled = -1;
37
Lokesh Vutlaba873772012-05-29 19:26:43 +000038void set_lpmode_selfrefresh(u32 base)
39{
40 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
41 u32 reg;
42
43 reg = readl(&emif->emif_pwr_mgmt_ctrl);
44 reg &= ~EMIF_REG_LP_MODE_MASK;
45 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
46 reg &= ~EMIF_REG_SR_TIM_MASK;
47 writel(reg, &emif->emif_pwr_mgmt_ctrl);
48
49 /* dummy read for the new SR_TIM to be loaded */
50 readl(&emif->emif_pwr_mgmt_ctrl);
51}
52
53void force_emif_self_refresh()
54{
55 set_lpmode_selfrefresh(EMIF1_BASE);
56 set_lpmode_selfrefresh(EMIF2_BASE);
57}
58
Sricharan62a86502011-11-15 09:50:00 -050059inline u32 emif_num(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -040060{
Sricharan62a86502011-11-15 09:50:00 -050061 if (base == EMIF1_BASE)
Aneesh Vcc565582011-07-21 09:10:09 -040062 return 1;
Sricharan62a86502011-11-15 09:50:00 -050063 else if (base == EMIF2_BASE)
Aneesh Vcc565582011-07-21 09:10:09 -040064 return 2;
65 else
66 return 0;
67}
68
Sricharan62a86502011-11-15 09:50:00 -050069
Aneesh Vcc565582011-07-21 09:10:09 -040070static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
71{
72 u32 mr;
73 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
74
Sricharan62a86502011-11-15 09:50:00 -050075 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh Vcc565582011-07-21 09:10:09 -040076 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
77 if (omap_revision() == OMAP4430_ES2_0)
78 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
79 else
80 mr = readl(&emif->emif_lpddr2_mode_reg_data);
81 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
82 cs, mr_addr, mr);
Steve Sakoman3dab3f62012-05-30 07:38:07 +000083 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
84 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
85 ((mr & 0xff000000) >> 24) == (mr & 0xff))
86 return mr & 0xff;
87 else
88 return mr;
Aneesh Vcc565582011-07-21 09:10:09 -040089}
90
91static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
92{
93 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
94
Sricharan62a86502011-11-15 09:50:00 -050095 mr_addr |= cs << EMIF_REG_CS_SHIFT;
Aneesh Vcc565582011-07-21 09:10:09 -040096 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
97 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
98}
99
100void emif_reset_phy(u32 base)
101{
102 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
103 u32 iodft;
104
105 iodft = readl(&emif->emif_iodft_tlgc);
Sricharan62a86502011-11-15 09:50:00 -0500106 iodft |= EMIF_REG_RESET_PHY_MASK;
Aneesh Vcc565582011-07-21 09:10:09 -0400107 writel(iodft, &emif->emif_iodft_tlgc);
108}
109
110static void do_lpddr2_init(u32 base, u32 cs)
111{
112 u32 mr_addr;
113
114 /* Wait till device auto initialization is complete */
115 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
116 ;
117 set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT);
118 /*
119 * tZQINIT = 1 us
120 * Enough loops assuming a maximum of 2GHz
121 */
SRICHARAN R3d534962012-03-12 02:25:37 +0000122
Aneesh Vcc565582011-07-21 09:10:09 -0400123 sdelay(2000);
SRICHARAN R3d534962012-03-12 02:25:37 +0000124
125 if (omap_revision() >= OMAP5430_ES1_0)
126 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_8);
127 else
128 set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3);
129
Aneesh Vcc565582011-07-21 09:10:09 -0400130 set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY);
SRICHARAN R3d534962012-03-12 02:25:37 +0000131
Aneesh Vcc565582011-07-21 09:10:09 -0400132 /*
133 * Enable refresh along with writing MR2
134 * Encoding of RL in MR2 is (RL - 2)
135 */
Sricharan62a86502011-11-15 09:50:00 -0500136 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
Aneesh Vcc565582011-07-21 09:10:09 -0400137 set_mr(base, cs, mr_addr, RL_FINAL - 2);
SRICHARAN R3d534962012-03-12 02:25:37 +0000138
139 if (omap_revision() >= OMAP5430_ES1_0)
140 set_mr(base, cs, LPDDR2_MR3, 0x1);
Aneesh Vcc565582011-07-21 09:10:09 -0400141}
142
143static void lpddr2_init(u32 base, const struct emif_regs *regs)
144{
145 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
146
147 /* Not NVM */
Sricharan62a86502011-11-15 09:50:00 -0500148 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400149
150 /*
151 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
152 * when EMIF_SDRAM_CONFIG register is written
153 */
Sricharan62a86502011-11-15 09:50:00 -0500154 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400155
156 /*
157 * Set the SDRAM_CONFIG and PHY_CTRL for the
158 * un-locked frequency & default RL
159 */
160 writel(regs->sdram_config_init, &emif->emif_sdram_config);
SRICHARAN R3d534962012-03-12 02:25:37 +0000161 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
162
SRICHARAN Rb9f10a52012-06-04 03:40:23 +0000163 do_ext_phy_settings(base, regs);
Aneesh Vcc565582011-07-21 09:10:09 -0400164
165 do_lpddr2_init(base, CS0);
Sricharan62a86502011-11-15 09:50:00 -0500166 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
Aneesh Vcc565582011-07-21 09:10:09 -0400167 do_lpddr2_init(base, CS1);
168
169 writel(regs->sdram_config, &emif->emif_sdram_config);
170 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
171
172 /* Enable refresh now */
Sricharan62a86502011-11-15 09:50:00 -0500173 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
Aneesh Vcc565582011-07-21 09:10:09 -0400174
SRICHARAN Rb9f10a52012-06-04 03:40:23 +0000175 }
176
177__weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
178{
Aneesh Vcc565582011-07-21 09:10:09 -0400179}
180
Sricharan62a86502011-11-15 09:50:00 -0500181void emif_update_timings(u32 base, const struct emif_regs *regs)
Aneesh Vcc565582011-07-21 09:10:09 -0400182{
183 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
184
185 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
186 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
187 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
188 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
189 if (omap_revision() == OMAP4430_ES1_0) {
190 /* ES1 bug EMIF should be in force idle during freq_update */
191 writel(0, &emif->emif_pwr_mgmt_ctrl);
192 } else {
193 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
194 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
195 }
196 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
197 writel(regs->zq_config, &emif->emif_zq_config);
198 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
199 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
Aneesh V639cfb62011-07-21 09:29:26 -0400200
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000201 if (omap_revision() >= OMAP5430_ES1_0) {
Sricharan62a86502011-11-15 09:50:00 -0500202 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
203 &emif->emif_l3_config);
204 } else if (omap_revision() >= OMAP4460_ES1_0) {
Aneesh V639cfb62011-07-21 09:29:26 -0400205 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
206 &emif->emif_l3_config);
207 } else {
208 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
209 &emif->emif_l3_config);
Aneesh Vcc565582011-07-21 09:10:09 -0400210 }
211}
212
Lokesh Vutla0f42de62012-05-22 00:03:25 +0000213static void ddr3_leveling(u32 base, const struct emif_regs *regs)
214{
215 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
216
217 /* keep sdram in self-refresh */
218 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
219 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
220 __udelay(130);
221
222 /*
223 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
224 * Invert clock adds an additional half cycle delay on the command
225 * interface. The additional half cycle, is usually meant to enable
226 * leveling in the situation that DQS is later than CK on the board.It
227 * also helps provide some additional margin for leveling.
228 */
229 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
230 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
231 __udelay(130);
232
233 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
234 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
235
236 /* Launch Full leveling */
237 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
238
239 /* Wait till full leveling is complete */
240 readl(&emif->emif_rd_wr_lvl_ctl);
241 __udelay(130);
242
243 /* Read data eye leveling no of samples */
244 config_data_eye_leveling_samples(base);
245
246 /* Launch 8 incremental WR_LVL- to compensate for PHY limitation */
247 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT, &emif->emif_rd_wr_lvl_ctl);
248 __udelay(130);
249
250 /* Launch Incremental leveling */
251 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
252 __udelay(130);
253}
254
255static void ddr3_init(u32 base, const struct emif_regs *regs)
256{
257 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
258 u32 *ext_phy_ctrl_base = 0;
259 u32 *emif_ext_phy_ctrl_base = 0;
260 u32 i = 0;
261
262 /*
263 * Set SDRAM_CONFIG and PHY control registers to locked frequency
264 * and RL =7. As the default values of the Mode Registers are not
265 * defined, contents of mode Registers must be fully initialized.
266 * H/W takes care of this initialization
267 */
268 writel(regs->sdram_config_init, &emif->emif_sdram_config);
269
270 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
271
272 /* Update timing registers */
273 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
274 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
275 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
276
277 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
278 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
279
280 ext_phy_ctrl_base = (u32 *) &(regs->emif_ddr_ext_phy_ctrl_1);
281 emif_ext_phy_ctrl_base = (u32 *) &(emif->emif_ddr_ext_phy_ctrl_1);
282
283 /* Configure external phy control timing registers */
284 for (i = 0; i < EMIF_EXT_PHY_CTRL_TIMING_REG; i++) {
285 writel(*ext_phy_ctrl_base, emif_ext_phy_ctrl_base++);
286 /* Update shadow registers */
287 writel(*ext_phy_ctrl_base++, emif_ext_phy_ctrl_base++);
288 }
289
290 /*
291 * external phy 6-24 registers do not change with
292 * ddr frequency
293 */
294 for (i = 0; i < EMIF_EXT_PHY_CTRL_CONST_REG; i++) {
295 writel(ddr3_ext_phy_ctrl_const_base[i],
296 emif_ext_phy_ctrl_base++);
297 /* Update shadow registers */
298 writel(ddr3_ext_phy_ctrl_const_base[i],
299 emif_ext_phy_ctrl_base++);
300 }
301
302 /* enable leveling */
303 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
304
305 ddr3_leveling(base, regs);
306}
307
Aneesh Vc0e88522011-07-21 09:10:12 -0400308#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
309#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
310
Aneesh Vc0e88522011-07-21 09:10:12 -0400311/*
312 * Organization and refresh requirements for LPDDR2 devices of different
313 * types and densities. Derived from JESD209-2 section 2.4
314 */
315const struct lpddr2_addressing addressing_table[] = {
316 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
317 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
318 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
319 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
320 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
321 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
322 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
323 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
324 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
325 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
326 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
327};
328
329static const u32 lpddr2_density_2_size_in_mbytes[] = {
330 8, /* 64Mb */
331 16, /* 128Mb */
332 32, /* 256Mb */
333 64, /* 512Mb */
334 128, /* 1Gb */
335 256, /* 2Gb */
336 512, /* 4Gb */
337 1024, /* 8Gb */
338 2048, /* 16Gb */
339 4096 /* 32Gb */
340};
341
342/*
343 * Calculate the period of DDR clock from frequency value and set the
344 * denominator and numerator in global variables for easy access later
345 */
346static void set_ddr_clk_period(u32 freq)
347{
348 /*
349 * period = 1/freq
350 * period_in_ns = 10^9/freq
351 */
352 *T_num = 1000000000;
353 *T_den = freq;
354 cancel_out(T_num, T_den, 200);
355
356}
357
358/*
359 * Convert time in nano seconds to number of cycles of DDR clock
360 */
361static inline u32 ns_2_cycles(u32 ns)
362{
363 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
364}
365
366/*
367 * ns_2_cycles with the difference that the time passed is 2 times the actual
368 * value(to avoid fractions). The cycles returned is for the original value of
369 * the timing parameter
370 */
371static inline u32 ns_x2_2_cycles(u32 ns)
372{
373 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
374}
375
376/*
377 * Find addressing table index based on the device's type(S2 or S4) and
378 * density
379 */
380s8 addressing_table_index(u8 type, u8 density, u8 width)
381{
382 u8 index;
383 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
384 return -1;
385
386 /*
387 * Look at the way ADDR_TABLE_INDEX* values have been defined
388 * in emif.h compared to LPDDR2_DENSITY_* values
389 * The table is layed out in the increasing order of density
390 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
391 * at the end
392 */
393 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
394 index = ADDR_TABLE_INDEX1GS2;
395 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
396 index = ADDR_TABLE_INDEX2GS2;
397 else
398 index = density;
399
400 debug("emif: addressing table index %d\n", index);
401
402 return index;
403}
404
405/*
406 * Find the the right timing table from the array of timing
407 * tables of the device using DDR clock frequency
408 */
409static const struct lpddr2_ac_timings *get_timings_table(const struct
410 lpddr2_ac_timings const *const *device_timings,
411 u32 freq)
412{
413 u32 i, temp, freq_nearest;
414 const struct lpddr2_ac_timings *timings = 0;
415
416 emif_assert(freq <= MAX_LPDDR2_FREQ);
417 emif_assert(device_timings);
418
419 /*
420 * Start with the maximum allowed frequency - that is always safe
421 */
422 freq_nearest = MAX_LPDDR2_FREQ;
423 /*
424 * Find the timings table that has the max frequency value:
425 * i. Above or equal to the DDR frequency - safe
426 * ii. The lowest that satisfies condition (i) - optimal
427 */
428 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
429 temp = device_timings[i]->max_freq;
430 if ((temp >= freq) && (temp <= freq_nearest)) {
431 freq_nearest = temp;
432 timings = device_timings[i];
433 }
434 }
435 debug("emif: timings table: %d\n", freq_nearest);
436 return timings;
437}
438
439/*
440 * Finds the value of emif_sdram_config_reg
441 * All parameters are programmed based on the device on CS0.
442 * If there is a device on CS1, it will be same as that on CS0 or
443 * it will be NVM. We don't support NVM yet.
444 * If cs1_device pointer is NULL it is assumed that there is no device
445 * on CS1
446 */
447static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
448 const struct lpddr2_device_details *cs1_device,
449 const struct lpddr2_addressing *addressing,
450 u8 RL)
451{
452 u32 config_reg = 0;
453
Sricharan62a86502011-11-15 09:50:00 -0500454 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400455 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
Sricharan62a86502011-11-15 09:50:00 -0500456 EMIF_REG_IBANK_POS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400457
Sricharan62a86502011-11-15 09:50:00 -0500458 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400459
Sricharan62a86502011-11-15 09:50:00 -0500460 config_reg |= RL << EMIF_REG_CL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400461
462 config_reg |= addressing->row_sz[cs0_device->io_width] <<
Sricharan62a86502011-11-15 09:50:00 -0500463 EMIF_REG_ROWSIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400464
Sricharan62a86502011-11-15 09:50:00 -0500465 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400466
467 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
Sricharan62a86502011-11-15 09:50:00 -0500468 EMIF_REG_EBANK_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400469
470 config_reg |= addressing->col_sz[cs0_device->io_width] <<
Sricharan62a86502011-11-15 09:50:00 -0500471 EMIF_REG_PAGESIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400472
473 return config_reg;
474}
475
476static u32 get_sdram_ref_ctrl(u32 freq,
477 const struct lpddr2_addressing *addressing)
478{
479 u32 ref_ctrl = 0, val = 0, freq_khz;
480 freq_khz = freq / 1000;
481 /*
482 * refresh rate to be set is 'tREFI * freq in MHz
483 * division by 10000 to account for khz and x10 in t_REFI_us_x10
484 */
485 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
Sricharan62a86502011-11-15 09:50:00 -0500486 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400487
488 return ref_ctrl;
489}
490
491static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
492 const struct lpddr2_min_tck *min_tck,
493 const struct lpddr2_addressing *addressing)
494{
495 u32 tim1 = 0, val = 0;
496 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500497 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400498
499 if (addressing->num_banks == BANKS8)
500 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
501 (4 * (*T_num)) - 1;
502 else
503 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
504
Sricharan62a86502011-11-15 09:50:00 -0500505 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400506
507 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500508 tim1 |= val << EMIF_REG_T_RC_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400509
510 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500511 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400512
513 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500514 tim1 |= val << EMIF_REG_T_WR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400515
516 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500517 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400518
519 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500520 tim1 |= val << EMIF_REG_T_RP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400521
522 return tim1;
523}
524
525static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
526 const struct lpddr2_min_tck *min_tck)
527{
528 u32 tim2 = 0, val = 0;
529 val = max(min_tck->tCKE, timings->tCKE) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500530 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400531
532 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500533 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400534
535 /*
536 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
537 * same value
538 */
539 val = ns_2_cycles(timings->tXSR) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500540 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
541 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400542
543 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500544 tim2 |= val << EMIF_REG_T_XP_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400545
546 return tim2;
547}
548
549static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
550 const struct lpddr2_min_tck *min_tck,
551 const struct lpddr2_addressing *addressing)
552{
553 u32 tim3 = 0, val = 0;
554 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
Sricharan62a86502011-11-15 09:50:00 -0500555 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400556
557 val = ns_2_cycles(timings->tRFCab) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500558 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400559
560 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500561 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400562
563 val = ns_2_cycles(timings->tZQCS) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500564 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400565
566 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
Sricharan62a86502011-11-15 09:50:00 -0500567 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400568
569 return tim3;
570}
571
572static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
573 const struct lpddr2_addressing *addressing,
574 u8 volt_ramp)
575{
576 u32 zq = 0, val = 0;
577 if (volt_ramp)
578 val =
579 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
580 addressing->t_REFI_us_x10;
581 else
582 val =
583 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
584 addressing->t_REFI_us_x10;
Sricharan62a86502011-11-15 09:50:00 -0500585 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400586
Sricharan62a86502011-11-15 09:50:00 -0500587 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400588
Sricharan62a86502011-11-15 09:50:00 -0500589 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400590
Sricharan62a86502011-11-15 09:50:00 -0500591 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400592
593 /*
594 * Assuming that two chipselects have a single calibration resistor
595 * If there are indeed two calibration resistors, then this flag should
596 * be enabled to take advantage of dual calibration feature.
597 * This data should ideally come from board files. But considering
598 * that none of the boards today have calibration resistors per CS,
599 * it would be an unnecessary overhead.
600 */
Sricharan62a86502011-11-15 09:50:00 -0500601 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400602
Sricharan62a86502011-11-15 09:50:00 -0500603 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400604
Sricharan62a86502011-11-15 09:50:00 -0500605 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400606
607 return zq;
608}
609
610static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
611 const struct lpddr2_addressing *addressing,
612 u8 is_derated)
613{
614 u32 alert = 0, interval;
615 interval =
616 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
617 if (is_derated)
618 interval *= 4;
Sricharan62a86502011-11-15 09:50:00 -0500619 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400620
Sricharan62a86502011-11-15 09:50:00 -0500621 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400622
Sricharan62a86502011-11-15 09:50:00 -0500623 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400624
Sricharan62a86502011-11-15 09:50:00 -0500625 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400626
Sricharan62a86502011-11-15 09:50:00 -0500627 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400628
Sricharan62a86502011-11-15 09:50:00 -0500629 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400630
631 return alert;
632}
633
634static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
635{
636 u32 idle = 0, val = 0;
637 if (volt_ramp)
Aneesh V639cfb62011-07-21 09:29:26 -0400638 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
Aneesh Vc0e88522011-07-21 09:10:12 -0400639 else
640 /*Maximum value in normal conditions - suggested by hw team */
641 val = 0x1FF;
Sricharan62a86502011-11-15 09:50:00 -0500642 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400643
Sricharan62a86502011-11-15 09:50:00 -0500644 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400645
646 return idle;
647}
648
649static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
650{
651 u32 phy = 0, val = 0;
652
Sricharan62a86502011-11-15 09:50:00 -0500653 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400654
655 if (freq <= 100000000)
656 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
657 else if (freq <= 200000000)
658 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
659 else
660 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
Sricharan62a86502011-11-15 09:50:00 -0500661 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400662
663 /* Other fields are constant magic values. Hardcode them together */
664 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
Sricharan62a86502011-11-15 09:50:00 -0500665 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -0400666
667 return phy;
668}
669
670static u32 get_emif_mem_size(struct emif_device_details *devices)
671{
672 u32 size_mbytes = 0, temp;
673
674 if (!devices)
675 return 0;
676
677 if (devices->cs0_device_details) {
678 temp = devices->cs0_device_details->density;
679 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
680 }
681
682 if (devices->cs1_device_details) {
683 temp = devices->cs1_device_details->density;
684 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
685 }
686 /* convert to bytes */
687 return size_mbytes << 20;
688}
689
690/* Gets the encoding corresponding to a given DMM section size */
691u32 get_dmm_section_size_map(u32 section_size)
692{
693 /*
694 * Section size mapping:
695 * 0x0: 16-MiB section
696 * 0x1: 32-MiB section
697 * 0x2: 64-MiB section
698 * 0x3: 128-MiB section
699 * 0x4: 256-MiB section
700 * 0x5: 512-MiB section
701 * 0x6: 1-GiB section
702 * 0x7: 2-GiB section
703 */
704 section_size >>= 24; /* divide by 16 MB */
705 return log_2_n_round_down(section_size);
706}
707
708static void emif_calculate_regs(
709 const struct emif_device_details *emif_dev_details,
710 u32 freq, struct emif_regs *regs)
711{
712 u32 temp, sys_freq;
713 const struct lpddr2_addressing *addressing;
714 const struct lpddr2_ac_timings *timings;
715 const struct lpddr2_min_tck *min_tck;
716 const struct lpddr2_device_details *cs0_dev_details =
717 emif_dev_details->cs0_device_details;
718 const struct lpddr2_device_details *cs1_dev_details =
719 emif_dev_details->cs1_device_details;
720 const struct lpddr2_device_timings *cs0_dev_timings =
721 emif_dev_details->cs0_device_timings;
722
723 emif_assert(emif_dev_details);
724 emif_assert(regs);
725 /*
726 * You can not have a device on CS1 without one on CS0
727 * So configuring EMIF without a device on CS0 doesn't
728 * make sense
729 */
730 emif_assert(cs0_dev_details);
731 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
732 /*
733 * If there is a device on CS1 it should be same type as CS0
734 * (or NVM. But NVM is not supported in this driver yet)
735 */
736 emif_assert((cs1_dev_details == NULL) ||
737 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
738 (cs0_dev_details->type == cs1_dev_details->type));
739 emif_assert(freq <= MAX_LPDDR2_FREQ);
740
741 set_ddr_clk_period(freq);
742
743 /*
744 * The device on CS0 is used for all timing calculations
745 * There is only one set of registers for timings per EMIF. So, if the
746 * second CS(CS1) has a device, it should have the same timings as the
747 * device on CS0
748 */
749 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
750 emif_assert(timings);
751 min_tck = cs0_dev_timings->min_tck;
752
753 temp = addressing_table_index(cs0_dev_details->type,
754 cs0_dev_details->density,
755 cs0_dev_details->io_width);
756
757 emif_assert((temp >= 0));
758 addressing = &(addressing_table[temp]);
759 emif_assert(addressing);
760
761 sys_freq = get_sys_clk_freq();
762
763 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
764 cs1_dev_details,
765 addressing, RL_BOOT);
766
767 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
768 cs1_dev_details,
769 addressing, RL_FINAL);
770
771 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
772
773 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
774
775 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
776
777 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
778
779 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
780
781 regs->temp_alert_config =
782 get_temp_alert_config(cs1_dev_details, addressing, 0);
783
784 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
785 LPDDR2_VOLTAGE_STABLE);
786
787 regs->emif_ddr_phy_ctlr_1_init =
788 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
789
790 regs->emif_ddr_phy_ctlr_1 =
791 get_ddr_phy_ctrl_1(freq, RL_FINAL);
792
793 regs->freq = freq;
794
795 print_timing_reg(regs->sdram_config_init);
796 print_timing_reg(regs->sdram_config);
797 print_timing_reg(regs->ref_ctrl);
798 print_timing_reg(regs->sdram_tim1);
799 print_timing_reg(regs->sdram_tim2);
800 print_timing_reg(regs->sdram_tim3);
801 print_timing_reg(regs->read_idle_ctrl);
802 print_timing_reg(regs->temp_alert_config);
803 print_timing_reg(regs->zq_config);
804 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
805 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
806}
807#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
808
Aneesh Vced762a2011-07-21 09:10:15 -0400809#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
810const char *get_lpddr2_type(u8 type_id)
811{
812 switch (type_id) {
813 case LPDDR2_TYPE_S4:
814 return "LPDDR2-S4";
815 case LPDDR2_TYPE_S2:
816 return "LPDDR2-S2";
817 default:
818 return NULL;
819 }
820}
821
822const char *get_lpddr2_io_width(u8 width_id)
823{
824 switch (width_id) {
825 case LPDDR2_IO_WIDTH_8:
826 return "x8";
827 case LPDDR2_IO_WIDTH_16:
828 return "x16";
829 case LPDDR2_IO_WIDTH_32:
830 return "x32";
831 default:
832 return NULL;
833 }
834}
835
836const char *get_lpddr2_manufacturer(u32 manufacturer)
837{
838 switch (manufacturer) {
839 case LPDDR2_MANUFACTURER_SAMSUNG:
840 return "Samsung";
841 case LPDDR2_MANUFACTURER_QIMONDA:
842 return "Qimonda";
843 case LPDDR2_MANUFACTURER_ELPIDA:
844 return "Elpida";
845 case LPDDR2_MANUFACTURER_ETRON:
846 return "Etron";
847 case LPDDR2_MANUFACTURER_NANYA:
848 return "Nanya";
849 case LPDDR2_MANUFACTURER_HYNIX:
850 return "Hynix";
851 case LPDDR2_MANUFACTURER_MOSEL:
852 return "Mosel";
853 case LPDDR2_MANUFACTURER_WINBOND:
854 return "Winbond";
855 case LPDDR2_MANUFACTURER_ESMT:
856 return "ESMT";
857 case LPDDR2_MANUFACTURER_SPANSION:
858 return "Spansion";
859 case LPDDR2_MANUFACTURER_SST:
860 return "SST";
861 case LPDDR2_MANUFACTURER_ZMOS:
862 return "ZMOS";
863 case LPDDR2_MANUFACTURER_INTEL:
864 return "Intel";
865 case LPDDR2_MANUFACTURER_NUMONYX:
866 return "Numonyx";
867 case LPDDR2_MANUFACTURER_MICRON:
868 return "Micron";
869 default:
870 return NULL;
871 }
872}
873
874static void display_sdram_details(u32 emif_nr, u32 cs,
875 struct lpddr2_device_details *device)
876{
877 const char *mfg_str;
878 const char *type_str;
879 char density_str[10];
880 u32 density;
881
882 debug("EMIF%d CS%d\t", emif_nr, cs);
883
884 if (!device) {
885 debug("None\n");
886 return;
887 }
888
889 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
890 type_str = get_lpddr2_type(device->type);
891
892 density = lpddr2_density_2_size_in_mbytes[device->density];
893 if ((density / 1024 * 1024) == density) {
894 density /= 1024;
895 sprintf(density_str, "%d GB", density);
896 } else
897 sprintf(density_str, "%d MB", density);
898 if (mfg_str && type_str)
899 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
900}
901
902static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
903 struct lpddr2_device_details *lpddr2_device)
904{
905 u32 mr = 0, temp;
906
907 mr = get_mr(base, cs, LPDDR2_MR0);
908 if (mr > 0xFF) {
909 /* Mode register value bigger than 8 bit */
910 return 0;
911 }
912
913 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
914 if (temp) {
915 /* Not SDRAM */
916 return 0;
917 }
918 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
919
920 if (temp) {
921 /* DNV supported - But DNV is only supported for NVM */
922 return 0;
923 }
924
925 mr = get_mr(base, cs, LPDDR2_MR4);
926 if (mr > 0xFF) {
927 /* Mode register value bigger than 8 bit */
928 return 0;
929 }
930
931 mr = get_mr(base, cs, LPDDR2_MR5);
Steve Sakomance515a62012-05-30 07:38:08 +0000932 if (mr > 0xFF) {
Aneesh Vced762a2011-07-21 09:10:15 -0400933 /* Mode register value bigger than 8 bit */
934 return 0;
935 }
936
937 if (!get_lpddr2_manufacturer(mr)) {
938 /* Manufacturer not identified */
939 return 0;
940 }
941 lpddr2_device->manufacturer = mr;
942
943 mr = get_mr(base, cs, LPDDR2_MR6);
944 if (mr >= 0xFF) {
945 /* Mode register value bigger than 8 bit */
946 return 0;
947 }
948
949 mr = get_mr(base, cs, LPDDR2_MR7);
950 if (mr >= 0xFF) {
951 /* Mode register value bigger than 8 bit */
952 return 0;
953 }
954
955 mr = get_mr(base, cs, LPDDR2_MR8);
956 if (mr >= 0xFF) {
957 /* Mode register value bigger than 8 bit */
958 return 0;
959 }
960
961 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
962 if (!get_lpddr2_type(temp)) {
963 /* Not SDRAM */
964 return 0;
965 }
966 lpddr2_device->type = temp;
967
968 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
969 if (temp > LPDDR2_DENSITY_32Gb) {
970 /* Density not supported */
971 return 0;
972 }
973 lpddr2_device->density = temp;
974
975 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
976 if (!get_lpddr2_io_width(temp)) {
977 /* IO width unsupported value */
978 return 0;
979 }
980 lpddr2_device->io_width = temp;
981
982 /*
983 * If all the above tests pass we should
984 * have a device on this chip-select
985 */
986 return 1;
987}
988
Aneesh V14f821a2011-09-08 11:05:53 -0400989struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
Aneesh Vced762a2011-07-21 09:10:15 -0400990 struct lpddr2_device_details *lpddr2_dev_details)
991{
992 u32 phy;
Sricharan62a86502011-11-15 09:50:00 -0500993 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
994
Aneesh Vced762a2011-07-21 09:10:15 -0400995 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
996
997 if (!lpddr2_dev_details)
998 return NULL;
999
1000 /* Do the minimum init for mode register accesses */
Lokesh Vutlaae642392012-05-29 19:26:42 +00001001 if (!(running_from_sdram() || warm_reset())) {
Aneesh Vced762a2011-07-21 09:10:15 -04001002 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1003 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1004 }
1005
1006 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1007 return NULL;
1008
1009 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1010
1011 return lpddr2_dev_details;
1012}
Aneesh Vced762a2011-07-21 09:10:15 -04001013#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1014
Aneesh Vcc565582011-07-21 09:10:09 -04001015static void do_sdram_init(u32 base)
1016{
1017 const struct emif_regs *regs;
1018 u32 in_sdram, emif_nr;
1019
1020 debug(">>do_sdram_init() %x\n", base);
1021
1022 in_sdram = running_from_sdram();
Sricharan62a86502011-11-15 09:50:00 -05001023 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
Aneesh Vcc565582011-07-21 09:10:09 -04001024
Aneesh Vc0e88522011-07-21 09:10:12 -04001025#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh Vcc565582011-07-21 09:10:09 -04001026 emif_get_reg_dump(emif_nr, &regs);
1027 if (!regs) {
1028 debug("EMIF: reg dump not provided\n");
1029 return;
1030 }
Aneesh Vc0e88522011-07-21 09:10:12 -04001031#else
1032 /*
1033 * The user has not provided the register values. We need to
1034 * calculate it based on the timings and the DDR frequency
1035 */
1036 struct emif_device_details dev_details;
1037 struct emif_regs calculated_regs;
1038
1039 /*
1040 * Get device details:
1041 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1042 * - Obtained from user otherwise
1043 */
1044 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
Aneesh V14f821a2011-09-08 11:05:53 -04001045 emif_reset_phy(base);
Aneesh V7d9fa572011-11-21 23:39:02 +00001046 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
Aneesh V14f821a2011-09-08 11:05:53 -04001047 &cs0_dev_details);
Aneesh V7d9fa572011-11-21 23:39:02 +00001048 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
Aneesh V14f821a2011-09-08 11:05:53 -04001049 &cs1_dev_details);
1050 emif_reset_phy(base);
Aneesh Vc0e88522011-07-21 09:10:12 -04001051
1052 /* Return if no devices on this EMIF */
1053 if (!dev_details.cs0_device_details &&
1054 !dev_details.cs1_device_details) {
1055 emif_sizes[emif_nr - 1] = 0;
1056 return;
1057 }
Aneesh Vcc565582011-07-21 09:10:09 -04001058
Aneesh Vc0e88522011-07-21 09:10:12 -04001059 if (!in_sdram)
1060 emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
1061
1062 /*
1063 * Get device timings:
1064 * - Default timings specified by JESD209-2 if
1065 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1066 * - Obtained from user otherwise
1067 */
1068 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1069 &dev_details.cs1_device_timings);
1070
1071 /* Calculate the register values */
Sricharan9784f1f2011-11-15 09:49:58 -05001072 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
Aneesh Vc0e88522011-07-21 09:10:12 -04001073 regs = &calculated_regs;
1074#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1075
Aneesh Vcc565582011-07-21 09:10:09 -04001076 /*
1077 * Initializing the LPDDR2 device can not happen from SDRAM.
1078 * Changing the timing registers in EMIF can happen(going from one
1079 * OPP to another)
1080 */
Lokesh Vutlaae642392012-05-29 19:26:42 +00001081 if (!(in_sdram || warm_reset())) {
Lokesh Vutla0f42de62012-05-22 00:03:25 +00001082 if (omap_revision() != OMAP5432_ES1_0)
1083 lpddr2_init(base, regs);
1084 else
1085 ddr3_init(base, regs);
1086 }
Aneesh Vcc565582011-07-21 09:10:09 -04001087
1088 /* Write to the shadow registers */
1089 emif_update_timings(base, regs);
1090
1091 debug("<<do_sdram_init() %x\n", base);
1092}
1093
Sricharan62a86502011-11-15 09:50:00 -05001094void emif_post_init_config(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -04001095{
1096 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
Sricharan62a86502011-11-15 09:50:00 -05001097 u32 omap_rev = omap_revision();
1098
1099 if (omap_rev == OMAP5430_ES1_0)
1100 return;
Aneesh Vcc565582011-07-21 09:10:09 -04001101
1102 /* reset phy on ES2.0 */
Sricharan62a86502011-11-15 09:50:00 -05001103 if (omap_rev == OMAP4430_ES2_0)
Aneesh Vcc565582011-07-21 09:10:09 -04001104 emif_reset_phy(base);
1105
1106 /* Put EMIF back in smart idle on ES1.0 */
Sricharan62a86502011-11-15 09:50:00 -05001107 if (omap_rev == OMAP4430_ES1_0)
Aneesh Vcc565582011-07-21 09:10:09 -04001108 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1109}
1110
Sricharan62a86502011-11-15 09:50:00 -05001111void dmm_init(u32 base)
Aneesh Vcc565582011-07-21 09:10:09 -04001112{
1113 const struct dmm_lisa_map_regs *lisa_map_regs;
Lokesh Vutla80242592012-11-15 21:06:33 +00001114 u32 i, section, valid;
Aneesh Vcc565582011-07-21 09:10:09 -04001115
Aneesh Vc0e88522011-07-21 09:10:12 -04001116#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
Aneesh Vcc565582011-07-21 09:10:09 -04001117 emif_get_dmm_regs(&lisa_map_regs);
Aneesh Vc0e88522011-07-21 09:10:12 -04001118#else
1119 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1120 u32 section_cnt, sys_addr;
1121 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1122
1123 mapped_size = 0;
1124 section_cnt = 3;
1125 sys_addr = CONFIG_SYS_SDRAM_BASE;
1126 emif1_size = emif_sizes[0];
1127 emif2_size = emif_sizes[1];
1128 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1129
1130 if (!emif1_size && !emif2_size)
1131 return;
1132
1133 /* symmetric interleaved section */
1134 if (emif1_size && emif2_size) {
1135 mapped_size = min(emif1_size, emif2_size);
1136 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
Sricharan62a86502011-11-15 09:50:00 -05001137 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001138 /* only MSB */
1139 section_map |= (sys_addr >> 24) <<
Sricharan62a86502011-11-15 09:50:00 -05001140 EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001141 section_map |= get_dmm_section_size_map(mapped_size * 2)
Sricharan62a86502011-11-15 09:50:00 -05001142 << EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001143 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1144 emif1_size -= mapped_size;
1145 emif2_size -= mapped_size;
1146 sys_addr += (mapped_size * 2);
1147 section_cnt--;
1148 }
1149
1150 /*
1151 * Single EMIF section(we can have a maximum of 1 single EMIF
1152 * section- either EMIF1 or EMIF2 or none, but not both)
1153 */
1154 if (emif1_size) {
1155 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1156 section_map |= get_dmm_section_size_map(emif1_size)
Sricharan62a86502011-11-15 09:50:00 -05001157 << EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001158 /* only MSB */
1159 section_map |= (mapped_size >> 24) <<
Sricharan62a86502011-11-15 09:50:00 -05001160 EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001161 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001162 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001163 section_cnt--;
1164 }
1165 if (emif2_size) {
1166 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1167 section_map |= get_dmm_section_size_map(emif2_size) <<
Sricharan62a86502011-11-15 09:50:00 -05001168 EMIF_SYS_SIZE_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001169 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001170 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001171 /* only MSB */
Sricharan62a86502011-11-15 09:50:00 -05001172 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
Aneesh Vc0e88522011-07-21 09:10:12 -04001173 section_cnt--;
1174 }
1175
1176 if (section_cnt == 2) {
1177 /* Only 1 section - either symmetric or single EMIF */
1178 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1179 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1180 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1181 } else {
1182 /* 2 sections - 1 symmetric, 1 single EMIF */
1183 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1184 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1185 }
1186
1187 /* TRAP for invalid TILER mappings in section 0 */
1188 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
Aneesh Vcc565582011-07-21 09:10:09 -04001189
Aneesh Vc0e88522011-07-21 09:10:12 -04001190 lisa_map_regs = &lis_map_regs_calculated;
1191#endif
Aneesh Vcc565582011-07-21 09:10:09 -04001192 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1193 (struct dmm_lisa_map_regs *)base;
1194
1195 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1196 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1197 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1198 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1199
1200 writel(lisa_map_regs->dmm_lisa_map_3,
1201 &hw_lisa_map_regs->dmm_lisa_map_3);
1202 writel(lisa_map_regs->dmm_lisa_map_2,
1203 &hw_lisa_map_regs->dmm_lisa_map_2);
1204 writel(lisa_map_regs->dmm_lisa_map_1,
1205 &hw_lisa_map_regs->dmm_lisa_map_1);
1206 writel(lisa_map_regs->dmm_lisa_map_0,
1207 &hw_lisa_map_regs->dmm_lisa_map_0);
Aneesh V639cfb62011-07-21 09:29:26 -04001208
1209 if (omap_revision() >= OMAP4460_ES1_0) {
1210 hw_lisa_map_regs =
Sricharan62a86502011-11-15 09:50:00 -05001211 (struct dmm_lisa_map_regs *)MA_BASE;
Aneesh V639cfb62011-07-21 09:29:26 -04001212
1213 writel(lisa_map_regs->dmm_lisa_map_3,
1214 &hw_lisa_map_regs->dmm_lisa_map_3);
1215 writel(lisa_map_regs->dmm_lisa_map_2,
1216 &hw_lisa_map_regs->dmm_lisa_map_2);
1217 writel(lisa_map_regs->dmm_lisa_map_1,
1218 &hw_lisa_map_regs->dmm_lisa_map_1);
1219 writel(lisa_map_regs->dmm_lisa_map_0,
1220 &hw_lisa_map_regs->dmm_lisa_map_0);
1221 }
Lokesh Vutla80242592012-11-15 21:06:33 +00001222
1223 /*
1224 * EMIF should be configured only when
1225 * memory is mapped on it. Using emif1_enabled
1226 * and emif2_enabled variables for this.
1227 */
1228 emif1_enabled = 0;
1229 emif2_enabled = 0;
1230 for (i = 0; i < 4; i++) {
1231 section = __raw_readl(DMM_BASE + i*4);
1232 valid = (section & EMIF_SDRC_MAP_MASK) >>
1233 (EMIF_SDRC_MAP_SHIFT);
1234 if (valid == 3) {
1235 emif1_enabled = 1;
1236 emif2_enabled = 1;
1237 break;
1238 } else if (valid == 1) {
1239 emif1_enabled = 1;
1240 } else if (valid == 2) {
1241 emif2_enabled = 1;
1242 }
1243 }
1244
Aneesh Vcc565582011-07-21 09:10:09 -04001245}
1246
1247/*
1248 * SDRAM initialization:
1249 * SDRAM initialization has two parts:
1250 * 1. Configuring the SDRAM device
1251 * 2. Update the AC timings related parameters in the EMIF module
1252 * (1) should be done only once and should not be done while we are
1253 * running from SDRAM.
1254 * (2) can and should be done more than once if OPP changes.
1255 * Particularly, this may be needed when we boot without SPL and
1256 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1257 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1258 * the frequency. So,
1259 * Doing (1) and (2) makes sense - first time initialization
1260 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1261 * Doing (1) and not (2) doen't make sense
1262 * See do_sdram_init() for the details
1263 */
1264void sdram_init(void)
1265{
1266 u32 in_sdram, size_prog, size_detect;
Lokesh Vutlacdfc4ea2012-05-22 00:03:26 +00001267 u32 omap_rev = omap_revision();
Aneesh Vcc565582011-07-21 09:10:09 -04001268
1269 debug(">>sdram_init()\n");
1270
Sricharan9310ff72011-11-15 09:49:55 -05001271 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
Aneesh Vcc565582011-07-21 09:10:09 -04001272 return;
1273
1274 in_sdram = running_from_sdram();
1275 debug("in_sdram = %d\n", in_sdram);
1276
Lokesh Vutlaae642392012-05-29 19:26:42 +00001277 if (!(in_sdram || warm_reset())) {
Lokesh Vutlacdfc4ea2012-05-22 00:03:26 +00001278 if (omap_rev != OMAP5432_ES1_0)
1279 bypass_dpll(&prcm->cm_clkmode_dpll_core);
1280 else
1281 writel(CM_DLL_CTRL_NO_OVERRIDE, &prcm->cm_dll_ctrl);
1282 }
Aneesh Vcc565582011-07-21 09:10:09 -04001283
Lokesh Vutlaae642392012-05-29 19:26:42 +00001284 if (!in_sdram)
Sricharan62a86502011-11-15 09:50:00 -05001285 dmm_init(DMM_BASE);
Lokesh Vutlaae642392012-05-29 19:26:42 +00001286
Lokesh Vutla80242592012-11-15 21:06:33 +00001287 if (emif1_enabled)
1288 do_sdram_init(EMIF1_BASE);
1289
1290 if (emif2_enabled)
1291 do_sdram_init(EMIF2_BASE);
1292
Lokesh Vutlaae642392012-05-29 19:26:42 +00001293 if (!(in_sdram || warm_reset())) {
Lokesh Vutla80242592012-11-15 21:06:33 +00001294 if (emif1_enabled)
1295 emif_post_init_config(EMIF1_BASE);
1296 if (emif2_enabled)
1297 emif_post_init_config(EMIF2_BASE);
Aneesh Vcc565582011-07-21 09:10:09 -04001298 }
1299
1300 /* for the shadow registers to take effect */
Lokesh Vutlacdfc4ea2012-05-22 00:03:26 +00001301 if (omap_rev != OMAP5432_ES1_0)
1302 freq_update_core();
Aneesh Vcc565582011-07-21 09:10:09 -04001303
1304 /* Do some testing after the init */
1305 if (!in_sdram) {
Sricharan9310ff72011-11-15 09:49:55 -05001306 size_prog = omap_sdram_size();
SRICHARAN Rb8a0bca2012-05-17 00:12:08 +00001307 size_prog = log_2_n_round_down(size_prog);
1308 size_prog = (1 << size_prog);
1309
Aneesh Vcc565582011-07-21 09:10:09 -04001310 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1311 size_prog);
1312 /* Compare with the size programmed */
1313 if (size_detect != size_prog) {
1314 printf("SDRAM: identified size not same as expected"
1315 " size identified: %x expected: %x\n",
1316 size_detect,
1317 size_prog);
1318 } else
1319 debug("get_ram_size() successful");
1320 }
1321
1322 debug("<<sdram_init()\n");
1323}