blob: 5bdcede8f1449ae6192e6abf3f3283ab45991a6b [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
wdenk4e112c12003-06-03 23:54:09 +00002/**************************************************************************
Andre Schwarz68c2a302008-03-06 16:45:44 +01003Intel Pro 1000 for ppcboot/das-u-boot
wdenk4e112c12003-06-03 23:54:09 +00004Drivers are port from Intel's Linux driver e1000-4.3.15
5and from Etherboot pro 1000 driver by mrakes at vivato dot net
6tested on both gig copper and gig fiber boards
7***************************************************************************/
8/*******************************************************************************
9
wdenk57b2d802003-06-27 21:31:46 +000010
wdenk4e112c12003-06-03 23:54:09 +000011 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk57b2d802003-06-27 21:31:46 +000012
wdenk57b2d802003-06-27 21:31:46 +000013
wdenk4e112c12003-06-03 23:54:09 +000014 Contact Information:
15 Linux NICS <linux.nics@intel.com>
16 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18*******************************************************************************/
19/*
20 * Copyright (C) Archway Digital Solutions.
21 *
22 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23 * 2/9/2002
24 *
25 * Copyright (C) Linux Networx.
26 * Massive upgrade to work with the new intel gigabit NICs.
27 * <ebiederman at lnxi dot com>
Roy Zang181119b2011-01-21 11:29:38 +080028 *
29 * Copyright 2011 Freescale Semiconductor, Inc.
wdenk4e112c12003-06-03 23:54:09 +000030 */
31
Simon Glasscece9042015-08-19 09:33:38 -060032#include <common.h>
Simon Glassed38aef2020-05-10 11:40:03 -060033#include <command.h>
Simon Glass63334482019-11-14 12:57:39 -070034#include <cpu_func.h>
Simon Glass9f86b382015-08-19 09:33:40 -060035#include <dm.h>
Simon Glassc53abc32015-08-19 09:33:39 -060036#include <errno.h>
Simon Glass0f2af882020-05-10 11:40:05 -060037#include <log.h>
Simon Glass9bc15642020-02-03 07:36:16 -070038#include <malloc.h>
Simon Glass2dd337a2015-09-02 17:24:58 -060039#include <memalign.h>
Simon Glass274e0b02020-05-10 11:39:56 -060040#include <net.h>
Simon Glassc53abc32015-08-19 09:33:39 -060041#include <pci.h>
Simon Glassdbd79542020-05-10 11:40:11 -060042#include <linux/delay.h>
wdenk4e112c12003-06-03 23:54:09 +000043#include "e1000.h"
Simon Glass274e0b02020-05-10 11:39:56 -060044#include <asm/cache.h>
wdenk4e112c12003-06-03 23:54:09 +000045
wdenk4e112c12003-06-03 23:54:09 +000046#define TOUT_LOOP 100000
47
Roy Zang966172e2009-08-22 03:49:52 +080048#define E1000_DEFAULT_PCI_PBA 0x00000030
49#define E1000_DEFAULT_PCIE_PBA 0x000a0026
wdenk4e112c12003-06-03 23:54:09 +000050
51/* NIC specific static variables go here */
52
Marek Vasut742c5c22014-08-08 07:41:38 -070053/* Intel i210 needs the DMA descriptor rings aligned to 128b */
54#define E1000_BUFFER_ALIGN 128
wdenk4e112c12003-06-03 23:54:09 +000055
Simon Glass9f86b382015-08-19 09:33:40 -060056/*
57 * TODO(sjg@chromium.org): Even with driver model we share these buffers.
58 * Concurrent receiving on multiple active Ethernet devices will not work.
59 * Normally U-Boot does not support this anyway. To fix it in this driver,
60 * move these buffers and the tx/rx pointers to struct e1000_hw.
61 */
Marek Vasut742c5c22014-08-08 07:41:38 -070062DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
63DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
64DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
wdenk4e112c12003-06-03 23:54:09 +000065
66static int tx_tail;
67static int rx_tail, rx_last;
Simon Glass9f86b382015-08-19 09:33:40 -060068#ifdef CONFIG_DM_ETH
69static int num_cards; /* Number of E1000 devices seen so far */
70#endif
wdenk4e112c12003-06-03 23:54:09 +000071
Kyle Moffett7b698d52011-10-18 11:05:26 +000072static struct pci_device_id e1000_supported[] = {
Simon Glassc53abc32015-08-19 09:33:39 -060073 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
74 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
75 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
76 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
77 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
78 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
79 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
80 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
81 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
82 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
83 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
84 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
85 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
86 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
87 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
88 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
89 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
Roy Zang28f7a052009-07-31 13:34:02 +080090 /* E1000 PCIe card */
Simon Glassc53abc32015-08-19 09:33:39 -060091 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
92 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
93 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
94 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
95 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
96 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
97 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
98 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
99 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
100 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
101 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
102 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
103 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
104 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
105 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
106 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
107 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
108 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
109 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
110 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
111 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
112 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
113 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
114 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
115 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
116 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
117 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
118 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
119 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
120 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
Marek Vasut74a13c22014-08-08 07:41:39 -0700121
Stefan Althoeferbc6d2fc2008-12-20 19:40:41 +0100122 {}
wdenk4e112c12003-06-03 23:54:09 +0000123};
124
125/* Function forward declarations */
Simon Glassc53abc32015-08-19 09:33:39 -0600126static int e1000_setup_link(struct e1000_hw *hw);
127static int e1000_setup_fiber_link(struct e1000_hw *hw);
128static int e1000_setup_copper_link(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000129static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
130static void e1000_config_collision_dist(struct e1000_hw *hw);
131static int e1000_config_mac_to_phy(struct e1000_hw *hw);
132static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
Simon Glassc53abc32015-08-19 09:33:39 -0600133static int e1000_check_for_link(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000134static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800135static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk4e112c12003-06-03 23:54:09 +0000136 uint16_t * duplex);
137static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
138 uint16_t * phy_data);
139static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
140 uint16_t phy_data);
Roy Zang28f7a052009-07-31 13:34:02 +0800141static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000142static int e1000_phy_reset(struct e1000_hw *hw);
143static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800144static void e1000_set_media_type(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000145
Roy Zang28f7a052009-07-31 13:34:02 +0800146static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
Tim Harvey5cb59ec2015-05-19 10:01:18 -0700147static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
Roy Zang28f7a052009-07-31 13:34:02 +0800148static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000149
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200150#ifndef CONFIG_E1000_NO_NVM
151static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
Hannu Lounentoc56999e2018-01-10 20:31:24 +0100152static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
Roy Zang9b7c4302009-08-11 03:48:05 +0800153static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
154 uint16_t words,
155 uint16_t *data);
wdenk4e112c12003-06-03 23:54:09 +0000156/******************************************************************************
157 * Raises the EEPROM's clock input.
158 *
159 * hw - Struct containing variables accessed by shared code
160 * eecd - EECD's current value
161 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000162void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000163{
164 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
165 * wait 50 microseconds.
166 */
167 *eecd = *eecd | E1000_EECD_SK;
168 E1000_WRITE_REG(hw, EECD, *eecd);
169 E1000_WRITE_FLUSH(hw);
170 udelay(50);
171}
172
173/******************************************************************************
174 * Lowers the EEPROM's clock input.
175 *
wdenk57b2d802003-06-27 21:31:46 +0000176 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000177 * eecd - EECD's current value
178 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000179void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000180{
wdenk57b2d802003-06-27 21:31:46 +0000181 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
182 * wait 50 microseconds.
wdenk4e112c12003-06-03 23:54:09 +0000183 */
184 *eecd = *eecd & ~E1000_EECD_SK;
185 E1000_WRITE_REG(hw, EECD, *eecd);
186 E1000_WRITE_FLUSH(hw);
187 udelay(50);
188}
189
190/******************************************************************************
191 * Shift data bits out to the EEPROM.
192 *
193 * hw - Struct containing variables accessed by shared code
194 * data - data to send to the EEPROM
195 * count - number of bits to shift out
196 *****************************************************************************/
197static void
198e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
199{
200 uint32_t eecd;
201 uint32_t mask;
202
203 /* We need to shift "count" bits out to the EEPROM. So, value in the
204 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk57b2d802003-06-27 21:31:46 +0000205 * In order to do this, "data" must be broken down into bits.
wdenk4e112c12003-06-03 23:54:09 +0000206 */
207 mask = 0x01 << (count - 1);
208 eecd = E1000_READ_REG(hw, EECD);
209 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
210 do {
211 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
212 * and then raising and then lowering the clock (the SK bit controls
213 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
214 * by setting "DI" to "0" and then raising and then lowering the clock.
215 */
216 eecd &= ~E1000_EECD_DI;
217
218 if (data & mask)
219 eecd |= E1000_EECD_DI;
220
221 E1000_WRITE_REG(hw, EECD, eecd);
222 E1000_WRITE_FLUSH(hw);
223
224 udelay(50);
225
226 e1000_raise_ee_clk(hw, &eecd);
227 e1000_lower_ee_clk(hw, &eecd);
228
229 mask = mask >> 1;
230
231 } while (mask);
232
233 /* We leave the "DI" bit set to "0" when we leave this routine. */
234 eecd &= ~E1000_EECD_DI;
235 E1000_WRITE_REG(hw, EECD, eecd);
236}
237
238/******************************************************************************
239 * Shift data bits in from the EEPROM
240 *
241 * hw - Struct containing variables accessed by shared code
242 *****************************************************************************/
243static uint16_t
Roy Zang28f7a052009-07-31 13:34:02 +0800244e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk4e112c12003-06-03 23:54:09 +0000245{
246 uint32_t eecd;
247 uint32_t i;
248 uint16_t data;
249
Roy Zang28f7a052009-07-31 13:34:02 +0800250 /* In order to read a register from the EEPROM, we need to shift 'count'
251 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
252 * input to the EEPROM (setting the SK bit), and then reading the
253 * value of the "DO" bit. During this "shifting in" process the
254 * "DI" bit should always be clear.
wdenk4e112c12003-06-03 23:54:09 +0000255 */
256
257 eecd = E1000_READ_REG(hw, EECD);
258
259 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
260 data = 0;
261
Roy Zang28f7a052009-07-31 13:34:02 +0800262 for (i = 0; i < count; i++) {
wdenk4e112c12003-06-03 23:54:09 +0000263 data = data << 1;
264 e1000_raise_ee_clk(hw, &eecd);
265
266 eecd = E1000_READ_REG(hw, EECD);
267
268 eecd &= ~(E1000_EECD_DI);
269 if (eecd & E1000_EECD_DO)
270 data |= 1;
271
272 e1000_lower_ee_clk(hw, &eecd);
273 }
274
275 return data;
276}
277
278/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800279 * Returns EEPROM to a "standby" state
wdenk4e112c12003-06-03 23:54:09 +0000280 *
281 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000282 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000283void e1000_standby_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000284{
Roy Zang28f7a052009-07-31 13:34:02 +0800285 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk4e112c12003-06-03 23:54:09 +0000286 uint32_t eecd;
287
288 eecd = E1000_READ_REG(hw, EECD);
289
Roy Zang28f7a052009-07-31 13:34:02 +0800290 if (eeprom->type == e1000_eeprom_microwire) {
291 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
292 E1000_WRITE_REG(hw, EECD, eecd);
293 E1000_WRITE_FLUSH(hw);
294 udelay(eeprom->delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000295
Roy Zang28f7a052009-07-31 13:34:02 +0800296 /* Clock high */
297 eecd |= E1000_EECD_SK;
298 E1000_WRITE_REG(hw, EECD, eecd);
299 E1000_WRITE_FLUSH(hw);
300 udelay(eeprom->delay_usec);
301
302 /* Select EEPROM */
303 eecd |= E1000_EECD_CS;
304 E1000_WRITE_REG(hw, EECD, eecd);
305 E1000_WRITE_FLUSH(hw);
306 udelay(eeprom->delay_usec);
307
308 /* Clock low */
309 eecd &= ~E1000_EECD_SK;
310 E1000_WRITE_REG(hw, EECD, eecd);
311 E1000_WRITE_FLUSH(hw);
312 udelay(eeprom->delay_usec);
313 } else if (eeprom->type == e1000_eeprom_spi) {
314 /* Toggle CS to flush commands */
315 eecd |= E1000_EECD_CS;
316 E1000_WRITE_REG(hw, EECD, eecd);
317 E1000_WRITE_FLUSH(hw);
318 udelay(eeprom->delay_usec);
319 eecd &= ~E1000_EECD_CS;
320 E1000_WRITE_REG(hw, EECD, eecd);
321 E1000_WRITE_FLUSH(hw);
322 udelay(eeprom->delay_usec);
323 }
324}
325
326/***************************************************************************
327* Description: Determines if the onboard NVM is FLASH or EEPROM.
328*
329* hw - Struct containing variables accessed by shared code
330****************************************************************************/
York Sun4a598092013-04-01 11:29:11 -0700331static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +0800332{
333 uint32_t eecd = 0;
334
335 DEBUGFUNC();
336
337 if (hw->mac_type == e1000_ich8lan)
York Sun4a598092013-04-01 11:29:11 -0700338 return false;
Roy Zang28f7a052009-07-31 13:34:02 +0800339
Roy Zang181119b2011-01-21 11:29:38 +0800340 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800341 eecd = E1000_READ_REG(hw, EECD);
342
343 /* Isolate bits 15 & 16 */
344 eecd = ((eecd >> 15) & 0x03);
345
346 /* If both bits are set, device is Flash type */
347 if (eecd == 0x03)
York Sun4a598092013-04-01 11:29:11 -0700348 return false;
Roy Zang28f7a052009-07-31 13:34:02 +0800349 }
York Sun4a598092013-04-01 11:29:11 -0700350 return true;
wdenk4e112c12003-06-03 23:54:09 +0000351}
352
353/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800354 * Prepares EEPROM for access
wdenk57b2d802003-06-27 21:31:46 +0000355 *
wdenk4e112c12003-06-03 23:54:09 +0000356 * hw - Struct containing variables accessed by shared code
Roy Zang28f7a052009-07-31 13:34:02 +0800357 *
358 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
359 * function should be called before issuing a command to the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000360 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000361int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000362{
Roy Zang28f7a052009-07-31 13:34:02 +0800363 struct e1000_eeprom_info *eeprom = &hw->eeprom;
364 uint32_t eecd, i = 0;
365
Timur Tabiedc45b52009-08-17 15:55:38 -0500366 DEBUGFUNC();
wdenk4e112c12003-06-03 23:54:09 +0000367
Roy Zang28f7a052009-07-31 13:34:02 +0800368 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
369 return -E1000_ERR_SWFW_SYNC;
wdenk4e112c12003-06-03 23:54:09 +0000370 eecd = E1000_READ_REG(hw, EECD);
371
Marek Vasut74a13c22014-08-08 07:41:39 -0700372 if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800373 /* Request EEPROM Access */
374 if (hw->mac_type > e1000_82544) {
375 eecd |= E1000_EECD_REQ;
376 E1000_WRITE_REG(hw, EECD, eecd);
377 eecd = E1000_READ_REG(hw, EECD);
378 while ((!(eecd & E1000_EECD_GNT)) &&
379 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
380 i++;
381 udelay(5);
382 eecd = E1000_READ_REG(hw, EECD);
383 }
384 if (!(eecd & E1000_EECD_GNT)) {
385 eecd &= ~E1000_EECD_REQ;
386 E1000_WRITE_REG(hw, EECD, eecd);
387 DEBUGOUT("Could not acquire EEPROM grant\n");
388 return -E1000_ERR_EEPROM;
389 }
390 }
391 }
wdenk4e112c12003-06-03 23:54:09 +0000392
Roy Zang28f7a052009-07-31 13:34:02 +0800393 /* Setup EEPROM for Read/Write */
wdenk4e112c12003-06-03 23:54:09 +0000394
Roy Zang28f7a052009-07-31 13:34:02 +0800395 if (eeprom->type == e1000_eeprom_microwire) {
396 /* Clear SK and DI */
397 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
398 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000399
Roy Zang28f7a052009-07-31 13:34:02 +0800400 /* Set CS */
401 eecd |= E1000_EECD_CS;
402 E1000_WRITE_REG(hw, EECD, eecd);
403 } else if (eeprom->type == e1000_eeprom_spi) {
404 /* Clear SK and CS */
405 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
406 E1000_WRITE_REG(hw, EECD, eecd);
407 udelay(1);
408 }
409
410 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000411}
412
413/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800414 * Sets up eeprom variables in the hw struct. Must be called after mac_type
415 * is configured. Additionally, if this is ICH8, the flash controller GbE
416 * registers must be mapped, or this will crash.
wdenk4e112c12003-06-03 23:54:09 +0000417 *
418 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000419 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800420static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000421{
Roy Zang28f7a052009-07-31 13:34:02 +0800422 struct e1000_eeprom_info *eeprom = &hw->eeprom;
Marek Vasut74a13c22014-08-08 07:41:39 -0700423 uint32_t eecd;
Roy Zang28f7a052009-07-31 13:34:02 +0800424 int32_t ret_val = E1000_SUCCESS;
425 uint16_t eeprom_size;
wdenk4e112c12003-06-03 23:54:09 +0000426
Marek Vasut74a13c22014-08-08 07:41:39 -0700427 if (hw->mac_type == e1000_igb)
428 eecd = E1000_READ_REG(hw, I210_EECD);
429 else
430 eecd = E1000_READ_REG(hw, EECD);
431
Timur Tabiedc45b52009-08-17 15:55:38 -0500432 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +0800433
434 switch (hw->mac_type) {
435 case e1000_82542_rev2_0:
436 case e1000_82542_rev2_1:
437 case e1000_82543:
438 case e1000_82544:
439 eeprom->type = e1000_eeprom_microwire;
440 eeprom->word_size = 64;
441 eeprom->opcode_bits = 3;
442 eeprom->address_bits = 6;
443 eeprom->delay_usec = 50;
York Sun4a598092013-04-01 11:29:11 -0700444 eeprom->use_eerd = false;
445 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800446 break;
447 case e1000_82540:
448 case e1000_82545:
449 case e1000_82545_rev_3:
450 case e1000_82546:
451 case e1000_82546_rev_3:
452 eeprom->type = e1000_eeprom_microwire;
453 eeprom->opcode_bits = 3;
454 eeprom->delay_usec = 50;
455 if (eecd & E1000_EECD_SIZE) {
456 eeprom->word_size = 256;
457 eeprom->address_bits = 8;
458 } else {
459 eeprom->word_size = 64;
460 eeprom->address_bits = 6;
461 }
York Sun4a598092013-04-01 11:29:11 -0700462 eeprom->use_eerd = false;
463 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800464 break;
465 case e1000_82541:
466 case e1000_82541_rev_2:
467 case e1000_82547:
468 case e1000_82547_rev_2:
469 if (eecd & E1000_EECD_TYPE) {
470 eeprom->type = e1000_eeprom_spi;
471 eeprom->opcode_bits = 8;
472 eeprom->delay_usec = 1;
473 if (eecd & E1000_EECD_ADDR_BITS) {
474 eeprom->page_size = 32;
475 eeprom->address_bits = 16;
476 } else {
477 eeprom->page_size = 8;
478 eeprom->address_bits = 8;
479 }
480 } else {
481 eeprom->type = e1000_eeprom_microwire;
482 eeprom->opcode_bits = 3;
483 eeprom->delay_usec = 50;
484 if (eecd & E1000_EECD_ADDR_BITS) {
485 eeprom->word_size = 256;
486 eeprom->address_bits = 8;
487 } else {
488 eeprom->word_size = 64;
489 eeprom->address_bits = 6;
490 }
491 }
York Sun4a598092013-04-01 11:29:11 -0700492 eeprom->use_eerd = false;
493 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800494 break;
495 case e1000_82571:
496 case e1000_82572:
497 eeprom->type = e1000_eeprom_spi;
498 eeprom->opcode_bits = 8;
499 eeprom->delay_usec = 1;
500 if (eecd & E1000_EECD_ADDR_BITS) {
501 eeprom->page_size = 32;
502 eeprom->address_bits = 16;
503 } else {
504 eeprom->page_size = 8;
505 eeprom->address_bits = 8;
506 }
York Sun4a598092013-04-01 11:29:11 -0700507 eeprom->use_eerd = false;
508 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800509 break;
510 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +0800511 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +0800512 eeprom->type = e1000_eeprom_spi;
513 eeprom->opcode_bits = 8;
514 eeprom->delay_usec = 1;
515 if (eecd & E1000_EECD_ADDR_BITS) {
516 eeprom->page_size = 32;
517 eeprom->address_bits = 16;
518 } else {
519 eeprom->page_size = 8;
520 eeprom->address_bits = 8;
wdenk4e112c12003-06-03 23:54:09 +0000521 }
York Sun4a598092013-04-01 11:29:11 -0700522 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
Marek Vasut74a13c22014-08-08 07:41:39 -0700523 eeprom->use_eerd = true;
524 eeprom->use_eewr = true;
525
Roy Zang28f7a052009-07-31 13:34:02 +0800526 eeprom->type = e1000_eeprom_flash;
527 eeprom->word_size = 2048;
528
529 /* Ensure that the Autonomous FLASH update bit is cleared due to
530 * Flash update issue on parts which use a FLASH for NVM. */
531 eecd &= ~E1000_EECD_AUPDEN;
wdenk4e112c12003-06-03 23:54:09 +0000532 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000533 }
Roy Zang28f7a052009-07-31 13:34:02 +0800534 break;
535 case e1000_80003es2lan:
536 eeprom->type = e1000_eeprom_spi;
537 eeprom->opcode_bits = 8;
538 eeprom->delay_usec = 1;
539 if (eecd & E1000_EECD_ADDR_BITS) {
540 eeprom->page_size = 32;
541 eeprom->address_bits = 16;
542 } else {
543 eeprom->page_size = 8;
544 eeprom->address_bits = 8;
545 }
York Sun4a598092013-04-01 11:29:11 -0700546 eeprom->use_eerd = true;
547 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800548 break;
Marek Vasut74a13c22014-08-08 07:41:39 -0700549 case e1000_igb:
550 /* i210 has 4k of iNVM mapped as EEPROM */
551 eeprom->type = e1000_eeprom_invm;
552 eeprom->opcode_bits = 8;
553 eeprom->delay_usec = 1;
554 eeprom->page_size = 32;
555 eeprom->address_bits = 16;
556 eeprom->use_eerd = true;
557 eeprom->use_eewr = false;
558 break;
Roy Zang28f7a052009-07-31 13:34:02 +0800559 default:
560 break;
wdenk4e112c12003-06-03 23:54:09 +0000561 }
562
Marek Vasut74a13c22014-08-08 07:41:39 -0700563 if (eeprom->type == e1000_eeprom_spi ||
564 eeprom->type == e1000_eeprom_invm) {
Roy Zang28f7a052009-07-31 13:34:02 +0800565 /* eeprom_size will be an enum [0..8] that maps
566 * to eeprom sizes 128B to
567 * 32KB (incremented by powers of 2).
568 */
569 if (hw->mac_type <= e1000_82547_rev_2) {
570 /* Set to default value for initial eeprom read. */
571 eeprom->word_size = 64;
572 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
573 &eeprom_size);
574 if (ret_val)
575 return ret_val;
576 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
577 >> EEPROM_SIZE_SHIFT;
578 /* 256B eeprom size was not supported in earlier
579 * hardware, so we bump eeprom_size up one to
580 * ensure that "1" (which maps to 256B) is never
581 * the result used in the shifting logic below. */
582 if (eeprom_size)
583 eeprom_size++;
584 } else {
585 eeprom_size = (uint16_t)((eecd &
586 E1000_EECD_SIZE_EX_MASK) >>
587 E1000_EECD_SIZE_EX_SHIFT);
588 }
589
590 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
591 }
592 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +0000593}
594
Roy Zang28f7a052009-07-31 13:34:02 +0800595/******************************************************************************
596 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
597 *
598 * hw - Struct containing variables accessed by shared code
599 *****************************************************************************/
600static int32_t
601e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
wdenk4e112c12003-06-03 23:54:09 +0000602{
Roy Zang28f7a052009-07-31 13:34:02 +0800603 uint32_t attempts = 100000;
604 uint32_t i, reg = 0;
605 int32_t done = E1000_ERR_EEPROM;
wdenk4e112c12003-06-03 23:54:09 +0000606
Roy Zang28f7a052009-07-31 13:34:02 +0800607 for (i = 0; i < attempts; i++) {
Marek Vasut74a13c22014-08-08 07:41:39 -0700608 if (eerd == E1000_EEPROM_POLL_READ) {
609 if (hw->mac_type == e1000_igb)
610 reg = E1000_READ_REG(hw, I210_EERD);
611 else
612 reg = E1000_READ_REG(hw, EERD);
613 } else {
614 if (hw->mac_type == e1000_igb)
615 reg = E1000_READ_REG(hw, I210_EEWR);
616 else
617 reg = E1000_READ_REG(hw, EEWR);
618 }
Roy Zang28f7a052009-07-31 13:34:02 +0800619
620 if (reg & E1000_EEPROM_RW_REG_DONE) {
621 done = E1000_SUCCESS;
622 break;
623 }
624 udelay(5);
625 }
626
627 return done;
wdenk4e112c12003-06-03 23:54:09 +0000628}
629
Roy Zang28f7a052009-07-31 13:34:02 +0800630/******************************************************************************
631 * Reads a 16 bit word from the EEPROM using the EERD register.
632 *
633 * hw - Struct containing variables accessed by shared code
634 * offset - offset of word in the EEPROM to read
635 * data - word read from the EEPROM
636 * words - number of words to read
637 *****************************************************************************/
638static int32_t
639e1000_read_eeprom_eerd(struct e1000_hw *hw,
640 uint16_t offset,
641 uint16_t words,
642 uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000643{
Roy Zang28f7a052009-07-31 13:34:02 +0800644 uint32_t i, eerd = 0;
645 int32_t error = 0;
wdenk4e112c12003-06-03 23:54:09 +0000646
Roy Zang28f7a052009-07-31 13:34:02 +0800647 for (i = 0; i < words; i++) {
648 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
649 E1000_EEPROM_RW_REG_START;
650
Marek Vasut74a13c22014-08-08 07:41:39 -0700651 if (hw->mac_type == e1000_igb)
652 E1000_WRITE_REG(hw, I210_EERD, eerd);
653 else
654 E1000_WRITE_REG(hw, EERD, eerd);
655
Roy Zang28f7a052009-07-31 13:34:02 +0800656 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
657
658 if (error)
659 break;
Marek Vasut74a13c22014-08-08 07:41:39 -0700660
661 if (hw->mac_type == e1000_igb) {
662 data[i] = (E1000_READ_REG(hw, I210_EERD) >>
Roy Zang28f7a052009-07-31 13:34:02 +0800663 E1000_EEPROM_RW_REG_DATA);
Marek Vasut74a13c22014-08-08 07:41:39 -0700664 } else {
665 data[i] = (E1000_READ_REG(hw, EERD) >>
666 E1000_EEPROM_RW_REG_DATA);
667 }
Roy Zang28f7a052009-07-31 13:34:02 +0800668
wdenk4e112c12003-06-03 23:54:09 +0000669 }
Roy Zang28f7a052009-07-31 13:34:02 +0800670
671 return error;
wdenk4e112c12003-06-03 23:54:09 +0000672}
673
Kyle Moffett142cbf82011-10-18 11:05:28 +0000674void e1000_release_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000675{
676 uint32_t eecd;
wdenk4e112c12003-06-03 23:54:09 +0000677
Roy Zang28f7a052009-07-31 13:34:02 +0800678 DEBUGFUNC();
679
680 eecd = E1000_READ_REG(hw, EECD);
681
682 if (hw->eeprom.type == e1000_eeprom_spi) {
683 eecd |= E1000_EECD_CS; /* Pull CS high */
684 eecd &= ~E1000_EECD_SK; /* Lower SCK */
685
wdenk4e112c12003-06-03 23:54:09 +0000686 E1000_WRITE_REG(hw, EECD, eecd);
Roy Zang28f7a052009-07-31 13:34:02 +0800687
688 udelay(hw->eeprom.delay_usec);
689 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
690 /* cleanup eeprom */
691
692 /* CS on Microwire is active-high */
693 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
694
695 E1000_WRITE_REG(hw, EECD, eecd);
696
697 /* Rising edge of clock */
698 eecd |= E1000_EECD_SK;
699 E1000_WRITE_REG(hw, EECD, eecd);
700 E1000_WRITE_FLUSH(hw);
701 udelay(hw->eeprom.delay_usec);
702
703 /* Falling edge of clock */
704 eecd &= ~E1000_EECD_SK;
705 E1000_WRITE_REG(hw, EECD, eecd);
706 E1000_WRITE_FLUSH(hw);
707 udelay(hw->eeprom.delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000708 }
wdenk4e112c12003-06-03 23:54:09 +0000709
710 /* Stop requesting EEPROM access */
711 if (hw->mac_type > e1000_82544) {
wdenk4e112c12003-06-03 23:54:09 +0000712 eecd &= ~E1000_EECD_REQ;
713 E1000_WRITE_REG(hw, EECD, eecd);
714 }
Tim Harvey5cb59ec2015-05-19 10:01:18 -0700715
716 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
wdenk4e112c12003-06-03 23:54:09 +0000717}
Tim Harvey5cb59ec2015-05-19 10:01:18 -0700718
wdenk4e112c12003-06-03 23:54:09 +0000719/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800720 * Reads a 16 bit word from the EEPROM.
wdenk57b2d802003-06-27 21:31:46 +0000721 *
wdenk4e112c12003-06-03 23:54:09 +0000722 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000723 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800724static int32_t
725e1000_spi_eeprom_ready(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000726{
Roy Zang28f7a052009-07-31 13:34:02 +0800727 uint16_t retry_count = 0;
728 uint8_t spi_stat_reg;
wdenk4e112c12003-06-03 23:54:09 +0000729
730 DEBUGFUNC();
731
Roy Zang28f7a052009-07-31 13:34:02 +0800732 /* Read "Status Register" repeatedly until the LSB is cleared. The
733 * EEPROM will signal that the command has been completed by clearing
734 * bit 0 of the internal status register. If it's not cleared within
735 * 5 milliseconds, then error out.
736 */
737 retry_count = 0;
738 do {
739 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
740 hw->eeprom.opcode_bits);
741 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
742 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
743 break;
wdenk57b2d802003-06-27 21:31:46 +0000744
Roy Zang28f7a052009-07-31 13:34:02 +0800745 udelay(5);
746 retry_count += 5;
747
748 e1000_standby_eeprom(hw);
749 } while (retry_count < EEPROM_MAX_RETRY_SPI);
750
751 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
752 * only 0-5mSec on 5V devices)
753 */
754 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
755 DEBUGOUT("SPI EEPROM Status error\n");
wdenk4e112c12003-06-03 23:54:09 +0000756 return -E1000_ERR_EEPROM;
757 }
Roy Zang28f7a052009-07-31 13:34:02 +0800758
759 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000760}
761
762/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800763 * Reads a 16 bit word from the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000764 *
Roy Zang28f7a052009-07-31 13:34:02 +0800765 * hw - Struct containing variables accessed by shared code
766 * offset - offset of word in the EEPROM to read
767 * data - word read from the EEPROM
wdenk4e112c12003-06-03 23:54:09 +0000768 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800769static int32_t
770e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
771 uint16_t words, uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000772{
Roy Zang28f7a052009-07-31 13:34:02 +0800773 struct e1000_eeprom_info *eeprom = &hw->eeprom;
774 uint32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000775
776 DEBUGFUNC();
777
Roy Zang28f7a052009-07-31 13:34:02 +0800778 /* If eeprom is not yet detected, do so now */
779 if (eeprom->word_size == 0)
780 e1000_init_eeprom_params(hw);
781
782 /* A check for invalid values: offset too large, too many words,
783 * and not enough words.
784 */
785 if ((offset >= eeprom->word_size) ||
786 (words > eeprom->word_size - offset) ||
787 (words == 0)) {
788 DEBUGOUT("\"words\" parameter out of bounds."
789 "Words = %d, size = %d\n", offset, eeprom->word_size);
790 return -E1000_ERR_EEPROM;
791 }
792
793 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
794 * directly. In this case, we need to acquire the EEPROM so that
795 * FW or other port software does not interrupt.
796 */
York Sun4a598092013-04-01 11:29:11 -0700797 if (e1000_is_onboard_nvm_eeprom(hw) == true &&
798 hw->eeprom.use_eerd == false) {
Roy Zang28f7a052009-07-31 13:34:02 +0800799
800 /* Prepare the EEPROM for bit-bang reading */
801 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
802 return -E1000_ERR_EEPROM;
803 }
804
805 /* Eerd register EEPROM access requires no eeprom aquire/release */
York Sun4a598092013-04-01 11:29:11 -0700806 if (eeprom->use_eerd == true)
Roy Zang28f7a052009-07-31 13:34:02 +0800807 return e1000_read_eeprom_eerd(hw, offset, words, data);
808
Roy Zang28f7a052009-07-31 13:34:02 +0800809 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
810 * acquired the EEPROM at this point, so any returns should relase it */
811 if (eeprom->type == e1000_eeprom_spi) {
812 uint16_t word_in;
813 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
814
815 if (e1000_spi_eeprom_ready(hw)) {
816 e1000_release_eeprom(hw);
817 return -E1000_ERR_EEPROM;
818 }
819
820 e1000_standby_eeprom(hw);
821
822 /* Some SPI eeproms use the 8th address bit embedded in
823 * the opcode */
824 if ((eeprom->address_bits == 8) && (offset >= 128))
825 read_opcode |= EEPROM_A8_OPCODE_SPI;
826
827 /* Send the READ command (opcode + addr) */
828 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
829 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
830 eeprom->address_bits);
831
832 /* Read the data. The address of the eeprom internally
833 * increments with each byte (spi) being read, saving on the
834 * overhead of eeprom setup and tear-down. The address
835 * counter will roll over if reading beyond the size of
836 * the eeprom, thus allowing the entire memory to be read
837 * starting from any offset. */
838 for (i = 0; i < words; i++) {
839 word_in = e1000_shift_in_ee_bits(hw, 16);
840 data[i] = (word_in >> 8) | (word_in << 8);
841 }
842 } else if (eeprom->type == e1000_eeprom_microwire) {
843 for (i = 0; i < words; i++) {
844 /* Send the READ command (opcode + addr) */
845 e1000_shift_out_ee_bits(hw,
846 EEPROM_READ_OPCODE_MICROWIRE,
847 eeprom->opcode_bits);
848 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
849 eeprom->address_bits);
850
851 /* Read the data. For microwire, each word requires
852 * the overhead of eeprom setup and tear-down. */
853 data[i] = e1000_shift_in_ee_bits(hw, 16);
854 e1000_standby_eeprom(hw);
855 }
856 }
857
858 /* End this read operation */
859 e1000_release_eeprom(hw);
860
861 return E1000_SUCCESS;
862}
863
Hannu Lounentoc56999e2018-01-10 20:31:24 +0100864/******************************************************************************
865 * e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
866 * @hw: pointer to the HW structure
867 * @offset: offset within the Shadow Ram to be written to
868 * @words: number of words to write
869 * @data: 16 bit word(s) to be written to the Shadow Ram
870 *
871 * Writes data to Shadow Ram at offset using EEWR register.
872 *
873 * If e1000_update_eeprom_checksum_i210 is not called after this function, the
874 * Shadow Ram will most likely contain an invalid checksum.
875 *****************************************************************************/
876static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
877 uint16_t words, uint16_t *data)
878{
879 struct e1000_eeprom_info *eeprom = &hw->eeprom;
880 uint32_t i, k, eewr = 0;
881 uint32_t attempts = 100000;
882 int32_t ret_val = 0;
883
884 /* A check for invalid values: offset too large, too many words,
885 * too many words for the offset, and not enough words.
886 */
887 if ((offset >= eeprom->word_size) ||
888 (words > (eeprom->word_size - offset)) || (words == 0)) {
889 DEBUGOUT("nvm parameter(s) out of bounds\n");
890 ret_val = -E1000_ERR_EEPROM;
891 goto out;
892 }
893
894 for (i = 0; i < words; i++) {
895 eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
896 | (data[i] << E1000_EEPROM_RW_REG_DATA) |
897 E1000_EEPROM_RW_REG_START;
898
899 E1000_WRITE_REG(hw, I210_EEWR, eewr);
900
901 for (k = 0; k < attempts; k++) {
902 if (E1000_EEPROM_RW_REG_DONE &
903 E1000_READ_REG(hw, I210_EEWR)) {
904 ret_val = 0;
905 break;
906 }
907 udelay(5);
908 }
909
910 if (ret_val) {
911 DEBUGOUT("Shadow RAM write EEWR timed out\n");
912 break;
913 }
914 }
915
916out:
917 return ret_val;
918}
919
920/******************************************************************************
921 * e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
922 * @hw: pointer to the HW structure
923 *
924 *****************************************************************************/
925static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
926{
927 int32_t ret_val = -E1000_ERR_EEPROM;
928 uint32_t i, reg;
929
930 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
931 reg = E1000_READ_REG(hw, EECD);
932 if (reg & E1000_EECD_FLUDONE_I210) {
933 ret_val = 0;
934 break;
935 }
936 udelay(5);
937 }
938
939 return ret_val;
940}
941
942/******************************************************************************
943 * e1000_update_flash_i210 - Commit EEPROM to the flash
944 * @hw: pointer to the HW structure
945 *
946 *****************************************************************************/
947static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
948{
949 int32_t ret_val = 0;
950 uint32_t flup;
951
952 ret_val = e1000_pool_flash_update_done_i210(hw);
953 if (ret_val == -E1000_ERR_EEPROM) {
954 DEBUGOUT("Flash update time out\n");
955 goto out;
956 }
957
958 flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
959 E1000_WRITE_REG(hw, EECD, flup);
960
961 ret_val = e1000_pool_flash_update_done_i210(hw);
962 if (ret_val)
963 DEBUGOUT("Flash update time out\n");
964 else
965 DEBUGOUT("Flash update complete\n");
966
967out:
968 return ret_val;
969}
970
971/******************************************************************************
972 * e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
973 * @hw: pointer to the HW structure
974 *
975 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
976 * up to the checksum. Then calculates the EEPROM checksum and writes the
977 * value to the EEPROM. Next commit EEPROM data onto the Flash.
978 *****************************************************************************/
979static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
980{
981 int32_t ret_val = 0;
982 uint16_t checksum = 0;
983 uint16_t i, nvm_data;
984
985 /* Read the first word from the EEPROM. If this times out or fails, do
986 * not continue or we could be in for a very long wait while every
987 * EEPROM read fails
988 */
989 ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
990 if (ret_val) {
991 DEBUGOUT("EEPROM read failed\n");
992 goto out;
993 }
994
995 if (!(e1000_get_hw_eeprom_semaphore(hw))) {
996 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
997 * because we do not want to take the synchronization
998 * semaphores twice here.
999 */
1000
1001 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
1002 ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
1003 if (ret_val) {
1004 e1000_put_hw_eeprom_semaphore(hw);
1005 DEBUGOUT("EEPROM Read Error while updating checksum.\n");
1006 goto out;
1007 }
1008 checksum += nvm_data;
1009 }
1010 checksum = (uint16_t)EEPROM_SUM - checksum;
1011 ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
1012 &checksum);
1013 if (ret_val) {
1014 e1000_put_hw_eeprom_semaphore(hw);
1015 DEBUGOUT("EEPROM Write Error while updating checksum.\n");
1016 goto out;
1017 }
1018
1019 e1000_put_hw_eeprom_semaphore(hw);
1020
1021 ret_val = e1000_update_flash_i210(hw);
1022 } else {
1023 ret_val = -E1000_ERR_SWFW_SYNC;
1024 }
1025
1026out:
1027 return ret_val;
1028}
Hannu Lounentoc56999e2018-01-10 20:31:24 +01001029
Roy Zang28f7a052009-07-31 13:34:02 +08001030/******************************************************************************
1031 * Verifies that the EEPROM has a valid checksum
1032 *
1033 * hw - Struct containing variables accessed by shared code
1034 *
1035 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
1036 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
1037 * valid.
1038 *****************************************************************************/
Kyle Moffett70946bc2011-10-18 11:05:27 +00001039static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +08001040{
Kyle Moffett70946bc2011-10-18 11:05:27 +00001041 uint16_t i, checksum, checksum_reg, *buf;
Roy Zang28f7a052009-07-31 13:34:02 +08001042
1043 DEBUGFUNC();
1044
Kyle Moffett70946bc2011-10-18 11:05:27 +00001045 /* Allocate a temporary buffer */
1046 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
1047 if (!buf) {
Simon Glassc53abc32015-08-19 09:33:39 -06001048 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
Kyle Moffett70946bc2011-10-18 11:05:27 +00001049 return -E1000_ERR_EEPROM;
Roy Zang28f7a052009-07-31 13:34:02 +08001050 }
1051
Kyle Moffett70946bc2011-10-18 11:05:27 +00001052 /* Read the EEPROM */
1053 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
Simon Glassc53abc32015-08-19 09:33:39 -06001054 E1000_ERR(hw, "Unable to read EEPROM!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001055 return -E1000_ERR_EEPROM;
1056 }
Kyle Moffett70946bc2011-10-18 11:05:27 +00001057
1058 /* Compute the checksum */
Wolfgang Denk15690332011-10-28 07:37:04 +02001059 checksum = 0;
Kyle Moffett70946bc2011-10-18 11:05:27 +00001060 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1061 checksum += buf[i];
1062 checksum = ((uint16_t)EEPROM_SUM) - checksum;
1063 checksum_reg = buf[i];
1064
1065 /* Verify it! */
1066 if (checksum == checksum_reg)
1067 return 0;
1068
1069 /* Hrm, verification failed, print an error */
Simon Glassc53abc32015-08-19 09:33:39 -06001070 E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
1071 E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n",
1072 checksum_reg, checksum);
Kyle Moffett70946bc2011-10-18 11:05:27 +00001073
1074 return -E1000_ERR_EEPROM;
Roy Zang9b7c4302009-08-11 03:48:05 +08001075}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001076#endif /* CONFIG_E1000_NO_NVM */
Roy Zang9b7c4302009-08-11 03:48:05 +08001077
1078/*****************************************************************************
1079 * Set PHY to class A mode
1080 * Assumes the following operations will follow to enable the new class mode.
1081 * 1. Do a PHY soft reset
1082 * 2. Restart auto-negotiation or force link.
1083 *
1084 * hw - Struct containing variables accessed by shared code
1085 ****************************************************************************/
1086static int32_t
1087e1000_set_phy_mode(struct e1000_hw *hw)
1088{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001089#ifndef CONFIG_E1000_NO_NVM
Roy Zang9b7c4302009-08-11 03:48:05 +08001090 int32_t ret_val;
1091 uint16_t eeprom_data;
1092
1093 DEBUGFUNC();
1094
1095 if ((hw->mac_type == e1000_82545_rev_3) &&
1096 (hw->media_type == e1000_media_type_copper)) {
1097 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1098 1, &eeprom_data);
1099 if (ret_val)
1100 return ret_val;
1101
1102 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
1103 (eeprom_data & EEPROM_PHY_CLASS_A)) {
1104 ret_val = e1000_write_phy_reg(hw,
1105 M88E1000_PHY_PAGE_SELECT, 0x000B);
1106 if (ret_val)
1107 return ret_val;
1108 ret_val = e1000_write_phy_reg(hw,
1109 M88E1000_PHY_GEN_CONTROL, 0x8104);
1110 if (ret_val)
1111 return ret_val;
1112
York Sun4a598092013-04-01 11:29:11 -07001113 hw->phy_reset_disable = false;
Roy Zang9b7c4302009-08-11 03:48:05 +08001114 }
1115 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001116#endif
Roy Zang9b7c4302009-08-11 03:48:05 +08001117 return E1000_SUCCESS;
Roy Zang28f7a052009-07-31 13:34:02 +08001118}
Roy Zang28f7a052009-07-31 13:34:02 +08001119
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001120#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001121/***************************************************************************
1122 *
1123 * Obtaining software semaphore bit (SMBI) before resetting PHY.
1124 *
1125 * hw: Struct containing variables accessed by shared code
1126 *
1127 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1128 * E1000_SUCCESS at any other case.
1129 *
1130 ***************************************************************************/
1131static int32_t
1132e1000_get_software_semaphore(struct e1000_hw *hw)
1133{
1134 int32_t timeout = hw->eeprom.word_size + 1;
1135 uint32_t swsm;
1136
1137 DEBUGFUNC();
1138
Hannu Lounentoc56999e2018-01-10 20:31:24 +01001139 if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
Roy Zang28f7a052009-07-31 13:34:02 +08001140 return E1000_SUCCESS;
1141
1142 while (timeout) {
1143 swsm = E1000_READ_REG(hw, SWSM);
1144 /* If SMBI bit cleared, it is now set and we hold
1145 * the semaphore */
1146 if (!(swsm & E1000_SWSM_SMBI))
1147 break;
1148 mdelay(1);
1149 timeout--;
1150 }
1151
1152 if (!timeout) {
1153 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1154 return -E1000_ERR_RESET;
1155 }
1156
1157 return E1000_SUCCESS;
1158}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001159#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001160
1161/***************************************************************************
1162 * This function clears HW semaphore bits.
1163 *
1164 * hw: Struct containing variables accessed by shared code
1165 *
1166 * returns: - None.
1167 *
1168 ***************************************************************************/
1169static void
1170e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1171{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001172#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001173 uint32_t swsm;
1174
1175 DEBUGFUNC();
1176
1177 if (!hw->eeprom_semaphore_present)
1178 return;
1179
1180 swsm = E1000_READ_REG(hw, SWSM);
Bernhard Messerklinger801ae712018-02-15 08:55:49 +01001181 if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
Roy Zang28f7a052009-07-31 13:34:02 +08001182 /* Release both semaphores. */
1183 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1184 } else
1185 swsm &= ~(E1000_SWSM_SWESMBI);
1186 E1000_WRITE_REG(hw, SWSM, swsm);
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001187#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001188}
1189
1190/***************************************************************************
1191 *
1192 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1193 * adapter or Eeprom access.
1194 *
1195 * hw: Struct containing variables accessed by shared code
1196 *
1197 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1198 * E1000_SUCCESS at any other case.
1199 *
1200 ***************************************************************************/
1201static int32_t
1202e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1203{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001204#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001205 int32_t timeout;
1206 uint32_t swsm;
1207
1208 DEBUGFUNC();
1209
1210 if (!hw->eeprom_semaphore_present)
1211 return E1000_SUCCESS;
1212
Hannu Lounentoc56999e2018-01-10 20:31:24 +01001213 if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
Roy Zang28f7a052009-07-31 13:34:02 +08001214 /* Get the SW semaphore. */
1215 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1216 return -E1000_ERR_EEPROM;
1217 }
1218
1219 /* Get the FW semaphore. */
1220 timeout = hw->eeprom.word_size + 1;
1221 while (timeout) {
1222 swsm = E1000_READ_REG(hw, SWSM);
1223 swsm |= E1000_SWSM_SWESMBI;
1224 E1000_WRITE_REG(hw, SWSM, swsm);
1225 /* if we managed to set the bit we got the semaphore. */
1226 swsm = E1000_READ_REG(hw, SWSM);
1227 if (swsm & E1000_SWSM_SWESMBI)
1228 break;
1229
1230 udelay(50);
1231 timeout--;
1232 }
1233
1234 if (!timeout) {
1235 /* Release semaphores */
1236 e1000_put_hw_eeprom_semaphore(hw);
1237 DEBUGOUT("Driver can't access the Eeprom - "
1238 "SWESMBI bit is set.\n");
1239 return -E1000_ERR_EEPROM;
1240 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001241#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001242 return E1000_SUCCESS;
1243}
1244
Tim Harvey5cb59ec2015-05-19 10:01:18 -07001245/* Take ownership of the PHY */
Roy Zang28f7a052009-07-31 13:34:02 +08001246static int32_t
1247e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1248{
1249 uint32_t swfw_sync = 0;
1250 uint32_t swmask = mask;
1251 uint32_t fwmask = mask << 16;
1252 int32_t timeout = 200;
1253
1254 DEBUGFUNC();
1255 while (timeout) {
1256 if (e1000_get_hw_eeprom_semaphore(hw))
1257 return -E1000_ERR_SWFW_SYNC;
1258
Tim Harveydca35652015-05-19 10:01:19 -07001259 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
York Sun4303a832014-10-17 13:44:06 -07001260 if (!(swfw_sync & (fwmask | swmask)))
Roy Zang28f7a052009-07-31 13:34:02 +08001261 break;
1262
1263 /* firmware currently using resource (fwmask) */
1264 /* or other software thread currently using resource (swmask) */
1265 e1000_put_hw_eeprom_semaphore(hw);
1266 mdelay(5);
1267 timeout--;
1268 }
1269
1270 if (!timeout) {
1271 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1272 return -E1000_ERR_SWFW_SYNC;
1273 }
1274
1275 swfw_sync |= swmask;
1276 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1277
1278 e1000_put_hw_eeprom_semaphore(hw);
1279 return E1000_SUCCESS;
1280}
1281
Tim Harvey5cb59ec2015-05-19 10:01:18 -07001282static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1283{
1284 uint32_t swfw_sync = 0;
1285
1286 DEBUGFUNC();
1287 while (e1000_get_hw_eeprom_semaphore(hw))
1288 ; /* Empty */
1289
1290 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1291 swfw_sync &= ~mask;
1292 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1293
1294 e1000_put_hw_eeprom_semaphore(hw);
1295}
1296
York Sun4a598092013-04-01 11:29:11 -07001297static bool e1000_is_second_port(struct e1000_hw *hw)
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001298{
1299 switch (hw->mac_type) {
1300 case e1000_80003es2lan:
1301 case e1000_82546:
1302 case e1000_82571:
1303 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
York Sun4a598092013-04-01 11:29:11 -07001304 return true;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001305 /* Fallthrough */
1306 default:
York Sun4a598092013-04-01 11:29:11 -07001307 return false;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001308 }
1309}
1310
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001311#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001312/******************************************************************************
Hannu Lounentof36be3c2018-01-10 20:31:25 +01001313 * Reads the adapter's MAC address from the EEPROM
Roy Zang28f7a052009-07-31 13:34:02 +08001314 *
Hannu Lounentof36be3c2018-01-10 20:31:25 +01001315 * hw - Struct containing variables accessed by shared code
1316 * enetaddr - buffering where the MAC address will be stored
Roy Zang28f7a052009-07-31 13:34:02 +08001317 *****************************************************************************/
Hannu Lounentof36be3c2018-01-10 20:31:25 +01001318static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
1319 unsigned char enetaddr[6])
Roy Zang28f7a052009-07-31 13:34:02 +08001320{
Roy Zang28f7a052009-07-31 13:34:02 +08001321 uint16_t offset;
1322 uint16_t eeprom_data;
1323 int i;
1324
Roy Zang28f7a052009-07-31 13:34:02 +08001325 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
wdenk4e112c12003-06-03 23:54:09 +00001326 offset = i >> 1;
Hannu Lounentof36be3c2018-01-10 20:31:25 +01001327 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001328 DEBUGOUT("EEPROM Read Error\n");
1329 return -E1000_ERR_EEPROM;
1330 }
Simon Glassc53abc32015-08-19 09:33:39 -06001331 enetaddr[i] = eeprom_data & 0xff;
1332 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
wdenk4e112c12003-06-03 23:54:09 +00001333 }
Hannu Lounentof36be3c2018-01-10 20:31:25 +01001334
1335 return 0;
1336}
1337
1338/******************************************************************************
1339 * Reads the adapter's MAC address from the RAL/RAH registers
1340 *
1341 * hw - Struct containing variables accessed by shared code
1342 * enetaddr - buffering where the MAC address will be stored
1343 *****************************************************************************/
1344static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
1345 unsigned char enetaddr[6])
1346{
1347 uint16_t offset, tmp;
1348 uint32_t reg_data = 0;
1349 int i;
1350
1351 if (hw->mac_type != e1000_igb)
1352 return -E1000_ERR_MAC_TYPE;
1353
1354 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1355 offset = i >> 1;
1356
1357 if (offset == 0)
1358 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1359 else if (offset == 1)
1360 reg_data >>= 16;
1361 else if (offset == 2)
1362 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1363 tmp = reg_data & 0xffff;
1364
1365 enetaddr[i] = tmp & 0xff;
1366 enetaddr[i + 1] = (tmp >> 8) & 0xff;
1367 }
1368
1369 return 0;
1370}
1371
1372/******************************************************************************
1373 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1374 * second function of dual function devices
1375 *
1376 * hw - Struct containing variables accessed by shared code
1377 * enetaddr - buffering where the MAC address will be stored
1378 *****************************************************************************/
1379static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1380{
1381 int ret_val;
1382
1383 if (hw->mac_type == e1000_igb) {
1384 /* i210 preloads MAC address into RAL/RAH registers */
1385 ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
1386 } else {
1387 ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
1388 }
1389 if (ret_val)
1390 return ret_val;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001391
1392 /* Invert the last bit if this is the second device */
1393 if (e1000_is_second_port(hw))
Simon Glassc53abc32015-08-19 09:33:39 -06001394 enetaddr[5] ^= 1;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001395
wdenk4e112c12003-06-03 23:54:09 +00001396 return 0;
1397}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001398#endif
wdenk4e112c12003-06-03 23:54:09 +00001399
1400/******************************************************************************
1401 * Initializes receive address filters.
1402 *
wdenk57b2d802003-06-27 21:31:46 +00001403 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +00001404 *
1405 * Places the MAC address in receive address register 0 and clears the rest
1406 * of the receive addresss registers. Clears the multicast table. Assumes
1407 * the receiver is in reset when the routine is called.
1408 *****************************************************************************/
1409static void
Simon Glassc53abc32015-08-19 09:33:39 -06001410e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
wdenk4e112c12003-06-03 23:54:09 +00001411{
wdenk4e112c12003-06-03 23:54:09 +00001412 uint32_t i;
1413 uint32_t addr_low;
1414 uint32_t addr_high;
1415
1416 DEBUGFUNC();
1417
1418 /* Setup the receive address. */
1419 DEBUGOUT("Programming MAC Address into RAR[0]\n");
Simon Glassc53abc32015-08-19 09:33:39 -06001420 addr_low = (enetaddr[0] |
1421 (enetaddr[1] << 8) |
1422 (enetaddr[2] << 16) | (enetaddr[3] << 24));
wdenk4e112c12003-06-03 23:54:09 +00001423
Simon Glassc53abc32015-08-19 09:33:39 -06001424 addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
wdenk4e112c12003-06-03 23:54:09 +00001425
1426 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1427 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1428
1429 /* Zero out the other 15 receive addresses. */
1430 DEBUGOUT("Clearing RAR[1-15]\n");
1431 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1432 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1433 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1434 }
1435}
1436
1437/******************************************************************************
1438 * Clears the VLAN filer table
1439 *
1440 * hw - Struct containing variables accessed by shared code
1441 *****************************************************************************/
1442static void
1443e1000_clear_vfta(struct e1000_hw *hw)
1444{
1445 uint32_t offset;
1446
1447 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1448 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1449}
1450
1451/******************************************************************************
1452 * Set the mac type member in the hw struct.
wdenk57b2d802003-06-27 21:31:46 +00001453 *
wdenk4e112c12003-06-03 23:54:09 +00001454 * hw - Struct containing variables accessed by shared code
1455 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08001456int32_t
wdenk4e112c12003-06-03 23:54:09 +00001457e1000_set_mac_type(struct e1000_hw *hw)
1458{
1459 DEBUGFUNC();
1460
1461 switch (hw->device_id) {
1462 case E1000_DEV_ID_82542:
1463 switch (hw->revision_id) {
1464 case E1000_82542_2_0_REV_ID:
1465 hw->mac_type = e1000_82542_rev2_0;
1466 break;
1467 case E1000_82542_2_1_REV_ID:
1468 hw->mac_type = e1000_82542_rev2_1;
1469 break;
1470 default:
1471 /* Invalid 82542 revision ID */
1472 return -E1000_ERR_MAC_TYPE;
1473 }
1474 break;
1475 case E1000_DEV_ID_82543GC_FIBER:
1476 case E1000_DEV_ID_82543GC_COPPER:
1477 hw->mac_type = e1000_82543;
1478 break;
1479 case E1000_DEV_ID_82544EI_COPPER:
1480 case E1000_DEV_ID_82544EI_FIBER:
1481 case E1000_DEV_ID_82544GC_COPPER:
1482 case E1000_DEV_ID_82544GC_LOM:
1483 hw->mac_type = e1000_82544;
1484 break;
1485 case E1000_DEV_ID_82540EM:
1486 case E1000_DEV_ID_82540EM_LOM:
Roy Zang28f7a052009-07-31 13:34:02 +08001487 case E1000_DEV_ID_82540EP:
1488 case E1000_DEV_ID_82540EP_LOM:
1489 case E1000_DEV_ID_82540EP_LP:
wdenk4e112c12003-06-03 23:54:09 +00001490 hw->mac_type = e1000_82540;
1491 break;
1492 case E1000_DEV_ID_82545EM_COPPER:
1493 case E1000_DEV_ID_82545EM_FIBER:
1494 hw->mac_type = e1000_82545;
1495 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001496 case E1000_DEV_ID_82545GM_COPPER:
1497 case E1000_DEV_ID_82545GM_FIBER:
1498 case E1000_DEV_ID_82545GM_SERDES:
1499 hw->mac_type = e1000_82545_rev_3;
1500 break;
wdenk4e112c12003-06-03 23:54:09 +00001501 case E1000_DEV_ID_82546EB_COPPER:
1502 case E1000_DEV_ID_82546EB_FIBER:
Roy Zang28f7a052009-07-31 13:34:02 +08001503 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk4e112c12003-06-03 23:54:09 +00001504 hw->mac_type = e1000_82546;
1505 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001506 case E1000_DEV_ID_82546GB_COPPER:
1507 case E1000_DEV_ID_82546GB_FIBER:
1508 case E1000_DEV_ID_82546GB_SERDES:
1509 case E1000_DEV_ID_82546GB_PCIE:
1510 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1511 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1512 hw->mac_type = e1000_82546_rev_3;
1513 break;
1514 case E1000_DEV_ID_82541EI:
1515 case E1000_DEV_ID_82541EI_MOBILE:
1516 case E1000_DEV_ID_82541ER_LOM:
1517 hw->mac_type = e1000_82541;
1518 break;
Andre Schwarz68c2a302008-03-06 16:45:44 +01001519 case E1000_DEV_ID_82541ER:
Roy Zang28f7a052009-07-31 13:34:02 +08001520 case E1000_DEV_ID_82541GI:
Wolfgang Grandegger8562c382008-05-28 19:55:19 +02001521 case E1000_DEV_ID_82541GI_LF:
Roy Zang28f7a052009-07-31 13:34:02 +08001522 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001523 hw->mac_type = e1000_82541_rev_2;
1524 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001525 case E1000_DEV_ID_82547EI:
1526 case E1000_DEV_ID_82547EI_MOBILE:
1527 hw->mac_type = e1000_82547;
1528 break;
1529 case E1000_DEV_ID_82547GI:
1530 hw->mac_type = e1000_82547_rev_2;
1531 break;
1532 case E1000_DEV_ID_82571EB_COPPER:
1533 case E1000_DEV_ID_82571EB_FIBER:
1534 case E1000_DEV_ID_82571EB_SERDES:
1535 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1536 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1537 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1538 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1539 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1540 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1541 hw->mac_type = e1000_82571;
1542 break;
1543 case E1000_DEV_ID_82572EI_COPPER:
1544 case E1000_DEV_ID_82572EI_FIBER:
1545 case E1000_DEV_ID_82572EI_SERDES:
1546 case E1000_DEV_ID_82572EI:
1547 hw->mac_type = e1000_82572;
1548 break;
1549 case E1000_DEV_ID_82573E:
1550 case E1000_DEV_ID_82573E_IAMT:
1551 case E1000_DEV_ID_82573L:
1552 hw->mac_type = e1000_82573;
1553 break;
Roy Zang181119b2011-01-21 11:29:38 +08001554 case E1000_DEV_ID_82574L:
1555 hw->mac_type = e1000_82574;
1556 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001557 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1558 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1559 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1560 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1561 hw->mac_type = e1000_80003es2lan;
1562 break;
1563 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1564 case E1000_DEV_ID_ICH8_IGP_AMT:
1565 case E1000_DEV_ID_ICH8_IGP_C:
1566 case E1000_DEV_ID_ICH8_IFE:
1567 case E1000_DEV_ID_ICH8_IFE_GT:
1568 case E1000_DEV_ID_ICH8_IFE_G:
1569 case E1000_DEV_ID_ICH8_IGP_M:
1570 hw->mac_type = e1000_ich8lan;
1571 break;
Marcel Ziswilerb9f66232014-09-08 00:03:50 +02001572 case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1573 case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
Marek Vasut74a13c22014-08-08 07:41:39 -07001574 case PCI_DEVICE_ID_INTEL_I210_COPPER:
Marcel Ziswilerb9f66232014-09-08 00:03:50 +02001575 case PCI_DEVICE_ID_INTEL_I211_COPPER:
Marek Vasut74a13c22014-08-08 07:41:39 -07001576 case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1577 case PCI_DEVICE_ID_INTEL_I210_SERDES:
1578 case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1579 case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1580 hw->mac_type = e1000_igb;
1581 break;
wdenk4e112c12003-06-03 23:54:09 +00001582 default:
1583 /* Should never have loaded on this device */
1584 return -E1000_ERR_MAC_TYPE;
1585 }
1586 return E1000_SUCCESS;
1587}
1588
1589/******************************************************************************
1590 * Reset the transmit and receive units; mask and clear all interrupts.
1591 *
1592 * hw - Struct containing variables accessed by shared code
1593 *****************************************************************************/
1594void
1595e1000_reset_hw(struct e1000_hw *hw)
1596{
1597 uint32_t ctrl;
1598 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001599 uint32_t manc;
Roy Zang966172e2009-08-22 03:49:52 +08001600 uint32_t pba = 0;
Marek Vasut74a13c22014-08-08 07:41:39 -07001601 uint32_t reg;
wdenk4e112c12003-06-03 23:54:09 +00001602
1603 DEBUGFUNC();
1604
Roy Zang966172e2009-08-22 03:49:52 +08001605 /* get the correct pba value for both PCI and PCIe*/
1606 if (hw->mac_type < e1000_82571)
1607 pba = E1000_DEFAULT_PCI_PBA;
1608 else
1609 pba = E1000_DEFAULT_PCIE_PBA;
1610
wdenk4e112c12003-06-03 23:54:09 +00001611 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1612 if (hw->mac_type == e1000_82542_rev2_0) {
1613 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
Bin Meng83cf24c2016-02-02 05:58:01 -08001614#ifdef CONFIG_DM_ETH
1615 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1616 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1617#else
wdenk4e112c12003-06-03 23:54:09 +00001618 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zang28f7a052009-07-31 13:34:02 +08001619 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
Bin Meng83cf24c2016-02-02 05:58:01 -08001620#endif
wdenk4e112c12003-06-03 23:54:09 +00001621 }
1622
1623 /* Clear interrupt mask to stop board from generating interrupts */
1624 DEBUGOUT("Masking off all interrupts\n");
Marek Vasut74a13c22014-08-08 07:41:39 -07001625 if (hw->mac_type == e1000_igb)
1626 E1000_WRITE_REG(hw, I210_IAM, 0);
wdenk4e112c12003-06-03 23:54:09 +00001627 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1628
1629 /* Disable the Transmit and Receive units. Then delay to allow
1630 * any pending transactions to complete before we hit the MAC with
1631 * the global reset.
1632 */
1633 E1000_WRITE_REG(hw, RCTL, 0);
1634 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1635 E1000_WRITE_FLUSH(hw);
1636
Christian Gmeiner7c7b3c92020-10-06 16:08:35 +02001637 if (hw->mac_type == e1000_igb) {
1638 E1000_WRITE_REG(hw, RXPBS, I210_RXPBSIZE_DEFAULT);
1639 E1000_WRITE_REG(hw, TXPBS, I210_TXPBSIZE_DEFAULT);
1640 }
1641
wdenk4e112c12003-06-03 23:54:09 +00001642 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
York Sun4a598092013-04-01 11:29:11 -07001643 hw->tbi_compatibility_on = false;
wdenk4e112c12003-06-03 23:54:09 +00001644
1645 /* Delay to allow any outstanding PCI transactions to complete before
1646 * resetting the device
1647 */
1648 mdelay(10);
1649
1650 /* Issue a global reset to the MAC. This will reset the chip's
1651 * transmit, receive, DMA, and link units. It will not effect
1652 * the current PCI configuration. The global reset bit is self-
1653 * clearing, and should clear within a microsecond.
1654 */
1655 DEBUGOUT("Issuing a global reset to MAC\n");
1656 ctrl = E1000_READ_REG(hw, CTRL);
1657
Roy Zang28f7a052009-07-31 13:34:02 +08001658 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk4e112c12003-06-03 23:54:09 +00001659
1660 /* Force a reload from the EEPROM if necessary */
Marek Vasut74a13c22014-08-08 07:41:39 -07001661 if (hw->mac_type == e1000_igb) {
1662 mdelay(20);
1663 reg = E1000_READ_REG(hw, STATUS);
1664 if (reg & E1000_STATUS_PF_RST_DONE)
1665 DEBUGOUT("PF OK\n");
1666 reg = E1000_READ_REG(hw, I210_EECD);
1667 if (reg & E1000_EECD_AUTO_RD)
1668 DEBUGOUT("EEC OK\n");
1669 } else if (hw->mac_type < e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00001670 /* Wait for reset to complete */
1671 udelay(10);
1672 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1673 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1674 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1675 E1000_WRITE_FLUSH(hw);
1676 /* Wait for EEPROM reload */
1677 mdelay(2);
1678 } else {
1679 /* Wait for EEPROM reload (it happens automatically) */
1680 mdelay(4);
1681 /* Dissable HW ARPs on ASF enabled adapters */
1682 manc = E1000_READ_REG(hw, MANC);
1683 manc &= ~(E1000_MANC_ARP_EN);
1684 E1000_WRITE_REG(hw, MANC, manc);
1685 }
1686
1687 /* Clear interrupt mask to stop board from generating interrupts */
1688 DEBUGOUT("Masking off all interrupts\n");
Marek Vasut74a13c22014-08-08 07:41:39 -07001689 if (hw->mac_type == e1000_igb)
1690 E1000_WRITE_REG(hw, I210_IAM, 0);
wdenk4e112c12003-06-03 23:54:09 +00001691 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1692
1693 /* Clear any pending interrupt events. */
Zang Roy-R61911e36d67c2011-11-06 22:22:36 +00001694 E1000_READ_REG(hw, ICR);
wdenk4e112c12003-06-03 23:54:09 +00001695
1696 /* If MWI was previously enabled, reenable it. */
1697 if (hw->mac_type == e1000_82542_rev2_0) {
Bin Meng83cf24c2016-02-02 05:58:01 -08001698#ifdef CONFIG_DM_ETH
1699 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1700#else
wdenk4e112c12003-06-03 23:54:09 +00001701 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
Bin Meng83cf24c2016-02-02 05:58:01 -08001702#endif
wdenk4e112c12003-06-03 23:54:09 +00001703 }
Marek Vasut74a13c22014-08-08 07:41:39 -07001704 if (hw->mac_type != e1000_igb)
1705 E1000_WRITE_REG(hw, PBA, pba);
Roy Zang28f7a052009-07-31 13:34:02 +08001706}
1707
1708/******************************************************************************
1709 *
1710 * Initialize a number of hardware-dependent bits
1711 *
1712 * hw: Struct containing variables accessed by shared code
1713 *
1714 * This function contains hardware limitation workarounds for PCI-E adapters
1715 *
1716 *****************************************************************************/
1717static void
1718e1000_initialize_hardware_bits(struct e1000_hw *hw)
1719{
1720 if ((hw->mac_type >= e1000_82571) &&
1721 (!hw->initialize_hw_bits_disable)) {
1722 /* Settings common to all PCI-express silicon */
1723 uint32_t reg_ctrl, reg_ctrl_ext;
1724 uint32_t reg_tarc0, reg_tarc1;
1725 uint32_t reg_tctl;
1726 uint32_t reg_txdctl, reg_txdctl1;
1727
1728 /* link autonegotiation/sync workarounds */
1729 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1730 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1731
1732 /* Enable not-done TX descriptor counting */
1733 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1734 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1735 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1736
1737 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1738 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1739 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1740
Marek Vasut74a13c22014-08-08 07:41:39 -07001741
Roy Zang28f7a052009-07-31 13:34:02 +08001742 switch (hw->mac_type) {
Andre Przywara4b307c12016-11-16 00:50:07 +00001743 case e1000_igb: /* IGB is cool */
1744 return;
Roy Zang28f7a052009-07-31 13:34:02 +08001745 case e1000_82571:
1746 case e1000_82572:
1747 /* Clear PHY TX compatible mode bits */
1748 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1749 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1750
1751 /* link autonegotiation/sync workarounds */
1752 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1753
1754 /* TX ring control fixes */
1755 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1756
1757 /* Multiple read bit is reversed polarity */
1758 reg_tctl = E1000_READ_REG(hw, TCTL);
1759 if (reg_tctl & E1000_TCTL_MULR)
1760 reg_tarc1 &= ~(1 << 28);
1761 else
1762 reg_tarc1 |= (1 << 28);
1763
1764 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1765 break;
1766 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001767 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08001768 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1769 reg_ctrl_ext &= ~(1 << 23);
1770 reg_ctrl_ext |= (1 << 22);
1771
1772 /* TX byte count fix */
1773 reg_ctrl = E1000_READ_REG(hw, CTRL);
1774 reg_ctrl &= ~(1 << 29);
1775
1776 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1777 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1778 break;
1779 case e1000_80003es2lan:
1780 /* improve small packet performace for fiber/serdes */
1781 if ((hw->media_type == e1000_media_type_fiber)
1782 || (hw->media_type ==
1783 e1000_media_type_internal_serdes)) {
1784 reg_tarc0 &= ~(1 << 20);
1785 }
1786
1787 /* Multiple read bit is reversed polarity */
1788 reg_tctl = E1000_READ_REG(hw, TCTL);
1789 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1790 if (reg_tctl & E1000_TCTL_MULR)
1791 reg_tarc1 &= ~(1 << 28);
1792 else
1793 reg_tarc1 |= (1 << 28);
1794
1795 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1796 break;
1797 case e1000_ich8lan:
1798 /* Reduce concurrent DMA requests to 3 from 4 */
1799 if ((hw->revision_id < 3) ||
1800 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1801 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1802 reg_tarc0 |= ((1 << 29)|(1 << 28));
1803
1804 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1805 reg_ctrl_ext |= (1 << 22);
1806 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1807
1808 /* workaround TX hang with TSO=on */
1809 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1810
1811 /* Multiple read bit is reversed polarity */
1812 reg_tctl = E1000_READ_REG(hw, TCTL);
1813 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1814 if (reg_tctl & E1000_TCTL_MULR)
1815 reg_tarc1 &= ~(1 << 28);
1816 else
1817 reg_tarc1 |= (1 << 28);
1818
1819 /* workaround TX hang with TSO=on */
1820 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1821
1822 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1823 break;
1824 default:
1825 break;
1826 }
1827
1828 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1829 }
wdenk4e112c12003-06-03 23:54:09 +00001830}
1831
1832/******************************************************************************
1833 * Performs basic configuration of the adapter.
1834 *
1835 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001836 *
1837 * Assumes that the controller has previously been reset and is in a
wdenk4e112c12003-06-03 23:54:09 +00001838 * post-reset uninitialized state. Initializes the receive address registers,
1839 * multicast table, and VLAN filter table. Calls routines to setup link
1840 * configuration and flow control settings. Clears all on-chip counters. Leaves
1841 * the transmit and receive units disabled and uninitialized.
1842 *****************************************************************************/
1843static int
Simon Glassc53abc32015-08-19 09:33:39 -06001844e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
wdenk4e112c12003-06-03 23:54:09 +00001845{
Roy Zang28f7a052009-07-31 13:34:02 +08001846 uint32_t ctrl;
wdenk4e112c12003-06-03 23:54:09 +00001847 uint32_t i;
1848 int32_t ret_val;
1849 uint16_t pcix_cmd_word;
1850 uint16_t pcix_stat_hi_word;
1851 uint16_t cmd_mmrbc;
1852 uint16_t stat_mmrbc;
Roy Zang28f7a052009-07-31 13:34:02 +08001853 uint32_t mta_size;
1854 uint32_t reg_data;
1855 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001856 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08001857 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1858 if ((hw->mac_type == e1000_ich8lan) &&
1859 ((hw->revision_id < 3) ||
1860 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1861 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1862 reg_data = E1000_READ_REG(hw, STATUS);
1863 reg_data &= ~0x80000000;
1864 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk4e112c12003-06-03 23:54:09 +00001865 }
Roy Zang28f7a052009-07-31 13:34:02 +08001866 /* Do not need initialize Identification LED */
wdenk4e112c12003-06-03 23:54:09 +00001867
Roy Zang28f7a052009-07-31 13:34:02 +08001868 /* Set the media type and TBI compatibility */
1869 e1000_set_media_type(hw);
1870
1871 /* Must be called after e1000_set_media_type
1872 * because media_type is used */
1873 e1000_initialize_hardware_bits(hw);
wdenk4e112c12003-06-03 23:54:09 +00001874
1875 /* Disabling VLAN filtering. */
1876 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001877 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1878 if (hw->mac_type != e1000_ich8lan) {
1879 if (hw->mac_type < e1000_82545_rev_3)
1880 E1000_WRITE_REG(hw, VET, 0);
1881 e1000_clear_vfta(hw);
1882 }
wdenk4e112c12003-06-03 23:54:09 +00001883
1884 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1885 if (hw->mac_type == e1000_82542_rev2_0) {
1886 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
Bin Meng83cf24c2016-02-02 05:58:01 -08001887#ifdef CONFIG_DM_ETH
1888 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1889 hw->
1890 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1891#else
wdenk4e112c12003-06-03 23:54:09 +00001892 pci_write_config_word(hw->pdev, PCI_COMMAND,
1893 hw->
1894 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
Bin Meng83cf24c2016-02-02 05:58:01 -08001895#endif
wdenk4e112c12003-06-03 23:54:09 +00001896 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1897 E1000_WRITE_FLUSH(hw);
1898 mdelay(5);
1899 }
1900
1901 /* Setup the receive address. This involves initializing all of the Receive
1902 * Address Registers (RARs 0 - 15).
1903 */
Simon Glassc53abc32015-08-19 09:33:39 -06001904 e1000_init_rx_addrs(hw, enetaddr);
wdenk4e112c12003-06-03 23:54:09 +00001905
1906 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1907 if (hw->mac_type == e1000_82542_rev2_0) {
1908 E1000_WRITE_REG(hw, RCTL, 0);
1909 E1000_WRITE_FLUSH(hw);
1910 mdelay(1);
Bin Meng83cf24c2016-02-02 05:58:01 -08001911#ifdef CONFIG_DM_ETH
1912 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1913#else
wdenk4e112c12003-06-03 23:54:09 +00001914 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
Bin Meng83cf24c2016-02-02 05:58:01 -08001915#endif
wdenk4e112c12003-06-03 23:54:09 +00001916 }
1917
1918 /* Zero out the Multicast HASH table */
1919 DEBUGOUT("Zeroing the MTA\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001920 mta_size = E1000_MC_TBL_SIZE;
1921 if (hw->mac_type == e1000_ich8lan)
1922 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1923 for (i = 0; i < mta_size; i++) {
wdenk4e112c12003-06-03 23:54:09 +00001924 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zang28f7a052009-07-31 13:34:02 +08001925 /* use write flush to prevent Memory Write Block (MWB) from
1926 * occuring when accessing our register space */
1927 E1000_WRITE_FLUSH(hw);
1928 }
Bin Meng1ba7e952015-11-16 01:19:16 -08001929
Roy Zang28f7a052009-07-31 13:34:02 +08001930 switch (hw->mac_type) {
1931 case e1000_82545_rev_3:
1932 case e1000_82546_rev_3:
Marek Vasut74a13c22014-08-08 07:41:39 -07001933 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08001934 break;
1935 default:
wdenk4e112c12003-06-03 23:54:09 +00001936 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zang28f7a052009-07-31 13:34:02 +08001937 if (hw->bus_type == e1000_bus_type_pcix) {
Bin Meng83cf24c2016-02-02 05:58:01 -08001938#ifdef CONFIG_DM_ETH
1939 dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1940 &pcix_cmd_word);
1941 dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1942 &pcix_stat_hi_word);
1943#else
wdenk4e112c12003-06-03 23:54:09 +00001944 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1945 &pcix_cmd_word);
1946 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1947 &pcix_stat_hi_word);
Bin Meng83cf24c2016-02-02 05:58:01 -08001948#endif
wdenk4e112c12003-06-03 23:54:09 +00001949 cmd_mmrbc =
1950 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1951 PCIX_COMMAND_MMRBC_SHIFT;
1952 stat_mmrbc =
1953 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1954 PCIX_STATUS_HI_MMRBC_SHIFT;
1955 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1956 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1957 if (cmd_mmrbc > stat_mmrbc) {
1958 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1959 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
Bin Meng83cf24c2016-02-02 05:58:01 -08001960#ifdef CONFIG_DM_ETH
1961 dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1962 pcix_cmd_word);
1963#else
wdenk4e112c12003-06-03 23:54:09 +00001964 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1965 pcix_cmd_word);
Bin Meng83cf24c2016-02-02 05:58:01 -08001966#endif
wdenk4e112c12003-06-03 23:54:09 +00001967 }
1968 }
Roy Zang28f7a052009-07-31 13:34:02 +08001969 break;
1970 }
wdenk4e112c12003-06-03 23:54:09 +00001971
Roy Zang28f7a052009-07-31 13:34:02 +08001972 /* More time needed for PHY to initialize */
1973 if (hw->mac_type == e1000_ich8lan)
1974 mdelay(15);
Marek Vasut74a13c22014-08-08 07:41:39 -07001975 if (hw->mac_type == e1000_igb)
1976 mdelay(15);
Roy Zang28f7a052009-07-31 13:34:02 +08001977
wdenk4e112c12003-06-03 23:54:09 +00001978 /* Call a subroutine to configure the link and setup flow control. */
Simon Glassc53abc32015-08-19 09:33:39 -06001979 ret_val = e1000_setup_link(hw);
wdenk4e112c12003-06-03 23:54:09 +00001980
1981 /* Set the transmit descriptor write-back policy */
1982 if (hw->mac_type > e1000_82544) {
1983 ctrl = E1000_READ_REG(hw, TXDCTL);
1984 ctrl =
1985 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1986 E1000_TXDCTL_FULL_TX_DESC_WB;
1987 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1988 }
Roy Zang28f7a052009-07-31 13:34:02 +08001989
Ruchika Guptaed1f72f2012-04-19 02:27:11 +00001990 /* Set the receive descriptor write back policy */
Ruchika Guptaed1f72f2012-04-19 02:27:11 +00001991 if (hw->mac_type >= e1000_82571) {
1992 ctrl = E1000_READ_REG(hw, RXDCTL);
1993 ctrl =
1994 (ctrl & ~E1000_RXDCTL_WTHRESH) |
1995 E1000_RXDCTL_FULL_RX_DESC_WB;
1996 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1997 }
1998
Roy Zang28f7a052009-07-31 13:34:02 +08001999 switch (hw->mac_type) {
2000 default:
2001 break;
2002 case e1000_80003es2lan:
2003 /* Enable retransmit on late collisions */
2004 reg_data = E1000_READ_REG(hw, TCTL);
2005 reg_data |= E1000_TCTL_RTLC;
2006 E1000_WRITE_REG(hw, TCTL, reg_data);
2007
2008 /* Configure Gigabit Carry Extend Padding */
2009 reg_data = E1000_READ_REG(hw, TCTL_EXT);
2010 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
2011 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
2012 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
2013
2014 /* Configure Transmit Inter-Packet Gap */
2015 reg_data = E1000_READ_REG(hw, TIPG);
2016 reg_data &= ~E1000_TIPG_IPGT_MASK;
2017 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2018 E1000_WRITE_REG(hw, TIPG, reg_data);
2019
2020 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
2021 reg_data &= ~0x00100000;
2022 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
2023 /* Fall through */
2024 case e1000_82571:
2025 case e1000_82572:
2026 case e1000_ich8lan:
2027 ctrl = E1000_READ_REG(hw, TXDCTL1);
2028 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
2029 | E1000_TXDCTL_FULL_TX_DESC_WB;
2030 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
2031 break;
Roy Zang181119b2011-01-21 11:29:38 +08002032 case e1000_82573:
2033 case e1000_82574:
2034 reg_data = E1000_READ_REG(hw, GCR);
2035 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
2036 E1000_WRITE_REG(hw, GCR, reg_data);
Marek Vasut74a13c22014-08-08 07:41:39 -07002037 case e1000_igb:
2038 break;
Roy Zang28f7a052009-07-31 13:34:02 +08002039 }
2040
Roy Zang28f7a052009-07-31 13:34:02 +08002041 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
2042 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
2043 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2044 /* Relaxed ordering must be disabled to avoid a parity
2045 * error crash in a PCI slot. */
2046 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2047 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2048 }
2049
2050 return ret_val;
2051}
wdenk4e112c12003-06-03 23:54:09 +00002052
2053/******************************************************************************
2054 * Configures flow control and link settings.
wdenk57b2d802003-06-27 21:31:46 +00002055 *
wdenk4e112c12003-06-03 23:54:09 +00002056 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00002057 *
wdenk4e112c12003-06-03 23:54:09 +00002058 * Determines which flow control settings to use. Calls the apropriate media-
2059 * specific link configuration function. Configures the flow control settings.
2060 * Assuming the adapter has a valid link partner, a valid link should be
wdenk57b2d802003-06-27 21:31:46 +00002061 * established. Assumes the hardware has previously been reset and the
wdenk4e112c12003-06-03 23:54:09 +00002062 * transmitter and receiver are not enabled.
2063 *****************************************************************************/
2064static int
Simon Glassc53abc32015-08-19 09:33:39 -06002065e1000_setup_link(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002066{
wdenk4e112c12003-06-03 23:54:09 +00002067 int32_t ret_val;
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002068#ifndef CONFIG_E1000_NO_NVM
2069 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00002070 uint16_t eeprom_data;
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002071#endif
wdenk4e112c12003-06-03 23:54:09 +00002072
2073 DEBUGFUNC();
2074
Roy Zang28f7a052009-07-31 13:34:02 +08002075 /* In the case of the phy reset being blocked, we already have a link.
2076 * We do not have to set it up again. */
2077 if (e1000_check_phy_reset_block(hw))
2078 return E1000_SUCCESS;
2079
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002080#ifndef CONFIG_E1000_NO_NVM
wdenk4e112c12003-06-03 23:54:09 +00002081 /* Read and store word 0x0F of the EEPROM. This word contains bits
2082 * that determine the hardware's default PAUSE (flow control) mode,
2083 * a bit that determines whether the HW defaults to enabling or
2084 * disabling auto-negotiation, and the direction of the
2085 * SW defined pins. If there is no SW over-ride of the flow
2086 * control setting, then the variable hw->fc will
2087 * be initialized based on a value in the EEPROM.
2088 */
Roy Zang28f7a052009-07-31 13:34:02 +08002089 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
2090 &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00002091 DEBUGOUT("EEPROM Read Error\n");
2092 return -E1000_ERR_EEPROM;
2093 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002094#endif
wdenk4e112c12003-06-03 23:54:09 +00002095 if (hw->fc == e1000_fc_default) {
Roy Zang28f7a052009-07-31 13:34:02 +08002096 switch (hw->mac_type) {
2097 case e1000_ich8lan:
2098 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08002099 case e1000_82574:
Marek Vasut74a13c22014-08-08 07:41:39 -07002100 case e1000_igb:
wdenk4e112c12003-06-03 23:54:09 +00002101 hw->fc = e1000_fc_full;
Roy Zang28f7a052009-07-31 13:34:02 +08002102 break;
2103 default:
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002104#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08002105 ret_val = e1000_read_eeprom(hw,
2106 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
2107 if (ret_val) {
2108 DEBUGOUT("EEPROM Read Error\n");
2109 return -E1000_ERR_EEPROM;
2110 }
Roy Zang28f7a052009-07-31 13:34:02 +08002111 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
2112 hw->fc = e1000_fc_none;
2113 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
2114 EEPROM_WORD0F_ASM_DIR)
2115 hw->fc = e1000_fc_tx_pause;
2116 else
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002117#endif
Roy Zang28f7a052009-07-31 13:34:02 +08002118 hw->fc = e1000_fc_full;
2119 break;
2120 }
wdenk4e112c12003-06-03 23:54:09 +00002121 }
2122
2123 /* We want to save off the original Flow Control configuration just
2124 * in case we get disconnected and then reconnected into a different
2125 * hub or switch with different Flow Control capabilities.
2126 */
2127 if (hw->mac_type == e1000_82542_rev2_0)
2128 hw->fc &= (~e1000_fc_tx_pause);
2129
2130 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
2131 hw->fc &= (~e1000_fc_rx_pause);
2132
2133 hw->original_fc = hw->fc;
2134
2135 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
2136
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002137#ifndef CONFIG_E1000_NO_NVM
wdenk4e112c12003-06-03 23:54:09 +00002138 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
2139 * polarity value for the SW controlled pins, and setup the
2140 * Extended Device Control reg with that info.
2141 * This is needed because one of the SW controlled pins is used for
2142 * signal detection. So this should be done before e1000_setup_pcs_link()
2143 * or e1000_phy_setup() is called.
2144 */
2145 if (hw->mac_type == e1000_82543) {
2146 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
2147 SWDPIO__EXT_SHIFT);
2148 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2149 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002150#endif
wdenk4e112c12003-06-03 23:54:09 +00002151
2152 /* Call the necessary subroutine to configure the link. */
2153 ret_val = (hw->media_type == e1000_media_type_fiber) ?
Simon Glassc53abc32015-08-19 09:33:39 -06002154 e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
wdenk4e112c12003-06-03 23:54:09 +00002155 if (ret_val < 0) {
2156 return ret_val;
2157 }
2158
2159 /* Initialize the flow control address, type, and PAUSE timer
2160 * registers to their default values. This is done even if flow
2161 * control is disabled, because it does not hurt anything to
2162 * initialize these registers.
2163 */
Roy Zang28f7a052009-07-31 13:34:02 +08002164 DEBUGOUT("Initializing the Flow Control address, type"
2165 "and timer regs\n");
2166
2167 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
2168 if (hw->mac_type != e1000_ich8lan) {
2169 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
2170 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
2171 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
2172 }
wdenk4e112c12003-06-03 23:54:09 +00002173
wdenk4e112c12003-06-03 23:54:09 +00002174 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
2175
2176 /* Set the flow control receive threshold registers. Normally,
2177 * these registers will be set to a default threshold that may be
2178 * adjusted later by the driver's runtime code. However, if the
2179 * ability to transmit pause frames in not enabled, then these
wdenk57b2d802003-06-27 21:31:46 +00002180 * registers will be set to 0.
wdenk4e112c12003-06-03 23:54:09 +00002181 */
2182 if (!(hw->fc & e1000_fc_tx_pause)) {
2183 E1000_WRITE_REG(hw, FCRTL, 0);
2184 E1000_WRITE_REG(hw, FCRTH, 0);
2185 } else {
2186 /* We need to set up the Receive Threshold high and low water marks
2187 * as well as (optionally) enabling the transmission of XON frames.
2188 */
2189 if (hw->fc_send_xon) {
2190 E1000_WRITE_REG(hw, FCRTL,
2191 (hw->fc_low_water | E1000_FCRTL_XONE));
2192 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2193 } else {
2194 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2195 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2196 }
2197 }
2198 return ret_val;
2199}
2200
2201/******************************************************************************
2202 * Sets up link for a fiber based adapter
2203 *
2204 * hw - Struct containing variables accessed by shared code
2205 *
2206 * Manipulates Physical Coding Sublayer functions in order to configure
2207 * link. Assumes the hardware has been previously reset and the transmitter
2208 * and receiver are not enabled.
2209 *****************************************************************************/
2210static int
Simon Glassc53abc32015-08-19 09:33:39 -06002211e1000_setup_fiber_link(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002212{
wdenk4e112c12003-06-03 23:54:09 +00002213 uint32_t ctrl;
2214 uint32_t status;
2215 uint32_t txcw = 0;
2216 uint32_t i;
2217 uint32_t signal;
2218 int32_t ret_val;
2219
2220 DEBUGFUNC();
wdenk57b2d802003-06-27 21:31:46 +00002221 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2222 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00002223 * cleared when there is a signal
2224 */
2225 ctrl = E1000_READ_REG(hw, CTRL);
2226 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2227 signal = E1000_CTRL_SWDPIN1;
2228 else
2229 signal = 0;
2230
Simon Glassc53abc32015-08-19 09:33:39 -06002231 printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
wdenk4e112c12003-06-03 23:54:09 +00002232 ctrl);
2233 /* Take the link out of reset */
2234 ctrl &= ~(E1000_CTRL_LRST);
2235
2236 e1000_config_collision_dist(hw);
2237
2238 /* Check for a software override of the flow control settings, and setup
2239 * the device accordingly. If auto-negotiation is enabled, then software
2240 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2241 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk57b2d802003-06-27 21:31:46 +00002242 * auto-negotiation is disabled, then software will have to manually
wdenk4e112c12003-06-03 23:54:09 +00002243 * configure the two flow control enable bits in the CTRL register.
2244 *
2245 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07002246 * 0: Flow control is completely disabled
2247 * 1: Rx flow control is enabled (we can receive pause frames, but
2248 * not send pause frames).
2249 * 2: Tx flow control is enabled (we can send pause frames but we do
2250 * not support receiving pause frames).
2251 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00002252 */
2253 switch (hw->fc) {
2254 case e1000_fc_none:
2255 /* Flow control is completely disabled by a software over-ride. */
2256 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2257 break;
2258 case e1000_fc_rx_pause:
wdenk57b2d802003-06-27 21:31:46 +00002259 /* RX Flow control is enabled and TX Flow control is disabled by a
2260 * software over-ride. Since there really isn't a way to advertise
wdenk4e112c12003-06-03 23:54:09 +00002261 * that we are capable of RX Pause ONLY, we will advertise that we
2262 * support both symmetric and asymmetric RX PAUSE. Later, we will
2263 * disable the adapter's ability to send PAUSE frames.
2264 */
2265 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2266 break;
2267 case e1000_fc_tx_pause:
wdenk57b2d802003-06-27 21:31:46 +00002268 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk4e112c12003-06-03 23:54:09 +00002269 * software over-ride.
2270 */
2271 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2272 break;
2273 case e1000_fc_full:
2274 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2275 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2276 break;
2277 default:
2278 DEBUGOUT("Flow control param set incorrectly\n");
2279 return -E1000_ERR_CONFIG;
2280 break;
2281 }
2282
2283 /* Since auto-negotiation is enabled, take the link out of reset (the link
2284 * will be in reset, because we previously reset the chip). This will
2285 * restart auto-negotiation. If auto-neogtiation is successful then the
2286 * link-up status bit will be set and the flow control enable bits (RFCE
2287 * and TFCE) will be set according to their negotiated value.
2288 */
2289 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2290
2291 E1000_WRITE_REG(hw, TXCW, txcw);
2292 E1000_WRITE_REG(hw, CTRL, ctrl);
2293 E1000_WRITE_FLUSH(hw);
2294
2295 hw->txcw = txcw;
2296 mdelay(1);
2297
2298 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk57b2d802003-06-27 21:31:46 +00002299 * indication in the Device Status Register. Time-out if a link isn't
2300 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk4e112c12003-06-03 23:54:09 +00002301 * less than 500 milliseconds even if the other end is doing it in SW).
2302 */
2303 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2304 DEBUGOUT("Looking for Link\n");
2305 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2306 mdelay(10);
2307 status = E1000_READ_REG(hw, STATUS);
2308 if (status & E1000_STATUS_LU)
2309 break;
2310 }
2311 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk57b2d802003-06-27 21:31:46 +00002312 /* AutoNeg failed to achieve a link, so we'll call
wdenk4e112c12003-06-03 23:54:09 +00002313 * e1000_check_for_link. This routine will force the link up if we
2314 * detect a signal. This will allow us to communicate with
2315 * non-autonegotiating link partners.
2316 */
2317 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2318 hw->autoneg_failed = 1;
Simon Glassc53abc32015-08-19 09:33:39 -06002319 ret_val = e1000_check_for_link(hw);
wdenk4e112c12003-06-03 23:54:09 +00002320 if (ret_val < 0) {
2321 DEBUGOUT("Error while checking for link\n");
2322 return ret_val;
2323 }
2324 hw->autoneg_failed = 0;
2325 } else {
2326 hw->autoneg_failed = 0;
2327 DEBUGOUT("Valid Link Found\n");
2328 }
2329 } else {
2330 DEBUGOUT("No Signal Detected\n");
2331 return -E1000_ERR_NOLINK;
2332 }
2333 return 0;
2334}
2335
2336/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08002337* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk4e112c12003-06-03 23:54:09 +00002338*
2339* hw - Struct containing variables accessed by shared code
2340******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08002341static int32_t
2342e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002343{
wdenk4e112c12003-06-03 23:54:09 +00002344 uint32_t ctrl;
2345 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002346 uint16_t phy_data;
2347
2348 DEBUGFUNC();
2349
2350 ctrl = E1000_READ_REG(hw, CTRL);
2351 /* With 82543, we need to force speed and duplex on the MAC equal to what
2352 * the PHY speed and duplex configuration is. In addition, we need to
2353 * perform a hardware reset on the PHY to take it out of reset.
2354 */
2355 if (hw->mac_type > e1000_82543) {
2356 ctrl |= E1000_CTRL_SLU;
2357 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2358 E1000_WRITE_REG(hw, CTRL, ctrl);
2359 } else {
Roy Zang28f7a052009-07-31 13:34:02 +08002360 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2361 | E1000_CTRL_SLU);
wdenk4e112c12003-06-03 23:54:09 +00002362 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002363 ret_val = e1000_phy_hw_reset(hw);
2364 if (ret_val)
2365 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002366 }
2367
2368 /* Make sure we have a valid PHY */
2369 ret_val = e1000_detect_gig_phy(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002370 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002371 DEBUGOUT("Error, did not detect valid phy.\n");
2372 return ret_val;
2373 }
Minghuan Lian674bcd52015-03-19 09:43:51 -07002374 DEBUGOUT("Phy ID = %x\n", hw->phy_id);
wdenk4e112c12003-06-03 23:54:09 +00002375
Roy Zang28f7a052009-07-31 13:34:02 +08002376 /* Set PHY to class A mode (if necessary) */
2377 ret_val = e1000_set_phy_mode(hw);
2378 if (ret_val)
2379 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002380 if ((hw->mac_type == e1000_82545_rev_3) ||
2381 (hw->mac_type == e1000_82546_rev_3)) {
2382 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2383 &phy_data);
2384 phy_data |= 0x00000008;
2385 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2386 phy_data);
2387 }
2388
2389 if (hw->mac_type <= e1000_82543 ||
2390 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2391 hw->mac_type == e1000_82541_rev_2
2392 || hw->mac_type == e1000_82547_rev_2)
York Sun4a598092013-04-01 11:29:11 -07002393 hw->phy_reset_disable = false;
Roy Zang28f7a052009-07-31 13:34:02 +08002394
2395 return E1000_SUCCESS;
2396}
2397
2398/*****************************************************************************
2399 *
2400 * This function sets the lplu state according to the active flag. When
2401 * activating lplu this function also disables smart speed and vise versa.
2402 * lplu will not be activated unless the device autonegotiation advertisment
2403 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2404 * hw: Struct containing variables accessed by shared code
2405 * active - true to enable lplu false to disable lplu.
2406 *
2407 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2408 * E1000_SUCCESS at any other case.
2409 *
2410 ****************************************************************************/
2411
2412static int32_t
York Sun4a598092013-04-01 11:29:11 -07002413e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
Roy Zang28f7a052009-07-31 13:34:02 +08002414{
2415 uint32_t phy_ctrl = 0;
2416 int32_t ret_val;
2417 uint16_t phy_data;
2418 DEBUGFUNC();
2419
2420 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2421 && hw->phy_type != e1000_phy_igp_3)
2422 return E1000_SUCCESS;
2423
2424 /* During driver activity LPLU should not be used or it will attain link
2425 * from the lowest speeds starting from 10Mbps. The capability is used
2426 * for Dx transitions and states */
2427 if (hw->mac_type == e1000_82541_rev_2
2428 || hw->mac_type == e1000_82547_rev_2) {
2429 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2430 &phy_data);
2431 if (ret_val)
2432 return ret_val;
2433 } else if (hw->mac_type == e1000_ich8lan) {
2434 /* MAC writes into PHY register based on the state transition
2435 * and start auto-negotiation. SW driver can overwrite the
2436 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2437 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2438 } else {
2439 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2440 &phy_data);
2441 if (ret_val)
2442 return ret_val;
2443 }
2444
2445 if (!active) {
2446 if (hw->mac_type == e1000_82541_rev_2 ||
2447 hw->mac_type == e1000_82547_rev_2) {
2448 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2449 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2450 phy_data);
2451 if (ret_val)
2452 return ret_val;
2453 } else {
2454 if (hw->mac_type == e1000_ich8lan) {
2455 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2456 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2457 } else {
2458 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2459 ret_val = e1000_write_phy_reg(hw,
2460 IGP02E1000_PHY_POWER_MGMT, phy_data);
2461 if (ret_val)
2462 return ret_val;
2463 }
2464 }
2465
2466 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2467 * Dx states where the power conservation is most important. During
2468 * driver activity we should enable SmartSpeed, so performance is
2469 * maintained. */
2470 if (hw->smart_speed == e1000_smart_speed_on) {
2471 ret_val = e1000_read_phy_reg(hw,
2472 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2473 if (ret_val)
2474 return ret_val;
2475
2476 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2477 ret_val = e1000_write_phy_reg(hw,
2478 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2479 if (ret_val)
2480 return ret_val;
2481 } else if (hw->smart_speed == e1000_smart_speed_off) {
2482 ret_val = e1000_read_phy_reg(hw,
2483 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2484 if (ret_val)
2485 return ret_val;
2486
2487 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2488 ret_val = e1000_write_phy_reg(hw,
2489 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2490 if (ret_val)
2491 return ret_val;
2492 }
2493
2494 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2495 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2496 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2497
2498 if (hw->mac_type == e1000_82541_rev_2 ||
2499 hw->mac_type == e1000_82547_rev_2) {
2500 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2501 ret_val = e1000_write_phy_reg(hw,
2502 IGP01E1000_GMII_FIFO, phy_data);
2503 if (ret_val)
2504 return ret_val;
2505 } else {
2506 if (hw->mac_type == e1000_ich8lan) {
2507 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2508 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2509 } else {
2510 phy_data |= IGP02E1000_PM_D3_LPLU;
2511 ret_val = e1000_write_phy_reg(hw,
2512 IGP02E1000_PHY_POWER_MGMT, phy_data);
2513 if (ret_val)
2514 return ret_val;
2515 }
2516 }
2517
2518 /* When LPLU is enabled we should disable SmartSpeed */
2519 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2520 &phy_data);
2521 if (ret_val)
2522 return ret_val;
2523
2524 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2525 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2526 phy_data);
2527 if (ret_val)
2528 return ret_val;
2529 }
2530 return E1000_SUCCESS;
2531}
2532
2533/*****************************************************************************
2534 *
2535 * This function sets the lplu d0 state according to the active flag. When
2536 * activating lplu this function also disables smart speed and vise versa.
2537 * lplu will not be activated unless the device autonegotiation advertisment
2538 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2539 * hw: Struct containing variables accessed by shared code
2540 * active - true to enable lplu false to disable lplu.
2541 *
2542 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2543 * E1000_SUCCESS at any other case.
2544 *
2545 ****************************************************************************/
2546
2547static int32_t
York Sun4a598092013-04-01 11:29:11 -07002548e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
Roy Zang28f7a052009-07-31 13:34:02 +08002549{
2550 uint32_t phy_ctrl = 0;
2551 int32_t ret_val;
2552 uint16_t phy_data;
2553 DEBUGFUNC();
2554
2555 if (hw->mac_type <= e1000_82547_rev_2)
2556 return E1000_SUCCESS;
2557
2558 if (hw->mac_type == e1000_ich8lan) {
2559 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
Marek Vasut74a13c22014-08-08 07:41:39 -07002560 } else if (hw->mac_type == e1000_igb) {
2561 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
Roy Zang28f7a052009-07-31 13:34:02 +08002562 } else {
2563 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2564 &phy_data);
2565 if (ret_val)
2566 return ret_val;
2567 }
2568
2569 if (!active) {
2570 if (hw->mac_type == e1000_ich8lan) {
2571 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2572 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
Marek Vasut74a13c22014-08-08 07:41:39 -07002573 } else if (hw->mac_type == e1000_igb) {
2574 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2575 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002576 } else {
2577 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2578 ret_val = e1000_write_phy_reg(hw,
2579 IGP02E1000_PHY_POWER_MGMT, phy_data);
2580 if (ret_val)
2581 return ret_val;
2582 }
2583
Marek Vasut74a13c22014-08-08 07:41:39 -07002584 if (hw->mac_type == e1000_igb)
2585 return E1000_SUCCESS;
2586
Roy Zang28f7a052009-07-31 13:34:02 +08002587 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2588 * Dx states where the power conservation is most important. During
2589 * driver activity we should enable SmartSpeed, so performance is
2590 * maintained. */
2591 if (hw->smart_speed == e1000_smart_speed_on) {
2592 ret_val = e1000_read_phy_reg(hw,
2593 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2594 if (ret_val)
2595 return ret_val;
2596
2597 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2598 ret_val = e1000_write_phy_reg(hw,
2599 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2600 if (ret_val)
2601 return ret_val;
2602 } else if (hw->smart_speed == e1000_smart_speed_off) {
2603 ret_val = e1000_read_phy_reg(hw,
2604 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2605 if (ret_val)
2606 return ret_val;
2607
2608 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2609 ret_val = e1000_write_phy_reg(hw,
2610 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2611 if (ret_val)
2612 return ret_val;
2613 }
2614
2615
2616 } else {
2617
2618 if (hw->mac_type == e1000_ich8lan) {
2619 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2620 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
Marek Vasut74a13c22014-08-08 07:41:39 -07002621 } else if (hw->mac_type == e1000_igb) {
2622 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2623 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002624 } else {
2625 phy_data |= IGP02E1000_PM_D0_LPLU;
2626 ret_val = e1000_write_phy_reg(hw,
2627 IGP02E1000_PHY_POWER_MGMT, phy_data);
2628 if (ret_val)
2629 return ret_val;
2630 }
2631
Marek Vasut74a13c22014-08-08 07:41:39 -07002632 if (hw->mac_type == e1000_igb)
2633 return E1000_SUCCESS;
2634
Roy Zang28f7a052009-07-31 13:34:02 +08002635 /* When LPLU is enabled we should disable SmartSpeed */
2636 ret_val = e1000_read_phy_reg(hw,
2637 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2638 if (ret_val)
2639 return ret_val;
2640
2641 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2642 ret_val = e1000_write_phy_reg(hw,
2643 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2644 if (ret_val)
2645 return ret_val;
2646
2647 }
2648 return E1000_SUCCESS;
2649}
2650
2651/********************************************************************
2652* Copper link setup for e1000_phy_igp series.
2653*
2654* hw - Struct containing variables accessed by shared code
2655*********************************************************************/
2656static int32_t
2657e1000_copper_link_igp_setup(struct e1000_hw *hw)
2658{
2659 uint32_t led_ctrl;
2660 int32_t ret_val;
2661 uint16_t phy_data;
2662
Timur Tabiedc45b52009-08-17 15:55:38 -05002663 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08002664
2665 if (hw->phy_reset_disable)
2666 return E1000_SUCCESS;
2667
2668 ret_val = e1000_phy_reset(hw);
2669 if (ret_val) {
2670 DEBUGOUT("Error Resetting the PHY\n");
2671 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002672 }
Roy Zang28f7a052009-07-31 13:34:02 +08002673
2674 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2675 mdelay(15);
2676 if (hw->mac_type != e1000_ich8lan) {
2677 /* Configure activity LED after PHY reset */
2678 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2679 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2680 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2681 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2682 }
2683
2684 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2685 if (hw->phy_type == e1000_phy_igp) {
2686 /* disable lplu d3 during driver init */
York Sun4a598092013-04-01 11:29:11 -07002687 ret_val = e1000_set_d3_lplu_state(hw, false);
Roy Zang28f7a052009-07-31 13:34:02 +08002688 if (ret_val) {
2689 DEBUGOUT("Error Disabling LPLU D3\n");
2690 return ret_val;
2691 }
2692 }
2693
2694 /* disable lplu d0 during driver init */
York Sun4a598092013-04-01 11:29:11 -07002695 ret_val = e1000_set_d0_lplu_state(hw, false);
Roy Zang28f7a052009-07-31 13:34:02 +08002696 if (ret_val) {
2697 DEBUGOUT("Error Disabling LPLU D0\n");
2698 return ret_val;
2699 }
2700 /* Configure mdi-mdix settings */
2701 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2702 if (ret_val)
2703 return ret_val;
2704
2705 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2706 hw->dsp_config_state = e1000_dsp_config_disabled;
2707 /* Force MDI for earlier revs of the IGP PHY */
2708 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2709 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2710 hw->mdix = 1;
2711
2712 } else {
2713 hw->dsp_config_state = e1000_dsp_config_enabled;
2714 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2715
2716 switch (hw->mdix) {
2717 case 1:
2718 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2719 break;
2720 case 2:
2721 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2722 break;
2723 case 0:
2724 default:
2725 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2726 break;
2727 }
2728 }
2729 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2730 if (ret_val)
2731 return ret_val;
2732
2733 /* set auto-master slave resolution settings */
2734 if (hw->autoneg) {
2735 e1000_ms_type phy_ms_setting = hw->master_slave;
2736
2737 if (hw->ffe_config_state == e1000_ffe_config_active)
2738 hw->ffe_config_state = e1000_ffe_config_enabled;
2739
2740 if (hw->dsp_config_state == e1000_dsp_config_activated)
2741 hw->dsp_config_state = e1000_dsp_config_enabled;
2742
2743 /* when autonegotiation advertisment is only 1000Mbps then we
2744 * should disable SmartSpeed and enable Auto MasterSlave
2745 * resolution as hardware default. */
2746 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2747 /* Disable SmartSpeed */
2748 ret_val = e1000_read_phy_reg(hw,
2749 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2750 if (ret_val)
2751 return ret_val;
2752 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2753 ret_val = e1000_write_phy_reg(hw,
2754 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2755 if (ret_val)
2756 return ret_val;
2757 /* Set auto Master/Slave resolution process */
2758 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2759 &phy_data);
2760 if (ret_val)
2761 return ret_val;
2762 phy_data &= ~CR_1000T_MS_ENABLE;
2763 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2764 phy_data);
2765 if (ret_val)
2766 return ret_val;
2767 }
2768
2769 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2770 if (ret_val)
2771 return ret_val;
2772
2773 /* load defaults for future use */
2774 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2775 ((phy_data & CR_1000T_MS_VALUE) ?
2776 e1000_ms_force_master :
2777 e1000_ms_force_slave) :
2778 e1000_ms_auto;
2779
2780 switch (phy_ms_setting) {
2781 case e1000_ms_force_master:
2782 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2783 break;
2784 case e1000_ms_force_slave:
2785 phy_data |= CR_1000T_MS_ENABLE;
2786 phy_data &= ~(CR_1000T_MS_VALUE);
2787 break;
2788 case e1000_ms_auto:
2789 phy_data &= ~CR_1000T_MS_ENABLE;
2790 default:
2791 break;
2792 }
2793 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2794 if (ret_val)
2795 return ret_val;
2796 }
2797
2798 return E1000_SUCCESS;
2799}
2800
2801/*****************************************************************************
2802 * This function checks the mode of the firmware.
2803 *
York Sun4a598092013-04-01 11:29:11 -07002804 * returns - true when the mode is IAMT or false.
Roy Zang28f7a052009-07-31 13:34:02 +08002805 ****************************************************************************/
York Sun4a598092013-04-01 11:29:11 -07002806bool
Roy Zang28f7a052009-07-31 13:34:02 +08002807e1000_check_mng_mode(struct e1000_hw *hw)
2808{
2809 uint32_t fwsm;
2810 DEBUGFUNC();
2811
2812 fwsm = E1000_READ_REG(hw, FWSM);
2813
2814 if (hw->mac_type == e1000_ich8lan) {
2815 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2816 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
York Sun4a598092013-04-01 11:29:11 -07002817 return true;
Roy Zang28f7a052009-07-31 13:34:02 +08002818 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2819 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
York Sun4a598092013-04-01 11:29:11 -07002820 return true;
Roy Zang28f7a052009-07-31 13:34:02 +08002821
York Sun4a598092013-04-01 11:29:11 -07002822 return false;
Roy Zang28f7a052009-07-31 13:34:02 +08002823}
2824
2825static int32_t
2826e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2827{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002828 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002829 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002830 DEBUGFUNC();
2831
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002832 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002833 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002834
Roy Zang28f7a052009-07-31 13:34:02 +08002835 if (e1000_swfw_sync_acquire(hw, swfw))
2836 return -E1000_ERR_SWFW_SYNC;
2837
2838 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2839 & E1000_KUMCTRLSTA_OFFSET) | data;
2840 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2841 udelay(2);
2842
2843 return E1000_SUCCESS;
2844}
2845
2846static int32_t
2847e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2848{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002849 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002850 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002851 DEBUGFUNC();
2852
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002853 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002854 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002855
Marek Vasut74a13c22014-08-08 07:41:39 -07002856 if (e1000_swfw_sync_acquire(hw, swfw)) {
2857 debug("%s[%i]\n", __func__, __LINE__);
Roy Zang28f7a052009-07-31 13:34:02 +08002858 return -E1000_ERR_SWFW_SYNC;
Marek Vasut74a13c22014-08-08 07:41:39 -07002859 }
Roy Zang28f7a052009-07-31 13:34:02 +08002860
2861 /* Write register address */
2862 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2863 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2864 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2865 udelay(2);
2866
2867 /* Read the data returned */
2868 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2869 *data = (uint16_t)reg_val;
2870
2871 return E1000_SUCCESS;
2872}
2873
2874/********************************************************************
2875* Copper link setup for e1000_phy_gg82563 series.
2876*
2877* hw - Struct containing variables accessed by shared code
2878*********************************************************************/
2879static int32_t
2880e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2881{
2882 int32_t ret_val;
2883 uint16_t phy_data;
2884 uint32_t reg_data;
2885
2886 DEBUGFUNC();
2887
2888 if (!hw->phy_reset_disable) {
2889 /* Enable CRS on TX for half-duplex operation. */
2890 ret_val = e1000_read_phy_reg(hw,
2891 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2892 if (ret_val)
2893 return ret_val;
2894
2895 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2896 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2897 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2898
2899 ret_val = e1000_write_phy_reg(hw,
2900 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2901 if (ret_val)
2902 return ret_val;
2903
2904 /* Options:
2905 * MDI/MDI-X = 0 (default)
2906 * 0 - Auto for all speeds
2907 * 1 - MDI mode
2908 * 2 - MDI-X mode
2909 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2910 */
2911 ret_val = e1000_read_phy_reg(hw,
2912 GG82563_PHY_SPEC_CTRL, &phy_data);
2913 if (ret_val)
2914 return ret_val;
2915
2916 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2917
2918 switch (hw->mdix) {
2919 case 1:
2920 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2921 break;
2922 case 2:
2923 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2924 break;
2925 case 0:
2926 default:
2927 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2928 break;
2929 }
2930
2931 /* Options:
2932 * disable_polarity_correction = 0 (default)
2933 * Automatic Correction for Reversed Cable Polarity
2934 * 0 - Disabled
2935 * 1 - Enabled
2936 */
2937 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2938 ret_val = e1000_write_phy_reg(hw,
2939 GG82563_PHY_SPEC_CTRL, phy_data);
2940
2941 if (ret_val)
2942 return ret_val;
2943
2944 /* SW Reset the PHY so all changes take effect */
2945 ret_val = e1000_phy_reset(hw);
2946 if (ret_val) {
2947 DEBUGOUT("Error Resetting the PHY\n");
2948 return ret_val;
2949 }
2950 } /* phy_reset_disable */
2951
2952 if (hw->mac_type == e1000_80003es2lan) {
2953 /* Bypass RX and TX FIFO's */
2954 ret_val = e1000_write_kmrn_reg(hw,
2955 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2956 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2957 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2958 if (ret_val)
2959 return ret_val;
2960
2961 ret_val = e1000_read_phy_reg(hw,
2962 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2963 if (ret_val)
2964 return ret_val;
2965
2966 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2967 ret_val = e1000_write_phy_reg(hw,
2968 GG82563_PHY_SPEC_CTRL_2, phy_data);
2969
2970 if (ret_val)
2971 return ret_val;
2972
2973 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2974 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2975 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2976
2977 ret_val = e1000_read_phy_reg(hw,
2978 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2979 if (ret_val)
2980 return ret_val;
2981
2982 /* Do not init these registers when the HW is in IAMT mode, since the
2983 * firmware will have already initialized them. We only initialize
2984 * them if the HW is not in IAMT mode.
2985 */
York Sun4a598092013-04-01 11:29:11 -07002986 if (e1000_check_mng_mode(hw) == false) {
Roy Zang28f7a052009-07-31 13:34:02 +08002987 /* Enable Electrical Idle on the PHY */
2988 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2989 ret_val = e1000_write_phy_reg(hw,
2990 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2991 if (ret_val)
2992 return ret_val;
2993
2994 ret_val = e1000_read_phy_reg(hw,
2995 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2996 if (ret_val)
2997 return ret_val;
2998
2999 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3000 ret_val = e1000_write_phy_reg(hw,
3001 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
3002
3003 if (ret_val)
3004 return ret_val;
3005 }
3006
3007 /* Workaround: Disable padding in Kumeran interface in the MAC
3008 * and in the PHY to avoid CRC errors.
3009 */
3010 ret_val = e1000_read_phy_reg(hw,
3011 GG82563_PHY_INBAND_CTRL, &phy_data);
3012 if (ret_val)
3013 return ret_val;
3014 phy_data |= GG82563_ICR_DIS_PADDING;
3015 ret_val = e1000_write_phy_reg(hw,
3016 GG82563_PHY_INBAND_CTRL, phy_data);
3017 if (ret_val)
3018 return ret_val;
3019 }
3020 return E1000_SUCCESS;
3021}
3022
3023/********************************************************************
3024* Copper link setup for e1000_phy_m88 series.
3025*
3026* hw - Struct containing variables accessed by shared code
3027*********************************************************************/
3028static int32_t
3029e1000_copper_link_mgp_setup(struct e1000_hw *hw)
3030{
3031 int32_t ret_val;
3032 uint16_t phy_data;
3033
3034 DEBUGFUNC();
3035
3036 if (hw->phy_reset_disable)
3037 return E1000_SUCCESS;
3038
3039 /* Enable CRS on TX. This must be set for half-duplex operation. */
3040 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3041 if (ret_val)
3042 return ret_val;
3043
wdenk4e112c12003-06-03 23:54:09 +00003044 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
3045
wdenk4e112c12003-06-03 23:54:09 +00003046 /* Options:
3047 * MDI/MDI-X = 0 (default)
3048 * 0 - Auto for all speeds
3049 * 1 - MDI mode
3050 * 2 - MDI-X mode
3051 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
3052 */
3053 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zang28f7a052009-07-31 13:34:02 +08003054
wdenk4e112c12003-06-03 23:54:09 +00003055 switch (hw->mdix) {
3056 case 1:
3057 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
3058 break;
3059 case 2:
3060 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
3061 break;
3062 case 3:
3063 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
3064 break;
3065 case 0:
3066 default:
3067 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
3068 break;
3069 }
wdenk4e112c12003-06-03 23:54:09 +00003070
wdenk4e112c12003-06-03 23:54:09 +00003071 /* Options:
3072 * disable_polarity_correction = 0 (default)
Roy Zang28f7a052009-07-31 13:34:02 +08003073 * Automatic Correction for Reversed Cable Polarity
wdenk4e112c12003-06-03 23:54:09 +00003074 * 0 - Disabled
3075 * 1 - Enabled
3076 */
3077 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zang28f7a052009-07-31 13:34:02 +08003078 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
3079 if (ret_val)
3080 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003081
Roy Zang28f7a052009-07-31 13:34:02 +08003082 if (hw->phy_revision < M88E1011_I_REV_4) {
3083 /* Force TX_CLK in the Extended PHY Specific Control Register
3084 * to 25MHz clock.
3085 */
3086 ret_val = e1000_read_phy_reg(hw,
3087 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
3088 if (ret_val)
3089 return ret_val;
3090
3091 phy_data |= M88E1000_EPSCR_TX_CLK_25;
3092
3093 if ((hw->phy_revision == E1000_REVISION_2) &&
3094 (hw->phy_id == M88E1111_I_PHY_ID)) {
3095 /* Vidalia Phy, set the downshift counter to 5x */
3096 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
3097 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
3098 ret_val = e1000_write_phy_reg(hw,
3099 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3100 if (ret_val)
3101 return ret_val;
3102 } else {
3103 /* Configure Master and Slave downshift values */
3104 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
3105 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
3106 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
3107 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
3108 ret_val = e1000_write_phy_reg(hw,
3109 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3110 if (ret_val)
3111 return ret_val;
3112 }
wdenk4e112c12003-06-03 23:54:09 +00003113 }
3114
3115 /* SW Reset the PHY so all changes take effect */
3116 ret_val = e1000_phy_reset(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08003117 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00003118 DEBUGOUT("Error Resetting the PHY\n");
3119 return ret_val;
3120 }
3121
Roy Zang28f7a052009-07-31 13:34:02 +08003122 return E1000_SUCCESS;
3123}
wdenk4e112c12003-06-03 23:54:09 +00003124
Roy Zang28f7a052009-07-31 13:34:02 +08003125/********************************************************************
3126* Setup auto-negotiation and flow control advertisements,
3127* and then perform auto-negotiation.
3128*
3129* hw - Struct containing variables accessed by shared code
3130*********************************************************************/
3131static int32_t
3132e1000_copper_link_autoneg(struct e1000_hw *hw)
3133{
3134 int32_t ret_val;
3135 uint16_t phy_data;
3136
3137 DEBUGFUNC();
3138
wdenk4e112c12003-06-03 23:54:09 +00003139 /* Perform some bounds checking on the hw->autoneg_advertised
3140 * parameter. If this variable is zero, then set it to the default.
3141 */
3142 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
3143
3144 /* If autoneg_advertised is zero, we assume it was not defaulted
3145 * by the calling code so we set to advertise full capability.
3146 */
3147 if (hw->autoneg_advertised == 0)
3148 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
3149
Roy Zang28f7a052009-07-31 13:34:02 +08003150 /* IFE phy only supports 10/100 */
3151 if (hw->phy_type == e1000_phy_ife)
3152 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
3153
wdenk4e112c12003-06-03 23:54:09 +00003154 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
3155 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08003156 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00003157 DEBUGOUT("Error Setting up Auto-Negotiation\n");
3158 return ret_val;
3159 }
3160 DEBUGOUT("Restarting Auto-Neg\n");
3161
3162 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
3163 * the Auto Neg Restart bit in the PHY control register.
3164 */
Roy Zang28f7a052009-07-31 13:34:02 +08003165 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3166 if (ret_val)
3167 return ret_val;
3168
wdenk4e112c12003-06-03 23:54:09 +00003169 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zang28f7a052009-07-31 13:34:02 +08003170 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3171 if (ret_val)
3172 return ret_val;
3173
wdenk4e112c12003-06-03 23:54:09 +00003174 /* Does the user want to wait for Auto-Neg to complete here, or
3175 * check at a later time (for example, callback routine).
3176 */
Roy Zang28f7a052009-07-31 13:34:02 +08003177 /* If we do not wait for autonegtation to complete I
3178 * do not see a valid link status.
3179 * wait_autoneg_complete = 1 .
3180 */
wdenk4e112c12003-06-03 23:54:09 +00003181 if (hw->wait_autoneg_complete) {
3182 ret_val = e1000_wait_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08003183 if (ret_val) {
3184 DEBUGOUT("Error while waiting for autoneg"
3185 "to complete\n");
wdenk4e112c12003-06-03 23:54:09 +00003186 return ret_val;
3187 }
3188 }
Roy Zang28f7a052009-07-31 13:34:02 +08003189
York Sun4a598092013-04-01 11:29:11 -07003190 hw->get_link_status = true;
Roy Zang28f7a052009-07-31 13:34:02 +08003191
3192 return E1000_SUCCESS;
3193}
3194
3195/******************************************************************************
3196* Config the MAC and the PHY after link is up.
3197* 1) Set up the MAC to the current PHY speed/duplex
3198* if we are on 82543. If we
3199* are on newer silicon, we only need to configure
3200* collision distance in the Transmit Control Register.
3201* 2) Set up flow control on the MAC to that established with
3202* the link partner.
3203* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
3204*
3205* hw - Struct containing variables accessed by shared code
3206******************************************************************************/
3207static int32_t
3208e1000_copper_link_postconfig(struct e1000_hw *hw)
3209{
3210 int32_t ret_val;
3211 DEBUGFUNC();
3212
3213 if (hw->mac_type >= e1000_82544) {
3214 e1000_config_collision_dist(hw);
3215 } else {
3216 ret_val = e1000_config_mac_to_phy(hw);
3217 if (ret_val) {
3218 DEBUGOUT("Error configuring MAC to PHY settings\n");
3219 return ret_val;
3220 }
3221 }
3222 ret_val = e1000_config_fc_after_link_up(hw);
3223 if (ret_val) {
3224 DEBUGOUT("Error Configuring Flow Control\n");
wdenk4e112c12003-06-03 23:54:09 +00003225 return ret_val;
3226 }
Roy Zang28f7a052009-07-31 13:34:02 +08003227 return E1000_SUCCESS;
3228}
3229
3230/******************************************************************************
3231* Detects which PHY is present and setup the speed and duplex
3232*
3233* hw - Struct containing variables accessed by shared code
3234******************************************************************************/
3235static int
Simon Glassc53abc32015-08-19 09:33:39 -06003236e1000_setup_copper_link(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +08003237{
Roy Zang28f7a052009-07-31 13:34:02 +08003238 int32_t ret_val;
3239 uint16_t i;
3240 uint16_t phy_data;
3241 uint16_t reg_data;
3242
3243 DEBUGFUNC();
3244
3245 switch (hw->mac_type) {
3246 case e1000_80003es2lan:
3247 case e1000_ich8lan:
3248 /* Set the mac to wait the maximum time between each
3249 * iteration and increase the max iterations when
3250 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3251 ret_val = e1000_write_kmrn_reg(hw,
3252 GG82563_REG(0x34, 4), 0xFFFF);
3253 if (ret_val)
3254 return ret_val;
3255 ret_val = e1000_read_kmrn_reg(hw,
3256 GG82563_REG(0x34, 9), &reg_data);
3257 if (ret_val)
3258 return ret_val;
3259 reg_data |= 0x3F;
3260 ret_val = e1000_write_kmrn_reg(hw,
3261 GG82563_REG(0x34, 9), reg_data);
3262 if (ret_val)
3263 return ret_val;
3264 default:
3265 break;
3266 }
3267
3268 /* Check if it is a valid PHY and set PHY mode if necessary. */
3269 ret_val = e1000_copper_link_preconfig(hw);
3270 if (ret_val)
3271 return ret_val;
3272 switch (hw->mac_type) {
3273 case e1000_80003es2lan:
3274 /* Kumeran registers are written-only */
3275 reg_data =
3276 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3277 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3278 ret_val = e1000_write_kmrn_reg(hw,
3279 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3280 if (ret_val)
3281 return ret_val;
3282 break;
3283 default:
3284 break;
3285 }
3286
3287 if (hw->phy_type == e1000_phy_igp ||
3288 hw->phy_type == e1000_phy_igp_3 ||
3289 hw->phy_type == e1000_phy_igp_2) {
3290 ret_val = e1000_copper_link_igp_setup(hw);
3291 if (ret_val)
3292 return ret_val;
Marek Vasut74a13c22014-08-08 07:41:39 -07003293 } else if (hw->phy_type == e1000_phy_m88 ||
3294 hw->phy_type == e1000_phy_igb) {
Roy Zang28f7a052009-07-31 13:34:02 +08003295 ret_val = e1000_copper_link_mgp_setup(hw);
3296 if (ret_val)
3297 return ret_val;
3298 } else if (hw->phy_type == e1000_phy_gg82563) {
3299 ret_val = e1000_copper_link_ggp_setup(hw);
3300 if (ret_val)
3301 return ret_val;
3302 }
3303
3304 /* always auto */
3305 /* Setup autoneg and flow control advertisement
3306 * and perform autonegotiation */
3307 ret_val = e1000_copper_link_autoneg(hw);
3308 if (ret_val)
3309 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003310
3311 /* Check link status. Wait up to 100 microseconds for link to become
3312 * valid.
3313 */
3314 for (i = 0; i < 10; i++) {
Roy Zang28f7a052009-07-31 13:34:02 +08003315 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3316 if (ret_val)
3317 return ret_val;
3318 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3319 if (ret_val)
3320 return ret_val;
3321
wdenk4e112c12003-06-03 23:54:09 +00003322 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zang28f7a052009-07-31 13:34:02 +08003323 /* Config the MAC and PHY after link is up */
3324 ret_val = e1000_copper_link_postconfig(hw);
3325 if (ret_val)
wdenk4e112c12003-06-03 23:54:09 +00003326 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08003327
wdenk4e112c12003-06-03 23:54:09 +00003328 DEBUGOUT("Valid link established!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003329 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003330 }
3331 udelay(10);
3332 }
3333
3334 DEBUGOUT("Unable to establish link!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003335 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003336}
3337
3338/******************************************************************************
3339* Configures PHY autoneg and flow control advertisement settings
3340*
3341* hw - Struct containing variables accessed by shared code
3342******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003343int32_t
wdenk4e112c12003-06-03 23:54:09 +00003344e1000_phy_setup_autoneg(struct e1000_hw *hw)
3345{
Roy Zang28f7a052009-07-31 13:34:02 +08003346 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003347 uint16_t mii_autoneg_adv_reg;
3348 uint16_t mii_1000t_ctrl_reg;
3349
3350 DEBUGFUNC();
3351
3352 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zang28f7a052009-07-31 13:34:02 +08003353 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3354 if (ret_val)
3355 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003356
Roy Zang28f7a052009-07-31 13:34:02 +08003357 if (hw->phy_type != e1000_phy_ife) {
3358 /* Read the MII 1000Base-T Control Register (Address 9). */
3359 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3360 &mii_1000t_ctrl_reg);
3361 if (ret_val)
3362 return ret_val;
3363 } else
3364 mii_1000t_ctrl_reg = 0;
wdenk4e112c12003-06-03 23:54:09 +00003365
3366 /* Need to parse both autoneg_advertised and fc and set up
3367 * the appropriate PHY registers. First we will parse for
3368 * autoneg_advertised software override. Since we can advertise
3369 * a plethora of combinations, we need to check each bit
3370 * individually.
3371 */
3372
3373 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3374 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zang28f7a052009-07-31 13:34:02 +08003375 * the 1000Base-T Control Register (Address 9).
wdenk4e112c12003-06-03 23:54:09 +00003376 */
3377 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3378 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3379
3380 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3381
3382 /* Do we want to advertise 10 Mb Half Duplex? */
3383 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3384 DEBUGOUT("Advertise 10mb Half duplex\n");
3385 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3386 }
3387
3388 /* Do we want to advertise 10 Mb Full Duplex? */
3389 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3390 DEBUGOUT("Advertise 10mb Full duplex\n");
3391 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3392 }
3393
3394 /* Do we want to advertise 100 Mb Half Duplex? */
3395 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3396 DEBUGOUT("Advertise 100mb Half duplex\n");
3397 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3398 }
3399
3400 /* Do we want to advertise 100 Mb Full Duplex? */
3401 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3402 DEBUGOUT("Advertise 100mb Full duplex\n");
3403 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3404 }
3405
3406 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3407 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3408 DEBUGOUT
3409 ("Advertise 1000mb Half duplex requested, request denied!\n");
3410 }
3411
3412 /* Do we want to advertise 1000 Mb Full Duplex? */
3413 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3414 DEBUGOUT("Advertise 1000mb Full duplex\n");
3415 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3416 }
3417
3418 /* Check for a software override of the flow control settings, and
3419 * setup the PHY advertisement registers accordingly. If
3420 * auto-negotiation is enabled, then software will have to set the
3421 * "PAUSE" bits to the correct value in the Auto-Negotiation
3422 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3423 *
3424 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003425 * 0: Flow control is completely disabled
3426 * 1: Rx flow control is enabled (we can receive pause frames
3427 * but not send pause frames).
3428 * 2: Tx flow control is enabled (we can send pause frames
3429 * but we do not support receiving pause frames).
3430 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00003431 * other: No software override. The flow control configuration
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003432 * in the EEPROM is used.
wdenk4e112c12003-06-03 23:54:09 +00003433 */
3434 switch (hw->fc) {
3435 case e1000_fc_none: /* 0 */
3436 /* Flow control (RX & TX) is completely disabled by a
3437 * software over-ride.
3438 */
3439 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3440 break;
3441 case e1000_fc_rx_pause: /* 1 */
3442 /* RX Flow control is enabled, and TX Flow control is
3443 * disabled, by a software over-ride.
3444 */
3445 /* Since there really isn't a way to advertise that we are
3446 * capable of RX Pause ONLY, we will advertise that we
3447 * support both symmetric and asymmetric RX PAUSE. Later
3448 * (in e1000_config_fc_after_link_up) we will disable the
3449 *hw's ability to send PAUSE frames.
3450 */
3451 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3452 break;
3453 case e1000_fc_tx_pause: /* 2 */
3454 /* TX Flow control is enabled, and RX Flow control is
3455 * disabled, by a software over-ride.
3456 */
3457 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3458 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3459 break;
3460 case e1000_fc_full: /* 3 */
3461 /* Flow control (both RX and TX) is enabled by a software
3462 * over-ride.
3463 */
3464 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3465 break;
3466 default:
3467 DEBUGOUT("Flow control param set incorrectly\n");
3468 return -E1000_ERR_CONFIG;
3469 }
3470
Roy Zang28f7a052009-07-31 13:34:02 +08003471 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3472 if (ret_val)
3473 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003474
3475 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3476
Roy Zang28f7a052009-07-31 13:34:02 +08003477 if (hw->phy_type != e1000_phy_ife) {
3478 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3479 mii_1000t_ctrl_reg);
3480 if (ret_val)
3481 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003482 }
Roy Zang28f7a052009-07-31 13:34:02 +08003483
3484 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003485}
3486
3487/******************************************************************************
3488* Sets the collision distance in the Transmit Control register
3489*
3490* hw - Struct containing variables accessed by shared code
3491*
3492* Link should have been established previously. Reads the speed and duplex
3493* information from the Device Status register.
3494******************************************************************************/
3495static void
3496e1000_config_collision_dist(struct e1000_hw *hw)
3497{
Roy Zang28f7a052009-07-31 13:34:02 +08003498 uint32_t tctl, coll_dist;
3499
3500 DEBUGFUNC();
3501
3502 if (hw->mac_type < e1000_82543)
3503 coll_dist = E1000_COLLISION_DISTANCE_82542;
3504 else
3505 coll_dist = E1000_COLLISION_DISTANCE;
wdenk4e112c12003-06-03 23:54:09 +00003506
3507 tctl = E1000_READ_REG(hw, TCTL);
3508
3509 tctl &= ~E1000_TCTL_COLD;
Roy Zang28f7a052009-07-31 13:34:02 +08003510 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00003511
3512 E1000_WRITE_REG(hw, TCTL, tctl);
3513 E1000_WRITE_FLUSH(hw);
3514}
3515
3516/******************************************************************************
3517* Sets MAC speed and duplex settings to reflect the those in the PHY
3518*
3519* hw - Struct containing variables accessed by shared code
3520* mii_reg - data to write to the MII control register
3521*
3522* The contents of the PHY register containing the needed information need to
3523* be passed in.
3524******************************************************************************/
3525static int
3526e1000_config_mac_to_phy(struct e1000_hw *hw)
3527{
3528 uint32_t ctrl;
3529 uint16_t phy_data;
3530
3531 DEBUGFUNC();
3532
3533 /* Read the Device Control Register and set the bits to Force Speed
3534 * and Duplex.
3535 */
3536 ctrl = E1000_READ_REG(hw, CTRL);
3537 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
Marek Vasut74a13c22014-08-08 07:41:39 -07003538 ctrl &= ~(E1000_CTRL_ILOS);
3539 ctrl |= (E1000_CTRL_SPD_SEL);
wdenk4e112c12003-06-03 23:54:09 +00003540
3541 /* Set up duplex in the Device Control and Transmit Control
3542 * registers depending on negotiated values.
3543 */
3544 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3545 DEBUGOUT("PHY Read Error\n");
3546 return -E1000_ERR_PHY;
3547 }
3548 if (phy_data & M88E1000_PSSR_DPLX)
3549 ctrl |= E1000_CTRL_FD;
3550 else
3551 ctrl &= ~E1000_CTRL_FD;
3552
3553 e1000_config_collision_dist(hw);
3554
3555 /* Set up speed in the Device Control register depending on
3556 * negotiated values.
3557 */
3558 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3559 ctrl |= E1000_CTRL_SPD_1000;
3560 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3561 ctrl |= E1000_CTRL_SPD_100;
3562 /* Write the configured values back to the Device Control Reg. */
3563 E1000_WRITE_REG(hw, CTRL, ctrl);
3564 return 0;
3565}
3566
3567/******************************************************************************
3568 * Forces the MAC's flow control settings.
wdenk57b2d802003-06-27 21:31:46 +00003569 *
wdenk4e112c12003-06-03 23:54:09 +00003570 * hw - Struct containing variables accessed by shared code
3571 *
3572 * Sets the TFCE and RFCE bits in the device control register to reflect
3573 * the adapter settings. TFCE and RFCE need to be explicitly set by
3574 * software when a Copper PHY is used because autonegotiation is managed
3575 * by the PHY rather than the MAC. Software must also configure these
3576 * bits when link is forced on a fiber connection.
3577 *****************************************************************************/
3578static int
3579e1000_force_mac_fc(struct e1000_hw *hw)
3580{
3581 uint32_t ctrl;
3582
3583 DEBUGFUNC();
3584
3585 /* Get the current configuration of the Device Control Register */
3586 ctrl = E1000_READ_REG(hw, CTRL);
3587
3588 /* Because we didn't get link via the internal auto-negotiation
3589 * mechanism (we either forced link or we got link via PHY
3590 * auto-neg), we have to manually enable/disable transmit an
3591 * receive flow control.
3592 *
3593 * The "Case" statement below enables/disable flow control
3594 * according to the "hw->fc" parameter.
3595 *
3596 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003597 * 0: Flow control is completely disabled
3598 * 1: Rx flow control is enabled (we can receive pause
3599 * frames but not send pause frames).
3600 * 2: Tx flow control is enabled (we can send pause frames
3601 * frames but we do not receive pause frames).
3602 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk4e112c12003-06-03 23:54:09 +00003603 * other: No other values should be possible at this point.
3604 */
3605
3606 switch (hw->fc) {
3607 case e1000_fc_none:
3608 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3609 break;
3610 case e1000_fc_rx_pause:
3611 ctrl &= (~E1000_CTRL_TFCE);
3612 ctrl |= E1000_CTRL_RFCE;
3613 break;
3614 case e1000_fc_tx_pause:
3615 ctrl &= (~E1000_CTRL_RFCE);
3616 ctrl |= E1000_CTRL_TFCE;
3617 break;
3618 case e1000_fc_full:
3619 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3620 break;
3621 default:
3622 DEBUGOUT("Flow control param set incorrectly\n");
3623 return -E1000_ERR_CONFIG;
3624 }
3625
3626 /* Disable TX Flow Control for 82542 (rev 2.0) */
3627 if (hw->mac_type == e1000_82542_rev2_0)
3628 ctrl &= (~E1000_CTRL_TFCE);
3629
3630 E1000_WRITE_REG(hw, CTRL, ctrl);
3631 return 0;
3632}
3633
3634/******************************************************************************
3635 * Configures flow control settings after link is established
wdenk57b2d802003-06-27 21:31:46 +00003636 *
wdenk4e112c12003-06-03 23:54:09 +00003637 * hw - Struct containing variables accessed by shared code
3638 *
3639 * Should be called immediately after a valid link has been established.
3640 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3641 * and autonegotiation is enabled, the MAC flow control settings will be set
3642 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3643 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3644 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003645static int32_t
wdenk4e112c12003-06-03 23:54:09 +00003646e1000_config_fc_after_link_up(struct e1000_hw *hw)
3647{
3648 int32_t ret_val;
3649 uint16_t mii_status_reg;
3650 uint16_t mii_nway_adv_reg;
3651 uint16_t mii_nway_lp_ability_reg;
3652 uint16_t speed;
3653 uint16_t duplex;
3654
3655 DEBUGFUNC();
3656
3657 /* Check for the case where we have fiber media and auto-neg failed
3658 * so we had to force link. In this case, we need to force the
3659 * configuration of the MAC to match the "fc" parameter.
3660 */
Roy Zang28f7a052009-07-31 13:34:02 +08003661 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3662 || ((hw->media_type == e1000_media_type_internal_serdes)
3663 && (hw->autoneg_failed))
3664 || ((hw->media_type == e1000_media_type_copper)
3665 && (!hw->autoneg))) {
wdenk4e112c12003-06-03 23:54:09 +00003666 ret_val = e1000_force_mac_fc(hw);
3667 if (ret_val < 0) {
3668 DEBUGOUT("Error forcing flow control settings\n");
3669 return ret_val;
3670 }
3671 }
3672
3673 /* Check for the case where we have copper media and auto-neg is
3674 * enabled. In this case, we need to check and see if Auto-Neg
3675 * has completed, and if so, how the PHY and link partner has
3676 * flow control configured.
3677 */
3678 if (hw->media_type == e1000_media_type_copper) {
3679 /* Read the MII Status Register and check to see if AutoNeg
3680 * has completed. We read this twice because this reg has
3681 * some "sticky" (latched) bits.
3682 */
3683 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
Minghuan Lian674bcd52015-03-19 09:43:51 -07003684 DEBUGOUT("PHY Read Error\n");
wdenk4e112c12003-06-03 23:54:09 +00003685 return -E1000_ERR_PHY;
3686 }
3687 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
Minghuan Lian674bcd52015-03-19 09:43:51 -07003688 DEBUGOUT("PHY Read Error\n");
wdenk4e112c12003-06-03 23:54:09 +00003689 return -E1000_ERR_PHY;
3690 }
3691
3692 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3693 /* The AutoNeg process has completed, so we now need to
3694 * read both the Auto Negotiation Advertisement Register
3695 * (Address 4) and the Auto_Negotiation Base Page Ability
3696 * Register (Address 5) to determine how flow control was
3697 * negotiated.
3698 */
3699 if (e1000_read_phy_reg
3700 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3701 DEBUGOUT("PHY Read Error\n");
3702 return -E1000_ERR_PHY;
3703 }
3704 if (e1000_read_phy_reg
3705 (hw, PHY_LP_ABILITY,
3706 &mii_nway_lp_ability_reg) < 0) {
3707 DEBUGOUT("PHY Read Error\n");
3708 return -E1000_ERR_PHY;
3709 }
3710
3711 /* Two bits in the Auto Negotiation Advertisement Register
3712 * (Address 4) and two bits in the Auto Negotiation Base
3713 * Page Ability Register (Address 5) determine flow control
3714 * for both the PHY and the link partner. The following
3715 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3716 * 1999, describes these PAUSE resolution bits and how flow
3717 * control is determined based upon these settings.
3718 * NOTE: DC = Don't Care
3719 *
3720 * LOCAL DEVICE | LINK PARTNER
3721 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3722 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003723 * 0 | 0 | DC | DC | e1000_fc_none
3724 * 0 | 1 | 0 | DC | e1000_fc_none
3725 * 0 | 1 | 1 | 0 | e1000_fc_none
3726 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3727 * 1 | 0 | 0 | DC | e1000_fc_none
3728 * 1 | DC | 1 | DC | e1000_fc_full
3729 * 1 | 1 | 0 | 0 | e1000_fc_none
3730 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003731 *
3732 */
3733 /* Are both PAUSE bits set to 1? If so, this implies
3734 * Symmetric Flow Control is enabled at both ends. The
3735 * ASM_DIR bits are irrelevant per the spec.
3736 *
3737 * For Symmetric Flow Control:
3738 *
3739 * LOCAL DEVICE | LINK PARTNER
3740 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3741 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003742 * 1 | DC | 1 | DC | e1000_fc_full
wdenk4e112c12003-06-03 23:54:09 +00003743 *
3744 */
3745 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3746 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3747 /* Now we need to check if the user selected RX ONLY
3748 * of pause frames. In this case, we had to advertise
3749 * FULL flow control because we could not advertise RX
3750 * ONLY. Hence, we must now check to see if we need to
3751 * turn OFF the TRANSMISSION of PAUSE frames.
3752 */
3753 if (hw->original_fc == e1000_fc_full) {
3754 hw->fc = e1000_fc_full;
3755 DEBUGOUT("Flow Control = FULL.\r\n");
3756 } else {
3757 hw->fc = e1000_fc_rx_pause;
3758 DEBUGOUT
3759 ("Flow Control = RX PAUSE frames only.\r\n");
3760 }
3761 }
3762 /* For receiving PAUSE frames ONLY.
3763 *
3764 * LOCAL DEVICE | LINK PARTNER
3765 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3766 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003767 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk4e112c12003-06-03 23:54:09 +00003768 *
3769 */
3770 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3771 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3772 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3773 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3774 {
3775 hw->fc = e1000_fc_tx_pause;
3776 DEBUGOUT
3777 ("Flow Control = TX PAUSE frames only.\r\n");
3778 }
3779 /* For transmitting PAUSE frames ONLY.
3780 *
3781 * LOCAL DEVICE | LINK PARTNER
3782 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3783 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003784 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003785 *
3786 */
3787 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3788 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3789 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3790 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3791 {
3792 hw->fc = e1000_fc_rx_pause;
3793 DEBUGOUT
3794 ("Flow Control = RX PAUSE frames only.\r\n");
3795 }
3796 /* Per the IEEE spec, at this point flow control should be
3797 * disabled. However, we want to consider that we could
3798 * be connected to a legacy switch that doesn't advertise
3799 * desired flow control, but can be forced on the link
3800 * partner. So if we advertised no flow control, that is
3801 * what we will resolve to. If we advertised some kind of
3802 * receive capability (Rx Pause Only or Full Flow Control)
3803 * and the link partner advertised none, we will configure
3804 * ourselves to enable Rx Flow Control only. We can do
3805 * this safely for two reasons: If the link partner really
3806 * didn't want flow control enabled, and we enable Rx, no
3807 * harm done since we won't be receiving any PAUSE frames
3808 * anyway. If the intent on the link partner was to have
3809 * flow control enabled, then by us enabling RX only, we
3810 * can at least receive pause frames and process them.
3811 * This is a good idea because in most cases, since we are
3812 * predominantly a server NIC, more times than not we will
3813 * be asked to delay transmission of packets than asking
3814 * our link partner to pause transmission of frames.
3815 */
3816 else if (hw->original_fc == e1000_fc_none ||
3817 hw->original_fc == e1000_fc_tx_pause) {
3818 hw->fc = e1000_fc_none;
3819 DEBUGOUT("Flow Control = NONE.\r\n");
3820 } else {
3821 hw->fc = e1000_fc_rx_pause;
3822 DEBUGOUT
3823 ("Flow Control = RX PAUSE frames only.\r\n");
3824 }
3825
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003826 /* Now we need to do one last check... If we auto-
wdenk4e112c12003-06-03 23:54:09 +00003827 * negotiated to HALF DUPLEX, flow control should not be
3828 * enabled per IEEE 802.3 spec.
3829 */
3830 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3831
3832 if (duplex == HALF_DUPLEX)
3833 hw->fc = e1000_fc_none;
3834
3835 /* Now we call a subroutine to actually force the MAC
3836 * controller to use the correct flow control settings.
3837 */
3838 ret_val = e1000_force_mac_fc(hw);
3839 if (ret_val < 0) {
3840 DEBUGOUT
3841 ("Error forcing flow control settings\n");
3842 return ret_val;
3843 }
3844 } else {
3845 DEBUGOUT
3846 ("Copper PHY and Auto Neg has not completed.\r\n");
3847 }
3848 }
Roy Zang28f7a052009-07-31 13:34:02 +08003849 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003850}
3851
3852/******************************************************************************
3853 * Checks to see if the link status of the hardware has changed.
3854 *
3855 * hw - Struct containing variables accessed by shared code
3856 *
3857 * Called by any function that needs to check the link status of the adapter.
3858 *****************************************************************************/
3859static int
Simon Glassc53abc32015-08-19 09:33:39 -06003860e1000_check_for_link(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00003861{
wdenk4e112c12003-06-03 23:54:09 +00003862 uint32_t rxcw;
3863 uint32_t ctrl;
3864 uint32_t status;
3865 uint32_t rctl;
3866 uint32_t signal;
3867 int32_t ret_val;
3868 uint16_t phy_data;
3869 uint16_t lp_capability;
3870
3871 DEBUGFUNC();
3872
wdenk57b2d802003-06-27 21:31:46 +00003873 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3874 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00003875 * cleared when there is a signal
3876 */
3877 ctrl = E1000_READ_REG(hw, CTRL);
3878 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3879 signal = E1000_CTRL_SWDPIN1;
3880 else
3881 signal = 0;
3882
3883 status = E1000_READ_REG(hw, STATUS);
3884 rxcw = E1000_READ_REG(hw, RXCW);
3885 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3886
3887 /* If we have a copper PHY then we only want to go out to the PHY
3888 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003889 * status has changed. The get_link_status flag will be set if we
wdenk4e112c12003-06-03 23:54:09 +00003890 * receive a Link Status Change interrupt or we have Rx Sequence
3891 * Errors.
3892 */
3893 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3894 /* First we want to see if the MII Status Register reports
3895 * link. If so, then we want to get the current speed/duplex
3896 * of the PHY.
3897 * Read the register twice since the link bit is sticky.
3898 */
3899 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3900 DEBUGOUT("PHY Read Error\n");
3901 return -E1000_ERR_PHY;
3902 }
3903 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3904 DEBUGOUT("PHY Read Error\n");
3905 return -E1000_ERR_PHY;
3906 }
3907
3908 if (phy_data & MII_SR_LINK_STATUS) {
York Sun4a598092013-04-01 11:29:11 -07003909 hw->get_link_status = false;
wdenk4e112c12003-06-03 23:54:09 +00003910 } else {
3911 /* No link detected */
3912 return -E1000_ERR_NOLINK;
3913 }
3914
3915 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3916 * have Si on board that is 82544 or newer, Auto
3917 * Speed Detection takes care of MAC speed/duplex
3918 * configuration. So we only need to configure Collision
3919 * Distance in the MAC. Otherwise, we need to force
3920 * speed/duplex on the MAC to the current PHY speed/duplex
3921 * settings.
3922 */
3923 if (hw->mac_type >= e1000_82544)
3924 e1000_config_collision_dist(hw);
3925 else {
3926 ret_val = e1000_config_mac_to_phy(hw);
3927 if (ret_val < 0) {
3928 DEBUGOUT
3929 ("Error configuring MAC to PHY settings\n");
3930 return ret_val;
3931 }
3932 }
3933
wdenk57b2d802003-06-27 21:31:46 +00003934 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk4e112c12003-06-03 23:54:09 +00003935 * need to restore the desired flow control settings because we may
3936 * have had to re-autoneg with a different link partner.
3937 */
3938 ret_val = e1000_config_fc_after_link_up(hw);
3939 if (ret_val < 0) {
3940 DEBUGOUT("Error configuring flow control\n");
3941 return ret_val;
3942 }
3943
3944 /* At this point we know that we are on copper and we have
3945 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003946 * parter capability register. We use the link partner capability to
wdenk4e112c12003-06-03 23:54:09 +00003947 * determine if TBI Compatibility needs to be turned on or off. If
3948 * the link partner advertises any speed in addition to Gigabit, then
3949 * we assume that they are GMII-based, and TBI compatibility is not
3950 * needed. If no other speeds are advertised, we assume the link
3951 * partner is TBI-based, and we turn on TBI Compatibility.
3952 */
3953 if (hw->tbi_compatibility_en) {
3954 if (e1000_read_phy_reg
3955 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3956 DEBUGOUT("PHY Read Error\n");
3957 return -E1000_ERR_PHY;
3958 }
3959 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3960 NWAY_LPAR_10T_FD_CAPS |
3961 NWAY_LPAR_100TX_HD_CAPS |
3962 NWAY_LPAR_100TX_FD_CAPS |
3963 NWAY_LPAR_100T4_CAPS)) {
wdenk57b2d802003-06-27 21:31:46 +00003964 /* If our link partner advertises anything in addition to
wdenk4e112c12003-06-03 23:54:09 +00003965 * gigabit, we do not need to enable TBI compatibility.
3966 */
3967 if (hw->tbi_compatibility_on) {
3968 /* If we previously were in the mode, turn it off. */
3969 rctl = E1000_READ_REG(hw, RCTL);
3970 rctl &= ~E1000_RCTL_SBP;
3971 E1000_WRITE_REG(hw, RCTL, rctl);
York Sun4a598092013-04-01 11:29:11 -07003972 hw->tbi_compatibility_on = false;
wdenk4e112c12003-06-03 23:54:09 +00003973 }
3974 } else {
3975 /* If TBI compatibility is was previously off, turn it on. For
3976 * compatibility with a TBI link partner, we will store bad
3977 * packets. Some frames have an additional byte on the end and
3978 * will look like CRC errors to to the hardware.
3979 */
3980 if (!hw->tbi_compatibility_on) {
York Sun4a598092013-04-01 11:29:11 -07003981 hw->tbi_compatibility_on = true;
wdenk4e112c12003-06-03 23:54:09 +00003982 rctl = E1000_READ_REG(hw, RCTL);
3983 rctl |= E1000_RCTL_SBP;
3984 E1000_WRITE_REG(hw, RCTL, rctl);
3985 }
3986 }
3987 }
3988 }
3989 /* If we don't have link (auto-negotiation failed or link partner cannot
3990 * auto-negotiate), the cable is plugged in (we have signal), and our
3991 * link partner is not trying to auto-negotiate with us (we are receiving
3992 * idles or data), we need to force link up. We also need to give
3993 * auto-negotiation time to complete, in case the cable was just plugged
3994 * in. The autoneg_failed flag does this.
3995 */
3996 else if ((hw->media_type == e1000_media_type_fiber) &&
3997 (!(status & E1000_STATUS_LU)) &&
3998 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3999 (!(rxcw & E1000_RXCW_C))) {
4000 if (hw->autoneg_failed == 0) {
4001 hw->autoneg_failed = 1;
4002 return 0;
4003 }
4004 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
4005
4006 /* Disable auto-negotiation in the TXCW register */
4007 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
4008
4009 /* Force link-up and also force full-duplex. */
4010 ctrl = E1000_READ_REG(hw, CTRL);
4011 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
4012 E1000_WRITE_REG(hw, CTRL, ctrl);
4013
4014 /* Configure Flow Control after forcing link up. */
4015 ret_val = e1000_config_fc_after_link_up(hw);
4016 if (ret_val < 0) {
4017 DEBUGOUT("Error configuring flow control\n");
4018 return ret_val;
4019 }
4020 }
4021 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
4022 * auto-negotiation in the TXCW register and disable forced link in the
4023 * Device Control register in an attempt to auto-negotiate with our link
4024 * partner.
4025 */
4026 else if ((hw->media_type == e1000_media_type_fiber) &&
4027 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
4028 DEBUGOUT
4029 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
4030 E1000_WRITE_REG(hw, TXCW, hw->txcw);
4031 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
4032 }
4033 return 0;
4034}
4035
4036/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08004037* Configure the MAC-to-PHY interface for 10/100Mbps
4038*
4039* hw - Struct containing variables accessed by shared code
4040******************************************************************************/
4041static int32_t
4042e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
4043{
4044 int32_t ret_val = E1000_SUCCESS;
4045 uint32_t tipg;
4046 uint16_t reg_data;
4047
4048 DEBUGFUNC();
4049
4050 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
4051 ret_val = e1000_write_kmrn_reg(hw,
4052 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4053 if (ret_val)
4054 return ret_val;
4055
4056 /* Configure Transmit Inter-Packet Gap */
4057 tipg = E1000_READ_REG(hw, TIPG);
4058 tipg &= ~E1000_TIPG_IPGT_MASK;
4059 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
4060 E1000_WRITE_REG(hw, TIPG, tipg);
4061
4062 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4063
4064 if (ret_val)
4065 return ret_val;
4066
4067 if (duplex == HALF_DUPLEX)
4068 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
4069 else
4070 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4071
4072 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4073
4074 return ret_val;
4075}
4076
4077static int32_t
4078e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
4079{
4080 int32_t ret_val = E1000_SUCCESS;
4081 uint16_t reg_data;
4082 uint32_t tipg;
4083
4084 DEBUGFUNC();
4085
4086 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
4087 ret_val = e1000_write_kmrn_reg(hw,
4088 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4089 if (ret_val)
4090 return ret_val;
4091
4092 /* Configure Transmit Inter-Packet Gap */
4093 tipg = E1000_READ_REG(hw, TIPG);
4094 tipg &= ~E1000_TIPG_IPGT_MASK;
4095 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
4096 E1000_WRITE_REG(hw, TIPG, tipg);
4097
4098 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4099
4100 if (ret_val)
4101 return ret_val;
4102
4103 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4104 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4105
4106 return ret_val;
4107}
4108
4109/******************************************************************************
wdenk4e112c12003-06-03 23:54:09 +00004110 * Detects the current speed and duplex settings of the hardware.
4111 *
4112 * hw - Struct containing variables accessed by shared code
4113 * speed - Speed of the connection
4114 * duplex - Duplex setting of the connection
4115 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004116static int
4117e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
4118 uint16_t *duplex)
wdenk4e112c12003-06-03 23:54:09 +00004119{
4120 uint32_t status;
Roy Zang28f7a052009-07-31 13:34:02 +08004121 int32_t ret_val;
4122 uint16_t phy_data;
wdenk4e112c12003-06-03 23:54:09 +00004123
4124 DEBUGFUNC();
4125
4126 if (hw->mac_type >= e1000_82543) {
4127 status = E1000_READ_REG(hw, STATUS);
4128 if (status & E1000_STATUS_SPEED_1000) {
4129 *speed = SPEED_1000;
4130 DEBUGOUT("1000 Mbs, ");
4131 } else if (status & E1000_STATUS_SPEED_100) {
4132 *speed = SPEED_100;
4133 DEBUGOUT("100 Mbs, ");
4134 } else {
4135 *speed = SPEED_10;
4136 DEBUGOUT("10 Mbs, ");
4137 }
4138
4139 if (status & E1000_STATUS_FD) {
4140 *duplex = FULL_DUPLEX;
4141 DEBUGOUT("Full Duplex\r\n");
4142 } else {
4143 *duplex = HALF_DUPLEX;
4144 DEBUGOUT(" Half Duplex\r\n");
4145 }
4146 } else {
4147 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
4148 *speed = SPEED_1000;
4149 *duplex = FULL_DUPLEX;
4150 }
Roy Zang28f7a052009-07-31 13:34:02 +08004151
4152 /* IGP01 PHY may advertise full duplex operation after speed downgrade
4153 * even if it is operating at half duplex. Here we set the duplex
4154 * settings to match the duplex in the link partner's capabilities.
4155 */
4156 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
4157 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
4158 if (ret_val)
4159 return ret_val;
4160
4161 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
4162 *duplex = HALF_DUPLEX;
4163 else {
4164 ret_val = e1000_read_phy_reg(hw,
4165 PHY_LP_ABILITY, &phy_data);
4166 if (ret_val)
4167 return ret_val;
4168 if ((*speed == SPEED_100 &&
4169 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
4170 || (*speed == SPEED_10
4171 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
4172 *duplex = HALF_DUPLEX;
4173 }
4174 }
4175
4176 if ((hw->mac_type == e1000_80003es2lan) &&
4177 (hw->media_type == e1000_media_type_copper)) {
4178 if (*speed == SPEED_1000)
4179 ret_val = e1000_configure_kmrn_for_1000(hw);
4180 else
4181 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4182 if (ret_val)
4183 return ret_val;
4184 }
4185 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004186}
4187
4188/******************************************************************************
4189* Blocks until autoneg completes or times out (~4.5 seconds)
4190*
4191* hw - Struct containing variables accessed by shared code
4192******************************************************************************/
4193static int
4194e1000_wait_autoneg(struct e1000_hw *hw)
4195{
4196 uint16_t i;
4197 uint16_t phy_data;
4198
4199 DEBUGFUNC();
4200 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4201
Stefan Roese497c7312015-08-11 17:12:44 +02004202 /* We will wait for autoneg to complete or timeout to expire. */
wdenk4e112c12003-06-03 23:54:09 +00004203 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4204 /* Read the MII Status Register and wait for Auto-Neg
4205 * Complete bit to be set.
4206 */
4207 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4208 DEBUGOUT("PHY Read Error\n");
4209 return -E1000_ERR_PHY;
4210 }
4211 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4212 DEBUGOUT("PHY Read Error\n");
4213 return -E1000_ERR_PHY;
4214 }
4215 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4216 DEBUGOUT("Auto-Neg complete.\n");
4217 return 0;
4218 }
4219 mdelay(100);
4220 }
4221 DEBUGOUT("Auto-Neg timedout.\n");
4222 return -E1000_ERR_TIMEOUT;
4223}
4224
4225/******************************************************************************
4226* Raises the Management Data Clock
4227*
4228* hw - Struct containing variables accessed by shared code
4229* ctrl - Device control register's current value
4230******************************************************************************/
4231static void
4232e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4233{
4234 /* Raise the clock input to the Management Data Clock (by setting the MDC
4235 * bit), and then delay 2 microseconds.
4236 */
4237 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4238 E1000_WRITE_FLUSH(hw);
4239 udelay(2);
4240}
4241
4242/******************************************************************************
4243* Lowers the Management Data Clock
4244*
4245* hw - Struct containing variables accessed by shared code
4246* ctrl - Device control register's current value
4247******************************************************************************/
4248static void
4249e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4250{
4251 /* Lower the clock input to the Management Data Clock (by clearing the MDC
4252 * bit), and then delay 2 microseconds.
4253 */
4254 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4255 E1000_WRITE_FLUSH(hw);
4256 udelay(2);
4257}
4258
4259/******************************************************************************
4260* Shifts data bits out to the PHY
4261*
4262* hw - Struct containing variables accessed by shared code
4263* data - Data to send out to the PHY
4264* count - Number of bits to shift out
4265*
4266* Bits are shifted out in MSB to LSB order.
4267******************************************************************************/
4268static void
4269e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4270{
4271 uint32_t ctrl;
4272 uint32_t mask;
4273
4274 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk57b2d802003-06-27 21:31:46 +00004275 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk4e112c12003-06-03 23:54:09 +00004276 * time. In order to do this, "data" must be broken down into bits.
4277 */
4278 mask = 0x01;
4279 mask <<= (count - 1);
4280
4281 ctrl = E1000_READ_REG(hw, CTRL);
4282
4283 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4284 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4285
4286 while (mask) {
4287 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4288 * then raising and lowering the Management Data Clock. A "0" is
4289 * shifted out to the PHY by setting the MDIO bit to "0" and then
4290 * raising and lowering the clock.
4291 */
4292 if (data & mask)
4293 ctrl |= E1000_CTRL_MDIO;
4294 else
4295 ctrl &= ~E1000_CTRL_MDIO;
4296
4297 E1000_WRITE_REG(hw, CTRL, ctrl);
4298 E1000_WRITE_FLUSH(hw);
4299
4300 udelay(2);
4301
4302 e1000_raise_mdi_clk(hw, &ctrl);
4303 e1000_lower_mdi_clk(hw, &ctrl);
4304
4305 mask = mask >> 1;
4306 }
4307}
4308
4309/******************************************************************************
4310* Shifts data bits in from the PHY
4311*
4312* hw - Struct containing variables accessed by shared code
4313*
wdenk57b2d802003-06-27 21:31:46 +00004314* Bits are shifted in in MSB to LSB order.
wdenk4e112c12003-06-03 23:54:09 +00004315******************************************************************************/
4316static uint16_t
4317e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4318{
4319 uint32_t ctrl;
4320 uint16_t data = 0;
4321 uint8_t i;
4322
4323 /* In order to read a register from the PHY, we need to shift in a total
4324 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4325 * to avoid contention on the MDIO pin when a read operation is performed.
4326 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4327 * by raising the input to the Management Data Clock (setting the MDC bit),
4328 * and then reading the value of the MDIO bit.
4329 */
4330 ctrl = E1000_READ_REG(hw, CTRL);
4331
4332 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4333 ctrl &= ~E1000_CTRL_MDIO_DIR;
4334 ctrl &= ~E1000_CTRL_MDIO;
4335
4336 E1000_WRITE_REG(hw, CTRL, ctrl);
4337 E1000_WRITE_FLUSH(hw);
4338
4339 /* Raise and Lower the clock before reading in the data. This accounts for
4340 * the turnaround bits. The first clock occurred when we clocked out the
4341 * last bit of the Register Address.
4342 */
4343 e1000_raise_mdi_clk(hw, &ctrl);
4344 e1000_lower_mdi_clk(hw, &ctrl);
4345
4346 for (data = 0, i = 0; i < 16; i++) {
4347 data = data << 1;
4348 e1000_raise_mdi_clk(hw, &ctrl);
4349 ctrl = E1000_READ_REG(hw, CTRL);
4350 /* Check to see if we shifted in a "1". */
4351 if (ctrl & E1000_CTRL_MDIO)
4352 data |= 1;
4353 e1000_lower_mdi_clk(hw, &ctrl);
4354 }
4355
4356 e1000_raise_mdi_clk(hw, &ctrl);
4357 e1000_lower_mdi_clk(hw, &ctrl);
4358
4359 return data;
4360}
4361
4362/*****************************************************************************
4363* Reads the value from a PHY register
4364*
4365* hw - Struct containing variables accessed by shared code
4366* reg_addr - address of the PHY register to read
4367******************************************************************************/
4368static int
4369e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4370{
4371 uint32_t i;
4372 uint32_t mdic = 0;
4373 const uint32_t phy_addr = 1;
4374
4375 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4376 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4377 return -E1000_ERR_PARAM;
4378 }
4379
4380 if (hw->mac_type > e1000_82543) {
4381 /* Set up Op-code, Phy Address, and register address in the MDI
4382 * Control register. The MAC will take care of interfacing with the
4383 * PHY to retrieve the desired data.
4384 */
4385 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4386 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4387 (E1000_MDIC_OP_READ));
4388
4389 E1000_WRITE_REG(hw, MDIC, mdic);
4390
4391 /* Poll the ready bit to see if the MDI read completed */
4392 for (i = 0; i < 64; i++) {
4393 udelay(10);
4394 mdic = E1000_READ_REG(hw, MDIC);
4395 if (mdic & E1000_MDIC_READY)
4396 break;
4397 }
4398 if (!(mdic & E1000_MDIC_READY)) {
4399 DEBUGOUT("MDI Read did not complete\n");
4400 return -E1000_ERR_PHY;
4401 }
4402 if (mdic & E1000_MDIC_ERROR) {
4403 DEBUGOUT("MDI Error\n");
4404 return -E1000_ERR_PHY;
4405 }
4406 *phy_data = (uint16_t) mdic;
4407 } else {
4408 /* We must first send a preamble through the MDIO pin to signal the
4409 * beginning of an MII instruction. This is done by sending 32
4410 * consecutive "1" bits.
4411 */
4412 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4413
4414 /* Now combine the next few fields that are required for a read
4415 * operation. We use this method instead of calling the
4416 * e1000_shift_out_mdi_bits routine five different times. The format of
4417 * a MII read instruction consists of a shift out of 14 bits and is
4418 * defined as follows:
4419 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4420 * followed by a shift in of 18 bits. This first two bits shifted in
4421 * are TurnAround bits used to avoid contention on the MDIO pin when a
4422 * READ operation is performed. These two bits are thrown away
4423 * followed by a shift in of 16 bits which contains the desired data.
4424 */
4425 mdic = ((reg_addr) | (phy_addr << 5) |
4426 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4427
4428 e1000_shift_out_mdi_bits(hw, mdic, 14);
4429
4430 /* Now that we've shifted out the read command to the MII, we need to
4431 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4432 * register address.
4433 */
4434 *phy_data = e1000_shift_in_mdi_bits(hw);
4435 }
4436 return 0;
4437}
4438
4439/******************************************************************************
4440* Writes a value to a PHY register
4441*
4442* hw - Struct containing variables accessed by shared code
4443* reg_addr - address of the PHY register to write
4444* data - data to write to the PHY
4445******************************************************************************/
4446static int
4447e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4448{
4449 uint32_t i;
4450 uint32_t mdic = 0;
4451 const uint32_t phy_addr = 1;
4452
4453 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4454 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4455 return -E1000_ERR_PARAM;
4456 }
4457
4458 if (hw->mac_type > e1000_82543) {
4459 /* Set up Op-code, Phy Address, register address, and data intended
4460 * for the PHY register in the MDI Control register. The MAC will take
4461 * care of interfacing with the PHY to send the desired data.
4462 */
4463 mdic = (((uint32_t) phy_data) |
4464 (reg_addr << E1000_MDIC_REG_SHIFT) |
4465 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4466 (E1000_MDIC_OP_WRITE));
4467
4468 E1000_WRITE_REG(hw, MDIC, mdic);
4469
4470 /* Poll the ready bit to see if the MDI read completed */
4471 for (i = 0; i < 64; i++) {
4472 udelay(10);
4473 mdic = E1000_READ_REG(hw, MDIC);
4474 if (mdic & E1000_MDIC_READY)
4475 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004476 }
4477 if (!(mdic & E1000_MDIC_READY)) {
4478 DEBUGOUT("MDI Write did not complete\n");
4479 return -E1000_ERR_PHY;
4480 }
4481 } else {
4482 /* We'll need to use the SW defined pins to shift the write command
4483 * out to the PHY. We first send a preamble to the PHY to signal the
4484 * beginning of the MII instruction. This is done by sending 32
4485 * consecutive "1" bits.
4486 */
4487 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4488
4489 /* Now combine the remaining required fields that will indicate a
4490 * write operation. We use this method instead of calling the
4491 * e1000_shift_out_mdi_bits routine for each field in the command. The
4492 * format of a MII write instruction is as follows:
4493 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4494 */
4495 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4496 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4497 mdic <<= 16;
4498 mdic |= (uint32_t) phy_data;
4499
4500 e1000_shift_out_mdi_bits(hw, mdic, 32);
4501 }
4502 return 0;
4503}
4504
4505/******************************************************************************
4506 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4507 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4508 * the caller to figure out how to deal with it.
4509 *
4510 * hw - Struct containing variables accessed by shared code
4511 *
4512 * returns: - E1000_BLK_PHY_RESET
4513 * E1000_SUCCESS
4514 *
4515 *****************************************************************************/
4516int32_t
4517e1000_check_phy_reset_block(struct e1000_hw *hw)
4518{
4519 uint32_t manc = 0;
4520 uint32_t fwsm = 0;
4521
4522 if (hw->mac_type == e1000_ich8lan) {
4523 fwsm = E1000_READ_REG(hw, FWSM);
4524 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4525 : E1000_BLK_PHY_RESET;
4526 }
4527
4528 if (hw->mac_type > e1000_82547_rev_2)
4529 manc = E1000_READ_REG(hw, MANC);
4530 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4531 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4532}
4533
4534/***************************************************************************
4535 * Checks if the PHY configuration is done
4536 *
4537 * hw: Struct containing variables accessed by shared code
4538 *
4539 * returns: - E1000_ERR_RESET if fail to reset MAC
4540 * E1000_SUCCESS at any other case.
4541 *
4542 ***************************************************************************/
4543static int32_t
4544e1000_get_phy_cfg_done(struct e1000_hw *hw)
4545{
4546 int32_t timeout = PHY_CFG_TIMEOUT;
4547 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4548
4549 DEBUGFUNC();
4550
4551 switch (hw->mac_type) {
4552 default:
4553 mdelay(10);
4554 break;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004555
Roy Zang28f7a052009-07-31 13:34:02 +08004556 case e1000_80003es2lan:
4557 /* Separate *_CFG_DONE_* bit for each port */
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004558 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004559 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004560 /* Fall Through */
4561
Roy Zang28f7a052009-07-31 13:34:02 +08004562 case e1000_82571:
4563 case e1000_82572:
Marek Vasut74a13c22014-08-08 07:41:39 -07004564 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08004565 while (timeout) {
Marek Vasut74a13c22014-08-08 07:41:39 -07004566 if (hw->mac_type == e1000_igb) {
4567 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4568 break;
4569 } else {
4570 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4571 break;
4572 }
4573 mdelay(1);
Roy Zang28f7a052009-07-31 13:34:02 +08004574 timeout--;
wdenk4e112c12003-06-03 23:54:09 +00004575 }
Roy Zang28f7a052009-07-31 13:34:02 +08004576 if (!timeout) {
4577 DEBUGOUT("MNG configuration cycle has not "
4578 "completed.\n");
4579 return -E1000_ERR_RESET;
wdenk4e112c12003-06-03 23:54:09 +00004580 }
Roy Zang28f7a052009-07-31 13:34:02 +08004581 break;
wdenk4e112c12003-06-03 23:54:09 +00004582 }
Roy Zang28f7a052009-07-31 13:34:02 +08004583
4584 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004585}
4586
4587/******************************************************************************
4588* Returns the PHY to the power-on reset state
4589*
4590* hw - Struct containing variables accessed by shared code
4591******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004592int32_t
wdenk4e112c12003-06-03 23:54:09 +00004593e1000_phy_hw_reset(struct e1000_hw *hw)
4594{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004595 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08004596 uint32_t ctrl, ctrl_ext;
4597 uint32_t led_ctrl;
4598 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004599
4600 DEBUGFUNC();
4601
Roy Zang28f7a052009-07-31 13:34:02 +08004602 /* In the case of the phy reset being blocked, it's not an error, we
4603 * simply return success without performing the reset. */
4604 ret_val = e1000_check_phy_reset_block(hw);
4605 if (ret_val)
4606 return E1000_SUCCESS;
4607
wdenk4e112c12003-06-03 23:54:09 +00004608 DEBUGOUT("Resetting Phy...\n");
4609
4610 if (hw->mac_type > e1000_82543) {
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004611 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004612 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004613
Roy Zang28f7a052009-07-31 13:34:02 +08004614 if (e1000_swfw_sync_acquire(hw, swfw)) {
4615 DEBUGOUT("Unable to acquire swfw sync\n");
4616 return -E1000_ERR_SWFW_SYNC;
4617 }
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004618
wdenk4e112c12003-06-03 23:54:09 +00004619 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4620 * bit. Then, take it out of reset.
4621 */
4622 ctrl = E1000_READ_REG(hw, CTRL);
4623 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4624 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004625
4626 if (hw->mac_type < e1000_82571)
4627 udelay(10);
4628 else
4629 udelay(100);
4630
wdenk4e112c12003-06-03 23:54:09 +00004631 E1000_WRITE_REG(hw, CTRL, ctrl);
4632 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004633
4634 if (hw->mac_type >= e1000_82571)
4635 mdelay(10);
Tim Harveydca35652015-05-19 10:01:19 -07004636
wdenk4e112c12003-06-03 23:54:09 +00004637 } else {
4638 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4639 * bit to put the PHY into reset. Then, take it out of reset.
4640 */
4641 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4642 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4643 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4644 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4645 E1000_WRITE_FLUSH(hw);
4646 mdelay(10);
4647 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4648 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4649 E1000_WRITE_FLUSH(hw);
4650 }
4651 udelay(150);
Roy Zang28f7a052009-07-31 13:34:02 +08004652
4653 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4654 /* Configure activity LED after PHY reset */
4655 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4656 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4657 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4658 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4659 }
4660
Tim Harvey5cb59ec2015-05-19 10:01:18 -07004661 e1000_swfw_sync_release(hw, swfw);
4662
Roy Zang28f7a052009-07-31 13:34:02 +08004663 /* Wait for FW to finish PHY configuration. */
4664 ret_val = e1000_get_phy_cfg_done(hw);
4665 if (ret_val != E1000_SUCCESS)
4666 return ret_val;
4667
4668 return ret_val;
4669}
4670
4671/******************************************************************************
4672 * IGP phy init script - initializes the GbE PHY
4673 *
4674 * hw - Struct containing variables accessed by shared code
4675 *****************************************************************************/
4676static void
4677e1000_phy_init_script(struct e1000_hw *hw)
4678{
4679 uint32_t ret_val;
4680 uint16_t phy_saved_data;
4681 DEBUGFUNC();
4682
4683 if (hw->phy_init_script) {
4684 mdelay(20);
4685
4686 /* Save off the current value of register 0x2F5B to be
4687 * restored at the end of this routine. */
4688 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4689
4690 /* Disabled the PHY transmitter */
4691 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4692
4693 mdelay(20);
4694
4695 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4696
4697 mdelay(5);
4698
4699 switch (hw->mac_type) {
4700 case e1000_82541:
4701 case e1000_82547:
4702 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4703
4704 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4705
4706 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4707
4708 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4709
4710 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4711
4712 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4713
4714 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4715
4716 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4717
4718 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4719 break;
4720
4721 case e1000_82541_rev_2:
4722 case e1000_82547_rev_2:
4723 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4724 break;
4725 default:
4726 break;
4727 }
4728
4729 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4730
4731 mdelay(20);
4732
4733 /* Now enable the transmitter */
Zang Roy-R61911e36d67c2011-11-06 22:22:36 +00004734 if (!ret_val)
4735 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Roy Zang28f7a052009-07-31 13:34:02 +08004736
4737 if (hw->mac_type == e1000_82547) {
4738 uint16_t fused, fine, coarse;
4739
4740 /* Move to analog registers page */
4741 e1000_read_phy_reg(hw,
4742 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4743
4744 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4745 e1000_read_phy_reg(hw,
4746 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4747
4748 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4749 coarse = fused
4750 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4751
4752 if (coarse >
4753 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4754 coarse -=
4755 IGP01E1000_ANALOG_FUSE_COARSE_10;
4756 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4757 } else if (coarse
4758 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4759 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4760
4761 fused = (fused
4762 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4763 (fine
4764 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4765 (coarse
4766 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4767
4768 e1000_write_phy_reg(hw,
4769 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4770 e1000_write_phy_reg(hw,
4771 IGP01E1000_ANALOG_FUSE_BYPASS,
4772 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4773 }
4774 }
4775 }
wdenk4e112c12003-06-03 23:54:09 +00004776}
4777
4778/******************************************************************************
4779* Resets the PHY
4780*
4781* hw - Struct containing variables accessed by shared code
4782*
Roy Zang28f7a052009-07-31 13:34:02 +08004783* Sets bit 15 of the MII Control register
wdenk4e112c12003-06-03 23:54:09 +00004784******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004785int32_t
wdenk4e112c12003-06-03 23:54:09 +00004786e1000_phy_reset(struct e1000_hw *hw)
4787{
Roy Zang28f7a052009-07-31 13:34:02 +08004788 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004789 uint16_t phy_data;
4790
4791 DEBUGFUNC();
4792
Roy Zang28f7a052009-07-31 13:34:02 +08004793 /* In the case of the phy reset being blocked, it's not an error, we
4794 * simply return success without performing the reset. */
4795 ret_val = e1000_check_phy_reset_block(hw);
4796 if (ret_val)
4797 return E1000_SUCCESS;
4798
4799 switch (hw->phy_type) {
4800 case e1000_phy_igp:
4801 case e1000_phy_igp_2:
4802 case e1000_phy_igp_3:
4803 case e1000_phy_ife:
Marek Vasut74a13c22014-08-08 07:41:39 -07004804 case e1000_phy_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08004805 ret_val = e1000_phy_hw_reset(hw);
4806 if (ret_val)
4807 return ret_val;
4808 break;
4809 default:
4810 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4811 if (ret_val)
4812 return ret_val;
4813
4814 phy_data |= MII_CR_RESET;
4815 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4816 if (ret_val)
4817 return ret_val;
4818
4819 udelay(1);
4820 break;
wdenk4e112c12003-06-03 23:54:09 +00004821 }
Roy Zang28f7a052009-07-31 13:34:02 +08004822
4823 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4824 e1000_phy_init_script(hw);
4825
4826 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004827}
4828
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004829static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarz68c2a302008-03-06 16:45:44 +01004830{
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004831 DEBUGFUNC ();
Andre Schwarz68c2a302008-03-06 16:45:44 +01004832
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004833 if (hw->mac_type == e1000_undefined)
4834 return -E1000_ERR_PHY_TYPE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004835
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004836 switch (hw->phy_id) {
4837 case M88E1000_E_PHY_ID:
4838 case M88E1000_I_PHY_ID:
4839 case M88E1011_I_PHY_ID:
Roy Zang28f7a052009-07-31 13:34:02 +08004840 case M88E1111_I_PHY_ID:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004841 hw->phy_type = e1000_phy_m88;
4842 break;
4843 case IGP01E1000_I_PHY_ID:
4844 if (hw->mac_type == e1000_82541 ||
Roy Zang28f7a052009-07-31 13:34:02 +08004845 hw->mac_type == e1000_82541_rev_2 ||
4846 hw->mac_type == e1000_82547 ||
4847 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004848 hw->phy_type = e1000_phy_igp;
Roy Zang28f7a052009-07-31 13:34:02 +08004849 break;
4850 }
4851 case IGP03E1000_E_PHY_ID:
4852 hw->phy_type = e1000_phy_igp_3;
4853 break;
4854 case IFE_E_PHY_ID:
4855 case IFE_PLUS_E_PHY_ID:
4856 case IFE_C_E_PHY_ID:
4857 hw->phy_type = e1000_phy_ife;
4858 break;
4859 case GG82563_E_PHY_ID:
4860 if (hw->mac_type == e1000_80003es2lan) {
4861 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004862 break;
4863 }
Roy Zang181119b2011-01-21 11:29:38 +08004864 case BME1000_E_PHY_ID:
4865 hw->phy_type = e1000_phy_bm;
4866 break;
Marek Vasut74a13c22014-08-08 07:41:39 -07004867 case I210_I_PHY_ID:
4868 hw->phy_type = e1000_phy_igb;
4869 break;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004870 /* Fall Through */
4871 default:
4872 /* Should never have loaded on this device */
4873 hw->phy_type = e1000_phy_undefined;
4874 return -E1000_ERR_PHY_TYPE;
4875 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004876
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004877 return E1000_SUCCESS;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004878}
4879
wdenk4e112c12003-06-03 23:54:09 +00004880/******************************************************************************
4881* Probes the expected PHY address for known PHY IDs
4882*
4883* hw - Struct containing variables accessed by shared code
4884******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004885static int32_t
wdenk4e112c12003-06-03 23:54:09 +00004886e1000_detect_gig_phy(struct e1000_hw *hw)
4887{
Roy Zang28f7a052009-07-31 13:34:02 +08004888 int32_t phy_init_status, ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004889 uint16_t phy_id_high, phy_id_low;
York Sun4a598092013-04-01 11:29:11 -07004890 bool match = false;
wdenk4e112c12003-06-03 23:54:09 +00004891
4892 DEBUGFUNC();
4893
Roy Zang28f7a052009-07-31 13:34:02 +08004894 /* The 82571 firmware may still be configuring the PHY. In this
4895 * case, we cannot access the PHY until the configuration is done. So
4896 * we explicitly set the PHY values. */
4897 if (hw->mac_type == e1000_82571 ||
4898 hw->mac_type == e1000_82572) {
4899 hw->phy_id = IGP01E1000_I_PHY_ID;
4900 hw->phy_type = e1000_phy_igp_2;
4901 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004902 }
Roy Zang28f7a052009-07-31 13:34:02 +08004903
4904 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4905 * work- around that forces PHY page 0 to be set or the reads fail.
4906 * The rest of the code in this routine uses e1000_read_phy_reg to
4907 * read the PHY ID. So for ESB-2 we need to have this set so our
4908 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4909 * the routines below will figure this out as well. */
4910 if (hw->mac_type == e1000_80003es2lan)
4911 hw->phy_type = e1000_phy_gg82563;
4912
4913 /* Read the PHY ID Registers to identify which PHY is onboard. */
4914 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4915 if (ret_val)
4916 return ret_val;
4917
wdenk4e112c12003-06-03 23:54:09 +00004918 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zang28f7a052009-07-31 13:34:02 +08004919 udelay(20);
4920 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4921 if (ret_val)
4922 return ret_val;
4923
wdenk4e112c12003-06-03 23:54:09 +00004924 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zang28f7a052009-07-31 13:34:02 +08004925 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk4e112c12003-06-03 23:54:09 +00004926
4927 switch (hw->mac_type) {
4928 case e1000_82543:
4929 if (hw->phy_id == M88E1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004930 match = true;
wdenk4e112c12003-06-03 23:54:09 +00004931 break;
4932 case e1000_82544:
4933 if (hw->phy_id == M88E1000_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004934 match = true;
wdenk4e112c12003-06-03 23:54:09 +00004935 break;
4936 case e1000_82540:
4937 case e1000_82545:
Roy Zang28f7a052009-07-31 13:34:02 +08004938 case e1000_82545_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004939 case e1000_82546:
Roy Zang28f7a052009-07-31 13:34:02 +08004940 case e1000_82546_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004941 if (hw->phy_id == M88E1011_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004942 match = true;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004943 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004944 case e1000_82541:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004945 case e1000_82541_rev_2:
Roy Zang28f7a052009-07-31 13:34:02 +08004946 case e1000_82547:
4947 case e1000_82547_rev_2:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004948 if(hw->phy_id == IGP01E1000_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004949 match = true;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004950
wdenk4e112c12003-06-03 23:54:09 +00004951 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004952 case e1000_82573:
4953 if (hw->phy_id == M88E1111_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004954 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004955 break;
Roy Zang181119b2011-01-21 11:29:38 +08004956 case e1000_82574:
4957 if (hw->phy_id == BME1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004958 match = true;
Roy Zang181119b2011-01-21 11:29:38 +08004959 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004960 case e1000_80003es2lan:
4961 if (hw->phy_id == GG82563_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004962 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004963 break;
4964 case e1000_ich8lan:
4965 if (hw->phy_id == IGP03E1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004966 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004967 if (hw->phy_id == IFE_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004968 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004969 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004970 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004971 if (hw->phy_id == IFE_C_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004972 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004973 break;
Marek Vasut74a13c22014-08-08 07:41:39 -07004974 case e1000_igb:
4975 if (hw->phy_id == I210_I_PHY_ID)
4976 match = true;
4977 break;
wdenk4e112c12003-06-03 23:54:09 +00004978 default:
4979 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4980 return -E1000_ERR_CONFIG;
4981 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004982
4983 phy_init_status = e1000_set_phy_type(hw);
4984
4985 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk4e112c12003-06-03 23:54:09 +00004986 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4987 return 0;
4988 }
4989 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4990 return -E1000_ERR_PHY;
4991}
4992
Roy Zang28f7a052009-07-31 13:34:02 +08004993/*****************************************************************************
4994 * Set media type and TBI compatibility.
4995 *
4996 * hw - Struct containing variables accessed by shared code
4997 * **************************************************************************/
4998void
4999e1000_set_media_type(struct e1000_hw *hw)
5000{
5001 uint32_t status;
5002
5003 DEBUGFUNC();
5004
5005 if (hw->mac_type != e1000_82543) {
5006 /* tbi_compatibility is only valid on 82543 */
York Sun4a598092013-04-01 11:29:11 -07005007 hw->tbi_compatibility_en = false;
Roy Zang28f7a052009-07-31 13:34:02 +08005008 }
5009
5010 switch (hw->device_id) {
5011 case E1000_DEV_ID_82545GM_SERDES:
5012 case E1000_DEV_ID_82546GB_SERDES:
5013 case E1000_DEV_ID_82571EB_SERDES:
5014 case E1000_DEV_ID_82571EB_SERDES_DUAL:
5015 case E1000_DEV_ID_82571EB_SERDES_QUAD:
5016 case E1000_DEV_ID_82572EI_SERDES:
5017 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
5018 hw->media_type = e1000_media_type_internal_serdes;
5019 break;
5020 default:
5021 switch (hw->mac_type) {
5022 case e1000_82542_rev2_0:
5023 case e1000_82542_rev2_1:
5024 hw->media_type = e1000_media_type_fiber;
5025 break;
5026 case e1000_ich8lan:
5027 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08005028 case e1000_82574:
Marek Vasut74a13c22014-08-08 07:41:39 -07005029 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08005030 /* The STATUS_TBIMODE bit is reserved or reused
5031 * for the this device.
5032 */
5033 hw->media_type = e1000_media_type_copper;
5034 break;
5035 default:
5036 status = E1000_READ_REG(hw, STATUS);
5037 if (status & E1000_STATUS_TBIMODE) {
5038 hw->media_type = e1000_media_type_fiber;
5039 /* tbi_compatibility not valid on fiber */
York Sun4a598092013-04-01 11:29:11 -07005040 hw->tbi_compatibility_en = false;
Roy Zang28f7a052009-07-31 13:34:02 +08005041 } else {
5042 hw->media_type = e1000_media_type_copper;
5043 }
5044 break;
5045 }
5046 }
5047}
5048
wdenk4e112c12003-06-03 23:54:09 +00005049/**
5050 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
5051 *
5052 * e1000_sw_init initializes the Adapter private data structure.
5053 * Fields are initialized based on PCI device information and
5054 * OS network device settings (MTU size).
5055 **/
5056
5057static int
Simon Glassc53abc32015-08-19 09:33:39 -06005058e1000_sw_init(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00005059{
wdenk4e112c12003-06-03 23:54:09 +00005060 int result;
5061
5062 /* PCI config space info */
Bin Meng83cf24c2016-02-02 05:58:01 -08005063#ifdef CONFIG_DM_ETH
5064 dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5065 dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5066 dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5067 &hw->subsystem_vendor_id);
5068 dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5069
5070 dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5071 dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5072#else
wdenk4e112c12003-06-03 23:54:09 +00005073 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5074 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5075 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5076 &hw->subsystem_vendor_id);
5077 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5078
5079 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5080 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
Bin Meng83cf24c2016-02-02 05:58:01 -08005081#endif
wdenk4e112c12003-06-03 23:54:09 +00005082
5083 /* identify the MAC */
5084 result = e1000_set_mac_type(hw);
5085 if (result) {
Simon Glassc53abc32015-08-19 09:33:39 -06005086 E1000_ERR(hw, "Unknown MAC Type\n");
wdenk4e112c12003-06-03 23:54:09 +00005087 return result;
5088 }
5089
Roy Zang28f7a052009-07-31 13:34:02 +08005090 switch (hw->mac_type) {
5091 default:
5092 break;
5093 case e1000_82541:
5094 case e1000_82547:
5095 case e1000_82541_rev_2:
5096 case e1000_82547_rev_2:
5097 hw->phy_init_script = 1;
5098 break;
5099 }
5100
wdenk4e112c12003-06-03 23:54:09 +00005101 /* flow control settings */
5102 hw->fc_high_water = E1000_FC_HIGH_THRESH;
5103 hw->fc_low_water = E1000_FC_LOW_THRESH;
5104 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
5105 hw->fc_send_xon = 1;
5106
5107 /* Media type - copper or fiber */
Marek Vasut74a13c22014-08-08 07:41:39 -07005108 hw->tbi_compatibility_en = true;
Roy Zang28f7a052009-07-31 13:34:02 +08005109 e1000_set_media_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00005110
5111 if (hw->mac_type >= e1000_82543) {
5112 uint32_t status = E1000_READ_REG(hw, STATUS);
5113
5114 if (status & E1000_STATUS_TBIMODE) {
5115 DEBUGOUT("fiber interface\n");
5116 hw->media_type = e1000_media_type_fiber;
5117 } else {
5118 DEBUGOUT("copper interface\n");
5119 hw->media_type = e1000_media_type_copper;
5120 }
5121 } else {
5122 hw->media_type = e1000_media_type_fiber;
5123 }
5124
York Sun4a598092013-04-01 11:29:11 -07005125 hw->wait_autoneg_complete = true;
wdenk4e112c12003-06-03 23:54:09 +00005126 if (hw->mac_type < e1000_82543)
5127 hw->report_tx_early = 0;
5128 else
5129 hw->report_tx_early = 1;
5130
wdenk4e112c12003-06-03 23:54:09 +00005131 return E1000_SUCCESS;
5132}
5133
5134void
5135fill_rx(struct e1000_hw *hw)
5136{
5137 struct e1000_rx_desc *rd;
Minghuan Liane2e4b782015-01-22 13:21:54 +08005138 unsigned long flush_start, flush_end;
wdenk4e112c12003-06-03 23:54:09 +00005139
5140 rx_last = rx_tail;
5141 rd = rx_base + rx_tail;
5142 rx_tail = (rx_tail + 1) % 8;
5143 memset(rd, 0, 16);
Stefan Roesee1789942020-11-16 18:02:30 +01005144 rd->buffer_addr = cpu_to_le64(virt_to_phys(packet));
Marek Vasut742c5c22014-08-08 07:41:38 -07005145
5146 /*
5147 * Make sure there are no stale data in WB over this area, which
5148 * might get written into the memory while the e1000 also writes
5149 * into the same memory area.
5150 */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005151 invalidate_dcache_range((unsigned long)packet,
5152 (unsigned long)packet + 4096);
Marek Vasut742c5c22014-08-08 07:41:38 -07005153 /* Dump the DMA descriptor into RAM. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005154 flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut742c5c22014-08-08 07:41:38 -07005155 flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5156 flush_dcache_range(flush_start, flush_end);
5157
wdenk4e112c12003-06-03 23:54:09 +00005158 E1000_WRITE_REG(hw, RDT, rx_tail);
5159}
5160
5161/**
5162 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
5163 * @adapter: board private structure
5164 *
5165 * Configure the Tx unit of the MAC after a reset.
5166 **/
5167
5168static void
5169e1000_configure_tx(struct e1000_hw *hw)
5170{
wdenk4e112c12003-06-03 23:54:09 +00005171 unsigned long tctl;
Roy Zang28f7a052009-07-31 13:34:02 +08005172 unsigned long tipg, tarc;
5173 uint32_t ipgr1, ipgr2;
wdenk4e112c12003-06-03 23:54:09 +00005174
Stefan Roesee1789942020-11-16 18:02:30 +01005175 E1000_WRITE_REG(hw, TDBAL, lower_32_bits(virt_to_phys(tx_base)));
5176 E1000_WRITE_REG(hw, TDBAH, upper_32_bits(virt_to_phys(tx_base)));
wdenk4e112c12003-06-03 23:54:09 +00005177
5178 E1000_WRITE_REG(hw, TDLEN, 128);
5179
5180 /* Setup the HW Tx Head and Tail descriptor pointers */
5181 E1000_WRITE_REG(hw, TDH, 0);
5182 E1000_WRITE_REG(hw, TDT, 0);
5183 tx_tail = 0;
5184
5185 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zang28f7a052009-07-31 13:34:02 +08005186 if (hw->mac_type <= e1000_82547_rev_2 &&
5187 (hw->media_type == e1000_media_type_fiber ||
5188 hw->media_type == e1000_media_type_internal_serdes))
5189 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
5190 else
5191 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5192
5193 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk4e112c12003-06-03 23:54:09 +00005194 switch (hw->mac_type) {
5195 case e1000_82542_rev2_0:
5196 case e1000_82542_rev2_1:
5197 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zang28f7a052009-07-31 13:34:02 +08005198 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5199 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5200 break;
5201 case e1000_80003es2lan:
5202 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5203 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk4e112c12003-06-03 23:54:09 +00005204 break;
5205 default:
Roy Zang28f7a052009-07-31 13:34:02 +08005206 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5207 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5208 break;
wdenk4e112c12003-06-03 23:54:09 +00005209 }
Roy Zang28f7a052009-07-31 13:34:02 +08005210 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5211 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00005212 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk4e112c12003-06-03 23:54:09 +00005213 /* Program the Transmit Control Register */
5214 tctl = E1000_READ_REG(hw, TCTL);
5215 tctl &= ~E1000_TCTL_CT;
5216 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5217 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zang28f7a052009-07-31 13:34:02 +08005218
5219 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5220 tarc = E1000_READ_REG(hw, TARC0);
5221 /* set the speed mode bit, we'll clear it if we're not at
5222 * gigabit link later */
5223 /* git bit can be set to 1*/
5224 } else if (hw->mac_type == e1000_80003es2lan) {
5225 tarc = E1000_READ_REG(hw, TARC0);
5226 tarc |= 1;
5227 E1000_WRITE_REG(hw, TARC0, tarc);
5228 tarc = E1000_READ_REG(hw, TARC1);
5229 tarc |= 1;
5230 E1000_WRITE_REG(hw, TARC1, tarc);
5231 }
5232
wdenk4e112c12003-06-03 23:54:09 +00005233
5234 e1000_config_collision_dist(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08005235 /* Setup Transmit Descriptor Settings for eop descriptor */
5236 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk4e112c12003-06-03 23:54:09 +00005237
Roy Zang28f7a052009-07-31 13:34:02 +08005238 /* Need to set up RS bit */
5239 if (hw->mac_type < e1000_82543)
5240 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk4e112c12003-06-03 23:54:09 +00005241 else
Roy Zang28f7a052009-07-31 13:34:02 +08005242 hw->txd_cmd |= E1000_TXD_CMD_RS;
Marek Vasut74a13c22014-08-08 07:41:39 -07005243
5244
5245 if (hw->mac_type == e1000_igb) {
5246 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5247
5248 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5249 reg_txdctl |= 1 << 25;
5250 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5251 mdelay(20);
5252 }
5253
5254
5255
Roy Zang28f7a052009-07-31 13:34:02 +08005256 E1000_WRITE_REG(hw, TCTL, tctl);
Marek Vasut74a13c22014-08-08 07:41:39 -07005257
5258
wdenk4e112c12003-06-03 23:54:09 +00005259}
5260
5261/**
5262 * e1000_setup_rctl - configure the receive control register
5263 * @adapter: Board private structure
5264 **/
5265static void
5266e1000_setup_rctl(struct e1000_hw *hw)
5267{
5268 uint32_t rctl;
5269
5270 rctl = E1000_READ_REG(hw, RCTL);
5271
5272 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5273
Roy Zang28f7a052009-07-31 13:34:02 +08005274 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5275 | E1000_RCTL_RDMTS_HALF; /* |
5276 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk4e112c12003-06-03 23:54:09 +00005277
5278 if (hw->tbi_compatibility_on == 1)
5279 rctl |= E1000_RCTL_SBP;
5280 else
5281 rctl &= ~E1000_RCTL_SBP;
5282
5283 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk4e112c12003-06-03 23:54:09 +00005284 rctl |= E1000_RCTL_SZ_2048;
5285 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk4e112c12003-06-03 23:54:09 +00005286 E1000_WRITE_REG(hw, RCTL, rctl);
5287}
5288
5289/**
5290 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5291 * @adapter: board private structure
5292 *
5293 * Configure the Rx unit of the MAC after a reset.
5294 **/
5295static void
5296e1000_configure_rx(struct e1000_hw *hw)
5297{
Roy Zang28f7a052009-07-31 13:34:02 +08005298 unsigned long rctl, ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00005299 rx_tail = 0;
Bin Mengd0ee7d02015-08-26 06:17:27 -07005300
wdenk4e112c12003-06-03 23:54:09 +00005301 /* make sure receives are disabled while setting up the descriptors */
5302 rctl = E1000_READ_REG(hw, RCTL);
5303 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk4e112c12003-06-03 23:54:09 +00005304 if (hw->mac_type >= e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00005305 /* Set the interrupt throttling rate. Value is calculated
5306 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk35f734f2008-04-13 09:59:26 -07005307#define MAX_INTS_PER_SEC 8000
5308#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk4e112c12003-06-03 23:54:09 +00005309 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5310 }
5311
Roy Zang28f7a052009-07-31 13:34:02 +08005312 if (hw->mac_type >= e1000_82571) {
5313 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5314 /* Reset delay timers after every interrupt */
5315 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5316 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5317 E1000_WRITE_FLUSH(hw);
5318 }
wdenk4e112c12003-06-03 23:54:09 +00005319 /* Setup the Base and Length of the Rx Descriptor Ring */
Stefan Roesee1789942020-11-16 18:02:30 +01005320 E1000_WRITE_REG(hw, RDBAL, lower_32_bits(virt_to_phys(rx_base)));
5321 E1000_WRITE_REG(hw, RDBAH, upper_32_bits(virt_to_phys(rx_base)));
wdenk4e112c12003-06-03 23:54:09 +00005322
5323 E1000_WRITE_REG(hw, RDLEN, 128);
5324
5325 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5326 E1000_WRITE_REG(hw, RDH, 0);
5327 E1000_WRITE_REG(hw, RDT, 0);
wdenk4e112c12003-06-03 23:54:09 +00005328 /* Enable Receives */
5329
Marek Vasut74a13c22014-08-08 07:41:39 -07005330 if (hw->mac_type == e1000_igb) {
5331
5332 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5333 reg_rxdctl |= 1 << 25;
5334 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5335 mdelay(20);
5336 }
5337
wdenk4e112c12003-06-03 23:54:09 +00005338 E1000_WRITE_REG(hw, RCTL, rctl);
Marek Vasut74a13c22014-08-08 07:41:39 -07005339
wdenk4e112c12003-06-03 23:54:09 +00005340 fill_rx(hw);
5341}
5342
5343/**************************************************************************
5344POLL - Wait for a frame
5345***************************************************************************/
5346static int
Simon Glassc53abc32015-08-19 09:33:39 -06005347_e1000_poll(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00005348{
wdenk4e112c12003-06-03 23:54:09 +00005349 struct e1000_rx_desc *rd;
Minghuan Liane2e4b782015-01-22 13:21:54 +08005350 unsigned long inval_start, inval_end;
Marek Vasut742c5c22014-08-08 07:41:38 -07005351 uint32_t len;
5352
wdenk4e112c12003-06-03 23:54:09 +00005353 /* return true if there's an ethernet packet ready to read */
5354 rd = rx_base + rx_last;
Marek Vasut742c5c22014-08-08 07:41:38 -07005355
5356 /* Re-load the descriptor from RAM. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005357 inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut742c5c22014-08-08 07:41:38 -07005358 inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5359 invalidate_dcache_range(inval_start, inval_end);
5360
Miao Yan41a084a2015-12-21 02:07:02 -08005361 if (!(rd->status & E1000_RXD_STAT_DD))
wdenk4e112c12003-06-03 23:54:09 +00005362 return 0;
Minghuan Lian674bcd52015-03-19 09:43:51 -07005363 /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
Marek Vasut742c5c22014-08-08 07:41:38 -07005364 /* Packet received, make sure the data are re-loaded from RAM. */
Miao Yan41a084a2015-12-21 02:07:02 -08005365 len = le16_to_cpu(rd->length);
Minghuan Liane2e4b782015-01-22 13:21:54 +08005366 invalidate_dcache_range((unsigned long)packet,
5367 (unsigned long)packet +
5368 roundup(len, ARCH_DMA_MINALIGN));
Simon Glassc53abc32015-08-19 09:33:39 -06005369 return len;
wdenk4e112c12003-06-03 23:54:09 +00005370}
5371
Simon Glassc53abc32015-08-19 09:33:39 -06005372static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
wdenk4e112c12003-06-03 23:54:09 +00005373{
Marek Vasut742c5c22014-08-08 07:41:38 -07005374 void *nv_packet = (void *)txpacket;
wdenk4e112c12003-06-03 23:54:09 +00005375 struct e1000_tx_desc *txp;
5376 int i = 0;
Minghuan Liane2e4b782015-01-22 13:21:54 +08005377 unsigned long flush_start, flush_end;
wdenk4e112c12003-06-03 23:54:09 +00005378
5379 txp = tx_base + tx_tail;
5380 tx_tail = (tx_tail + 1) % 8;
5381
Stefan Roese0a1a3292020-11-16 18:02:29 +01005382 txp->buffer_addr = cpu_to_le64(virt_to_phys(nv_packet));
Roy Zang28f7a052009-07-31 13:34:02 +08005383 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk4e112c12003-06-03 23:54:09 +00005384 txp->upper.data = 0;
Marek Vasut742c5c22014-08-08 07:41:38 -07005385
5386 /* Dump the packet into RAM so e1000 can pick them. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005387 flush_dcache_range((unsigned long)nv_packet,
5388 (unsigned long)nv_packet +
5389 roundup(length, ARCH_DMA_MINALIGN));
Marek Vasut742c5c22014-08-08 07:41:38 -07005390 /* Dump the descriptor into RAM as well. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005391 flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut742c5c22014-08-08 07:41:38 -07005392 flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5393 flush_dcache_range(flush_start, flush_end);
5394
wdenk4e112c12003-06-03 23:54:09 +00005395 E1000_WRITE_REG(hw, TDT, tx_tail);
5396
Roy Zang28f7a052009-07-31 13:34:02 +08005397 E1000_WRITE_FLUSH(hw);
Marek Vasut742c5c22014-08-08 07:41:38 -07005398 while (1) {
5399 invalidate_dcache_range(flush_start, flush_end);
5400 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5401 break;
wdenk4e112c12003-06-03 23:54:09 +00005402 if (i++ > TOUT_LOOP) {
5403 DEBUGOUT("e1000: tx timeout\n");
5404 return 0;
5405 }
5406 udelay(10); /* give the nic a chance to write to the register */
5407 }
5408 return 1;
5409}
5410
wdenk4e112c12003-06-03 23:54:09 +00005411static void
Simon Glassc53abc32015-08-19 09:33:39 -06005412_e1000_disable(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00005413{
wdenk4e112c12003-06-03 23:54:09 +00005414 /* Turn off the ethernet interface */
5415 E1000_WRITE_REG(hw, RCTL, 0);
5416 E1000_WRITE_REG(hw, TCTL, 0);
5417
5418 /* Clear the transmit ring */
5419 E1000_WRITE_REG(hw, TDH, 0);
5420 E1000_WRITE_REG(hw, TDT, 0);
5421
5422 /* Clear the receive ring */
5423 E1000_WRITE_REG(hw, RDH, 0);
5424 E1000_WRITE_REG(hw, RDT, 0);
5425
wdenk4e112c12003-06-03 23:54:09 +00005426 mdelay(10);
Simon Glassc53abc32015-08-19 09:33:39 -06005427}
wdenk4e112c12003-06-03 23:54:09 +00005428
Simon Glassc53abc32015-08-19 09:33:39 -06005429/*reset function*/
5430static inline int
5431e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5432{
5433 e1000_reset_hw(hw);
5434 if (hw->mac_type >= e1000_82544)
5435 E1000_WRITE_REG(hw, WUC, 0);
5436
5437 return e1000_init_hw(hw, enetaddr);
wdenk4e112c12003-06-03 23:54:09 +00005438}
5439
wdenk4e112c12003-06-03 23:54:09 +00005440static int
Simon Glassc53abc32015-08-19 09:33:39 -06005441_e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
wdenk4e112c12003-06-03 23:54:09 +00005442{
wdenk4e112c12003-06-03 23:54:09 +00005443 int ret_val = 0;
5444
Simon Glassc53abc32015-08-19 09:33:39 -06005445 ret_val = e1000_reset(hw, enetaddr);
wdenk4e112c12003-06-03 23:54:09 +00005446 if (ret_val < 0) {
5447 if ((ret_val == -E1000_ERR_NOLINK) ||
5448 (ret_val == -E1000_ERR_TIMEOUT)) {
Simon Glassc53abc32015-08-19 09:33:39 -06005449 E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
wdenk4e112c12003-06-03 23:54:09 +00005450 } else {
Simon Glassc53abc32015-08-19 09:33:39 -06005451 E1000_ERR(hw, "Hardware Initialization Failed\n");
wdenk4e112c12003-06-03 23:54:09 +00005452 }
Simon Glassc53abc32015-08-19 09:33:39 -06005453 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00005454 }
5455 e1000_configure_tx(hw);
5456 e1000_setup_rctl(hw);
5457 e1000_configure_rx(hw);
Simon Glassc53abc32015-08-19 09:33:39 -06005458 return 0;
wdenk4e112c12003-06-03 23:54:09 +00005459}
5460
Roy Zang28f7a052009-07-31 13:34:02 +08005461/******************************************************************************
5462 * Gets the current PCI bus type of hardware
5463 *
5464 * hw - Struct containing variables accessed by shared code
5465 *****************************************************************************/
5466void e1000_get_bus_type(struct e1000_hw *hw)
5467{
5468 uint32_t status;
5469
5470 switch (hw->mac_type) {
5471 case e1000_82542_rev2_0:
5472 case e1000_82542_rev2_1:
5473 hw->bus_type = e1000_bus_type_pci;
5474 break;
5475 case e1000_82571:
5476 case e1000_82572:
5477 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08005478 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08005479 case e1000_80003es2lan:
Roy Zang28f7a052009-07-31 13:34:02 +08005480 case e1000_ich8lan:
Marek Vasut74a13c22014-08-08 07:41:39 -07005481 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08005482 hw->bus_type = e1000_bus_type_pci_express;
5483 break;
5484 default:
5485 status = E1000_READ_REG(hw, STATUS);
5486 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5487 e1000_bus_type_pcix : e1000_bus_type_pci;
5488 break;
5489 }
5490}
5491
Simon Glass9f86b382015-08-19 09:33:40 -06005492#ifndef CONFIG_DM_ETH
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005493/* A list of all registered e1000 devices */
5494static LIST_HEAD(e1000_hw_list);
Simon Glass9f86b382015-08-19 09:33:40 -06005495#endif
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005496
Bin Meng83cf24c2016-02-02 05:58:01 -08005497#ifdef CONFIG_DM_ETH
5498static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5499 struct udevice *devno, unsigned char enetaddr[6])
5500#else
Simon Glassc53abc32015-08-19 09:33:39 -06005501static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5502 unsigned char enetaddr[6])
Bin Meng83cf24c2016-02-02 05:58:01 -08005503#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005504{
5505 u32 val;
5506
5507 /* Assign the passed-in values */
Bin Meng83cf24c2016-02-02 05:58:01 -08005508#ifdef CONFIG_DM_ETH
Simon Glassc53abc32015-08-19 09:33:39 -06005509 hw->pdev = devno;
Bin Meng83cf24c2016-02-02 05:58:01 -08005510#else
5511 hw->pdev = devno;
5512#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005513 hw->cardnum = cardnum;
5514
5515 /* Print a debug message with the IO base address */
Bin Meng83cf24c2016-02-02 05:58:01 -08005516#ifdef CONFIG_DM_ETH
5517 dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5518#else
Simon Glassc53abc32015-08-19 09:33:39 -06005519 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
Bin Meng83cf24c2016-02-02 05:58:01 -08005520#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005521 E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5522
5523 /* Try to enable I/O accesses and bus-mastering */
5524 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
Bin Meng83cf24c2016-02-02 05:58:01 -08005525#ifdef CONFIG_DM_ETH
5526 dm_pci_write_config32(devno, PCI_COMMAND, val);
5527#else
Simon Glassc53abc32015-08-19 09:33:39 -06005528 pci_write_config_dword(devno, PCI_COMMAND, val);
Bin Meng83cf24c2016-02-02 05:58:01 -08005529#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005530
5531 /* Make sure it worked */
Bin Meng83cf24c2016-02-02 05:58:01 -08005532#ifdef CONFIG_DM_ETH
5533 dm_pci_read_config32(devno, PCI_COMMAND, &val);
5534#else
Simon Glassc53abc32015-08-19 09:33:39 -06005535 pci_read_config_dword(devno, PCI_COMMAND, &val);
Bin Meng83cf24c2016-02-02 05:58:01 -08005536#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005537 if (!(val & PCI_COMMAND_MEMORY)) {
5538 E1000_ERR(hw, "Can't enable I/O memory\n");
5539 return -ENOSPC;
5540 }
5541 if (!(val & PCI_COMMAND_MASTER)) {
5542 E1000_ERR(hw, "Can't enable bus-mastering\n");
5543 return -EPERM;
5544 }
5545
5546 /* Are these variables needed? */
5547 hw->fc = e1000_fc_default;
5548 hw->original_fc = e1000_fc_default;
5549 hw->autoneg_failed = 0;
5550 hw->autoneg = 1;
5551 hw->get_link_status = true;
5552#ifndef CONFIG_E1000_NO_NVM
5553 hw->eeprom_semaphore_present = true;
5554#endif
Bin Meng83cf24c2016-02-02 05:58:01 -08005555#ifdef CONFIG_DM_ETH
5556 hw->hw_addr = dm_pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5557 PCI_REGION_MEM);
5558#else
Simon Glassc53abc32015-08-19 09:33:39 -06005559 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5560 PCI_REGION_MEM);
Bin Meng83cf24c2016-02-02 05:58:01 -08005561#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005562 hw->mac_type = e1000_undefined;
5563
5564 /* MAC and Phy settings */
5565 if (e1000_sw_init(hw) < 0) {
5566 E1000_ERR(hw, "Software init failed\n");
5567 return -EIO;
5568 }
5569 if (e1000_check_phy_reset_block(hw))
5570 E1000_ERR(hw, "PHY Reset is blocked!\n");
5571
5572 /* Basic init was OK, reset the hardware and allow SPI access */
5573 e1000_reset_hw(hw);
5574
5575#ifndef CONFIG_E1000_NO_NVM
5576 /* Validate the EEPROM and get chipset information */
Simon Glassc53abc32015-08-19 09:33:39 -06005577 if (e1000_init_eeprom_params(hw)) {
5578 E1000_ERR(hw, "EEPROM is invalid!\n");
5579 return -EINVAL;
5580 }
5581 if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5582 e1000_validate_eeprom_checksum(hw))
5583 return -ENXIO;
Simon Glassc53abc32015-08-19 09:33:39 -06005584 e1000_read_mac_addr(hw, enetaddr);
5585#endif
5586 e1000_get_bus_type(hw);
5587
5588#ifndef CONFIG_E1000_NO_NVM
5589 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
5590 enetaddr[0], enetaddr[1], enetaddr[2],
5591 enetaddr[3], enetaddr[4], enetaddr[5]);
5592#else
5593 memset(enetaddr, 0, 6);
5594 printf("e1000: no NVM\n");
5595#endif
5596
5597 return 0;
5598}
5599
5600/* Put the name of a device in a string */
5601static void e1000_name(char *str, int cardnum)
5602{
5603 sprintf(str, "e1000#%u", cardnum);
5604}
5605
Simon Glass9f86b382015-08-19 09:33:40 -06005606#ifndef CONFIG_DM_ETH
Simon Glassc53abc32015-08-19 09:33:39 -06005607/**************************************************************************
5608TRANSMIT - Transmit a frame
5609***************************************************************************/
5610static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5611{
5612 struct e1000_hw *hw = nic->priv;
5613
5614 return _e1000_transmit(hw, txpacket, length);
5615}
5616
5617/**************************************************************************
5618DISABLE - Turn off ethernet interface
5619***************************************************************************/
5620static void
5621e1000_disable(struct eth_device *nic)
5622{
5623 struct e1000_hw *hw = nic->priv;
5624
5625 _e1000_disable(hw);
5626}
5627
5628/**************************************************************************
5629INIT - set up ethernet interface(s)
5630***************************************************************************/
5631static int
Masahiro Yamadaf7ed78b2020-06-26 15:13:33 +09005632e1000_init(struct eth_device *nic, struct bd_info *bis)
Simon Glassc53abc32015-08-19 09:33:39 -06005633{
5634 struct e1000_hw *hw = nic->priv;
5635
5636 return _e1000_init(hw, nic->enetaddr);
5637}
5638
5639static int
5640e1000_poll(struct eth_device *nic)
5641{
5642 struct e1000_hw *hw = nic->priv;
5643 int len;
5644
5645 len = _e1000_poll(hw);
5646 if (len) {
5647 net_process_received_packet((uchar *)packet, len);
5648 fill_rx(hw);
5649 }
5650
5651 return len ? 1 : 0;
5652}
Ian Ray9635e2d2020-11-04 17:26:01 +01005653#endif /* !CONFIG_DM_ETH */
Simon Glassc53abc32015-08-19 09:33:39 -06005654
Ian Ray9635e2d2020-11-04 17:26:01 +01005655#ifdef CONFIG_DM_ETH
5656static int e1000_write_hwaddr(struct udevice *dev)
5657#else
Hannu Lounento68d31f62018-01-10 20:31:26 +01005658static int e1000_write_hwaddr(struct eth_device *dev)
Ian Ray9635e2d2020-11-04 17:26:01 +01005659#endif
Hannu Lounento68d31f62018-01-10 20:31:26 +01005660{
5661#ifndef CONFIG_E1000_NO_NVM
Hannu Lounento68d31f62018-01-10 20:31:26 +01005662 unsigned char current_mac[6];
Ian Ray9635e2d2020-11-04 17:26:01 +01005663#ifdef CONFIG_DM_ETH
5664 struct eth_pdata *plat = dev_get_plat(dev);
5665 struct e1000_hw *hw = dev_get_priv(dev);
5666 u8 *mac = plat->enetaddr;
5667#else
Hannu Lounento68d31f62018-01-10 20:31:26 +01005668 struct e1000_hw *hw = dev->priv;
Ian Ray9635e2d2020-11-04 17:26:01 +01005669 u8 *mac = dev->enetaddr;
5670#endif
Hannu Lounento68d31f62018-01-10 20:31:26 +01005671 uint16_t data[3];
5672 int ret_val, i;
5673
5674 DEBUGOUT("%s: mac=%pM\n", __func__, mac);
5675
Tim Harvey893bd6e2021-04-16 13:25:09 -07005676 if ((hw->eeprom.type == e1000_eeprom_invm) &&
5677 !(E1000_READ_REG(hw, EECD) & E1000_EECD_FLASH_DETECTED_I210))
5678 return -ENOSYS;
5679
Hannu Lounento68d31f62018-01-10 20:31:26 +01005680 memset(current_mac, 0, 6);
5681
5682 /* Read from EEPROM, not from registers, to make sure
5683 * the address is persistently configured
5684 */
5685 ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
5686 DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
5687
5688 /* Only write to EEPROM if the given address is different or
5689 * reading the current address failed
5690 */
5691 if (!ret_val && memcmp(current_mac, mac, 6) == 0)
5692 return 0;
5693
5694 for (i = 0; i < 3; ++i)
5695 data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
5696
5697 ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
5698
5699 if (!ret_val)
5700 ret_val = e1000_update_eeprom_checksum_i210(hw);
5701
5702 return ret_val;
5703#else
5704 return 0;
5705#endif
5706}
5707
Ian Ray9635e2d2020-11-04 17:26:01 +01005708#ifndef CONFIG_DM_ETH
wdenk4e112c12003-06-03 23:54:09 +00005709/**************************************************************************
5710PROBE - Look for an adapter, this routine's visible to the outside
5711You should omit the last argument struct pci_device * for a non-PCI NIC
5712***************************************************************************/
5713int
Masahiro Yamadaf7ed78b2020-06-26 15:13:33 +09005714e1000_initialize(struct bd_info * bis)
wdenk4e112c12003-06-03 23:54:09 +00005715{
Kyle Moffett7b698d52011-10-18 11:05:26 +00005716 unsigned int i;
wdenk4e112c12003-06-03 23:54:09 +00005717 pci_dev_t devno;
Simon Glassc53abc32015-08-19 09:33:39 -06005718 int ret;
wdenk4e112c12003-06-03 23:54:09 +00005719
Timur Tabiedc45b52009-08-17 15:55:38 -05005720 DEBUGFUNC();
5721
Kyle Moffett7b698d52011-10-18 11:05:26 +00005722 /* Find and probe all the matching PCI devices */
5723 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005724 /*
5725 * These will never get freed due to errors, this allows us to
Bin Meng75574052016-02-05 19:30:11 -08005726 * perform SPI EEPROM programming from U-Boot, for example.
Kyle Moffett7b698d52011-10-18 11:05:26 +00005727 */
5728 struct eth_device *nic = malloc(sizeof(*nic));
5729 struct e1000_hw *hw = malloc(sizeof(*hw));
5730 if (!nic || !hw) {
5731 printf("e1000#%u: Out of Memory!\n", i);
Kumar Gala76933572010-11-12 04:13:06 -06005732 free(nic);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005733 free(hw);
5734 continue;
Kumar Gala76933572010-11-12 04:13:06 -06005735 }
5736
Kyle Moffett7b698d52011-10-18 11:05:26 +00005737 /* Make sure all of the fields are initially zeroed */
Matthew McClintock5761ce42010-11-15 18:02:53 -06005738 memset(nic, 0, sizeof(*nic));
Kumar Gala76933572010-11-12 04:13:06 -06005739 memset(hw, 0, sizeof(*hw));
wdenk4e112c12003-06-03 23:54:09 +00005740 nic->priv = hw;
wdenk4e112c12003-06-03 23:54:09 +00005741
Kyle Moffett7b698d52011-10-18 11:05:26 +00005742 /* Generate a card name */
Simon Glassc53abc32015-08-19 09:33:39 -06005743 e1000_name(nic->name, i);
5744 hw->name = nic->name;
wdenk4e112c12003-06-03 23:54:09 +00005745
Simon Glassc53abc32015-08-19 09:33:39 -06005746 ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5747 if (ret)
Kyle Moffett7b698d52011-10-18 11:05:26 +00005748 continue;
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005749 list_add_tail(&hw->list_node, &e1000_hw_list);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005750
Simon Glassc53abc32015-08-19 09:33:39 -06005751 hw->nic = nic;
wdenk4e112c12003-06-03 23:54:09 +00005752
Kyle Moffett7b698d52011-10-18 11:05:26 +00005753 /* Set up the function pointers and register the device */
wdenk4e112c12003-06-03 23:54:09 +00005754 nic->init = e1000_init;
5755 nic->recv = e1000_poll;
5756 nic->send = e1000_transmit;
5757 nic->halt = e1000_disable;
Hannu Lounento68d31f62018-01-10 20:31:26 +01005758 nic->write_hwaddr = e1000_write_hwaddr;
wdenk4e112c12003-06-03 23:54:09 +00005759 eth_register(nic);
wdenk4e112c12003-06-03 23:54:09 +00005760 }
Kyle Moffett7b698d52011-10-18 11:05:26 +00005761
5762 return i;
wdenk4e112c12003-06-03 23:54:09 +00005763}
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005764
5765struct e1000_hw *e1000_find_card(unsigned int cardnum)
5766{
5767 struct e1000_hw *hw;
5768
5769 list_for_each_entry(hw, &e1000_hw_list, list_node)
5770 if (hw->cardnum == cardnum)
5771 return hw;
5772
5773 return NULL;
5774}
Simon Glass9f86b382015-08-19 09:33:40 -06005775#endif /* !CONFIG_DM_ETH */
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005776
5777#ifdef CONFIG_CMD_E1000
Simon Glassed38aef2020-05-10 11:40:03 -06005778static int do_e1000(struct cmd_tbl *cmdtp, int flag, int argc,
5779 char *const argv[])
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005780{
Simon Glassc53abc32015-08-19 09:33:39 -06005781 unsigned char *mac = NULL;
Simon Glass9f86b382015-08-19 09:33:40 -06005782#ifdef CONFIG_DM_ETH
5783 struct eth_pdata *plat;
5784 struct udevice *dev;
5785 char name[30];
5786 int ret;
Alban Bedelc1255dd2016-08-03 11:31:03 +02005787#endif
5788#if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005789 struct e1000_hw *hw;
Simon Glass9f86b382015-08-19 09:33:40 -06005790#endif
5791 int cardnum;
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005792
5793 if (argc < 3) {
5794 cmd_usage(cmdtp);
5795 return 1;
5796 }
5797
5798 /* Make sure we can find the requested e1000 card */
Simon Glassff9b9032021-07-24 09:03:30 -06005799 cardnum = dectoul(argv[1], NULL);
Simon Glass9f86b382015-08-19 09:33:40 -06005800#ifdef CONFIG_DM_ETH
5801 e1000_name(name, cardnum);
5802 ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5803 if (!ret) {
Simon Glassfa20e932020-12-03 16:55:20 -07005804 plat = dev_get_plat(dev);
Simon Glass9f86b382015-08-19 09:33:40 -06005805 mac = plat->enetaddr;
5806 }
5807#else
Simon Glassc53abc32015-08-19 09:33:39 -06005808 hw = e1000_find_card(cardnum);
5809 if (hw)
5810 mac = hw->nic->enetaddr;
Simon Glass9f86b382015-08-19 09:33:40 -06005811#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005812 if (!mac) {
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005813 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5814 return 1;
5815 }
5816
5817 if (!strcmp(argv[2], "print-mac-address")) {
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005818 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5819 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5820 return 0;
5821 }
5822
5823#ifdef CONFIG_E1000_SPI
Alban Bedelc1255dd2016-08-03 11:31:03 +02005824#ifdef CONFIG_DM_ETH
5825 hw = dev_get_priv(dev);
5826#endif
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005827 /* Handle the "SPI" subcommand */
5828 if (!strcmp(argv[2], "spi"))
5829 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5830#endif
5831
5832 cmd_usage(cmdtp);
5833 return 1;
5834}
5835
5836U_BOOT_CMD(
5837 e1000, 7, 0, do_e1000,
5838 "Intel e1000 controller management",
5839 /* */"<card#> print-mac-address\n"
5840#ifdef CONFIG_E1000_SPI
5841 "e1000 <card#> spi show [<offset> [<length>]]\n"
5842 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5843 "e1000 <card#> spi program <addr> <offset> <length>\n"
5844 "e1000 <card#> spi checksum [update]\n"
5845#endif
5846 " - Manage the Intel E1000 PCI device"
5847);
5848#endif /* not CONFIG_CMD_E1000 */
Simon Glass9f86b382015-08-19 09:33:40 -06005849
5850#ifdef CONFIG_DM_ETH
5851static int e1000_eth_start(struct udevice *dev)
5852{
Simon Glassfa20e932020-12-03 16:55:20 -07005853 struct eth_pdata *plat = dev_get_plat(dev);
Simon Glass9f86b382015-08-19 09:33:40 -06005854 struct e1000_hw *hw = dev_get_priv(dev);
5855
5856 return _e1000_init(hw, plat->enetaddr);
5857}
5858
5859static void e1000_eth_stop(struct udevice *dev)
5860{
5861 struct e1000_hw *hw = dev_get_priv(dev);
5862
5863 _e1000_disable(hw);
5864}
5865
5866static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5867{
5868 struct e1000_hw *hw = dev_get_priv(dev);
5869 int ret;
5870
5871 ret = _e1000_transmit(hw, packet, length);
5872
5873 return ret ? 0 : -ETIMEDOUT;
5874}
5875
5876static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5877{
5878 struct e1000_hw *hw = dev_get_priv(dev);
5879 int len;
5880
5881 len = _e1000_poll(hw);
5882 if (len)
5883 *packetp = packet;
5884
5885 return len ? len : -EAGAIN;
5886}
5887
5888static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5889{
5890 struct e1000_hw *hw = dev_get_priv(dev);
5891
5892 fill_rx(hw);
5893
5894 return 0;
5895}
5896
5897static int e1000_eth_probe(struct udevice *dev)
5898{
Simon Glassfa20e932020-12-03 16:55:20 -07005899 struct eth_pdata *plat = dev_get_plat(dev);
Simon Glass9f86b382015-08-19 09:33:40 -06005900 struct e1000_hw *hw = dev_get_priv(dev);
5901 int ret;
5902
5903 hw->name = dev->name;
Simon Glasseaa14892015-11-29 13:17:47 -07005904 ret = e1000_init_one(hw, trailing_strtol(dev->name),
Bin Meng83cf24c2016-02-02 05:58:01 -08005905 dev, plat->enetaddr);
Simon Glass9f86b382015-08-19 09:33:40 -06005906 if (ret < 0) {
5907 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5908 return ret;
5909 }
5910
5911 return 0;
5912}
5913
5914static int e1000_eth_bind(struct udevice *dev)
5915{
5916 char name[20];
5917
5918 /*
5919 * A simple way to number the devices. When device tree is used this
5920 * is unnecessary, but when the device is just discovered on the PCI
5921 * bus we need a name. We could instead have the uclass figure out
5922 * which devices are different and number them.
5923 */
5924 e1000_name(name, num_cards++);
5925
5926 return device_set_name(dev, name);
5927}
5928
5929static const struct eth_ops e1000_eth_ops = {
5930 .start = e1000_eth_start,
5931 .send = e1000_eth_send,
5932 .recv = e1000_eth_recv,
5933 .stop = e1000_eth_stop,
5934 .free_pkt = e1000_free_pkt,
Ian Ray9635e2d2020-11-04 17:26:01 +01005935 .write_hwaddr = e1000_write_hwaddr,
Simon Glass9f86b382015-08-19 09:33:40 -06005936};
5937
5938static const struct udevice_id e1000_eth_ids[] = {
5939 { .compatible = "intel,e1000" },
5940 { }
5941};
5942
5943U_BOOT_DRIVER(eth_e1000) = {
5944 .name = "eth_e1000",
5945 .id = UCLASS_ETH,
5946 .of_match = e1000_eth_ids,
5947 .bind = e1000_eth_bind,
5948 .probe = e1000_eth_probe,
5949 .ops = &e1000_eth_ops,
Simon Glass8a2b47f2020-12-03 16:55:17 -07005950 .priv_auto = sizeof(struct e1000_hw),
Simon Glass71fa5b42020-12-03 16:55:18 -07005951 .plat_auto = sizeof(struct eth_pdata),
Simon Glass9f86b382015-08-19 09:33:40 -06005952};
5953
5954U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5955#endif