blob: 6c1358568ae92d0f292c9d97acb45ec366c53a8e [file] [log] [blame]
Tom Rini10e47792018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
wdenk4e112c12003-06-03 23:54:09 +00002/**************************************************************************
Andre Schwarz68c2a302008-03-06 16:45:44 +01003Intel Pro 1000 for ppcboot/das-u-boot
wdenk4e112c12003-06-03 23:54:09 +00004Drivers are port from Intel's Linux driver e1000-4.3.15
5and from Etherboot pro 1000 driver by mrakes at vivato dot net
6tested on both gig copper and gig fiber boards
7***************************************************************************/
8/*******************************************************************************
9
wdenk57b2d802003-06-27 21:31:46 +000010
wdenk4e112c12003-06-03 23:54:09 +000011 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk57b2d802003-06-27 21:31:46 +000012
wdenk57b2d802003-06-27 21:31:46 +000013
wdenk4e112c12003-06-03 23:54:09 +000014 Contact Information:
15 Linux NICS <linux.nics@intel.com>
16 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18*******************************************************************************/
19/*
20 * Copyright (C) Archway Digital Solutions.
21 *
22 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23 * 2/9/2002
24 *
25 * Copyright (C) Linux Networx.
26 * Massive upgrade to work with the new intel gigabit NICs.
27 * <ebiederman at lnxi dot com>
Roy Zang181119b2011-01-21 11:29:38 +080028 *
29 * Copyright 2011 Freescale Semiconductor, Inc.
wdenk4e112c12003-06-03 23:54:09 +000030 */
31
Simon Glasscece9042015-08-19 09:33:38 -060032#include <common.h>
Simon Glassed38aef2020-05-10 11:40:03 -060033#include <command.h>
Simon Glass63334482019-11-14 12:57:39 -070034#include <cpu_func.h>
Simon Glass9f86b382015-08-19 09:33:40 -060035#include <dm.h>
Simon Glassc53abc32015-08-19 09:33:39 -060036#include <errno.h>
Simon Glass0f2af882020-05-10 11:40:05 -060037#include <log.h>
Simon Glass9bc15642020-02-03 07:36:16 -070038#include <malloc.h>
Simon Glass2dd337a2015-09-02 17:24:58 -060039#include <memalign.h>
Simon Glass274e0b02020-05-10 11:39:56 -060040#include <net.h>
Simon Glassc53abc32015-08-19 09:33:39 -060041#include <pci.h>
wdenk4e112c12003-06-03 23:54:09 +000042#include "e1000.h"
Simon Glass274e0b02020-05-10 11:39:56 -060043#include <asm/cache.h>
wdenk4e112c12003-06-03 23:54:09 +000044
wdenk4e112c12003-06-03 23:54:09 +000045#define TOUT_LOOP 100000
46
Bin Meng83cf24c2016-02-02 05:58:01 -080047#ifdef CONFIG_DM_ETH
48#define virt_to_bus(devno, v) dm_pci_virt_to_mem(devno, (void *) (v))
49#define bus_to_phys(devno, a) dm_pci_mem_to_phys(devno, a)
50#else
Timur Tabiedc45b52009-08-17 15:55:38 -050051#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
wdenk4e112c12003-06-03 23:54:09 +000052#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
Bin Meng83cf24c2016-02-02 05:58:01 -080053#endif
wdenk4e112c12003-06-03 23:54:09 +000054
Roy Zang966172e2009-08-22 03:49:52 +080055#define E1000_DEFAULT_PCI_PBA 0x00000030
56#define E1000_DEFAULT_PCIE_PBA 0x000a0026
wdenk4e112c12003-06-03 23:54:09 +000057
58/* NIC specific static variables go here */
59
Marek Vasut742c5c22014-08-08 07:41:38 -070060/* Intel i210 needs the DMA descriptor rings aligned to 128b */
61#define E1000_BUFFER_ALIGN 128
wdenk4e112c12003-06-03 23:54:09 +000062
Simon Glass9f86b382015-08-19 09:33:40 -060063/*
64 * TODO(sjg@chromium.org): Even with driver model we share these buffers.
65 * Concurrent receiving on multiple active Ethernet devices will not work.
66 * Normally U-Boot does not support this anyway. To fix it in this driver,
67 * move these buffers and the tx/rx pointers to struct e1000_hw.
68 */
Marek Vasut742c5c22014-08-08 07:41:38 -070069DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
70DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
71DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
wdenk4e112c12003-06-03 23:54:09 +000072
73static int tx_tail;
74static int rx_tail, rx_last;
Simon Glass9f86b382015-08-19 09:33:40 -060075#ifdef CONFIG_DM_ETH
76static int num_cards; /* Number of E1000 devices seen so far */
77#endif
wdenk4e112c12003-06-03 23:54:09 +000078
Kyle Moffett7b698d52011-10-18 11:05:26 +000079static struct pci_device_id e1000_supported[] = {
Simon Glassc53abc32015-08-19 09:33:39 -060080 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
81 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
82 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
83 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
84 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
85 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
86 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
87 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
88 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
89 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
90 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
91 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
92 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
93 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
94 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
95 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
96 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
Roy Zang28f7a052009-07-31 13:34:02 +080097 /* E1000 PCIe card */
Simon Glassc53abc32015-08-19 09:33:39 -060098 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
99 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
100 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
101 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
102 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
103 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
104 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
105 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
106 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
107 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
108 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
109 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
110 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
111 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
112 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
113 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
114 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
115 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
116 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
117 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
118 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
119 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
120 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
121 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
122 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
123 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
124 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
125 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
126 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
127 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
Marek Vasut74a13c22014-08-08 07:41:39 -0700128
Stefan Althoeferbc6d2fc2008-12-20 19:40:41 +0100129 {}
wdenk4e112c12003-06-03 23:54:09 +0000130};
131
132/* Function forward declarations */
Simon Glassc53abc32015-08-19 09:33:39 -0600133static int e1000_setup_link(struct e1000_hw *hw);
134static int e1000_setup_fiber_link(struct e1000_hw *hw);
135static int e1000_setup_copper_link(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000136static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
137static void e1000_config_collision_dist(struct e1000_hw *hw);
138static int e1000_config_mac_to_phy(struct e1000_hw *hw);
139static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
Simon Glassc53abc32015-08-19 09:33:39 -0600140static int e1000_check_for_link(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000141static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800142static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk4e112c12003-06-03 23:54:09 +0000143 uint16_t * duplex);
144static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
145 uint16_t * phy_data);
146static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
147 uint16_t phy_data);
Roy Zang28f7a052009-07-31 13:34:02 +0800148static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000149static int e1000_phy_reset(struct e1000_hw *hw);
150static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800151static void e1000_set_media_type(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000152
Roy Zang28f7a052009-07-31 13:34:02 +0800153static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
Tim Harvey5cb59ec2015-05-19 10:01:18 -0700154static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
Roy Zang28f7a052009-07-31 13:34:02 +0800155static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000156
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200157#ifndef CONFIG_E1000_NO_NVM
158static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
Hannu Lounentoc56999e2018-01-10 20:31:24 +0100159static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
Roy Zang9b7c4302009-08-11 03:48:05 +0800160static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
161 uint16_t words,
162 uint16_t *data);
wdenk4e112c12003-06-03 23:54:09 +0000163/******************************************************************************
164 * Raises the EEPROM's clock input.
165 *
166 * hw - Struct containing variables accessed by shared code
167 * eecd - EECD's current value
168 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000169void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000170{
171 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
172 * wait 50 microseconds.
173 */
174 *eecd = *eecd | E1000_EECD_SK;
175 E1000_WRITE_REG(hw, EECD, *eecd);
176 E1000_WRITE_FLUSH(hw);
177 udelay(50);
178}
179
180/******************************************************************************
181 * Lowers the EEPROM's clock input.
182 *
wdenk57b2d802003-06-27 21:31:46 +0000183 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000184 * eecd - EECD's current value
185 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000186void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000187{
wdenk57b2d802003-06-27 21:31:46 +0000188 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
189 * wait 50 microseconds.
wdenk4e112c12003-06-03 23:54:09 +0000190 */
191 *eecd = *eecd & ~E1000_EECD_SK;
192 E1000_WRITE_REG(hw, EECD, *eecd);
193 E1000_WRITE_FLUSH(hw);
194 udelay(50);
195}
196
197/******************************************************************************
198 * Shift data bits out to the EEPROM.
199 *
200 * hw - Struct containing variables accessed by shared code
201 * data - data to send to the EEPROM
202 * count - number of bits to shift out
203 *****************************************************************************/
204static void
205e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
206{
207 uint32_t eecd;
208 uint32_t mask;
209
210 /* We need to shift "count" bits out to the EEPROM. So, value in the
211 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk57b2d802003-06-27 21:31:46 +0000212 * In order to do this, "data" must be broken down into bits.
wdenk4e112c12003-06-03 23:54:09 +0000213 */
214 mask = 0x01 << (count - 1);
215 eecd = E1000_READ_REG(hw, EECD);
216 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
217 do {
218 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
219 * and then raising and then lowering the clock (the SK bit controls
220 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
221 * by setting "DI" to "0" and then raising and then lowering the clock.
222 */
223 eecd &= ~E1000_EECD_DI;
224
225 if (data & mask)
226 eecd |= E1000_EECD_DI;
227
228 E1000_WRITE_REG(hw, EECD, eecd);
229 E1000_WRITE_FLUSH(hw);
230
231 udelay(50);
232
233 e1000_raise_ee_clk(hw, &eecd);
234 e1000_lower_ee_clk(hw, &eecd);
235
236 mask = mask >> 1;
237
238 } while (mask);
239
240 /* We leave the "DI" bit set to "0" when we leave this routine. */
241 eecd &= ~E1000_EECD_DI;
242 E1000_WRITE_REG(hw, EECD, eecd);
243}
244
245/******************************************************************************
246 * Shift data bits in from the EEPROM
247 *
248 * hw - Struct containing variables accessed by shared code
249 *****************************************************************************/
250static uint16_t
Roy Zang28f7a052009-07-31 13:34:02 +0800251e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk4e112c12003-06-03 23:54:09 +0000252{
253 uint32_t eecd;
254 uint32_t i;
255 uint16_t data;
256
Roy Zang28f7a052009-07-31 13:34:02 +0800257 /* In order to read a register from the EEPROM, we need to shift 'count'
258 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
259 * input to the EEPROM (setting the SK bit), and then reading the
260 * value of the "DO" bit. During this "shifting in" process the
261 * "DI" bit should always be clear.
wdenk4e112c12003-06-03 23:54:09 +0000262 */
263
264 eecd = E1000_READ_REG(hw, EECD);
265
266 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
267 data = 0;
268
Roy Zang28f7a052009-07-31 13:34:02 +0800269 for (i = 0; i < count; i++) {
wdenk4e112c12003-06-03 23:54:09 +0000270 data = data << 1;
271 e1000_raise_ee_clk(hw, &eecd);
272
273 eecd = E1000_READ_REG(hw, EECD);
274
275 eecd &= ~(E1000_EECD_DI);
276 if (eecd & E1000_EECD_DO)
277 data |= 1;
278
279 e1000_lower_ee_clk(hw, &eecd);
280 }
281
282 return data;
283}
284
285/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800286 * Returns EEPROM to a "standby" state
wdenk4e112c12003-06-03 23:54:09 +0000287 *
288 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000289 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000290void e1000_standby_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000291{
Roy Zang28f7a052009-07-31 13:34:02 +0800292 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk4e112c12003-06-03 23:54:09 +0000293 uint32_t eecd;
294
295 eecd = E1000_READ_REG(hw, EECD);
296
Roy Zang28f7a052009-07-31 13:34:02 +0800297 if (eeprom->type == e1000_eeprom_microwire) {
298 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
299 E1000_WRITE_REG(hw, EECD, eecd);
300 E1000_WRITE_FLUSH(hw);
301 udelay(eeprom->delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000302
Roy Zang28f7a052009-07-31 13:34:02 +0800303 /* Clock high */
304 eecd |= E1000_EECD_SK;
305 E1000_WRITE_REG(hw, EECD, eecd);
306 E1000_WRITE_FLUSH(hw);
307 udelay(eeprom->delay_usec);
308
309 /* Select EEPROM */
310 eecd |= E1000_EECD_CS;
311 E1000_WRITE_REG(hw, EECD, eecd);
312 E1000_WRITE_FLUSH(hw);
313 udelay(eeprom->delay_usec);
314
315 /* Clock low */
316 eecd &= ~E1000_EECD_SK;
317 E1000_WRITE_REG(hw, EECD, eecd);
318 E1000_WRITE_FLUSH(hw);
319 udelay(eeprom->delay_usec);
320 } else if (eeprom->type == e1000_eeprom_spi) {
321 /* Toggle CS to flush commands */
322 eecd |= E1000_EECD_CS;
323 E1000_WRITE_REG(hw, EECD, eecd);
324 E1000_WRITE_FLUSH(hw);
325 udelay(eeprom->delay_usec);
326 eecd &= ~E1000_EECD_CS;
327 E1000_WRITE_REG(hw, EECD, eecd);
328 E1000_WRITE_FLUSH(hw);
329 udelay(eeprom->delay_usec);
330 }
331}
332
333/***************************************************************************
334* Description: Determines if the onboard NVM is FLASH or EEPROM.
335*
336* hw - Struct containing variables accessed by shared code
337****************************************************************************/
York Sun4a598092013-04-01 11:29:11 -0700338static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +0800339{
340 uint32_t eecd = 0;
341
342 DEBUGFUNC();
343
344 if (hw->mac_type == e1000_ich8lan)
York Sun4a598092013-04-01 11:29:11 -0700345 return false;
Roy Zang28f7a052009-07-31 13:34:02 +0800346
Roy Zang181119b2011-01-21 11:29:38 +0800347 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800348 eecd = E1000_READ_REG(hw, EECD);
349
350 /* Isolate bits 15 & 16 */
351 eecd = ((eecd >> 15) & 0x03);
352
353 /* If both bits are set, device is Flash type */
354 if (eecd == 0x03)
York Sun4a598092013-04-01 11:29:11 -0700355 return false;
Roy Zang28f7a052009-07-31 13:34:02 +0800356 }
York Sun4a598092013-04-01 11:29:11 -0700357 return true;
wdenk4e112c12003-06-03 23:54:09 +0000358}
359
360/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800361 * Prepares EEPROM for access
wdenk57b2d802003-06-27 21:31:46 +0000362 *
wdenk4e112c12003-06-03 23:54:09 +0000363 * hw - Struct containing variables accessed by shared code
Roy Zang28f7a052009-07-31 13:34:02 +0800364 *
365 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
366 * function should be called before issuing a command to the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000367 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000368int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000369{
Roy Zang28f7a052009-07-31 13:34:02 +0800370 struct e1000_eeprom_info *eeprom = &hw->eeprom;
371 uint32_t eecd, i = 0;
372
Timur Tabiedc45b52009-08-17 15:55:38 -0500373 DEBUGFUNC();
wdenk4e112c12003-06-03 23:54:09 +0000374
Roy Zang28f7a052009-07-31 13:34:02 +0800375 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
376 return -E1000_ERR_SWFW_SYNC;
wdenk4e112c12003-06-03 23:54:09 +0000377 eecd = E1000_READ_REG(hw, EECD);
378
Marek Vasut74a13c22014-08-08 07:41:39 -0700379 if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800380 /* Request EEPROM Access */
381 if (hw->mac_type > e1000_82544) {
382 eecd |= E1000_EECD_REQ;
383 E1000_WRITE_REG(hw, EECD, eecd);
384 eecd = E1000_READ_REG(hw, EECD);
385 while ((!(eecd & E1000_EECD_GNT)) &&
386 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
387 i++;
388 udelay(5);
389 eecd = E1000_READ_REG(hw, EECD);
390 }
391 if (!(eecd & E1000_EECD_GNT)) {
392 eecd &= ~E1000_EECD_REQ;
393 E1000_WRITE_REG(hw, EECD, eecd);
394 DEBUGOUT("Could not acquire EEPROM grant\n");
395 return -E1000_ERR_EEPROM;
396 }
397 }
398 }
wdenk4e112c12003-06-03 23:54:09 +0000399
Roy Zang28f7a052009-07-31 13:34:02 +0800400 /* Setup EEPROM for Read/Write */
wdenk4e112c12003-06-03 23:54:09 +0000401
Roy Zang28f7a052009-07-31 13:34:02 +0800402 if (eeprom->type == e1000_eeprom_microwire) {
403 /* Clear SK and DI */
404 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
405 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000406
Roy Zang28f7a052009-07-31 13:34:02 +0800407 /* Set CS */
408 eecd |= E1000_EECD_CS;
409 E1000_WRITE_REG(hw, EECD, eecd);
410 } else if (eeprom->type == e1000_eeprom_spi) {
411 /* Clear SK and CS */
412 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
413 E1000_WRITE_REG(hw, EECD, eecd);
414 udelay(1);
415 }
416
417 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000418}
419
420/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800421 * Sets up eeprom variables in the hw struct. Must be called after mac_type
422 * is configured. Additionally, if this is ICH8, the flash controller GbE
423 * registers must be mapped, or this will crash.
wdenk4e112c12003-06-03 23:54:09 +0000424 *
425 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000426 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800427static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000428{
Roy Zang28f7a052009-07-31 13:34:02 +0800429 struct e1000_eeprom_info *eeprom = &hw->eeprom;
Marek Vasut74a13c22014-08-08 07:41:39 -0700430 uint32_t eecd;
Roy Zang28f7a052009-07-31 13:34:02 +0800431 int32_t ret_val = E1000_SUCCESS;
432 uint16_t eeprom_size;
wdenk4e112c12003-06-03 23:54:09 +0000433
Marek Vasut74a13c22014-08-08 07:41:39 -0700434 if (hw->mac_type == e1000_igb)
435 eecd = E1000_READ_REG(hw, I210_EECD);
436 else
437 eecd = E1000_READ_REG(hw, EECD);
438
Timur Tabiedc45b52009-08-17 15:55:38 -0500439 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +0800440
441 switch (hw->mac_type) {
442 case e1000_82542_rev2_0:
443 case e1000_82542_rev2_1:
444 case e1000_82543:
445 case e1000_82544:
446 eeprom->type = e1000_eeprom_microwire;
447 eeprom->word_size = 64;
448 eeprom->opcode_bits = 3;
449 eeprom->address_bits = 6;
450 eeprom->delay_usec = 50;
York Sun4a598092013-04-01 11:29:11 -0700451 eeprom->use_eerd = false;
452 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800453 break;
454 case e1000_82540:
455 case e1000_82545:
456 case e1000_82545_rev_3:
457 case e1000_82546:
458 case e1000_82546_rev_3:
459 eeprom->type = e1000_eeprom_microwire;
460 eeprom->opcode_bits = 3;
461 eeprom->delay_usec = 50;
462 if (eecd & E1000_EECD_SIZE) {
463 eeprom->word_size = 256;
464 eeprom->address_bits = 8;
465 } else {
466 eeprom->word_size = 64;
467 eeprom->address_bits = 6;
468 }
York Sun4a598092013-04-01 11:29:11 -0700469 eeprom->use_eerd = false;
470 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800471 break;
472 case e1000_82541:
473 case e1000_82541_rev_2:
474 case e1000_82547:
475 case e1000_82547_rev_2:
476 if (eecd & E1000_EECD_TYPE) {
477 eeprom->type = e1000_eeprom_spi;
478 eeprom->opcode_bits = 8;
479 eeprom->delay_usec = 1;
480 if (eecd & E1000_EECD_ADDR_BITS) {
481 eeprom->page_size = 32;
482 eeprom->address_bits = 16;
483 } else {
484 eeprom->page_size = 8;
485 eeprom->address_bits = 8;
486 }
487 } else {
488 eeprom->type = e1000_eeprom_microwire;
489 eeprom->opcode_bits = 3;
490 eeprom->delay_usec = 50;
491 if (eecd & E1000_EECD_ADDR_BITS) {
492 eeprom->word_size = 256;
493 eeprom->address_bits = 8;
494 } else {
495 eeprom->word_size = 64;
496 eeprom->address_bits = 6;
497 }
498 }
York Sun4a598092013-04-01 11:29:11 -0700499 eeprom->use_eerd = false;
500 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800501 break;
502 case e1000_82571:
503 case e1000_82572:
504 eeprom->type = e1000_eeprom_spi;
505 eeprom->opcode_bits = 8;
506 eeprom->delay_usec = 1;
507 if (eecd & E1000_EECD_ADDR_BITS) {
508 eeprom->page_size = 32;
509 eeprom->address_bits = 16;
510 } else {
511 eeprom->page_size = 8;
512 eeprom->address_bits = 8;
513 }
York Sun4a598092013-04-01 11:29:11 -0700514 eeprom->use_eerd = false;
515 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800516 break;
517 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +0800518 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +0800519 eeprom->type = e1000_eeprom_spi;
520 eeprom->opcode_bits = 8;
521 eeprom->delay_usec = 1;
522 if (eecd & E1000_EECD_ADDR_BITS) {
523 eeprom->page_size = 32;
524 eeprom->address_bits = 16;
525 } else {
526 eeprom->page_size = 8;
527 eeprom->address_bits = 8;
wdenk4e112c12003-06-03 23:54:09 +0000528 }
York Sun4a598092013-04-01 11:29:11 -0700529 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
Marek Vasut74a13c22014-08-08 07:41:39 -0700530 eeprom->use_eerd = true;
531 eeprom->use_eewr = true;
532
Roy Zang28f7a052009-07-31 13:34:02 +0800533 eeprom->type = e1000_eeprom_flash;
534 eeprom->word_size = 2048;
535
536 /* Ensure that the Autonomous FLASH update bit is cleared due to
537 * Flash update issue on parts which use a FLASH for NVM. */
538 eecd &= ~E1000_EECD_AUPDEN;
wdenk4e112c12003-06-03 23:54:09 +0000539 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000540 }
Roy Zang28f7a052009-07-31 13:34:02 +0800541 break;
542 case e1000_80003es2lan:
543 eeprom->type = e1000_eeprom_spi;
544 eeprom->opcode_bits = 8;
545 eeprom->delay_usec = 1;
546 if (eecd & E1000_EECD_ADDR_BITS) {
547 eeprom->page_size = 32;
548 eeprom->address_bits = 16;
549 } else {
550 eeprom->page_size = 8;
551 eeprom->address_bits = 8;
552 }
York Sun4a598092013-04-01 11:29:11 -0700553 eeprom->use_eerd = true;
554 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800555 break;
Marek Vasut74a13c22014-08-08 07:41:39 -0700556 case e1000_igb:
557 /* i210 has 4k of iNVM mapped as EEPROM */
558 eeprom->type = e1000_eeprom_invm;
559 eeprom->opcode_bits = 8;
560 eeprom->delay_usec = 1;
561 eeprom->page_size = 32;
562 eeprom->address_bits = 16;
563 eeprom->use_eerd = true;
564 eeprom->use_eewr = false;
565 break;
Roy Zang28f7a052009-07-31 13:34:02 +0800566 default:
567 break;
wdenk4e112c12003-06-03 23:54:09 +0000568 }
569
Marek Vasut74a13c22014-08-08 07:41:39 -0700570 if (eeprom->type == e1000_eeprom_spi ||
571 eeprom->type == e1000_eeprom_invm) {
Roy Zang28f7a052009-07-31 13:34:02 +0800572 /* eeprom_size will be an enum [0..8] that maps
573 * to eeprom sizes 128B to
574 * 32KB (incremented by powers of 2).
575 */
576 if (hw->mac_type <= e1000_82547_rev_2) {
577 /* Set to default value for initial eeprom read. */
578 eeprom->word_size = 64;
579 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
580 &eeprom_size);
581 if (ret_val)
582 return ret_val;
583 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
584 >> EEPROM_SIZE_SHIFT;
585 /* 256B eeprom size was not supported in earlier
586 * hardware, so we bump eeprom_size up one to
587 * ensure that "1" (which maps to 256B) is never
588 * the result used in the shifting logic below. */
589 if (eeprom_size)
590 eeprom_size++;
591 } else {
592 eeprom_size = (uint16_t)((eecd &
593 E1000_EECD_SIZE_EX_MASK) >>
594 E1000_EECD_SIZE_EX_SHIFT);
595 }
596
597 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
598 }
599 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +0000600}
601
Roy Zang28f7a052009-07-31 13:34:02 +0800602/******************************************************************************
603 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
604 *
605 * hw - Struct containing variables accessed by shared code
606 *****************************************************************************/
607static int32_t
608e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
wdenk4e112c12003-06-03 23:54:09 +0000609{
Roy Zang28f7a052009-07-31 13:34:02 +0800610 uint32_t attempts = 100000;
611 uint32_t i, reg = 0;
612 int32_t done = E1000_ERR_EEPROM;
wdenk4e112c12003-06-03 23:54:09 +0000613
Roy Zang28f7a052009-07-31 13:34:02 +0800614 for (i = 0; i < attempts; i++) {
Marek Vasut74a13c22014-08-08 07:41:39 -0700615 if (eerd == E1000_EEPROM_POLL_READ) {
616 if (hw->mac_type == e1000_igb)
617 reg = E1000_READ_REG(hw, I210_EERD);
618 else
619 reg = E1000_READ_REG(hw, EERD);
620 } else {
621 if (hw->mac_type == e1000_igb)
622 reg = E1000_READ_REG(hw, I210_EEWR);
623 else
624 reg = E1000_READ_REG(hw, EEWR);
625 }
Roy Zang28f7a052009-07-31 13:34:02 +0800626
627 if (reg & E1000_EEPROM_RW_REG_DONE) {
628 done = E1000_SUCCESS;
629 break;
630 }
631 udelay(5);
632 }
633
634 return done;
wdenk4e112c12003-06-03 23:54:09 +0000635}
636
Roy Zang28f7a052009-07-31 13:34:02 +0800637/******************************************************************************
638 * Reads a 16 bit word from the EEPROM using the EERD register.
639 *
640 * hw - Struct containing variables accessed by shared code
641 * offset - offset of word in the EEPROM to read
642 * data - word read from the EEPROM
643 * words - number of words to read
644 *****************************************************************************/
645static int32_t
646e1000_read_eeprom_eerd(struct e1000_hw *hw,
647 uint16_t offset,
648 uint16_t words,
649 uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000650{
Roy Zang28f7a052009-07-31 13:34:02 +0800651 uint32_t i, eerd = 0;
652 int32_t error = 0;
wdenk4e112c12003-06-03 23:54:09 +0000653
Roy Zang28f7a052009-07-31 13:34:02 +0800654 for (i = 0; i < words; i++) {
655 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
656 E1000_EEPROM_RW_REG_START;
657
Marek Vasut74a13c22014-08-08 07:41:39 -0700658 if (hw->mac_type == e1000_igb)
659 E1000_WRITE_REG(hw, I210_EERD, eerd);
660 else
661 E1000_WRITE_REG(hw, EERD, eerd);
662
Roy Zang28f7a052009-07-31 13:34:02 +0800663 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
664
665 if (error)
666 break;
Marek Vasut74a13c22014-08-08 07:41:39 -0700667
668 if (hw->mac_type == e1000_igb) {
669 data[i] = (E1000_READ_REG(hw, I210_EERD) >>
Roy Zang28f7a052009-07-31 13:34:02 +0800670 E1000_EEPROM_RW_REG_DATA);
Marek Vasut74a13c22014-08-08 07:41:39 -0700671 } else {
672 data[i] = (E1000_READ_REG(hw, EERD) >>
673 E1000_EEPROM_RW_REG_DATA);
674 }
Roy Zang28f7a052009-07-31 13:34:02 +0800675
wdenk4e112c12003-06-03 23:54:09 +0000676 }
Roy Zang28f7a052009-07-31 13:34:02 +0800677
678 return error;
wdenk4e112c12003-06-03 23:54:09 +0000679}
680
Kyle Moffett142cbf82011-10-18 11:05:28 +0000681void e1000_release_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000682{
683 uint32_t eecd;
wdenk4e112c12003-06-03 23:54:09 +0000684
Roy Zang28f7a052009-07-31 13:34:02 +0800685 DEBUGFUNC();
686
687 eecd = E1000_READ_REG(hw, EECD);
688
689 if (hw->eeprom.type == e1000_eeprom_spi) {
690 eecd |= E1000_EECD_CS; /* Pull CS high */
691 eecd &= ~E1000_EECD_SK; /* Lower SCK */
692
wdenk4e112c12003-06-03 23:54:09 +0000693 E1000_WRITE_REG(hw, EECD, eecd);
Roy Zang28f7a052009-07-31 13:34:02 +0800694
695 udelay(hw->eeprom.delay_usec);
696 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
697 /* cleanup eeprom */
698
699 /* CS on Microwire is active-high */
700 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
701
702 E1000_WRITE_REG(hw, EECD, eecd);
703
704 /* Rising edge of clock */
705 eecd |= E1000_EECD_SK;
706 E1000_WRITE_REG(hw, EECD, eecd);
707 E1000_WRITE_FLUSH(hw);
708 udelay(hw->eeprom.delay_usec);
709
710 /* Falling edge of clock */
711 eecd &= ~E1000_EECD_SK;
712 E1000_WRITE_REG(hw, EECD, eecd);
713 E1000_WRITE_FLUSH(hw);
714 udelay(hw->eeprom.delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000715 }
wdenk4e112c12003-06-03 23:54:09 +0000716
717 /* Stop requesting EEPROM access */
718 if (hw->mac_type > e1000_82544) {
wdenk4e112c12003-06-03 23:54:09 +0000719 eecd &= ~E1000_EECD_REQ;
720 E1000_WRITE_REG(hw, EECD, eecd);
721 }
Tim Harvey5cb59ec2015-05-19 10:01:18 -0700722
723 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
wdenk4e112c12003-06-03 23:54:09 +0000724}
Tim Harvey5cb59ec2015-05-19 10:01:18 -0700725
wdenk4e112c12003-06-03 23:54:09 +0000726/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800727 * Reads a 16 bit word from the EEPROM.
wdenk57b2d802003-06-27 21:31:46 +0000728 *
wdenk4e112c12003-06-03 23:54:09 +0000729 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000730 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800731static int32_t
732e1000_spi_eeprom_ready(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000733{
Roy Zang28f7a052009-07-31 13:34:02 +0800734 uint16_t retry_count = 0;
735 uint8_t spi_stat_reg;
wdenk4e112c12003-06-03 23:54:09 +0000736
737 DEBUGFUNC();
738
Roy Zang28f7a052009-07-31 13:34:02 +0800739 /* Read "Status Register" repeatedly until the LSB is cleared. The
740 * EEPROM will signal that the command has been completed by clearing
741 * bit 0 of the internal status register. If it's not cleared within
742 * 5 milliseconds, then error out.
743 */
744 retry_count = 0;
745 do {
746 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
747 hw->eeprom.opcode_bits);
748 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
749 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
750 break;
wdenk57b2d802003-06-27 21:31:46 +0000751
Roy Zang28f7a052009-07-31 13:34:02 +0800752 udelay(5);
753 retry_count += 5;
754
755 e1000_standby_eeprom(hw);
756 } while (retry_count < EEPROM_MAX_RETRY_SPI);
757
758 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
759 * only 0-5mSec on 5V devices)
760 */
761 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
762 DEBUGOUT("SPI EEPROM Status error\n");
wdenk4e112c12003-06-03 23:54:09 +0000763 return -E1000_ERR_EEPROM;
764 }
Roy Zang28f7a052009-07-31 13:34:02 +0800765
766 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000767}
768
769/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800770 * Reads a 16 bit word from the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000771 *
Roy Zang28f7a052009-07-31 13:34:02 +0800772 * hw - Struct containing variables accessed by shared code
773 * offset - offset of word in the EEPROM to read
774 * data - word read from the EEPROM
wdenk4e112c12003-06-03 23:54:09 +0000775 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800776static int32_t
777e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
778 uint16_t words, uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000779{
Roy Zang28f7a052009-07-31 13:34:02 +0800780 struct e1000_eeprom_info *eeprom = &hw->eeprom;
781 uint32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000782
783 DEBUGFUNC();
784
Roy Zang28f7a052009-07-31 13:34:02 +0800785 /* If eeprom is not yet detected, do so now */
786 if (eeprom->word_size == 0)
787 e1000_init_eeprom_params(hw);
788
789 /* A check for invalid values: offset too large, too many words,
790 * and not enough words.
791 */
792 if ((offset >= eeprom->word_size) ||
793 (words > eeprom->word_size - offset) ||
794 (words == 0)) {
795 DEBUGOUT("\"words\" parameter out of bounds."
796 "Words = %d, size = %d\n", offset, eeprom->word_size);
797 return -E1000_ERR_EEPROM;
798 }
799
800 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
801 * directly. In this case, we need to acquire the EEPROM so that
802 * FW or other port software does not interrupt.
803 */
York Sun4a598092013-04-01 11:29:11 -0700804 if (e1000_is_onboard_nvm_eeprom(hw) == true &&
805 hw->eeprom.use_eerd == false) {
Roy Zang28f7a052009-07-31 13:34:02 +0800806
807 /* Prepare the EEPROM for bit-bang reading */
808 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
809 return -E1000_ERR_EEPROM;
810 }
811
812 /* Eerd register EEPROM access requires no eeprom aquire/release */
York Sun4a598092013-04-01 11:29:11 -0700813 if (eeprom->use_eerd == true)
Roy Zang28f7a052009-07-31 13:34:02 +0800814 return e1000_read_eeprom_eerd(hw, offset, words, data);
815
Roy Zang28f7a052009-07-31 13:34:02 +0800816 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
817 * acquired the EEPROM at this point, so any returns should relase it */
818 if (eeprom->type == e1000_eeprom_spi) {
819 uint16_t word_in;
820 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
821
822 if (e1000_spi_eeprom_ready(hw)) {
823 e1000_release_eeprom(hw);
824 return -E1000_ERR_EEPROM;
825 }
826
827 e1000_standby_eeprom(hw);
828
829 /* Some SPI eeproms use the 8th address bit embedded in
830 * the opcode */
831 if ((eeprom->address_bits == 8) && (offset >= 128))
832 read_opcode |= EEPROM_A8_OPCODE_SPI;
833
834 /* Send the READ command (opcode + addr) */
835 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
836 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
837 eeprom->address_bits);
838
839 /* Read the data. The address of the eeprom internally
840 * increments with each byte (spi) being read, saving on the
841 * overhead of eeprom setup and tear-down. The address
842 * counter will roll over if reading beyond the size of
843 * the eeprom, thus allowing the entire memory to be read
844 * starting from any offset. */
845 for (i = 0; i < words; i++) {
846 word_in = e1000_shift_in_ee_bits(hw, 16);
847 data[i] = (word_in >> 8) | (word_in << 8);
848 }
849 } else if (eeprom->type == e1000_eeprom_microwire) {
850 for (i = 0; i < words; i++) {
851 /* Send the READ command (opcode + addr) */
852 e1000_shift_out_ee_bits(hw,
853 EEPROM_READ_OPCODE_MICROWIRE,
854 eeprom->opcode_bits);
855 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
856 eeprom->address_bits);
857
858 /* Read the data. For microwire, each word requires
859 * the overhead of eeprom setup and tear-down. */
860 data[i] = e1000_shift_in_ee_bits(hw, 16);
861 e1000_standby_eeprom(hw);
862 }
863 }
864
865 /* End this read operation */
866 e1000_release_eeprom(hw);
867
868 return E1000_SUCCESS;
869}
870
Hannu Lounentoc56999e2018-01-10 20:31:24 +0100871#ifndef CONFIG_DM_ETH
872/******************************************************************************
873 * e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
874 * @hw: pointer to the HW structure
875 * @offset: offset within the Shadow Ram to be written to
876 * @words: number of words to write
877 * @data: 16 bit word(s) to be written to the Shadow Ram
878 *
879 * Writes data to Shadow Ram at offset using EEWR register.
880 *
881 * If e1000_update_eeprom_checksum_i210 is not called after this function, the
882 * Shadow Ram will most likely contain an invalid checksum.
883 *****************************************************************************/
884static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
885 uint16_t words, uint16_t *data)
886{
887 struct e1000_eeprom_info *eeprom = &hw->eeprom;
888 uint32_t i, k, eewr = 0;
889 uint32_t attempts = 100000;
890 int32_t ret_val = 0;
891
892 /* A check for invalid values: offset too large, too many words,
893 * too many words for the offset, and not enough words.
894 */
895 if ((offset >= eeprom->word_size) ||
896 (words > (eeprom->word_size - offset)) || (words == 0)) {
897 DEBUGOUT("nvm parameter(s) out of bounds\n");
898 ret_val = -E1000_ERR_EEPROM;
899 goto out;
900 }
901
902 for (i = 0; i < words; i++) {
903 eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
904 | (data[i] << E1000_EEPROM_RW_REG_DATA) |
905 E1000_EEPROM_RW_REG_START;
906
907 E1000_WRITE_REG(hw, I210_EEWR, eewr);
908
909 for (k = 0; k < attempts; k++) {
910 if (E1000_EEPROM_RW_REG_DONE &
911 E1000_READ_REG(hw, I210_EEWR)) {
912 ret_val = 0;
913 break;
914 }
915 udelay(5);
916 }
917
918 if (ret_val) {
919 DEBUGOUT("Shadow RAM write EEWR timed out\n");
920 break;
921 }
922 }
923
924out:
925 return ret_val;
926}
927
928/******************************************************************************
929 * e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
930 * @hw: pointer to the HW structure
931 *
932 *****************************************************************************/
933static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
934{
935 int32_t ret_val = -E1000_ERR_EEPROM;
936 uint32_t i, reg;
937
938 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
939 reg = E1000_READ_REG(hw, EECD);
940 if (reg & E1000_EECD_FLUDONE_I210) {
941 ret_val = 0;
942 break;
943 }
944 udelay(5);
945 }
946
947 return ret_val;
948}
949
950/******************************************************************************
951 * e1000_update_flash_i210 - Commit EEPROM to the flash
952 * @hw: pointer to the HW structure
953 *
954 *****************************************************************************/
955static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
956{
957 int32_t ret_val = 0;
958 uint32_t flup;
959
960 ret_val = e1000_pool_flash_update_done_i210(hw);
961 if (ret_val == -E1000_ERR_EEPROM) {
962 DEBUGOUT("Flash update time out\n");
963 goto out;
964 }
965
966 flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
967 E1000_WRITE_REG(hw, EECD, flup);
968
969 ret_val = e1000_pool_flash_update_done_i210(hw);
970 if (ret_val)
971 DEBUGOUT("Flash update time out\n");
972 else
973 DEBUGOUT("Flash update complete\n");
974
975out:
976 return ret_val;
977}
978
979/******************************************************************************
980 * e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
981 * @hw: pointer to the HW structure
982 *
983 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
984 * up to the checksum. Then calculates the EEPROM checksum and writes the
985 * value to the EEPROM. Next commit EEPROM data onto the Flash.
986 *****************************************************************************/
987static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
988{
989 int32_t ret_val = 0;
990 uint16_t checksum = 0;
991 uint16_t i, nvm_data;
992
993 /* Read the first word from the EEPROM. If this times out or fails, do
994 * not continue or we could be in for a very long wait while every
995 * EEPROM read fails
996 */
997 ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
998 if (ret_val) {
999 DEBUGOUT("EEPROM read failed\n");
1000 goto out;
1001 }
1002
1003 if (!(e1000_get_hw_eeprom_semaphore(hw))) {
1004 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
1005 * because we do not want to take the synchronization
1006 * semaphores twice here.
1007 */
1008
1009 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
1010 ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
1011 if (ret_val) {
1012 e1000_put_hw_eeprom_semaphore(hw);
1013 DEBUGOUT("EEPROM Read Error while updating checksum.\n");
1014 goto out;
1015 }
1016 checksum += nvm_data;
1017 }
1018 checksum = (uint16_t)EEPROM_SUM - checksum;
1019 ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
1020 &checksum);
1021 if (ret_val) {
1022 e1000_put_hw_eeprom_semaphore(hw);
1023 DEBUGOUT("EEPROM Write Error while updating checksum.\n");
1024 goto out;
1025 }
1026
1027 e1000_put_hw_eeprom_semaphore(hw);
1028
1029 ret_val = e1000_update_flash_i210(hw);
1030 } else {
1031 ret_val = -E1000_ERR_SWFW_SYNC;
1032 }
1033
1034out:
1035 return ret_val;
1036}
1037#endif
1038
Roy Zang28f7a052009-07-31 13:34:02 +08001039/******************************************************************************
1040 * Verifies that the EEPROM has a valid checksum
1041 *
1042 * hw - Struct containing variables accessed by shared code
1043 *
1044 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
1045 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
1046 * valid.
1047 *****************************************************************************/
Kyle Moffett70946bc2011-10-18 11:05:27 +00001048static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +08001049{
Kyle Moffett70946bc2011-10-18 11:05:27 +00001050 uint16_t i, checksum, checksum_reg, *buf;
Roy Zang28f7a052009-07-31 13:34:02 +08001051
1052 DEBUGFUNC();
1053
Kyle Moffett70946bc2011-10-18 11:05:27 +00001054 /* Allocate a temporary buffer */
1055 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
1056 if (!buf) {
Simon Glassc53abc32015-08-19 09:33:39 -06001057 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
Kyle Moffett70946bc2011-10-18 11:05:27 +00001058 return -E1000_ERR_EEPROM;
Roy Zang28f7a052009-07-31 13:34:02 +08001059 }
1060
Kyle Moffett70946bc2011-10-18 11:05:27 +00001061 /* Read the EEPROM */
1062 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
Simon Glassc53abc32015-08-19 09:33:39 -06001063 E1000_ERR(hw, "Unable to read EEPROM!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001064 return -E1000_ERR_EEPROM;
1065 }
Kyle Moffett70946bc2011-10-18 11:05:27 +00001066
1067 /* Compute the checksum */
Wolfgang Denk15690332011-10-28 07:37:04 +02001068 checksum = 0;
Kyle Moffett70946bc2011-10-18 11:05:27 +00001069 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1070 checksum += buf[i];
1071 checksum = ((uint16_t)EEPROM_SUM) - checksum;
1072 checksum_reg = buf[i];
1073
1074 /* Verify it! */
1075 if (checksum == checksum_reg)
1076 return 0;
1077
1078 /* Hrm, verification failed, print an error */
Simon Glassc53abc32015-08-19 09:33:39 -06001079 E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
1080 E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n",
1081 checksum_reg, checksum);
Kyle Moffett70946bc2011-10-18 11:05:27 +00001082
1083 return -E1000_ERR_EEPROM;
Roy Zang9b7c4302009-08-11 03:48:05 +08001084}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001085#endif /* CONFIG_E1000_NO_NVM */
Roy Zang9b7c4302009-08-11 03:48:05 +08001086
1087/*****************************************************************************
1088 * Set PHY to class A mode
1089 * Assumes the following operations will follow to enable the new class mode.
1090 * 1. Do a PHY soft reset
1091 * 2. Restart auto-negotiation or force link.
1092 *
1093 * hw - Struct containing variables accessed by shared code
1094 ****************************************************************************/
1095static int32_t
1096e1000_set_phy_mode(struct e1000_hw *hw)
1097{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001098#ifndef CONFIG_E1000_NO_NVM
Roy Zang9b7c4302009-08-11 03:48:05 +08001099 int32_t ret_val;
1100 uint16_t eeprom_data;
1101
1102 DEBUGFUNC();
1103
1104 if ((hw->mac_type == e1000_82545_rev_3) &&
1105 (hw->media_type == e1000_media_type_copper)) {
1106 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1107 1, &eeprom_data);
1108 if (ret_val)
1109 return ret_val;
1110
1111 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
1112 (eeprom_data & EEPROM_PHY_CLASS_A)) {
1113 ret_val = e1000_write_phy_reg(hw,
1114 M88E1000_PHY_PAGE_SELECT, 0x000B);
1115 if (ret_val)
1116 return ret_val;
1117 ret_val = e1000_write_phy_reg(hw,
1118 M88E1000_PHY_GEN_CONTROL, 0x8104);
1119 if (ret_val)
1120 return ret_val;
1121
York Sun4a598092013-04-01 11:29:11 -07001122 hw->phy_reset_disable = false;
Roy Zang9b7c4302009-08-11 03:48:05 +08001123 }
1124 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001125#endif
Roy Zang9b7c4302009-08-11 03:48:05 +08001126 return E1000_SUCCESS;
Roy Zang28f7a052009-07-31 13:34:02 +08001127}
Roy Zang28f7a052009-07-31 13:34:02 +08001128
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001129#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001130/***************************************************************************
1131 *
1132 * Obtaining software semaphore bit (SMBI) before resetting PHY.
1133 *
1134 * hw: Struct containing variables accessed by shared code
1135 *
1136 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
1137 * E1000_SUCCESS at any other case.
1138 *
1139 ***************************************************************************/
1140static int32_t
1141e1000_get_software_semaphore(struct e1000_hw *hw)
1142{
1143 int32_t timeout = hw->eeprom.word_size + 1;
1144 uint32_t swsm;
1145
1146 DEBUGFUNC();
1147
Hannu Lounentoc56999e2018-01-10 20:31:24 +01001148 if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
Roy Zang28f7a052009-07-31 13:34:02 +08001149 return E1000_SUCCESS;
1150
1151 while (timeout) {
1152 swsm = E1000_READ_REG(hw, SWSM);
1153 /* If SMBI bit cleared, it is now set and we hold
1154 * the semaphore */
1155 if (!(swsm & E1000_SWSM_SMBI))
1156 break;
1157 mdelay(1);
1158 timeout--;
1159 }
1160
1161 if (!timeout) {
1162 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1163 return -E1000_ERR_RESET;
1164 }
1165
1166 return E1000_SUCCESS;
1167}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001168#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001169
1170/***************************************************************************
1171 * This function clears HW semaphore bits.
1172 *
1173 * hw: Struct containing variables accessed by shared code
1174 *
1175 * returns: - None.
1176 *
1177 ***************************************************************************/
1178static void
1179e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1180{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001181#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001182 uint32_t swsm;
1183
1184 DEBUGFUNC();
1185
1186 if (!hw->eeprom_semaphore_present)
1187 return;
1188
1189 swsm = E1000_READ_REG(hw, SWSM);
Bernhard Messerklinger801ae712018-02-15 08:55:49 +01001190 if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
Roy Zang28f7a052009-07-31 13:34:02 +08001191 /* Release both semaphores. */
1192 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1193 } else
1194 swsm &= ~(E1000_SWSM_SWESMBI);
1195 E1000_WRITE_REG(hw, SWSM, swsm);
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001196#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001197}
1198
1199/***************************************************************************
1200 *
1201 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1202 * adapter or Eeprom access.
1203 *
1204 * hw: Struct containing variables accessed by shared code
1205 *
1206 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1207 * E1000_SUCCESS at any other case.
1208 *
1209 ***************************************************************************/
1210static int32_t
1211e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1212{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001213#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001214 int32_t timeout;
1215 uint32_t swsm;
1216
1217 DEBUGFUNC();
1218
1219 if (!hw->eeprom_semaphore_present)
1220 return E1000_SUCCESS;
1221
Hannu Lounentoc56999e2018-01-10 20:31:24 +01001222 if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
Roy Zang28f7a052009-07-31 13:34:02 +08001223 /* Get the SW semaphore. */
1224 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1225 return -E1000_ERR_EEPROM;
1226 }
1227
1228 /* Get the FW semaphore. */
1229 timeout = hw->eeprom.word_size + 1;
1230 while (timeout) {
1231 swsm = E1000_READ_REG(hw, SWSM);
1232 swsm |= E1000_SWSM_SWESMBI;
1233 E1000_WRITE_REG(hw, SWSM, swsm);
1234 /* if we managed to set the bit we got the semaphore. */
1235 swsm = E1000_READ_REG(hw, SWSM);
1236 if (swsm & E1000_SWSM_SWESMBI)
1237 break;
1238
1239 udelay(50);
1240 timeout--;
1241 }
1242
1243 if (!timeout) {
1244 /* Release semaphores */
1245 e1000_put_hw_eeprom_semaphore(hw);
1246 DEBUGOUT("Driver can't access the Eeprom - "
1247 "SWESMBI bit is set.\n");
1248 return -E1000_ERR_EEPROM;
1249 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001250#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001251 return E1000_SUCCESS;
1252}
1253
Tim Harvey5cb59ec2015-05-19 10:01:18 -07001254/* Take ownership of the PHY */
Roy Zang28f7a052009-07-31 13:34:02 +08001255static int32_t
1256e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1257{
1258 uint32_t swfw_sync = 0;
1259 uint32_t swmask = mask;
1260 uint32_t fwmask = mask << 16;
1261 int32_t timeout = 200;
1262
1263 DEBUGFUNC();
1264 while (timeout) {
1265 if (e1000_get_hw_eeprom_semaphore(hw))
1266 return -E1000_ERR_SWFW_SYNC;
1267
Tim Harveydca35652015-05-19 10:01:19 -07001268 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
York Sun4303a832014-10-17 13:44:06 -07001269 if (!(swfw_sync & (fwmask | swmask)))
Roy Zang28f7a052009-07-31 13:34:02 +08001270 break;
1271
1272 /* firmware currently using resource (fwmask) */
1273 /* or other software thread currently using resource (swmask) */
1274 e1000_put_hw_eeprom_semaphore(hw);
1275 mdelay(5);
1276 timeout--;
1277 }
1278
1279 if (!timeout) {
1280 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1281 return -E1000_ERR_SWFW_SYNC;
1282 }
1283
1284 swfw_sync |= swmask;
1285 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1286
1287 e1000_put_hw_eeprom_semaphore(hw);
1288 return E1000_SUCCESS;
1289}
1290
Tim Harvey5cb59ec2015-05-19 10:01:18 -07001291static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1292{
1293 uint32_t swfw_sync = 0;
1294
1295 DEBUGFUNC();
1296 while (e1000_get_hw_eeprom_semaphore(hw))
1297 ; /* Empty */
1298
1299 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1300 swfw_sync &= ~mask;
1301 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1302
1303 e1000_put_hw_eeprom_semaphore(hw);
1304}
1305
York Sun4a598092013-04-01 11:29:11 -07001306static bool e1000_is_second_port(struct e1000_hw *hw)
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001307{
1308 switch (hw->mac_type) {
1309 case e1000_80003es2lan:
1310 case e1000_82546:
1311 case e1000_82571:
1312 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
York Sun4a598092013-04-01 11:29:11 -07001313 return true;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001314 /* Fallthrough */
1315 default:
York Sun4a598092013-04-01 11:29:11 -07001316 return false;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001317 }
1318}
1319
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001320#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001321/******************************************************************************
Hannu Lounentof36be3c2018-01-10 20:31:25 +01001322 * Reads the adapter's MAC address from the EEPROM
Roy Zang28f7a052009-07-31 13:34:02 +08001323 *
Hannu Lounentof36be3c2018-01-10 20:31:25 +01001324 * hw - Struct containing variables accessed by shared code
1325 * enetaddr - buffering where the MAC address will be stored
Roy Zang28f7a052009-07-31 13:34:02 +08001326 *****************************************************************************/
Hannu Lounentof36be3c2018-01-10 20:31:25 +01001327static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
1328 unsigned char enetaddr[6])
Roy Zang28f7a052009-07-31 13:34:02 +08001329{
Roy Zang28f7a052009-07-31 13:34:02 +08001330 uint16_t offset;
1331 uint16_t eeprom_data;
1332 int i;
1333
Roy Zang28f7a052009-07-31 13:34:02 +08001334 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
wdenk4e112c12003-06-03 23:54:09 +00001335 offset = i >> 1;
Hannu Lounentof36be3c2018-01-10 20:31:25 +01001336 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001337 DEBUGOUT("EEPROM Read Error\n");
1338 return -E1000_ERR_EEPROM;
1339 }
Simon Glassc53abc32015-08-19 09:33:39 -06001340 enetaddr[i] = eeprom_data & 0xff;
1341 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
wdenk4e112c12003-06-03 23:54:09 +00001342 }
Hannu Lounentof36be3c2018-01-10 20:31:25 +01001343
1344 return 0;
1345}
1346
1347/******************************************************************************
1348 * Reads the adapter's MAC address from the RAL/RAH registers
1349 *
1350 * hw - Struct containing variables accessed by shared code
1351 * enetaddr - buffering where the MAC address will be stored
1352 *****************************************************************************/
1353static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
1354 unsigned char enetaddr[6])
1355{
1356 uint16_t offset, tmp;
1357 uint32_t reg_data = 0;
1358 int i;
1359
1360 if (hw->mac_type != e1000_igb)
1361 return -E1000_ERR_MAC_TYPE;
1362
1363 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1364 offset = i >> 1;
1365
1366 if (offset == 0)
1367 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1368 else if (offset == 1)
1369 reg_data >>= 16;
1370 else if (offset == 2)
1371 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1372 tmp = reg_data & 0xffff;
1373
1374 enetaddr[i] = tmp & 0xff;
1375 enetaddr[i + 1] = (tmp >> 8) & 0xff;
1376 }
1377
1378 return 0;
1379}
1380
1381/******************************************************************************
1382 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1383 * second function of dual function devices
1384 *
1385 * hw - Struct containing variables accessed by shared code
1386 * enetaddr - buffering where the MAC address will be stored
1387 *****************************************************************************/
1388static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1389{
1390 int ret_val;
1391
1392 if (hw->mac_type == e1000_igb) {
1393 /* i210 preloads MAC address into RAL/RAH registers */
1394 ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
1395 } else {
1396 ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
1397 }
1398 if (ret_val)
1399 return ret_val;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001400
1401 /* Invert the last bit if this is the second device */
1402 if (e1000_is_second_port(hw))
Simon Glassc53abc32015-08-19 09:33:39 -06001403 enetaddr[5] ^= 1;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001404
wdenk4e112c12003-06-03 23:54:09 +00001405 return 0;
1406}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001407#endif
wdenk4e112c12003-06-03 23:54:09 +00001408
1409/******************************************************************************
1410 * Initializes receive address filters.
1411 *
wdenk57b2d802003-06-27 21:31:46 +00001412 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +00001413 *
1414 * Places the MAC address in receive address register 0 and clears the rest
1415 * of the receive addresss registers. Clears the multicast table. Assumes
1416 * the receiver is in reset when the routine is called.
1417 *****************************************************************************/
1418static void
Simon Glassc53abc32015-08-19 09:33:39 -06001419e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
wdenk4e112c12003-06-03 23:54:09 +00001420{
wdenk4e112c12003-06-03 23:54:09 +00001421 uint32_t i;
1422 uint32_t addr_low;
1423 uint32_t addr_high;
1424
1425 DEBUGFUNC();
1426
1427 /* Setup the receive address. */
1428 DEBUGOUT("Programming MAC Address into RAR[0]\n");
Simon Glassc53abc32015-08-19 09:33:39 -06001429 addr_low = (enetaddr[0] |
1430 (enetaddr[1] << 8) |
1431 (enetaddr[2] << 16) | (enetaddr[3] << 24));
wdenk4e112c12003-06-03 23:54:09 +00001432
Simon Glassc53abc32015-08-19 09:33:39 -06001433 addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
wdenk4e112c12003-06-03 23:54:09 +00001434
1435 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1436 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1437
1438 /* Zero out the other 15 receive addresses. */
1439 DEBUGOUT("Clearing RAR[1-15]\n");
1440 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1441 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1442 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1443 }
1444}
1445
1446/******************************************************************************
1447 * Clears the VLAN filer table
1448 *
1449 * hw - Struct containing variables accessed by shared code
1450 *****************************************************************************/
1451static void
1452e1000_clear_vfta(struct e1000_hw *hw)
1453{
1454 uint32_t offset;
1455
1456 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1457 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1458}
1459
1460/******************************************************************************
1461 * Set the mac type member in the hw struct.
wdenk57b2d802003-06-27 21:31:46 +00001462 *
wdenk4e112c12003-06-03 23:54:09 +00001463 * hw - Struct containing variables accessed by shared code
1464 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08001465int32_t
wdenk4e112c12003-06-03 23:54:09 +00001466e1000_set_mac_type(struct e1000_hw *hw)
1467{
1468 DEBUGFUNC();
1469
1470 switch (hw->device_id) {
1471 case E1000_DEV_ID_82542:
1472 switch (hw->revision_id) {
1473 case E1000_82542_2_0_REV_ID:
1474 hw->mac_type = e1000_82542_rev2_0;
1475 break;
1476 case E1000_82542_2_1_REV_ID:
1477 hw->mac_type = e1000_82542_rev2_1;
1478 break;
1479 default:
1480 /* Invalid 82542 revision ID */
1481 return -E1000_ERR_MAC_TYPE;
1482 }
1483 break;
1484 case E1000_DEV_ID_82543GC_FIBER:
1485 case E1000_DEV_ID_82543GC_COPPER:
1486 hw->mac_type = e1000_82543;
1487 break;
1488 case E1000_DEV_ID_82544EI_COPPER:
1489 case E1000_DEV_ID_82544EI_FIBER:
1490 case E1000_DEV_ID_82544GC_COPPER:
1491 case E1000_DEV_ID_82544GC_LOM:
1492 hw->mac_type = e1000_82544;
1493 break;
1494 case E1000_DEV_ID_82540EM:
1495 case E1000_DEV_ID_82540EM_LOM:
Roy Zang28f7a052009-07-31 13:34:02 +08001496 case E1000_DEV_ID_82540EP:
1497 case E1000_DEV_ID_82540EP_LOM:
1498 case E1000_DEV_ID_82540EP_LP:
wdenk4e112c12003-06-03 23:54:09 +00001499 hw->mac_type = e1000_82540;
1500 break;
1501 case E1000_DEV_ID_82545EM_COPPER:
1502 case E1000_DEV_ID_82545EM_FIBER:
1503 hw->mac_type = e1000_82545;
1504 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001505 case E1000_DEV_ID_82545GM_COPPER:
1506 case E1000_DEV_ID_82545GM_FIBER:
1507 case E1000_DEV_ID_82545GM_SERDES:
1508 hw->mac_type = e1000_82545_rev_3;
1509 break;
wdenk4e112c12003-06-03 23:54:09 +00001510 case E1000_DEV_ID_82546EB_COPPER:
1511 case E1000_DEV_ID_82546EB_FIBER:
Roy Zang28f7a052009-07-31 13:34:02 +08001512 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk4e112c12003-06-03 23:54:09 +00001513 hw->mac_type = e1000_82546;
1514 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001515 case E1000_DEV_ID_82546GB_COPPER:
1516 case E1000_DEV_ID_82546GB_FIBER:
1517 case E1000_DEV_ID_82546GB_SERDES:
1518 case E1000_DEV_ID_82546GB_PCIE:
1519 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1520 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1521 hw->mac_type = e1000_82546_rev_3;
1522 break;
1523 case E1000_DEV_ID_82541EI:
1524 case E1000_DEV_ID_82541EI_MOBILE:
1525 case E1000_DEV_ID_82541ER_LOM:
1526 hw->mac_type = e1000_82541;
1527 break;
Andre Schwarz68c2a302008-03-06 16:45:44 +01001528 case E1000_DEV_ID_82541ER:
Roy Zang28f7a052009-07-31 13:34:02 +08001529 case E1000_DEV_ID_82541GI:
Wolfgang Grandegger8562c382008-05-28 19:55:19 +02001530 case E1000_DEV_ID_82541GI_LF:
Roy Zang28f7a052009-07-31 13:34:02 +08001531 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001532 hw->mac_type = e1000_82541_rev_2;
1533 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001534 case E1000_DEV_ID_82547EI:
1535 case E1000_DEV_ID_82547EI_MOBILE:
1536 hw->mac_type = e1000_82547;
1537 break;
1538 case E1000_DEV_ID_82547GI:
1539 hw->mac_type = e1000_82547_rev_2;
1540 break;
1541 case E1000_DEV_ID_82571EB_COPPER:
1542 case E1000_DEV_ID_82571EB_FIBER:
1543 case E1000_DEV_ID_82571EB_SERDES:
1544 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1545 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1546 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1547 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1548 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1549 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1550 hw->mac_type = e1000_82571;
1551 break;
1552 case E1000_DEV_ID_82572EI_COPPER:
1553 case E1000_DEV_ID_82572EI_FIBER:
1554 case E1000_DEV_ID_82572EI_SERDES:
1555 case E1000_DEV_ID_82572EI:
1556 hw->mac_type = e1000_82572;
1557 break;
1558 case E1000_DEV_ID_82573E:
1559 case E1000_DEV_ID_82573E_IAMT:
1560 case E1000_DEV_ID_82573L:
1561 hw->mac_type = e1000_82573;
1562 break;
Roy Zang181119b2011-01-21 11:29:38 +08001563 case E1000_DEV_ID_82574L:
1564 hw->mac_type = e1000_82574;
1565 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001566 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1567 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1568 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1569 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1570 hw->mac_type = e1000_80003es2lan;
1571 break;
1572 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1573 case E1000_DEV_ID_ICH8_IGP_AMT:
1574 case E1000_DEV_ID_ICH8_IGP_C:
1575 case E1000_DEV_ID_ICH8_IFE:
1576 case E1000_DEV_ID_ICH8_IFE_GT:
1577 case E1000_DEV_ID_ICH8_IFE_G:
1578 case E1000_DEV_ID_ICH8_IGP_M:
1579 hw->mac_type = e1000_ich8lan;
1580 break;
Marcel Ziswilerb9f66232014-09-08 00:03:50 +02001581 case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1582 case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
Marek Vasut74a13c22014-08-08 07:41:39 -07001583 case PCI_DEVICE_ID_INTEL_I210_COPPER:
Marcel Ziswilerb9f66232014-09-08 00:03:50 +02001584 case PCI_DEVICE_ID_INTEL_I211_COPPER:
Marek Vasut74a13c22014-08-08 07:41:39 -07001585 case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1586 case PCI_DEVICE_ID_INTEL_I210_SERDES:
1587 case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1588 case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1589 hw->mac_type = e1000_igb;
1590 break;
wdenk4e112c12003-06-03 23:54:09 +00001591 default:
1592 /* Should never have loaded on this device */
1593 return -E1000_ERR_MAC_TYPE;
1594 }
1595 return E1000_SUCCESS;
1596}
1597
1598/******************************************************************************
1599 * Reset the transmit and receive units; mask and clear all interrupts.
1600 *
1601 * hw - Struct containing variables accessed by shared code
1602 *****************************************************************************/
1603void
1604e1000_reset_hw(struct e1000_hw *hw)
1605{
1606 uint32_t ctrl;
1607 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001608 uint32_t manc;
Roy Zang966172e2009-08-22 03:49:52 +08001609 uint32_t pba = 0;
Marek Vasut74a13c22014-08-08 07:41:39 -07001610 uint32_t reg;
wdenk4e112c12003-06-03 23:54:09 +00001611
1612 DEBUGFUNC();
1613
Roy Zang966172e2009-08-22 03:49:52 +08001614 /* get the correct pba value for both PCI and PCIe*/
1615 if (hw->mac_type < e1000_82571)
1616 pba = E1000_DEFAULT_PCI_PBA;
1617 else
1618 pba = E1000_DEFAULT_PCIE_PBA;
1619
wdenk4e112c12003-06-03 23:54:09 +00001620 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1621 if (hw->mac_type == e1000_82542_rev2_0) {
1622 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
Bin Meng83cf24c2016-02-02 05:58:01 -08001623#ifdef CONFIG_DM_ETH
1624 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1625 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1626#else
wdenk4e112c12003-06-03 23:54:09 +00001627 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zang28f7a052009-07-31 13:34:02 +08001628 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
Bin Meng83cf24c2016-02-02 05:58:01 -08001629#endif
wdenk4e112c12003-06-03 23:54:09 +00001630 }
1631
1632 /* Clear interrupt mask to stop board from generating interrupts */
1633 DEBUGOUT("Masking off all interrupts\n");
Marek Vasut74a13c22014-08-08 07:41:39 -07001634 if (hw->mac_type == e1000_igb)
1635 E1000_WRITE_REG(hw, I210_IAM, 0);
wdenk4e112c12003-06-03 23:54:09 +00001636 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1637
1638 /* Disable the Transmit and Receive units. Then delay to allow
1639 * any pending transactions to complete before we hit the MAC with
1640 * the global reset.
1641 */
1642 E1000_WRITE_REG(hw, RCTL, 0);
1643 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1644 E1000_WRITE_FLUSH(hw);
1645
1646 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
York Sun4a598092013-04-01 11:29:11 -07001647 hw->tbi_compatibility_on = false;
wdenk4e112c12003-06-03 23:54:09 +00001648
1649 /* Delay to allow any outstanding PCI transactions to complete before
1650 * resetting the device
1651 */
1652 mdelay(10);
1653
1654 /* Issue a global reset to the MAC. This will reset the chip's
1655 * transmit, receive, DMA, and link units. It will not effect
1656 * the current PCI configuration. The global reset bit is self-
1657 * clearing, and should clear within a microsecond.
1658 */
1659 DEBUGOUT("Issuing a global reset to MAC\n");
1660 ctrl = E1000_READ_REG(hw, CTRL);
1661
Roy Zang28f7a052009-07-31 13:34:02 +08001662 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk4e112c12003-06-03 23:54:09 +00001663
1664 /* Force a reload from the EEPROM if necessary */
Marek Vasut74a13c22014-08-08 07:41:39 -07001665 if (hw->mac_type == e1000_igb) {
1666 mdelay(20);
1667 reg = E1000_READ_REG(hw, STATUS);
1668 if (reg & E1000_STATUS_PF_RST_DONE)
1669 DEBUGOUT("PF OK\n");
1670 reg = E1000_READ_REG(hw, I210_EECD);
1671 if (reg & E1000_EECD_AUTO_RD)
1672 DEBUGOUT("EEC OK\n");
1673 } else if (hw->mac_type < e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00001674 /* Wait for reset to complete */
1675 udelay(10);
1676 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1677 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1678 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1679 E1000_WRITE_FLUSH(hw);
1680 /* Wait for EEPROM reload */
1681 mdelay(2);
1682 } else {
1683 /* Wait for EEPROM reload (it happens automatically) */
1684 mdelay(4);
1685 /* Dissable HW ARPs on ASF enabled adapters */
1686 manc = E1000_READ_REG(hw, MANC);
1687 manc &= ~(E1000_MANC_ARP_EN);
1688 E1000_WRITE_REG(hw, MANC, manc);
1689 }
1690
1691 /* Clear interrupt mask to stop board from generating interrupts */
1692 DEBUGOUT("Masking off all interrupts\n");
Marek Vasut74a13c22014-08-08 07:41:39 -07001693 if (hw->mac_type == e1000_igb)
1694 E1000_WRITE_REG(hw, I210_IAM, 0);
wdenk4e112c12003-06-03 23:54:09 +00001695 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1696
1697 /* Clear any pending interrupt events. */
Zang Roy-R61911e36d67c2011-11-06 22:22:36 +00001698 E1000_READ_REG(hw, ICR);
wdenk4e112c12003-06-03 23:54:09 +00001699
1700 /* If MWI was previously enabled, reenable it. */
1701 if (hw->mac_type == e1000_82542_rev2_0) {
Bin Meng83cf24c2016-02-02 05:58:01 -08001702#ifdef CONFIG_DM_ETH
1703 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1704#else
wdenk4e112c12003-06-03 23:54:09 +00001705 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
Bin Meng83cf24c2016-02-02 05:58:01 -08001706#endif
wdenk4e112c12003-06-03 23:54:09 +00001707 }
Marek Vasut74a13c22014-08-08 07:41:39 -07001708 if (hw->mac_type != e1000_igb)
1709 E1000_WRITE_REG(hw, PBA, pba);
Roy Zang28f7a052009-07-31 13:34:02 +08001710}
1711
1712/******************************************************************************
1713 *
1714 * Initialize a number of hardware-dependent bits
1715 *
1716 * hw: Struct containing variables accessed by shared code
1717 *
1718 * This function contains hardware limitation workarounds for PCI-E adapters
1719 *
1720 *****************************************************************************/
1721static void
1722e1000_initialize_hardware_bits(struct e1000_hw *hw)
1723{
1724 if ((hw->mac_type >= e1000_82571) &&
1725 (!hw->initialize_hw_bits_disable)) {
1726 /* Settings common to all PCI-express silicon */
1727 uint32_t reg_ctrl, reg_ctrl_ext;
1728 uint32_t reg_tarc0, reg_tarc1;
1729 uint32_t reg_tctl;
1730 uint32_t reg_txdctl, reg_txdctl1;
1731
1732 /* link autonegotiation/sync workarounds */
1733 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1734 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1735
1736 /* Enable not-done TX descriptor counting */
1737 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1738 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1739 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1740
1741 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1742 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1743 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1744
Marek Vasut74a13c22014-08-08 07:41:39 -07001745
Roy Zang28f7a052009-07-31 13:34:02 +08001746 switch (hw->mac_type) {
Andre Przywara4b307c12016-11-16 00:50:07 +00001747 case e1000_igb: /* IGB is cool */
1748 return;
Roy Zang28f7a052009-07-31 13:34:02 +08001749 case e1000_82571:
1750 case e1000_82572:
1751 /* Clear PHY TX compatible mode bits */
1752 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1753 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1754
1755 /* link autonegotiation/sync workarounds */
1756 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1757
1758 /* TX ring control fixes */
1759 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1760
1761 /* Multiple read bit is reversed polarity */
1762 reg_tctl = E1000_READ_REG(hw, TCTL);
1763 if (reg_tctl & E1000_TCTL_MULR)
1764 reg_tarc1 &= ~(1 << 28);
1765 else
1766 reg_tarc1 |= (1 << 28);
1767
1768 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1769 break;
1770 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001771 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08001772 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1773 reg_ctrl_ext &= ~(1 << 23);
1774 reg_ctrl_ext |= (1 << 22);
1775
1776 /* TX byte count fix */
1777 reg_ctrl = E1000_READ_REG(hw, CTRL);
1778 reg_ctrl &= ~(1 << 29);
1779
1780 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1781 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1782 break;
1783 case e1000_80003es2lan:
1784 /* improve small packet performace for fiber/serdes */
1785 if ((hw->media_type == e1000_media_type_fiber)
1786 || (hw->media_type ==
1787 e1000_media_type_internal_serdes)) {
1788 reg_tarc0 &= ~(1 << 20);
1789 }
1790
1791 /* Multiple read bit is reversed polarity */
1792 reg_tctl = E1000_READ_REG(hw, TCTL);
1793 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1794 if (reg_tctl & E1000_TCTL_MULR)
1795 reg_tarc1 &= ~(1 << 28);
1796 else
1797 reg_tarc1 |= (1 << 28);
1798
1799 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1800 break;
1801 case e1000_ich8lan:
1802 /* Reduce concurrent DMA requests to 3 from 4 */
1803 if ((hw->revision_id < 3) ||
1804 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1805 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1806 reg_tarc0 |= ((1 << 29)|(1 << 28));
1807
1808 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1809 reg_ctrl_ext |= (1 << 22);
1810 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1811
1812 /* workaround TX hang with TSO=on */
1813 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1814
1815 /* Multiple read bit is reversed polarity */
1816 reg_tctl = E1000_READ_REG(hw, TCTL);
1817 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1818 if (reg_tctl & E1000_TCTL_MULR)
1819 reg_tarc1 &= ~(1 << 28);
1820 else
1821 reg_tarc1 |= (1 << 28);
1822
1823 /* workaround TX hang with TSO=on */
1824 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1825
1826 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1827 break;
1828 default:
1829 break;
1830 }
1831
1832 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1833 }
wdenk4e112c12003-06-03 23:54:09 +00001834}
1835
1836/******************************************************************************
1837 * Performs basic configuration of the adapter.
1838 *
1839 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001840 *
1841 * Assumes that the controller has previously been reset and is in a
wdenk4e112c12003-06-03 23:54:09 +00001842 * post-reset uninitialized state. Initializes the receive address registers,
1843 * multicast table, and VLAN filter table. Calls routines to setup link
1844 * configuration and flow control settings. Clears all on-chip counters. Leaves
1845 * the transmit and receive units disabled and uninitialized.
1846 *****************************************************************************/
1847static int
Simon Glassc53abc32015-08-19 09:33:39 -06001848e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
wdenk4e112c12003-06-03 23:54:09 +00001849{
Roy Zang28f7a052009-07-31 13:34:02 +08001850 uint32_t ctrl;
wdenk4e112c12003-06-03 23:54:09 +00001851 uint32_t i;
1852 int32_t ret_val;
1853 uint16_t pcix_cmd_word;
1854 uint16_t pcix_stat_hi_word;
1855 uint16_t cmd_mmrbc;
1856 uint16_t stat_mmrbc;
Roy Zang28f7a052009-07-31 13:34:02 +08001857 uint32_t mta_size;
1858 uint32_t reg_data;
1859 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001860 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08001861 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1862 if ((hw->mac_type == e1000_ich8lan) &&
1863 ((hw->revision_id < 3) ||
1864 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1865 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1866 reg_data = E1000_READ_REG(hw, STATUS);
1867 reg_data &= ~0x80000000;
1868 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk4e112c12003-06-03 23:54:09 +00001869 }
Roy Zang28f7a052009-07-31 13:34:02 +08001870 /* Do not need initialize Identification LED */
wdenk4e112c12003-06-03 23:54:09 +00001871
Roy Zang28f7a052009-07-31 13:34:02 +08001872 /* Set the media type and TBI compatibility */
1873 e1000_set_media_type(hw);
1874
1875 /* Must be called after e1000_set_media_type
1876 * because media_type is used */
1877 e1000_initialize_hardware_bits(hw);
wdenk4e112c12003-06-03 23:54:09 +00001878
1879 /* Disabling VLAN filtering. */
1880 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001881 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1882 if (hw->mac_type != e1000_ich8lan) {
1883 if (hw->mac_type < e1000_82545_rev_3)
1884 E1000_WRITE_REG(hw, VET, 0);
1885 e1000_clear_vfta(hw);
1886 }
wdenk4e112c12003-06-03 23:54:09 +00001887
1888 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1889 if (hw->mac_type == e1000_82542_rev2_0) {
1890 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
Bin Meng83cf24c2016-02-02 05:58:01 -08001891#ifdef CONFIG_DM_ETH
1892 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1893 hw->
1894 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1895#else
wdenk4e112c12003-06-03 23:54:09 +00001896 pci_write_config_word(hw->pdev, PCI_COMMAND,
1897 hw->
1898 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
Bin Meng83cf24c2016-02-02 05:58:01 -08001899#endif
wdenk4e112c12003-06-03 23:54:09 +00001900 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1901 E1000_WRITE_FLUSH(hw);
1902 mdelay(5);
1903 }
1904
1905 /* Setup the receive address. This involves initializing all of the Receive
1906 * Address Registers (RARs 0 - 15).
1907 */
Simon Glassc53abc32015-08-19 09:33:39 -06001908 e1000_init_rx_addrs(hw, enetaddr);
wdenk4e112c12003-06-03 23:54:09 +00001909
1910 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1911 if (hw->mac_type == e1000_82542_rev2_0) {
1912 E1000_WRITE_REG(hw, RCTL, 0);
1913 E1000_WRITE_FLUSH(hw);
1914 mdelay(1);
Bin Meng83cf24c2016-02-02 05:58:01 -08001915#ifdef CONFIG_DM_ETH
1916 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1917#else
wdenk4e112c12003-06-03 23:54:09 +00001918 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
Bin Meng83cf24c2016-02-02 05:58:01 -08001919#endif
wdenk4e112c12003-06-03 23:54:09 +00001920 }
1921
1922 /* Zero out the Multicast HASH table */
1923 DEBUGOUT("Zeroing the MTA\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001924 mta_size = E1000_MC_TBL_SIZE;
1925 if (hw->mac_type == e1000_ich8lan)
1926 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1927 for (i = 0; i < mta_size; i++) {
wdenk4e112c12003-06-03 23:54:09 +00001928 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zang28f7a052009-07-31 13:34:02 +08001929 /* use write flush to prevent Memory Write Block (MWB) from
1930 * occuring when accessing our register space */
1931 E1000_WRITE_FLUSH(hw);
1932 }
Bin Meng1ba7e952015-11-16 01:19:16 -08001933
Roy Zang28f7a052009-07-31 13:34:02 +08001934 switch (hw->mac_type) {
1935 case e1000_82545_rev_3:
1936 case e1000_82546_rev_3:
Marek Vasut74a13c22014-08-08 07:41:39 -07001937 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08001938 break;
1939 default:
wdenk4e112c12003-06-03 23:54:09 +00001940 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zang28f7a052009-07-31 13:34:02 +08001941 if (hw->bus_type == e1000_bus_type_pcix) {
Bin Meng83cf24c2016-02-02 05:58:01 -08001942#ifdef CONFIG_DM_ETH
1943 dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1944 &pcix_cmd_word);
1945 dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1946 &pcix_stat_hi_word);
1947#else
wdenk4e112c12003-06-03 23:54:09 +00001948 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1949 &pcix_cmd_word);
1950 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1951 &pcix_stat_hi_word);
Bin Meng83cf24c2016-02-02 05:58:01 -08001952#endif
wdenk4e112c12003-06-03 23:54:09 +00001953 cmd_mmrbc =
1954 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1955 PCIX_COMMAND_MMRBC_SHIFT;
1956 stat_mmrbc =
1957 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1958 PCIX_STATUS_HI_MMRBC_SHIFT;
1959 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1960 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1961 if (cmd_mmrbc > stat_mmrbc) {
1962 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1963 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
Bin Meng83cf24c2016-02-02 05:58:01 -08001964#ifdef CONFIG_DM_ETH
1965 dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1966 pcix_cmd_word);
1967#else
wdenk4e112c12003-06-03 23:54:09 +00001968 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1969 pcix_cmd_word);
Bin Meng83cf24c2016-02-02 05:58:01 -08001970#endif
wdenk4e112c12003-06-03 23:54:09 +00001971 }
1972 }
Roy Zang28f7a052009-07-31 13:34:02 +08001973 break;
1974 }
wdenk4e112c12003-06-03 23:54:09 +00001975
Roy Zang28f7a052009-07-31 13:34:02 +08001976 /* More time needed for PHY to initialize */
1977 if (hw->mac_type == e1000_ich8lan)
1978 mdelay(15);
Marek Vasut74a13c22014-08-08 07:41:39 -07001979 if (hw->mac_type == e1000_igb)
1980 mdelay(15);
Roy Zang28f7a052009-07-31 13:34:02 +08001981
wdenk4e112c12003-06-03 23:54:09 +00001982 /* Call a subroutine to configure the link and setup flow control. */
Simon Glassc53abc32015-08-19 09:33:39 -06001983 ret_val = e1000_setup_link(hw);
wdenk4e112c12003-06-03 23:54:09 +00001984
1985 /* Set the transmit descriptor write-back policy */
1986 if (hw->mac_type > e1000_82544) {
1987 ctrl = E1000_READ_REG(hw, TXDCTL);
1988 ctrl =
1989 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1990 E1000_TXDCTL_FULL_TX_DESC_WB;
1991 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1992 }
Roy Zang28f7a052009-07-31 13:34:02 +08001993
Ruchika Guptaed1f72f2012-04-19 02:27:11 +00001994 /* Set the receive descriptor write back policy */
Ruchika Guptaed1f72f2012-04-19 02:27:11 +00001995 if (hw->mac_type >= e1000_82571) {
1996 ctrl = E1000_READ_REG(hw, RXDCTL);
1997 ctrl =
1998 (ctrl & ~E1000_RXDCTL_WTHRESH) |
1999 E1000_RXDCTL_FULL_RX_DESC_WB;
2000 E1000_WRITE_REG(hw, RXDCTL, ctrl);
2001 }
2002
Roy Zang28f7a052009-07-31 13:34:02 +08002003 switch (hw->mac_type) {
2004 default:
2005 break;
2006 case e1000_80003es2lan:
2007 /* Enable retransmit on late collisions */
2008 reg_data = E1000_READ_REG(hw, TCTL);
2009 reg_data |= E1000_TCTL_RTLC;
2010 E1000_WRITE_REG(hw, TCTL, reg_data);
2011
2012 /* Configure Gigabit Carry Extend Padding */
2013 reg_data = E1000_READ_REG(hw, TCTL_EXT);
2014 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
2015 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
2016 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
2017
2018 /* Configure Transmit Inter-Packet Gap */
2019 reg_data = E1000_READ_REG(hw, TIPG);
2020 reg_data &= ~E1000_TIPG_IPGT_MASK;
2021 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2022 E1000_WRITE_REG(hw, TIPG, reg_data);
2023
2024 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
2025 reg_data &= ~0x00100000;
2026 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
2027 /* Fall through */
2028 case e1000_82571:
2029 case e1000_82572:
2030 case e1000_ich8lan:
2031 ctrl = E1000_READ_REG(hw, TXDCTL1);
2032 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
2033 | E1000_TXDCTL_FULL_TX_DESC_WB;
2034 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
2035 break;
Roy Zang181119b2011-01-21 11:29:38 +08002036 case e1000_82573:
2037 case e1000_82574:
2038 reg_data = E1000_READ_REG(hw, GCR);
2039 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
2040 E1000_WRITE_REG(hw, GCR, reg_data);
Marek Vasut74a13c22014-08-08 07:41:39 -07002041 case e1000_igb:
2042 break;
Roy Zang28f7a052009-07-31 13:34:02 +08002043 }
2044
Roy Zang28f7a052009-07-31 13:34:02 +08002045 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
2046 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
2047 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2048 /* Relaxed ordering must be disabled to avoid a parity
2049 * error crash in a PCI slot. */
2050 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2051 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2052 }
2053
2054 return ret_val;
2055}
wdenk4e112c12003-06-03 23:54:09 +00002056
2057/******************************************************************************
2058 * Configures flow control and link settings.
wdenk57b2d802003-06-27 21:31:46 +00002059 *
wdenk4e112c12003-06-03 23:54:09 +00002060 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00002061 *
wdenk4e112c12003-06-03 23:54:09 +00002062 * Determines which flow control settings to use. Calls the apropriate media-
2063 * specific link configuration function. Configures the flow control settings.
2064 * Assuming the adapter has a valid link partner, a valid link should be
wdenk57b2d802003-06-27 21:31:46 +00002065 * established. Assumes the hardware has previously been reset and the
wdenk4e112c12003-06-03 23:54:09 +00002066 * transmitter and receiver are not enabled.
2067 *****************************************************************************/
2068static int
Simon Glassc53abc32015-08-19 09:33:39 -06002069e1000_setup_link(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002070{
wdenk4e112c12003-06-03 23:54:09 +00002071 int32_t ret_val;
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002072#ifndef CONFIG_E1000_NO_NVM
2073 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00002074 uint16_t eeprom_data;
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002075#endif
wdenk4e112c12003-06-03 23:54:09 +00002076
2077 DEBUGFUNC();
2078
Roy Zang28f7a052009-07-31 13:34:02 +08002079 /* In the case of the phy reset being blocked, we already have a link.
2080 * We do not have to set it up again. */
2081 if (e1000_check_phy_reset_block(hw))
2082 return E1000_SUCCESS;
2083
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002084#ifndef CONFIG_E1000_NO_NVM
wdenk4e112c12003-06-03 23:54:09 +00002085 /* Read and store word 0x0F of the EEPROM. This word contains bits
2086 * that determine the hardware's default PAUSE (flow control) mode,
2087 * a bit that determines whether the HW defaults to enabling or
2088 * disabling auto-negotiation, and the direction of the
2089 * SW defined pins. If there is no SW over-ride of the flow
2090 * control setting, then the variable hw->fc will
2091 * be initialized based on a value in the EEPROM.
2092 */
Roy Zang28f7a052009-07-31 13:34:02 +08002093 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
2094 &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00002095 DEBUGOUT("EEPROM Read Error\n");
2096 return -E1000_ERR_EEPROM;
2097 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002098#endif
wdenk4e112c12003-06-03 23:54:09 +00002099 if (hw->fc == e1000_fc_default) {
Roy Zang28f7a052009-07-31 13:34:02 +08002100 switch (hw->mac_type) {
2101 case e1000_ich8lan:
2102 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08002103 case e1000_82574:
Marek Vasut74a13c22014-08-08 07:41:39 -07002104 case e1000_igb:
wdenk4e112c12003-06-03 23:54:09 +00002105 hw->fc = e1000_fc_full;
Roy Zang28f7a052009-07-31 13:34:02 +08002106 break;
2107 default:
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002108#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08002109 ret_val = e1000_read_eeprom(hw,
2110 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
2111 if (ret_val) {
2112 DEBUGOUT("EEPROM Read Error\n");
2113 return -E1000_ERR_EEPROM;
2114 }
Roy Zang28f7a052009-07-31 13:34:02 +08002115 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
2116 hw->fc = e1000_fc_none;
2117 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
2118 EEPROM_WORD0F_ASM_DIR)
2119 hw->fc = e1000_fc_tx_pause;
2120 else
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002121#endif
Roy Zang28f7a052009-07-31 13:34:02 +08002122 hw->fc = e1000_fc_full;
2123 break;
2124 }
wdenk4e112c12003-06-03 23:54:09 +00002125 }
2126
2127 /* We want to save off the original Flow Control configuration just
2128 * in case we get disconnected and then reconnected into a different
2129 * hub or switch with different Flow Control capabilities.
2130 */
2131 if (hw->mac_type == e1000_82542_rev2_0)
2132 hw->fc &= (~e1000_fc_tx_pause);
2133
2134 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
2135 hw->fc &= (~e1000_fc_rx_pause);
2136
2137 hw->original_fc = hw->fc;
2138
2139 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
2140
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002141#ifndef CONFIG_E1000_NO_NVM
wdenk4e112c12003-06-03 23:54:09 +00002142 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
2143 * polarity value for the SW controlled pins, and setup the
2144 * Extended Device Control reg with that info.
2145 * This is needed because one of the SW controlled pins is used for
2146 * signal detection. So this should be done before e1000_setup_pcs_link()
2147 * or e1000_phy_setup() is called.
2148 */
2149 if (hw->mac_type == e1000_82543) {
2150 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
2151 SWDPIO__EXT_SHIFT);
2152 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2153 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02002154#endif
wdenk4e112c12003-06-03 23:54:09 +00002155
2156 /* Call the necessary subroutine to configure the link. */
2157 ret_val = (hw->media_type == e1000_media_type_fiber) ?
Simon Glassc53abc32015-08-19 09:33:39 -06002158 e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
wdenk4e112c12003-06-03 23:54:09 +00002159 if (ret_val < 0) {
2160 return ret_val;
2161 }
2162
2163 /* Initialize the flow control address, type, and PAUSE timer
2164 * registers to their default values. This is done even if flow
2165 * control is disabled, because it does not hurt anything to
2166 * initialize these registers.
2167 */
Roy Zang28f7a052009-07-31 13:34:02 +08002168 DEBUGOUT("Initializing the Flow Control address, type"
2169 "and timer regs\n");
2170
2171 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
2172 if (hw->mac_type != e1000_ich8lan) {
2173 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
2174 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
2175 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
2176 }
wdenk4e112c12003-06-03 23:54:09 +00002177
wdenk4e112c12003-06-03 23:54:09 +00002178 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
2179
2180 /* Set the flow control receive threshold registers. Normally,
2181 * these registers will be set to a default threshold that may be
2182 * adjusted later by the driver's runtime code. However, if the
2183 * ability to transmit pause frames in not enabled, then these
wdenk57b2d802003-06-27 21:31:46 +00002184 * registers will be set to 0.
wdenk4e112c12003-06-03 23:54:09 +00002185 */
2186 if (!(hw->fc & e1000_fc_tx_pause)) {
2187 E1000_WRITE_REG(hw, FCRTL, 0);
2188 E1000_WRITE_REG(hw, FCRTH, 0);
2189 } else {
2190 /* We need to set up the Receive Threshold high and low water marks
2191 * as well as (optionally) enabling the transmission of XON frames.
2192 */
2193 if (hw->fc_send_xon) {
2194 E1000_WRITE_REG(hw, FCRTL,
2195 (hw->fc_low_water | E1000_FCRTL_XONE));
2196 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2197 } else {
2198 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
2199 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
2200 }
2201 }
2202 return ret_val;
2203}
2204
2205/******************************************************************************
2206 * Sets up link for a fiber based adapter
2207 *
2208 * hw - Struct containing variables accessed by shared code
2209 *
2210 * Manipulates Physical Coding Sublayer functions in order to configure
2211 * link. Assumes the hardware has been previously reset and the transmitter
2212 * and receiver are not enabled.
2213 *****************************************************************************/
2214static int
Simon Glassc53abc32015-08-19 09:33:39 -06002215e1000_setup_fiber_link(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002216{
wdenk4e112c12003-06-03 23:54:09 +00002217 uint32_t ctrl;
2218 uint32_t status;
2219 uint32_t txcw = 0;
2220 uint32_t i;
2221 uint32_t signal;
2222 int32_t ret_val;
2223
2224 DEBUGFUNC();
wdenk57b2d802003-06-27 21:31:46 +00002225 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2226 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00002227 * cleared when there is a signal
2228 */
2229 ctrl = E1000_READ_REG(hw, CTRL);
2230 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2231 signal = E1000_CTRL_SWDPIN1;
2232 else
2233 signal = 0;
2234
Simon Glassc53abc32015-08-19 09:33:39 -06002235 printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
wdenk4e112c12003-06-03 23:54:09 +00002236 ctrl);
2237 /* Take the link out of reset */
2238 ctrl &= ~(E1000_CTRL_LRST);
2239
2240 e1000_config_collision_dist(hw);
2241
2242 /* Check for a software override of the flow control settings, and setup
2243 * the device accordingly. If auto-negotiation is enabled, then software
2244 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2245 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk57b2d802003-06-27 21:31:46 +00002246 * auto-negotiation is disabled, then software will have to manually
wdenk4e112c12003-06-03 23:54:09 +00002247 * configure the two flow control enable bits in the CTRL register.
2248 *
2249 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07002250 * 0: Flow control is completely disabled
2251 * 1: Rx flow control is enabled (we can receive pause frames, but
2252 * not send pause frames).
2253 * 2: Tx flow control is enabled (we can send pause frames but we do
2254 * not support receiving pause frames).
2255 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00002256 */
2257 switch (hw->fc) {
2258 case e1000_fc_none:
2259 /* Flow control is completely disabled by a software over-ride. */
2260 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2261 break;
2262 case e1000_fc_rx_pause:
wdenk57b2d802003-06-27 21:31:46 +00002263 /* RX Flow control is enabled and TX Flow control is disabled by a
2264 * software over-ride. Since there really isn't a way to advertise
wdenk4e112c12003-06-03 23:54:09 +00002265 * that we are capable of RX Pause ONLY, we will advertise that we
2266 * support both symmetric and asymmetric RX PAUSE. Later, we will
2267 * disable the adapter's ability to send PAUSE frames.
2268 */
2269 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2270 break;
2271 case e1000_fc_tx_pause:
wdenk57b2d802003-06-27 21:31:46 +00002272 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk4e112c12003-06-03 23:54:09 +00002273 * software over-ride.
2274 */
2275 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2276 break;
2277 case e1000_fc_full:
2278 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2279 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2280 break;
2281 default:
2282 DEBUGOUT("Flow control param set incorrectly\n");
2283 return -E1000_ERR_CONFIG;
2284 break;
2285 }
2286
2287 /* Since auto-negotiation is enabled, take the link out of reset (the link
2288 * will be in reset, because we previously reset the chip). This will
2289 * restart auto-negotiation. If auto-neogtiation is successful then the
2290 * link-up status bit will be set and the flow control enable bits (RFCE
2291 * and TFCE) will be set according to their negotiated value.
2292 */
2293 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2294
2295 E1000_WRITE_REG(hw, TXCW, txcw);
2296 E1000_WRITE_REG(hw, CTRL, ctrl);
2297 E1000_WRITE_FLUSH(hw);
2298
2299 hw->txcw = txcw;
2300 mdelay(1);
2301
2302 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk57b2d802003-06-27 21:31:46 +00002303 * indication in the Device Status Register. Time-out if a link isn't
2304 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk4e112c12003-06-03 23:54:09 +00002305 * less than 500 milliseconds even if the other end is doing it in SW).
2306 */
2307 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2308 DEBUGOUT("Looking for Link\n");
2309 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2310 mdelay(10);
2311 status = E1000_READ_REG(hw, STATUS);
2312 if (status & E1000_STATUS_LU)
2313 break;
2314 }
2315 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk57b2d802003-06-27 21:31:46 +00002316 /* AutoNeg failed to achieve a link, so we'll call
wdenk4e112c12003-06-03 23:54:09 +00002317 * e1000_check_for_link. This routine will force the link up if we
2318 * detect a signal. This will allow us to communicate with
2319 * non-autonegotiating link partners.
2320 */
2321 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2322 hw->autoneg_failed = 1;
Simon Glassc53abc32015-08-19 09:33:39 -06002323 ret_val = e1000_check_for_link(hw);
wdenk4e112c12003-06-03 23:54:09 +00002324 if (ret_val < 0) {
2325 DEBUGOUT("Error while checking for link\n");
2326 return ret_val;
2327 }
2328 hw->autoneg_failed = 0;
2329 } else {
2330 hw->autoneg_failed = 0;
2331 DEBUGOUT("Valid Link Found\n");
2332 }
2333 } else {
2334 DEBUGOUT("No Signal Detected\n");
2335 return -E1000_ERR_NOLINK;
2336 }
2337 return 0;
2338}
2339
2340/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08002341* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk4e112c12003-06-03 23:54:09 +00002342*
2343* hw - Struct containing variables accessed by shared code
2344******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08002345static int32_t
2346e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002347{
wdenk4e112c12003-06-03 23:54:09 +00002348 uint32_t ctrl;
2349 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002350 uint16_t phy_data;
2351
2352 DEBUGFUNC();
2353
2354 ctrl = E1000_READ_REG(hw, CTRL);
2355 /* With 82543, we need to force speed and duplex on the MAC equal to what
2356 * the PHY speed and duplex configuration is. In addition, we need to
2357 * perform a hardware reset on the PHY to take it out of reset.
2358 */
2359 if (hw->mac_type > e1000_82543) {
2360 ctrl |= E1000_CTRL_SLU;
2361 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2362 E1000_WRITE_REG(hw, CTRL, ctrl);
2363 } else {
Roy Zang28f7a052009-07-31 13:34:02 +08002364 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2365 | E1000_CTRL_SLU);
wdenk4e112c12003-06-03 23:54:09 +00002366 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002367 ret_val = e1000_phy_hw_reset(hw);
2368 if (ret_val)
2369 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002370 }
2371
2372 /* Make sure we have a valid PHY */
2373 ret_val = e1000_detect_gig_phy(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002374 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002375 DEBUGOUT("Error, did not detect valid phy.\n");
2376 return ret_val;
2377 }
Minghuan Lian674bcd52015-03-19 09:43:51 -07002378 DEBUGOUT("Phy ID = %x\n", hw->phy_id);
wdenk4e112c12003-06-03 23:54:09 +00002379
Roy Zang28f7a052009-07-31 13:34:02 +08002380 /* Set PHY to class A mode (if necessary) */
2381 ret_val = e1000_set_phy_mode(hw);
2382 if (ret_val)
2383 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002384 if ((hw->mac_type == e1000_82545_rev_3) ||
2385 (hw->mac_type == e1000_82546_rev_3)) {
2386 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2387 &phy_data);
2388 phy_data |= 0x00000008;
2389 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2390 phy_data);
2391 }
2392
2393 if (hw->mac_type <= e1000_82543 ||
2394 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2395 hw->mac_type == e1000_82541_rev_2
2396 || hw->mac_type == e1000_82547_rev_2)
York Sun4a598092013-04-01 11:29:11 -07002397 hw->phy_reset_disable = false;
Roy Zang28f7a052009-07-31 13:34:02 +08002398
2399 return E1000_SUCCESS;
2400}
2401
2402/*****************************************************************************
2403 *
2404 * This function sets the lplu state according to the active flag. When
2405 * activating lplu this function also disables smart speed and vise versa.
2406 * lplu will not be activated unless the device autonegotiation advertisment
2407 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2408 * hw: Struct containing variables accessed by shared code
2409 * active - true to enable lplu false to disable lplu.
2410 *
2411 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2412 * E1000_SUCCESS at any other case.
2413 *
2414 ****************************************************************************/
2415
2416static int32_t
York Sun4a598092013-04-01 11:29:11 -07002417e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
Roy Zang28f7a052009-07-31 13:34:02 +08002418{
2419 uint32_t phy_ctrl = 0;
2420 int32_t ret_val;
2421 uint16_t phy_data;
2422 DEBUGFUNC();
2423
2424 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2425 && hw->phy_type != e1000_phy_igp_3)
2426 return E1000_SUCCESS;
2427
2428 /* During driver activity LPLU should not be used or it will attain link
2429 * from the lowest speeds starting from 10Mbps. The capability is used
2430 * for Dx transitions and states */
2431 if (hw->mac_type == e1000_82541_rev_2
2432 || hw->mac_type == e1000_82547_rev_2) {
2433 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2434 &phy_data);
2435 if (ret_val)
2436 return ret_val;
2437 } else if (hw->mac_type == e1000_ich8lan) {
2438 /* MAC writes into PHY register based on the state transition
2439 * and start auto-negotiation. SW driver can overwrite the
2440 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2441 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2442 } else {
2443 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2444 &phy_data);
2445 if (ret_val)
2446 return ret_val;
2447 }
2448
2449 if (!active) {
2450 if (hw->mac_type == e1000_82541_rev_2 ||
2451 hw->mac_type == e1000_82547_rev_2) {
2452 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2453 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2454 phy_data);
2455 if (ret_val)
2456 return ret_val;
2457 } else {
2458 if (hw->mac_type == e1000_ich8lan) {
2459 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2460 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2461 } else {
2462 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2463 ret_val = e1000_write_phy_reg(hw,
2464 IGP02E1000_PHY_POWER_MGMT, phy_data);
2465 if (ret_val)
2466 return ret_val;
2467 }
2468 }
2469
2470 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2471 * Dx states where the power conservation is most important. During
2472 * driver activity we should enable SmartSpeed, so performance is
2473 * maintained. */
2474 if (hw->smart_speed == e1000_smart_speed_on) {
2475 ret_val = e1000_read_phy_reg(hw,
2476 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2477 if (ret_val)
2478 return ret_val;
2479
2480 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2481 ret_val = e1000_write_phy_reg(hw,
2482 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2483 if (ret_val)
2484 return ret_val;
2485 } else if (hw->smart_speed == e1000_smart_speed_off) {
2486 ret_val = e1000_read_phy_reg(hw,
2487 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2488 if (ret_val)
2489 return ret_val;
2490
2491 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2492 ret_val = e1000_write_phy_reg(hw,
2493 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2494 if (ret_val)
2495 return ret_val;
2496 }
2497
2498 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2499 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2500 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2501
2502 if (hw->mac_type == e1000_82541_rev_2 ||
2503 hw->mac_type == e1000_82547_rev_2) {
2504 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2505 ret_val = e1000_write_phy_reg(hw,
2506 IGP01E1000_GMII_FIFO, phy_data);
2507 if (ret_val)
2508 return ret_val;
2509 } else {
2510 if (hw->mac_type == e1000_ich8lan) {
2511 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2512 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2513 } else {
2514 phy_data |= IGP02E1000_PM_D3_LPLU;
2515 ret_val = e1000_write_phy_reg(hw,
2516 IGP02E1000_PHY_POWER_MGMT, phy_data);
2517 if (ret_val)
2518 return ret_val;
2519 }
2520 }
2521
2522 /* When LPLU is enabled we should disable SmartSpeed */
2523 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2524 &phy_data);
2525 if (ret_val)
2526 return ret_val;
2527
2528 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2529 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2530 phy_data);
2531 if (ret_val)
2532 return ret_val;
2533 }
2534 return E1000_SUCCESS;
2535}
2536
2537/*****************************************************************************
2538 *
2539 * This function sets the lplu d0 state according to the active flag. When
2540 * activating lplu this function also disables smart speed and vise versa.
2541 * lplu will not be activated unless the device autonegotiation advertisment
2542 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2543 * hw: Struct containing variables accessed by shared code
2544 * active - true to enable lplu false to disable lplu.
2545 *
2546 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2547 * E1000_SUCCESS at any other case.
2548 *
2549 ****************************************************************************/
2550
2551static int32_t
York Sun4a598092013-04-01 11:29:11 -07002552e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
Roy Zang28f7a052009-07-31 13:34:02 +08002553{
2554 uint32_t phy_ctrl = 0;
2555 int32_t ret_val;
2556 uint16_t phy_data;
2557 DEBUGFUNC();
2558
2559 if (hw->mac_type <= e1000_82547_rev_2)
2560 return E1000_SUCCESS;
2561
2562 if (hw->mac_type == e1000_ich8lan) {
2563 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
Marek Vasut74a13c22014-08-08 07:41:39 -07002564 } else if (hw->mac_type == e1000_igb) {
2565 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
Roy Zang28f7a052009-07-31 13:34:02 +08002566 } else {
2567 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2568 &phy_data);
2569 if (ret_val)
2570 return ret_val;
2571 }
2572
2573 if (!active) {
2574 if (hw->mac_type == e1000_ich8lan) {
2575 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2576 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
Marek Vasut74a13c22014-08-08 07:41:39 -07002577 } else if (hw->mac_type == e1000_igb) {
2578 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2579 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002580 } else {
2581 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2582 ret_val = e1000_write_phy_reg(hw,
2583 IGP02E1000_PHY_POWER_MGMT, phy_data);
2584 if (ret_val)
2585 return ret_val;
2586 }
2587
Marek Vasut74a13c22014-08-08 07:41:39 -07002588 if (hw->mac_type == e1000_igb)
2589 return E1000_SUCCESS;
2590
Roy Zang28f7a052009-07-31 13:34:02 +08002591 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2592 * Dx states where the power conservation is most important. During
2593 * driver activity we should enable SmartSpeed, so performance is
2594 * maintained. */
2595 if (hw->smart_speed == e1000_smart_speed_on) {
2596 ret_val = e1000_read_phy_reg(hw,
2597 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2598 if (ret_val)
2599 return ret_val;
2600
2601 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2602 ret_val = e1000_write_phy_reg(hw,
2603 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2604 if (ret_val)
2605 return ret_val;
2606 } else if (hw->smart_speed == e1000_smart_speed_off) {
2607 ret_val = e1000_read_phy_reg(hw,
2608 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2609 if (ret_val)
2610 return ret_val;
2611
2612 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2613 ret_val = e1000_write_phy_reg(hw,
2614 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2615 if (ret_val)
2616 return ret_val;
2617 }
2618
2619
2620 } else {
2621
2622 if (hw->mac_type == e1000_ich8lan) {
2623 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2624 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
Marek Vasut74a13c22014-08-08 07:41:39 -07002625 } else if (hw->mac_type == e1000_igb) {
2626 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2627 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002628 } else {
2629 phy_data |= IGP02E1000_PM_D0_LPLU;
2630 ret_val = e1000_write_phy_reg(hw,
2631 IGP02E1000_PHY_POWER_MGMT, phy_data);
2632 if (ret_val)
2633 return ret_val;
2634 }
2635
Marek Vasut74a13c22014-08-08 07:41:39 -07002636 if (hw->mac_type == e1000_igb)
2637 return E1000_SUCCESS;
2638
Roy Zang28f7a052009-07-31 13:34:02 +08002639 /* When LPLU is enabled we should disable SmartSpeed */
2640 ret_val = e1000_read_phy_reg(hw,
2641 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2642 if (ret_val)
2643 return ret_val;
2644
2645 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2646 ret_val = e1000_write_phy_reg(hw,
2647 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2648 if (ret_val)
2649 return ret_val;
2650
2651 }
2652 return E1000_SUCCESS;
2653}
2654
2655/********************************************************************
2656* Copper link setup for e1000_phy_igp series.
2657*
2658* hw - Struct containing variables accessed by shared code
2659*********************************************************************/
2660static int32_t
2661e1000_copper_link_igp_setup(struct e1000_hw *hw)
2662{
2663 uint32_t led_ctrl;
2664 int32_t ret_val;
2665 uint16_t phy_data;
2666
Timur Tabiedc45b52009-08-17 15:55:38 -05002667 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08002668
2669 if (hw->phy_reset_disable)
2670 return E1000_SUCCESS;
2671
2672 ret_val = e1000_phy_reset(hw);
2673 if (ret_val) {
2674 DEBUGOUT("Error Resetting the PHY\n");
2675 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002676 }
Roy Zang28f7a052009-07-31 13:34:02 +08002677
2678 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2679 mdelay(15);
2680 if (hw->mac_type != e1000_ich8lan) {
2681 /* Configure activity LED after PHY reset */
2682 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2683 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2684 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2685 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2686 }
2687
2688 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2689 if (hw->phy_type == e1000_phy_igp) {
2690 /* disable lplu d3 during driver init */
York Sun4a598092013-04-01 11:29:11 -07002691 ret_val = e1000_set_d3_lplu_state(hw, false);
Roy Zang28f7a052009-07-31 13:34:02 +08002692 if (ret_val) {
2693 DEBUGOUT("Error Disabling LPLU D3\n");
2694 return ret_val;
2695 }
2696 }
2697
2698 /* disable lplu d0 during driver init */
York Sun4a598092013-04-01 11:29:11 -07002699 ret_val = e1000_set_d0_lplu_state(hw, false);
Roy Zang28f7a052009-07-31 13:34:02 +08002700 if (ret_val) {
2701 DEBUGOUT("Error Disabling LPLU D0\n");
2702 return ret_val;
2703 }
2704 /* Configure mdi-mdix settings */
2705 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2706 if (ret_val)
2707 return ret_val;
2708
2709 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2710 hw->dsp_config_state = e1000_dsp_config_disabled;
2711 /* Force MDI for earlier revs of the IGP PHY */
2712 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2713 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2714 hw->mdix = 1;
2715
2716 } else {
2717 hw->dsp_config_state = e1000_dsp_config_enabled;
2718 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2719
2720 switch (hw->mdix) {
2721 case 1:
2722 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2723 break;
2724 case 2:
2725 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2726 break;
2727 case 0:
2728 default:
2729 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2730 break;
2731 }
2732 }
2733 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2734 if (ret_val)
2735 return ret_val;
2736
2737 /* set auto-master slave resolution settings */
2738 if (hw->autoneg) {
2739 e1000_ms_type phy_ms_setting = hw->master_slave;
2740
2741 if (hw->ffe_config_state == e1000_ffe_config_active)
2742 hw->ffe_config_state = e1000_ffe_config_enabled;
2743
2744 if (hw->dsp_config_state == e1000_dsp_config_activated)
2745 hw->dsp_config_state = e1000_dsp_config_enabled;
2746
2747 /* when autonegotiation advertisment is only 1000Mbps then we
2748 * should disable SmartSpeed and enable Auto MasterSlave
2749 * resolution as hardware default. */
2750 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2751 /* Disable SmartSpeed */
2752 ret_val = e1000_read_phy_reg(hw,
2753 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2754 if (ret_val)
2755 return ret_val;
2756 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2757 ret_val = e1000_write_phy_reg(hw,
2758 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2759 if (ret_val)
2760 return ret_val;
2761 /* Set auto Master/Slave resolution process */
2762 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2763 &phy_data);
2764 if (ret_val)
2765 return ret_val;
2766 phy_data &= ~CR_1000T_MS_ENABLE;
2767 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2768 phy_data);
2769 if (ret_val)
2770 return ret_val;
2771 }
2772
2773 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2774 if (ret_val)
2775 return ret_val;
2776
2777 /* load defaults for future use */
2778 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2779 ((phy_data & CR_1000T_MS_VALUE) ?
2780 e1000_ms_force_master :
2781 e1000_ms_force_slave) :
2782 e1000_ms_auto;
2783
2784 switch (phy_ms_setting) {
2785 case e1000_ms_force_master:
2786 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2787 break;
2788 case e1000_ms_force_slave:
2789 phy_data |= CR_1000T_MS_ENABLE;
2790 phy_data &= ~(CR_1000T_MS_VALUE);
2791 break;
2792 case e1000_ms_auto:
2793 phy_data &= ~CR_1000T_MS_ENABLE;
2794 default:
2795 break;
2796 }
2797 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2798 if (ret_val)
2799 return ret_val;
2800 }
2801
2802 return E1000_SUCCESS;
2803}
2804
2805/*****************************************************************************
2806 * This function checks the mode of the firmware.
2807 *
York Sun4a598092013-04-01 11:29:11 -07002808 * returns - true when the mode is IAMT or false.
Roy Zang28f7a052009-07-31 13:34:02 +08002809 ****************************************************************************/
York Sun4a598092013-04-01 11:29:11 -07002810bool
Roy Zang28f7a052009-07-31 13:34:02 +08002811e1000_check_mng_mode(struct e1000_hw *hw)
2812{
2813 uint32_t fwsm;
2814 DEBUGFUNC();
2815
2816 fwsm = E1000_READ_REG(hw, FWSM);
2817
2818 if (hw->mac_type == e1000_ich8lan) {
2819 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2820 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
York Sun4a598092013-04-01 11:29:11 -07002821 return true;
Roy Zang28f7a052009-07-31 13:34:02 +08002822 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2823 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
York Sun4a598092013-04-01 11:29:11 -07002824 return true;
Roy Zang28f7a052009-07-31 13:34:02 +08002825
York Sun4a598092013-04-01 11:29:11 -07002826 return false;
Roy Zang28f7a052009-07-31 13:34:02 +08002827}
2828
2829static int32_t
2830e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2831{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002832 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002833 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002834 DEBUGFUNC();
2835
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002836 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002837 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002838
Roy Zang28f7a052009-07-31 13:34:02 +08002839 if (e1000_swfw_sync_acquire(hw, swfw))
2840 return -E1000_ERR_SWFW_SYNC;
2841
2842 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2843 & E1000_KUMCTRLSTA_OFFSET) | data;
2844 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2845 udelay(2);
2846
2847 return E1000_SUCCESS;
2848}
2849
2850static int32_t
2851e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2852{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002853 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002854 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002855 DEBUGFUNC();
2856
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002857 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002858 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002859
Marek Vasut74a13c22014-08-08 07:41:39 -07002860 if (e1000_swfw_sync_acquire(hw, swfw)) {
2861 debug("%s[%i]\n", __func__, __LINE__);
Roy Zang28f7a052009-07-31 13:34:02 +08002862 return -E1000_ERR_SWFW_SYNC;
Marek Vasut74a13c22014-08-08 07:41:39 -07002863 }
Roy Zang28f7a052009-07-31 13:34:02 +08002864
2865 /* Write register address */
2866 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2867 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2868 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2869 udelay(2);
2870
2871 /* Read the data returned */
2872 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2873 *data = (uint16_t)reg_val;
2874
2875 return E1000_SUCCESS;
2876}
2877
2878/********************************************************************
2879* Copper link setup for e1000_phy_gg82563 series.
2880*
2881* hw - Struct containing variables accessed by shared code
2882*********************************************************************/
2883static int32_t
2884e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2885{
2886 int32_t ret_val;
2887 uint16_t phy_data;
2888 uint32_t reg_data;
2889
2890 DEBUGFUNC();
2891
2892 if (!hw->phy_reset_disable) {
2893 /* Enable CRS on TX for half-duplex operation. */
2894 ret_val = e1000_read_phy_reg(hw,
2895 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2896 if (ret_val)
2897 return ret_val;
2898
2899 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2900 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2901 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2902
2903 ret_val = e1000_write_phy_reg(hw,
2904 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2905 if (ret_val)
2906 return ret_val;
2907
2908 /* Options:
2909 * MDI/MDI-X = 0 (default)
2910 * 0 - Auto for all speeds
2911 * 1 - MDI mode
2912 * 2 - MDI-X mode
2913 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2914 */
2915 ret_val = e1000_read_phy_reg(hw,
2916 GG82563_PHY_SPEC_CTRL, &phy_data);
2917 if (ret_val)
2918 return ret_val;
2919
2920 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2921
2922 switch (hw->mdix) {
2923 case 1:
2924 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2925 break;
2926 case 2:
2927 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2928 break;
2929 case 0:
2930 default:
2931 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2932 break;
2933 }
2934
2935 /* Options:
2936 * disable_polarity_correction = 0 (default)
2937 * Automatic Correction for Reversed Cable Polarity
2938 * 0 - Disabled
2939 * 1 - Enabled
2940 */
2941 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2942 ret_val = e1000_write_phy_reg(hw,
2943 GG82563_PHY_SPEC_CTRL, phy_data);
2944
2945 if (ret_val)
2946 return ret_val;
2947
2948 /* SW Reset the PHY so all changes take effect */
2949 ret_val = e1000_phy_reset(hw);
2950 if (ret_val) {
2951 DEBUGOUT("Error Resetting the PHY\n");
2952 return ret_val;
2953 }
2954 } /* phy_reset_disable */
2955
2956 if (hw->mac_type == e1000_80003es2lan) {
2957 /* Bypass RX and TX FIFO's */
2958 ret_val = e1000_write_kmrn_reg(hw,
2959 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2960 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2961 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2962 if (ret_val)
2963 return ret_val;
2964
2965 ret_val = e1000_read_phy_reg(hw,
2966 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2967 if (ret_val)
2968 return ret_val;
2969
2970 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2971 ret_val = e1000_write_phy_reg(hw,
2972 GG82563_PHY_SPEC_CTRL_2, phy_data);
2973
2974 if (ret_val)
2975 return ret_val;
2976
2977 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2978 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2979 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2980
2981 ret_val = e1000_read_phy_reg(hw,
2982 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2983 if (ret_val)
2984 return ret_val;
2985
2986 /* Do not init these registers when the HW is in IAMT mode, since the
2987 * firmware will have already initialized them. We only initialize
2988 * them if the HW is not in IAMT mode.
2989 */
York Sun4a598092013-04-01 11:29:11 -07002990 if (e1000_check_mng_mode(hw) == false) {
Roy Zang28f7a052009-07-31 13:34:02 +08002991 /* Enable Electrical Idle on the PHY */
2992 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2993 ret_val = e1000_write_phy_reg(hw,
2994 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2995 if (ret_val)
2996 return ret_val;
2997
2998 ret_val = e1000_read_phy_reg(hw,
2999 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
3000 if (ret_val)
3001 return ret_val;
3002
3003 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3004 ret_val = e1000_write_phy_reg(hw,
3005 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
3006
3007 if (ret_val)
3008 return ret_val;
3009 }
3010
3011 /* Workaround: Disable padding in Kumeran interface in the MAC
3012 * and in the PHY to avoid CRC errors.
3013 */
3014 ret_val = e1000_read_phy_reg(hw,
3015 GG82563_PHY_INBAND_CTRL, &phy_data);
3016 if (ret_val)
3017 return ret_val;
3018 phy_data |= GG82563_ICR_DIS_PADDING;
3019 ret_val = e1000_write_phy_reg(hw,
3020 GG82563_PHY_INBAND_CTRL, phy_data);
3021 if (ret_val)
3022 return ret_val;
3023 }
3024 return E1000_SUCCESS;
3025}
3026
3027/********************************************************************
3028* Copper link setup for e1000_phy_m88 series.
3029*
3030* hw - Struct containing variables accessed by shared code
3031*********************************************************************/
3032static int32_t
3033e1000_copper_link_mgp_setup(struct e1000_hw *hw)
3034{
3035 int32_t ret_val;
3036 uint16_t phy_data;
3037
3038 DEBUGFUNC();
3039
3040 if (hw->phy_reset_disable)
3041 return E1000_SUCCESS;
3042
3043 /* Enable CRS on TX. This must be set for half-duplex operation. */
3044 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3045 if (ret_val)
3046 return ret_val;
3047
wdenk4e112c12003-06-03 23:54:09 +00003048 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
3049
wdenk4e112c12003-06-03 23:54:09 +00003050 /* Options:
3051 * MDI/MDI-X = 0 (default)
3052 * 0 - Auto for all speeds
3053 * 1 - MDI mode
3054 * 2 - MDI-X mode
3055 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
3056 */
3057 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zang28f7a052009-07-31 13:34:02 +08003058
wdenk4e112c12003-06-03 23:54:09 +00003059 switch (hw->mdix) {
3060 case 1:
3061 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
3062 break;
3063 case 2:
3064 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
3065 break;
3066 case 3:
3067 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
3068 break;
3069 case 0:
3070 default:
3071 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
3072 break;
3073 }
wdenk4e112c12003-06-03 23:54:09 +00003074
wdenk4e112c12003-06-03 23:54:09 +00003075 /* Options:
3076 * disable_polarity_correction = 0 (default)
Roy Zang28f7a052009-07-31 13:34:02 +08003077 * Automatic Correction for Reversed Cable Polarity
wdenk4e112c12003-06-03 23:54:09 +00003078 * 0 - Disabled
3079 * 1 - Enabled
3080 */
3081 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zang28f7a052009-07-31 13:34:02 +08003082 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
3083 if (ret_val)
3084 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003085
Roy Zang28f7a052009-07-31 13:34:02 +08003086 if (hw->phy_revision < M88E1011_I_REV_4) {
3087 /* Force TX_CLK in the Extended PHY Specific Control Register
3088 * to 25MHz clock.
3089 */
3090 ret_val = e1000_read_phy_reg(hw,
3091 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
3092 if (ret_val)
3093 return ret_val;
3094
3095 phy_data |= M88E1000_EPSCR_TX_CLK_25;
3096
3097 if ((hw->phy_revision == E1000_REVISION_2) &&
3098 (hw->phy_id == M88E1111_I_PHY_ID)) {
3099 /* Vidalia Phy, set the downshift counter to 5x */
3100 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
3101 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
3102 ret_val = e1000_write_phy_reg(hw,
3103 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3104 if (ret_val)
3105 return ret_val;
3106 } else {
3107 /* Configure Master and Slave downshift values */
3108 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
3109 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
3110 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
3111 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
3112 ret_val = e1000_write_phy_reg(hw,
3113 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
3114 if (ret_val)
3115 return ret_val;
3116 }
wdenk4e112c12003-06-03 23:54:09 +00003117 }
3118
3119 /* SW Reset the PHY so all changes take effect */
3120 ret_val = e1000_phy_reset(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08003121 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00003122 DEBUGOUT("Error Resetting the PHY\n");
3123 return ret_val;
3124 }
3125
Roy Zang28f7a052009-07-31 13:34:02 +08003126 return E1000_SUCCESS;
3127}
wdenk4e112c12003-06-03 23:54:09 +00003128
Roy Zang28f7a052009-07-31 13:34:02 +08003129/********************************************************************
3130* Setup auto-negotiation and flow control advertisements,
3131* and then perform auto-negotiation.
3132*
3133* hw - Struct containing variables accessed by shared code
3134*********************************************************************/
3135static int32_t
3136e1000_copper_link_autoneg(struct e1000_hw *hw)
3137{
3138 int32_t ret_val;
3139 uint16_t phy_data;
3140
3141 DEBUGFUNC();
3142
wdenk4e112c12003-06-03 23:54:09 +00003143 /* Perform some bounds checking on the hw->autoneg_advertised
3144 * parameter. If this variable is zero, then set it to the default.
3145 */
3146 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
3147
3148 /* If autoneg_advertised is zero, we assume it was not defaulted
3149 * by the calling code so we set to advertise full capability.
3150 */
3151 if (hw->autoneg_advertised == 0)
3152 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
3153
Roy Zang28f7a052009-07-31 13:34:02 +08003154 /* IFE phy only supports 10/100 */
3155 if (hw->phy_type == e1000_phy_ife)
3156 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
3157
wdenk4e112c12003-06-03 23:54:09 +00003158 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
3159 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08003160 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00003161 DEBUGOUT("Error Setting up Auto-Negotiation\n");
3162 return ret_val;
3163 }
3164 DEBUGOUT("Restarting Auto-Neg\n");
3165
3166 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
3167 * the Auto Neg Restart bit in the PHY control register.
3168 */
Roy Zang28f7a052009-07-31 13:34:02 +08003169 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3170 if (ret_val)
3171 return ret_val;
3172
wdenk4e112c12003-06-03 23:54:09 +00003173 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zang28f7a052009-07-31 13:34:02 +08003174 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3175 if (ret_val)
3176 return ret_val;
3177
wdenk4e112c12003-06-03 23:54:09 +00003178 /* Does the user want to wait for Auto-Neg to complete here, or
3179 * check at a later time (for example, callback routine).
3180 */
Roy Zang28f7a052009-07-31 13:34:02 +08003181 /* If we do not wait for autonegtation to complete I
3182 * do not see a valid link status.
3183 * wait_autoneg_complete = 1 .
3184 */
wdenk4e112c12003-06-03 23:54:09 +00003185 if (hw->wait_autoneg_complete) {
3186 ret_val = e1000_wait_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08003187 if (ret_val) {
3188 DEBUGOUT("Error while waiting for autoneg"
3189 "to complete\n");
wdenk4e112c12003-06-03 23:54:09 +00003190 return ret_val;
3191 }
3192 }
Roy Zang28f7a052009-07-31 13:34:02 +08003193
York Sun4a598092013-04-01 11:29:11 -07003194 hw->get_link_status = true;
Roy Zang28f7a052009-07-31 13:34:02 +08003195
3196 return E1000_SUCCESS;
3197}
3198
3199/******************************************************************************
3200* Config the MAC and the PHY after link is up.
3201* 1) Set up the MAC to the current PHY speed/duplex
3202* if we are on 82543. If we
3203* are on newer silicon, we only need to configure
3204* collision distance in the Transmit Control Register.
3205* 2) Set up flow control on the MAC to that established with
3206* the link partner.
3207* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
3208*
3209* hw - Struct containing variables accessed by shared code
3210******************************************************************************/
3211static int32_t
3212e1000_copper_link_postconfig(struct e1000_hw *hw)
3213{
3214 int32_t ret_val;
3215 DEBUGFUNC();
3216
3217 if (hw->mac_type >= e1000_82544) {
3218 e1000_config_collision_dist(hw);
3219 } else {
3220 ret_val = e1000_config_mac_to_phy(hw);
3221 if (ret_val) {
3222 DEBUGOUT("Error configuring MAC to PHY settings\n");
3223 return ret_val;
3224 }
3225 }
3226 ret_val = e1000_config_fc_after_link_up(hw);
3227 if (ret_val) {
3228 DEBUGOUT("Error Configuring Flow Control\n");
wdenk4e112c12003-06-03 23:54:09 +00003229 return ret_val;
3230 }
Roy Zang28f7a052009-07-31 13:34:02 +08003231 return E1000_SUCCESS;
3232}
3233
3234/******************************************************************************
3235* Detects which PHY is present and setup the speed and duplex
3236*
3237* hw - Struct containing variables accessed by shared code
3238******************************************************************************/
3239static int
Simon Glassc53abc32015-08-19 09:33:39 -06003240e1000_setup_copper_link(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +08003241{
Roy Zang28f7a052009-07-31 13:34:02 +08003242 int32_t ret_val;
3243 uint16_t i;
3244 uint16_t phy_data;
3245 uint16_t reg_data;
3246
3247 DEBUGFUNC();
3248
3249 switch (hw->mac_type) {
3250 case e1000_80003es2lan:
3251 case e1000_ich8lan:
3252 /* Set the mac to wait the maximum time between each
3253 * iteration and increase the max iterations when
3254 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3255 ret_val = e1000_write_kmrn_reg(hw,
3256 GG82563_REG(0x34, 4), 0xFFFF);
3257 if (ret_val)
3258 return ret_val;
3259 ret_val = e1000_read_kmrn_reg(hw,
3260 GG82563_REG(0x34, 9), &reg_data);
3261 if (ret_val)
3262 return ret_val;
3263 reg_data |= 0x3F;
3264 ret_val = e1000_write_kmrn_reg(hw,
3265 GG82563_REG(0x34, 9), reg_data);
3266 if (ret_val)
3267 return ret_val;
3268 default:
3269 break;
3270 }
3271
3272 /* Check if it is a valid PHY and set PHY mode if necessary. */
3273 ret_val = e1000_copper_link_preconfig(hw);
3274 if (ret_val)
3275 return ret_val;
3276 switch (hw->mac_type) {
3277 case e1000_80003es2lan:
3278 /* Kumeran registers are written-only */
3279 reg_data =
3280 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3281 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3282 ret_val = e1000_write_kmrn_reg(hw,
3283 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3284 if (ret_val)
3285 return ret_val;
3286 break;
3287 default:
3288 break;
3289 }
3290
3291 if (hw->phy_type == e1000_phy_igp ||
3292 hw->phy_type == e1000_phy_igp_3 ||
3293 hw->phy_type == e1000_phy_igp_2) {
3294 ret_val = e1000_copper_link_igp_setup(hw);
3295 if (ret_val)
3296 return ret_val;
Marek Vasut74a13c22014-08-08 07:41:39 -07003297 } else if (hw->phy_type == e1000_phy_m88 ||
3298 hw->phy_type == e1000_phy_igb) {
Roy Zang28f7a052009-07-31 13:34:02 +08003299 ret_val = e1000_copper_link_mgp_setup(hw);
3300 if (ret_val)
3301 return ret_val;
3302 } else if (hw->phy_type == e1000_phy_gg82563) {
3303 ret_val = e1000_copper_link_ggp_setup(hw);
3304 if (ret_val)
3305 return ret_val;
3306 }
3307
3308 /* always auto */
3309 /* Setup autoneg and flow control advertisement
3310 * and perform autonegotiation */
3311 ret_val = e1000_copper_link_autoneg(hw);
3312 if (ret_val)
3313 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003314
3315 /* Check link status. Wait up to 100 microseconds for link to become
3316 * valid.
3317 */
3318 for (i = 0; i < 10; i++) {
Roy Zang28f7a052009-07-31 13:34:02 +08003319 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3320 if (ret_val)
3321 return ret_val;
3322 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3323 if (ret_val)
3324 return ret_val;
3325
wdenk4e112c12003-06-03 23:54:09 +00003326 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zang28f7a052009-07-31 13:34:02 +08003327 /* Config the MAC and PHY after link is up */
3328 ret_val = e1000_copper_link_postconfig(hw);
3329 if (ret_val)
wdenk4e112c12003-06-03 23:54:09 +00003330 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08003331
wdenk4e112c12003-06-03 23:54:09 +00003332 DEBUGOUT("Valid link established!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003333 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003334 }
3335 udelay(10);
3336 }
3337
3338 DEBUGOUT("Unable to establish link!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003339 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003340}
3341
3342/******************************************************************************
3343* Configures PHY autoneg and flow control advertisement settings
3344*
3345* hw - Struct containing variables accessed by shared code
3346******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003347int32_t
wdenk4e112c12003-06-03 23:54:09 +00003348e1000_phy_setup_autoneg(struct e1000_hw *hw)
3349{
Roy Zang28f7a052009-07-31 13:34:02 +08003350 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003351 uint16_t mii_autoneg_adv_reg;
3352 uint16_t mii_1000t_ctrl_reg;
3353
3354 DEBUGFUNC();
3355
3356 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zang28f7a052009-07-31 13:34:02 +08003357 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3358 if (ret_val)
3359 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003360
Roy Zang28f7a052009-07-31 13:34:02 +08003361 if (hw->phy_type != e1000_phy_ife) {
3362 /* Read the MII 1000Base-T Control Register (Address 9). */
3363 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3364 &mii_1000t_ctrl_reg);
3365 if (ret_val)
3366 return ret_val;
3367 } else
3368 mii_1000t_ctrl_reg = 0;
wdenk4e112c12003-06-03 23:54:09 +00003369
3370 /* Need to parse both autoneg_advertised and fc and set up
3371 * the appropriate PHY registers. First we will parse for
3372 * autoneg_advertised software override. Since we can advertise
3373 * a plethora of combinations, we need to check each bit
3374 * individually.
3375 */
3376
3377 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3378 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zang28f7a052009-07-31 13:34:02 +08003379 * the 1000Base-T Control Register (Address 9).
wdenk4e112c12003-06-03 23:54:09 +00003380 */
3381 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3382 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3383
3384 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3385
3386 /* Do we want to advertise 10 Mb Half Duplex? */
3387 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3388 DEBUGOUT("Advertise 10mb Half duplex\n");
3389 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3390 }
3391
3392 /* Do we want to advertise 10 Mb Full Duplex? */
3393 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3394 DEBUGOUT("Advertise 10mb Full duplex\n");
3395 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3396 }
3397
3398 /* Do we want to advertise 100 Mb Half Duplex? */
3399 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3400 DEBUGOUT("Advertise 100mb Half duplex\n");
3401 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3402 }
3403
3404 /* Do we want to advertise 100 Mb Full Duplex? */
3405 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3406 DEBUGOUT("Advertise 100mb Full duplex\n");
3407 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3408 }
3409
3410 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3411 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3412 DEBUGOUT
3413 ("Advertise 1000mb Half duplex requested, request denied!\n");
3414 }
3415
3416 /* Do we want to advertise 1000 Mb Full Duplex? */
3417 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3418 DEBUGOUT("Advertise 1000mb Full duplex\n");
3419 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3420 }
3421
3422 /* Check for a software override of the flow control settings, and
3423 * setup the PHY advertisement registers accordingly. If
3424 * auto-negotiation is enabled, then software will have to set the
3425 * "PAUSE" bits to the correct value in the Auto-Negotiation
3426 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3427 *
3428 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003429 * 0: Flow control is completely disabled
3430 * 1: Rx flow control is enabled (we can receive pause frames
3431 * but not send pause frames).
3432 * 2: Tx flow control is enabled (we can send pause frames
3433 * but we do not support receiving pause frames).
3434 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00003435 * other: No software override. The flow control configuration
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003436 * in the EEPROM is used.
wdenk4e112c12003-06-03 23:54:09 +00003437 */
3438 switch (hw->fc) {
3439 case e1000_fc_none: /* 0 */
3440 /* Flow control (RX & TX) is completely disabled by a
3441 * software over-ride.
3442 */
3443 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3444 break;
3445 case e1000_fc_rx_pause: /* 1 */
3446 /* RX Flow control is enabled, and TX Flow control is
3447 * disabled, by a software over-ride.
3448 */
3449 /* Since there really isn't a way to advertise that we are
3450 * capable of RX Pause ONLY, we will advertise that we
3451 * support both symmetric and asymmetric RX PAUSE. Later
3452 * (in e1000_config_fc_after_link_up) we will disable the
3453 *hw's ability to send PAUSE frames.
3454 */
3455 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3456 break;
3457 case e1000_fc_tx_pause: /* 2 */
3458 /* TX Flow control is enabled, and RX Flow control is
3459 * disabled, by a software over-ride.
3460 */
3461 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3462 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3463 break;
3464 case e1000_fc_full: /* 3 */
3465 /* Flow control (both RX and TX) is enabled by a software
3466 * over-ride.
3467 */
3468 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3469 break;
3470 default:
3471 DEBUGOUT("Flow control param set incorrectly\n");
3472 return -E1000_ERR_CONFIG;
3473 }
3474
Roy Zang28f7a052009-07-31 13:34:02 +08003475 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3476 if (ret_val)
3477 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003478
3479 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3480
Roy Zang28f7a052009-07-31 13:34:02 +08003481 if (hw->phy_type != e1000_phy_ife) {
3482 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3483 mii_1000t_ctrl_reg);
3484 if (ret_val)
3485 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003486 }
Roy Zang28f7a052009-07-31 13:34:02 +08003487
3488 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003489}
3490
3491/******************************************************************************
3492* Sets the collision distance in the Transmit Control register
3493*
3494* hw - Struct containing variables accessed by shared code
3495*
3496* Link should have been established previously. Reads the speed and duplex
3497* information from the Device Status register.
3498******************************************************************************/
3499static void
3500e1000_config_collision_dist(struct e1000_hw *hw)
3501{
Roy Zang28f7a052009-07-31 13:34:02 +08003502 uint32_t tctl, coll_dist;
3503
3504 DEBUGFUNC();
3505
3506 if (hw->mac_type < e1000_82543)
3507 coll_dist = E1000_COLLISION_DISTANCE_82542;
3508 else
3509 coll_dist = E1000_COLLISION_DISTANCE;
wdenk4e112c12003-06-03 23:54:09 +00003510
3511 tctl = E1000_READ_REG(hw, TCTL);
3512
3513 tctl &= ~E1000_TCTL_COLD;
Roy Zang28f7a052009-07-31 13:34:02 +08003514 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00003515
3516 E1000_WRITE_REG(hw, TCTL, tctl);
3517 E1000_WRITE_FLUSH(hw);
3518}
3519
3520/******************************************************************************
3521* Sets MAC speed and duplex settings to reflect the those in the PHY
3522*
3523* hw - Struct containing variables accessed by shared code
3524* mii_reg - data to write to the MII control register
3525*
3526* The contents of the PHY register containing the needed information need to
3527* be passed in.
3528******************************************************************************/
3529static int
3530e1000_config_mac_to_phy(struct e1000_hw *hw)
3531{
3532 uint32_t ctrl;
3533 uint16_t phy_data;
3534
3535 DEBUGFUNC();
3536
3537 /* Read the Device Control Register and set the bits to Force Speed
3538 * and Duplex.
3539 */
3540 ctrl = E1000_READ_REG(hw, CTRL);
3541 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
Marek Vasut74a13c22014-08-08 07:41:39 -07003542 ctrl &= ~(E1000_CTRL_ILOS);
3543 ctrl |= (E1000_CTRL_SPD_SEL);
wdenk4e112c12003-06-03 23:54:09 +00003544
3545 /* Set up duplex in the Device Control and Transmit Control
3546 * registers depending on negotiated values.
3547 */
3548 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3549 DEBUGOUT("PHY Read Error\n");
3550 return -E1000_ERR_PHY;
3551 }
3552 if (phy_data & M88E1000_PSSR_DPLX)
3553 ctrl |= E1000_CTRL_FD;
3554 else
3555 ctrl &= ~E1000_CTRL_FD;
3556
3557 e1000_config_collision_dist(hw);
3558
3559 /* Set up speed in the Device Control register depending on
3560 * negotiated values.
3561 */
3562 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3563 ctrl |= E1000_CTRL_SPD_1000;
3564 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3565 ctrl |= E1000_CTRL_SPD_100;
3566 /* Write the configured values back to the Device Control Reg. */
3567 E1000_WRITE_REG(hw, CTRL, ctrl);
3568 return 0;
3569}
3570
3571/******************************************************************************
3572 * Forces the MAC's flow control settings.
wdenk57b2d802003-06-27 21:31:46 +00003573 *
wdenk4e112c12003-06-03 23:54:09 +00003574 * hw - Struct containing variables accessed by shared code
3575 *
3576 * Sets the TFCE and RFCE bits in the device control register to reflect
3577 * the adapter settings. TFCE and RFCE need to be explicitly set by
3578 * software when a Copper PHY is used because autonegotiation is managed
3579 * by the PHY rather than the MAC. Software must also configure these
3580 * bits when link is forced on a fiber connection.
3581 *****************************************************************************/
3582static int
3583e1000_force_mac_fc(struct e1000_hw *hw)
3584{
3585 uint32_t ctrl;
3586
3587 DEBUGFUNC();
3588
3589 /* Get the current configuration of the Device Control Register */
3590 ctrl = E1000_READ_REG(hw, CTRL);
3591
3592 /* Because we didn't get link via the internal auto-negotiation
3593 * mechanism (we either forced link or we got link via PHY
3594 * auto-neg), we have to manually enable/disable transmit an
3595 * receive flow control.
3596 *
3597 * The "Case" statement below enables/disable flow control
3598 * according to the "hw->fc" parameter.
3599 *
3600 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003601 * 0: Flow control is completely disabled
3602 * 1: Rx flow control is enabled (we can receive pause
3603 * frames but not send pause frames).
3604 * 2: Tx flow control is enabled (we can send pause frames
3605 * frames but we do not receive pause frames).
3606 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk4e112c12003-06-03 23:54:09 +00003607 * other: No other values should be possible at this point.
3608 */
3609
3610 switch (hw->fc) {
3611 case e1000_fc_none:
3612 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3613 break;
3614 case e1000_fc_rx_pause:
3615 ctrl &= (~E1000_CTRL_TFCE);
3616 ctrl |= E1000_CTRL_RFCE;
3617 break;
3618 case e1000_fc_tx_pause:
3619 ctrl &= (~E1000_CTRL_RFCE);
3620 ctrl |= E1000_CTRL_TFCE;
3621 break;
3622 case e1000_fc_full:
3623 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3624 break;
3625 default:
3626 DEBUGOUT("Flow control param set incorrectly\n");
3627 return -E1000_ERR_CONFIG;
3628 }
3629
3630 /* Disable TX Flow Control for 82542 (rev 2.0) */
3631 if (hw->mac_type == e1000_82542_rev2_0)
3632 ctrl &= (~E1000_CTRL_TFCE);
3633
3634 E1000_WRITE_REG(hw, CTRL, ctrl);
3635 return 0;
3636}
3637
3638/******************************************************************************
3639 * Configures flow control settings after link is established
wdenk57b2d802003-06-27 21:31:46 +00003640 *
wdenk4e112c12003-06-03 23:54:09 +00003641 * hw - Struct containing variables accessed by shared code
3642 *
3643 * Should be called immediately after a valid link has been established.
3644 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3645 * and autonegotiation is enabled, the MAC flow control settings will be set
3646 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3647 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3648 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003649static int32_t
wdenk4e112c12003-06-03 23:54:09 +00003650e1000_config_fc_after_link_up(struct e1000_hw *hw)
3651{
3652 int32_t ret_val;
3653 uint16_t mii_status_reg;
3654 uint16_t mii_nway_adv_reg;
3655 uint16_t mii_nway_lp_ability_reg;
3656 uint16_t speed;
3657 uint16_t duplex;
3658
3659 DEBUGFUNC();
3660
3661 /* Check for the case where we have fiber media and auto-neg failed
3662 * so we had to force link. In this case, we need to force the
3663 * configuration of the MAC to match the "fc" parameter.
3664 */
Roy Zang28f7a052009-07-31 13:34:02 +08003665 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3666 || ((hw->media_type == e1000_media_type_internal_serdes)
3667 && (hw->autoneg_failed))
3668 || ((hw->media_type == e1000_media_type_copper)
3669 && (!hw->autoneg))) {
wdenk4e112c12003-06-03 23:54:09 +00003670 ret_val = e1000_force_mac_fc(hw);
3671 if (ret_val < 0) {
3672 DEBUGOUT("Error forcing flow control settings\n");
3673 return ret_val;
3674 }
3675 }
3676
3677 /* Check for the case where we have copper media and auto-neg is
3678 * enabled. In this case, we need to check and see if Auto-Neg
3679 * has completed, and if so, how the PHY and link partner has
3680 * flow control configured.
3681 */
3682 if (hw->media_type == e1000_media_type_copper) {
3683 /* Read the MII Status Register and check to see if AutoNeg
3684 * has completed. We read this twice because this reg has
3685 * some "sticky" (latched) bits.
3686 */
3687 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
Minghuan Lian674bcd52015-03-19 09:43:51 -07003688 DEBUGOUT("PHY Read Error\n");
wdenk4e112c12003-06-03 23:54:09 +00003689 return -E1000_ERR_PHY;
3690 }
3691 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
Minghuan Lian674bcd52015-03-19 09:43:51 -07003692 DEBUGOUT("PHY Read Error\n");
wdenk4e112c12003-06-03 23:54:09 +00003693 return -E1000_ERR_PHY;
3694 }
3695
3696 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3697 /* The AutoNeg process has completed, so we now need to
3698 * read both the Auto Negotiation Advertisement Register
3699 * (Address 4) and the Auto_Negotiation Base Page Ability
3700 * Register (Address 5) to determine how flow control was
3701 * negotiated.
3702 */
3703 if (e1000_read_phy_reg
3704 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3705 DEBUGOUT("PHY Read Error\n");
3706 return -E1000_ERR_PHY;
3707 }
3708 if (e1000_read_phy_reg
3709 (hw, PHY_LP_ABILITY,
3710 &mii_nway_lp_ability_reg) < 0) {
3711 DEBUGOUT("PHY Read Error\n");
3712 return -E1000_ERR_PHY;
3713 }
3714
3715 /* Two bits in the Auto Negotiation Advertisement Register
3716 * (Address 4) and two bits in the Auto Negotiation Base
3717 * Page Ability Register (Address 5) determine flow control
3718 * for both the PHY and the link partner. The following
3719 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3720 * 1999, describes these PAUSE resolution bits and how flow
3721 * control is determined based upon these settings.
3722 * NOTE: DC = Don't Care
3723 *
3724 * LOCAL DEVICE | LINK PARTNER
3725 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3726 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003727 * 0 | 0 | DC | DC | e1000_fc_none
3728 * 0 | 1 | 0 | DC | e1000_fc_none
3729 * 0 | 1 | 1 | 0 | e1000_fc_none
3730 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3731 * 1 | 0 | 0 | DC | e1000_fc_none
3732 * 1 | DC | 1 | DC | e1000_fc_full
3733 * 1 | 1 | 0 | 0 | e1000_fc_none
3734 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003735 *
3736 */
3737 /* Are both PAUSE bits set to 1? If so, this implies
3738 * Symmetric Flow Control is enabled at both ends. The
3739 * ASM_DIR bits are irrelevant per the spec.
3740 *
3741 * For Symmetric Flow Control:
3742 *
3743 * LOCAL DEVICE | LINK PARTNER
3744 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3745 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003746 * 1 | DC | 1 | DC | e1000_fc_full
wdenk4e112c12003-06-03 23:54:09 +00003747 *
3748 */
3749 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3750 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3751 /* Now we need to check if the user selected RX ONLY
3752 * of pause frames. In this case, we had to advertise
3753 * FULL flow control because we could not advertise RX
3754 * ONLY. Hence, we must now check to see if we need to
3755 * turn OFF the TRANSMISSION of PAUSE frames.
3756 */
3757 if (hw->original_fc == e1000_fc_full) {
3758 hw->fc = e1000_fc_full;
3759 DEBUGOUT("Flow Control = FULL.\r\n");
3760 } else {
3761 hw->fc = e1000_fc_rx_pause;
3762 DEBUGOUT
3763 ("Flow Control = RX PAUSE frames only.\r\n");
3764 }
3765 }
3766 /* For receiving PAUSE frames ONLY.
3767 *
3768 * LOCAL DEVICE | LINK PARTNER
3769 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3770 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003771 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk4e112c12003-06-03 23:54:09 +00003772 *
3773 */
3774 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3775 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3776 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3777 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3778 {
3779 hw->fc = e1000_fc_tx_pause;
3780 DEBUGOUT
3781 ("Flow Control = TX PAUSE frames only.\r\n");
3782 }
3783 /* For transmitting PAUSE frames ONLY.
3784 *
3785 * LOCAL DEVICE | LINK PARTNER
3786 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3787 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003788 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003789 *
3790 */
3791 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3792 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3793 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3794 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3795 {
3796 hw->fc = e1000_fc_rx_pause;
3797 DEBUGOUT
3798 ("Flow Control = RX PAUSE frames only.\r\n");
3799 }
3800 /* Per the IEEE spec, at this point flow control should be
3801 * disabled. However, we want to consider that we could
3802 * be connected to a legacy switch that doesn't advertise
3803 * desired flow control, but can be forced on the link
3804 * partner. So if we advertised no flow control, that is
3805 * what we will resolve to. If we advertised some kind of
3806 * receive capability (Rx Pause Only or Full Flow Control)
3807 * and the link partner advertised none, we will configure
3808 * ourselves to enable Rx Flow Control only. We can do
3809 * this safely for two reasons: If the link partner really
3810 * didn't want flow control enabled, and we enable Rx, no
3811 * harm done since we won't be receiving any PAUSE frames
3812 * anyway. If the intent on the link partner was to have
3813 * flow control enabled, then by us enabling RX only, we
3814 * can at least receive pause frames and process them.
3815 * This is a good idea because in most cases, since we are
3816 * predominantly a server NIC, more times than not we will
3817 * be asked to delay transmission of packets than asking
3818 * our link partner to pause transmission of frames.
3819 */
3820 else if (hw->original_fc == e1000_fc_none ||
3821 hw->original_fc == e1000_fc_tx_pause) {
3822 hw->fc = e1000_fc_none;
3823 DEBUGOUT("Flow Control = NONE.\r\n");
3824 } else {
3825 hw->fc = e1000_fc_rx_pause;
3826 DEBUGOUT
3827 ("Flow Control = RX PAUSE frames only.\r\n");
3828 }
3829
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003830 /* Now we need to do one last check... If we auto-
wdenk4e112c12003-06-03 23:54:09 +00003831 * negotiated to HALF DUPLEX, flow control should not be
3832 * enabled per IEEE 802.3 spec.
3833 */
3834 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3835
3836 if (duplex == HALF_DUPLEX)
3837 hw->fc = e1000_fc_none;
3838
3839 /* Now we call a subroutine to actually force the MAC
3840 * controller to use the correct flow control settings.
3841 */
3842 ret_val = e1000_force_mac_fc(hw);
3843 if (ret_val < 0) {
3844 DEBUGOUT
3845 ("Error forcing flow control settings\n");
3846 return ret_val;
3847 }
3848 } else {
3849 DEBUGOUT
3850 ("Copper PHY and Auto Neg has not completed.\r\n");
3851 }
3852 }
Roy Zang28f7a052009-07-31 13:34:02 +08003853 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003854}
3855
3856/******************************************************************************
3857 * Checks to see if the link status of the hardware has changed.
3858 *
3859 * hw - Struct containing variables accessed by shared code
3860 *
3861 * Called by any function that needs to check the link status of the adapter.
3862 *****************************************************************************/
3863static int
Simon Glassc53abc32015-08-19 09:33:39 -06003864e1000_check_for_link(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00003865{
wdenk4e112c12003-06-03 23:54:09 +00003866 uint32_t rxcw;
3867 uint32_t ctrl;
3868 uint32_t status;
3869 uint32_t rctl;
3870 uint32_t signal;
3871 int32_t ret_val;
3872 uint16_t phy_data;
3873 uint16_t lp_capability;
3874
3875 DEBUGFUNC();
3876
wdenk57b2d802003-06-27 21:31:46 +00003877 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3878 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00003879 * cleared when there is a signal
3880 */
3881 ctrl = E1000_READ_REG(hw, CTRL);
3882 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3883 signal = E1000_CTRL_SWDPIN1;
3884 else
3885 signal = 0;
3886
3887 status = E1000_READ_REG(hw, STATUS);
3888 rxcw = E1000_READ_REG(hw, RXCW);
3889 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3890
3891 /* If we have a copper PHY then we only want to go out to the PHY
3892 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003893 * status has changed. The get_link_status flag will be set if we
wdenk4e112c12003-06-03 23:54:09 +00003894 * receive a Link Status Change interrupt or we have Rx Sequence
3895 * Errors.
3896 */
3897 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3898 /* First we want to see if the MII Status Register reports
3899 * link. If so, then we want to get the current speed/duplex
3900 * of the PHY.
3901 * Read the register twice since the link bit is sticky.
3902 */
3903 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3904 DEBUGOUT("PHY Read Error\n");
3905 return -E1000_ERR_PHY;
3906 }
3907 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3908 DEBUGOUT("PHY Read Error\n");
3909 return -E1000_ERR_PHY;
3910 }
3911
3912 if (phy_data & MII_SR_LINK_STATUS) {
York Sun4a598092013-04-01 11:29:11 -07003913 hw->get_link_status = false;
wdenk4e112c12003-06-03 23:54:09 +00003914 } else {
3915 /* No link detected */
3916 return -E1000_ERR_NOLINK;
3917 }
3918
3919 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3920 * have Si on board that is 82544 or newer, Auto
3921 * Speed Detection takes care of MAC speed/duplex
3922 * configuration. So we only need to configure Collision
3923 * Distance in the MAC. Otherwise, we need to force
3924 * speed/duplex on the MAC to the current PHY speed/duplex
3925 * settings.
3926 */
3927 if (hw->mac_type >= e1000_82544)
3928 e1000_config_collision_dist(hw);
3929 else {
3930 ret_val = e1000_config_mac_to_phy(hw);
3931 if (ret_val < 0) {
3932 DEBUGOUT
3933 ("Error configuring MAC to PHY settings\n");
3934 return ret_val;
3935 }
3936 }
3937
wdenk57b2d802003-06-27 21:31:46 +00003938 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk4e112c12003-06-03 23:54:09 +00003939 * need to restore the desired flow control settings because we may
3940 * have had to re-autoneg with a different link partner.
3941 */
3942 ret_val = e1000_config_fc_after_link_up(hw);
3943 if (ret_val < 0) {
3944 DEBUGOUT("Error configuring flow control\n");
3945 return ret_val;
3946 }
3947
3948 /* At this point we know that we are on copper and we have
3949 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003950 * parter capability register. We use the link partner capability to
wdenk4e112c12003-06-03 23:54:09 +00003951 * determine if TBI Compatibility needs to be turned on or off. If
3952 * the link partner advertises any speed in addition to Gigabit, then
3953 * we assume that they are GMII-based, and TBI compatibility is not
3954 * needed. If no other speeds are advertised, we assume the link
3955 * partner is TBI-based, and we turn on TBI Compatibility.
3956 */
3957 if (hw->tbi_compatibility_en) {
3958 if (e1000_read_phy_reg
3959 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3960 DEBUGOUT("PHY Read Error\n");
3961 return -E1000_ERR_PHY;
3962 }
3963 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3964 NWAY_LPAR_10T_FD_CAPS |
3965 NWAY_LPAR_100TX_HD_CAPS |
3966 NWAY_LPAR_100TX_FD_CAPS |
3967 NWAY_LPAR_100T4_CAPS)) {
wdenk57b2d802003-06-27 21:31:46 +00003968 /* If our link partner advertises anything in addition to
wdenk4e112c12003-06-03 23:54:09 +00003969 * gigabit, we do not need to enable TBI compatibility.
3970 */
3971 if (hw->tbi_compatibility_on) {
3972 /* If we previously were in the mode, turn it off. */
3973 rctl = E1000_READ_REG(hw, RCTL);
3974 rctl &= ~E1000_RCTL_SBP;
3975 E1000_WRITE_REG(hw, RCTL, rctl);
York Sun4a598092013-04-01 11:29:11 -07003976 hw->tbi_compatibility_on = false;
wdenk4e112c12003-06-03 23:54:09 +00003977 }
3978 } else {
3979 /* If TBI compatibility is was previously off, turn it on. For
3980 * compatibility with a TBI link partner, we will store bad
3981 * packets. Some frames have an additional byte on the end and
3982 * will look like CRC errors to to the hardware.
3983 */
3984 if (!hw->tbi_compatibility_on) {
York Sun4a598092013-04-01 11:29:11 -07003985 hw->tbi_compatibility_on = true;
wdenk4e112c12003-06-03 23:54:09 +00003986 rctl = E1000_READ_REG(hw, RCTL);
3987 rctl |= E1000_RCTL_SBP;
3988 E1000_WRITE_REG(hw, RCTL, rctl);
3989 }
3990 }
3991 }
3992 }
3993 /* If we don't have link (auto-negotiation failed or link partner cannot
3994 * auto-negotiate), the cable is plugged in (we have signal), and our
3995 * link partner is not trying to auto-negotiate with us (we are receiving
3996 * idles or data), we need to force link up. We also need to give
3997 * auto-negotiation time to complete, in case the cable was just plugged
3998 * in. The autoneg_failed flag does this.
3999 */
4000 else if ((hw->media_type == e1000_media_type_fiber) &&
4001 (!(status & E1000_STATUS_LU)) &&
4002 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
4003 (!(rxcw & E1000_RXCW_C))) {
4004 if (hw->autoneg_failed == 0) {
4005 hw->autoneg_failed = 1;
4006 return 0;
4007 }
4008 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
4009
4010 /* Disable auto-negotiation in the TXCW register */
4011 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
4012
4013 /* Force link-up and also force full-duplex. */
4014 ctrl = E1000_READ_REG(hw, CTRL);
4015 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
4016 E1000_WRITE_REG(hw, CTRL, ctrl);
4017
4018 /* Configure Flow Control after forcing link up. */
4019 ret_val = e1000_config_fc_after_link_up(hw);
4020 if (ret_val < 0) {
4021 DEBUGOUT("Error configuring flow control\n");
4022 return ret_val;
4023 }
4024 }
4025 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
4026 * auto-negotiation in the TXCW register and disable forced link in the
4027 * Device Control register in an attempt to auto-negotiate with our link
4028 * partner.
4029 */
4030 else if ((hw->media_type == e1000_media_type_fiber) &&
4031 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
4032 DEBUGOUT
4033 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
4034 E1000_WRITE_REG(hw, TXCW, hw->txcw);
4035 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
4036 }
4037 return 0;
4038}
4039
4040/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08004041* Configure the MAC-to-PHY interface for 10/100Mbps
4042*
4043* hw - Struct containing variables accessed by shared code
4044******************************************************************************/
4045static int32_t
4046e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
4047{
4048 int32_t ret_val = E1000_SUCCESS;
4049 uint32_t tipg;
4050 uint16_t reg_data;
4051
4052 DEBUGFUNC();
4053
4054 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
4055 ret_val = e1000_write_kmrn_reg(hw,
4056 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4057 if (ret_val)
4058 return ret_val;
4059
4060 /* Configure Transmit Inter-Packet Gap */
4061 tipg = E1000_READ_REG(hw, TIPG);
4062 tipg &= ~E1000_TIPG_IPGT_MASK;
4063 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
4064 E1000_WRITE_REG(hw, TIPG, tipg);
4065
4066 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4067
4068 if (ret_val)
4069 return ret_val;
4070
4071 if (duplex == HALF_DUPLEX)
4072 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
4073 else
4074 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4075
4076 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4077
4078 return ret_val;
4079}
4080
4081static int32_t
4082e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
4083{
4084 int32_t ret_val = E1000_SUCCESS;
4085 uint16_t reg_data;
4086 uint32_t tipg;
4087
4088 DEBUGFUNC();
4089
4090 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
4091 ret_val = e1000_write_kmrn_reg(hw,
4092 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
4093 if (ret_val)
4094 return ret_val;
4095
4096 /* Configure Transmit Inter-Packet Gap */
4097 tipg = E1000_READ_REG(hw, TIPG);
4098 tipg &= ~E1000_TIPG_IPGT_MASK;
4099 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
4100 E1000_WRITE_REG(hw, TIPG, tipg);
4101
4102 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
4103
4104 if (ret_val)
4105 return ret_val;
4106
4107 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
4108 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
4109
4110 return ret_val;
4111}
4112
4113/******************************************************************************
wdenk4e112c12003-06-03 23:54:09 +00004114 * Detects the current speed and duplex settings of the hardware.
4115 *
4116 * hw - Struct containing variables accessed by shared code
4117 * speed - Speed of the connection
4118 * duplex - Duplex setting of the connection
4119 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004120static int
4121e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
4122 uint16_t *duplex)
wdenk4e112c12003-06-03 23:54:09 +00004123{
4124 uint32_t status;
Roy Zang28f7a052009-07-31 13:34:02 +08004125 int32_t ret_val;
4126 uint16_t phy_data;
wdenk4e112c12003-06-03 23:54:09 +00004127
4128 DEBUGFUNC();
4129
4130 if (hw->mac_type >= e1000_82543) {
4131 status = E1000_READ_REG(hw, STATUS);
4132 if (status & E1000_STATUS_SPEED_1000) {
4133 *speed = SPEED_1000;
4134 DEBUGOUT("1000 Mbs, ");
4135 } else if (status & E1000_STATUS_SPEED_100) {
4136 *speed = SPEED_100;
4137 DEBUGOUT("100 Mbs, ");
4138 } else {
4139 *speed = SPEED_10;
4140 DEBUGOUT("10 Mbs, ");
4141 }
4142
4143 if (status & E1000_STATUS_FD) {
4144 *duplex = FULL_DUPLEX;
4145 DEBUGOUT("Full Duplex\r\n");
4146 } else {
4147 *duplex = HALF_DUPLEX;
4148 DEBUGOUT(" Half Duplex\r\n");
4149 }
4150 } else {
4151 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
4152 *speed = SPEED_1000;
4153 *duplex = FULL_DUPLEX;
4154 }
Roy Zang28f7a052009-07-31 13:34:02 +08004155
4156 /* IGP01 PHY may advertise full duplex operation after speed downgrade
4157 * even if it is operating at half duplex. Here we set the duplex
4158 * settings to match the duplex in the link partner's capabilities.
4159 */
4160 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
4161 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
4162 if (ret_val)
4163 return ret_val;
4164
4165 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
4166 *duplex = HALF_DUPLEX;
4167 else {
4168 ret_val = e1000_read_phy_reg(hw,
4169 PHY_LP_ABILITY, &phy_data);
4170 if (ret_val)
4171 return ret_val;
4172 if ((*speed == SPEED_100 &&
4173 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
4174 || (*speed == SPEED_10
4175 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
4176 *duplex = HALF_DUPLEX;
4177 }
4178 }
4179
4180 if ((hw->mac_type == e1000_80003es2lan) &&
4181 (hw->media_type == e1000_media_type_copper)) {
4182 if (*speed == SPEED_1000)
4183 ret_val = e1000_configure_kmrn_for_1000(hw);
4184 else
4185 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
4186 if (ret_val)
4187 return ret_val;
4188 }
4189 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004190}
4191
4192/******************************************************************************
4193* Blocks until autoneg completes or times out (~4.5 seconds)
4194*
4195* hw - Struct containing variables accessed by shared code
4196******************************************************************************/
4197static int
4198e1000_wait_autoneg(struct e1000_hw *hw)
4199{
4200 uint16_t i;
4201 uint16_t phy_data;
4202
4203 DEBUGFUNC();
4204 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
4205
Stefan Roese497c7312015-08-11 17:12:44 +02004206 /* We will wait for autoneg to complete or timeout to expire. */
wdenk4e112c12003-06-03 23:54:09 +00004207 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
4208 /* Read the MII Status Register and wait for Auto-Neg
4209 * Complete bit to be set.
4210 */
4211 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4212 DEBUGOUT("PHY Read Error\n");
4213 return -E1000_ERR_PHY;
4214 }
4215 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
4216 DEBUGOUT("PHY Read Error\n");
4217 return -E1000_ERR_PHY;
4218 }
4219 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4220 DEBUGOUT("Auto-Neg complete.\n");
4221 return 0;
4222 }
4223 mdelay(100);
4224 }
4225 DEBUGOUT("Auto-Neg timedout.\n");
4226 return -E1000_ERR_TIMEOUT;
4227}
4228
4229/******************************************************************************
4230* Raises the Management Data Clock
4231*
4232* hw - Struct containing variables accessed by shared code
4233* ctrl - Device control register's current value
4234******************************************************************************/
4235static void
4236e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4237{
4238 /* Raise the clock input to the Management Data Clock (by setting the MDC
4239 * bit), and then delay 2 microseconds.
4240 */
4241 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4242 E1000_WRITE_FLUSH(hw);
4243 udelay(2);
4244}
4245
4246/******************************************************************************
4247* Lowers the Management Data Clock
4248*
4249* hw - Struct containing variables accessed by shared code
4250* ctrl - Device control register's current value
4251******************************************************************************/
4252static void
4253e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4254{
4255 /* Lower the clock input to the Management Data Clock (by clearing the MDC
4256 * bit), and then delay 2 microseconds.
4257 */
4258 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4259 E1000_WRITE_FLUSH(hw);
4260 udelay(2);
4261}
4262
4263/******************************************************************************
4264* Shifts data bits out to the PHY
4265*
4266* hw - Struct containing variables accessed by shared code
4267* data - Data to send out to the PHY
4268* count - Number of bits to shift out
4269*
4270* Bits are shifted out in MSB to LSB order.
4271******************************************************************************/
4272static void
4273e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4274{
4275 uint32_t ctrl;
4276 uint32_t mask;
4277
4278 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk57b2d802003-06-27 21:31:46 +00004279 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk4e112c12003-06-03 23:54:09 +00004280 * time. In order to do this, "data" must be broken down into bits.
4281 */
4282 mask = 0x01;
4283 mask <<= (count - 1);
4284
4285 ctrl = E1000_READ_REG(hw, CTRL);
4286
4287 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4288 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4289
4290 while (mask) {
4291 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4292 * then raising and lowering the Management Data Clock. A "0" is
4293 * shifted out to the PHY by setting the MDIO bit to "0" and then
4294 * raising and lowering the clock.
4295 */
4296 if (data & mask)
4297 ctrl |= E1000_CTRL_MDIO;
4298 else
4299 ctrl &= ~E1000_CTRL_MDIO;
4300
4301 E1000_WRITE_REG(hw, CTRL, ctrl);
4302 E1000_WRITE_FLUSH(hw);
4303
4304 udelay(2);
4305
4306 e1000_raise_mdi_clk(hw, &ctrl);
4307 e1000_lower_mdi_clk(hw, &ctrl);
4308
4309 mask = mask >> 1;
4310 }
4311}
4312
4313/******************************************************************************
4314* Shifts data bits in from the PHY
4315*
4316* hw - Struct containing variables accessed by shared code
4317*
wdenk57b2d802003-06-27 21:31:46 +00004318* Bits are shifted in in MSB to LSB order.
wdenk4e112c12003-06-03 23:54:09 +00004319******************************************************************************/
4320static uint16_t
4321e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4322{
4323 uint32_t ctrl;
4324 uint16_t data = 0;
4325 uint8_t i;
4326
4327 /* In order to read a register from the PHY, we need to shift in a total
4328 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4329 * to avoid contention on the MDIO pin when a read operation is performed.
4330 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4331 * by raising the input to the Management Data Clock (setting the MDC bit),
4332 * and then reading the value of the MDIO bit.
4333 */
4334 ctrl = E1000_READ_REG(hw, CTRL);
4335
4336 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4337 ctrl &= ~E1000_CTRL_MDIO_DIR;
4338 ctrl &= ~E1000_CTRL_MDIO;
4339
4340 E1000_WRITE_REG(hw, CTRL, ctrl);
4341 E1000_WRITE_FLUSH(hw);
4342
4343 /* Raise and Lower the clock before reading in the data. This accounts for
4344 * the turnaround bits. The first clock occurred when we clocked out the
4345 * last bit of the Register Address.
4346 */
4347 e1000_raise_mdi_clk(hw, &ctrl);
4348 e1000_lower_mdi_clk(hw, &ctrl);
4349
4350 for (data = 0, i = 0; i < 16; i++) {
4351 data = data << 1;
4352 e1000_raise_mdi_clk(hw, &ctrl);
4353 ctrl = E1000_READ_REG(hw, CTRL);
4354 /* Check to see if we shifted in a "1". */
4355 if (ctrl & E1000_CTRL_MDIO)
4356 data |= 1;
4357 e1000_lower_mdi_clk(hw, &ctrl);
4358 }
4359
4360 e1000_raise_mdi_clk(hw, &ctrl);
4361 e1000_lower_mdi_clk(hw, &ctrl);
4362
4363 return data;
4364}
4365
4366/*****************************************************************************
4367* Reads the value from a PHY register
4368*
4369* hw - Struct containing variables accessed by shared code
4370* reg_addr - address of the PHY register to read
4371******************************************************************************/
4372static int
4373e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4374{
4375 uint32_t i;
4376 uint32_t mdic = 0;
4377 const uint32_t phy_addr = 1;
4378
4379 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4380 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4381 return -E1000_ERR_PARAM;
4382 }
4383
4384 if (hw->mac_type > e1000_82543) {
4385 /* Set up Op-code, Phy Address, and register address in the MDI
4386 * Control register. The MAC will take care of interfacing with the
4387 * PHY to retrieve the desired data.
4388 */
4389 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4390 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4391 (E1000_MDIC_OP_READ));
4392
4393 E1000_WRITE_REG(hw, MDIC, mdic);
4394
4395 /* Poll the ready bit to see if the MDI read completed */
4396 for (i = 0; i < 64; i++) {
4397 udelay(10);
4398 mdic = E1000_READ_REG(hw, MDIC);
4399 if (mdic & E1000_MDIC_READY)
4400 break;
4401 }
4402 if (!(mdic & E1000_MDIC_READY)) {
4403 DEBUGOUT("MDI Read did not complete\n");
4404 return -E1000_ERR_PHY;
4405 }
4406 if (mdic & E1000_MDIC_ERROR) {
4407 DEBUGOUT("MDI Error\n");
4408 return -E1000_ERR_PHY;
4409 }
4410 *phy_data = (uint16_t) mdic;
4411 } else {
4412 /* We must first send a preamble through the MDIO pin to signal the
4413 * beginning of an MII instruction. This is done by sending 32
4414 * consecutive "1" bits.
4415 */
4416 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4417
4418 /* Now combine the next few fields that are required for a read
4419 * operation. We use this method instead of calling the
4420 * e1000_shift_out_mdi_bits routine five different times. The format of
4421 * a MII read instruction consists of a shift out of 14 bits and is
4422 * defined as follows:
4423 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4424 * followed by a shift in of 18 bits. This first two bits shifted in
4425 * are TurnAround bits used to avoid contention on the MDIO pin when a
4426 * READ operation is performed. These two bits are thrown away
4427 * followed by a shift in of 16 bits which contains the desired data.
4428 */
4429 mdic = ((reg_addr) | (phy_addr << 5) |
4430 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4431
4432 e1000_shift_out_mdi_bits(hw, mdic, 14);
4433
4434 /* Now that we've shifted out the read command to the MII, we need to
4435 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4436 * register address.
4437 */
4438 *phy_data = e1000_shift_in_mdi_bits(hw);
4439 }
4440 return 0;
4441}
4442
4443/******************************************************************************
4444* Writes a value to a PHY register
4445*
4446* hw - Struct containing variables accessed by shared code
4447* reg_addr - address of the PHY register to write
4448* data - data to write to the PHY
4449******************************************************************************/
4450static int
4451e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4452{
4453 uint32_t i;
4454 uint32_t mdic = 0;
4455 const uint32_t phy_addr = 1;
4456
4457 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4458 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4459 return -E1000_ERR_PARAM;
4460 }
4461
4462 if (hw->mac_type > e1000_82543) {
4463 /* Set up Op-code, Phy Address, register address, and data intended
4464 * for the PHY register in the MDI Control register. The MAC will take
4465 * care of interfacing with the PHY to send the desired data.
4466 */
4467 mdic = (((uint32_t) phy_data) |
4468 (reg_addr << E1000_MDIC_REG_SHIFT) |
4469 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4470 (E1000_MDIC_OP_WRITE));
4471
4472 E1000_WRITE_REG(hw, MDIC, mdic);
4473
4474 /* Poll the ready bit to see if the MDI read completed */
4475 for (i = 0; i < 64; i++) {
4476 udelay(10);
4477 mdic = E1000_READ_REG(hw, MDIC);
4478 if (mdic & E1000_MDIC_READY)
4479 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004480 }
4481 if (!(mdic & E1000_MDIC_READY)) {
4482 DEBUGOUT("MDI Write did not complete\n");
4483 return -E1000_ERR_PHY;
4484 }
4485 } else {
4486 /* We'll need to use the SW defined pins to shift the write command
4487 * out to the PHY. We first send a preamble to the PHY to signal the
4488 * beginning of the MII instruction. This is done by sending 32
4489 * consecutive "1" bits.
4490 */
4491 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4492
4493 /* Now combine the remaining required fields that will indicate a
4494 * write operation. We use this method instead of calling the
4495 * e1000_shift_out_mdi_bits routine for each field in the command. The
4496 * format of a MII write instruction is as follows:
4497 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4498 */
4499 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4500 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4501 mdic <<= 16;
4502 mdic |= (uint32_t) phy_data;
4503
4504 e1000_shift_out_mdi_bits(hw, mdic, 32);
4505 }
4506 return 0;
4507}
4508
4509/******************************************************************************
4510 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4511 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4512 * the caller to figure out how to deal with it.
4513 *
4514 * hw - Struct containing variables accessed by shared code
4515 *
4516 * returns: - E1000_BLK_PHY_RESET
4517 * E1000_SUCCESS
4518 *
4519 *****************************************************************************/
4520int32_t
4521e1000_check_phy_reset_block(struct e1000_hw *hw)
4522{
4523 uint32_t manc = 0;
4524 uint32_t fwsm = 0;
4525
4526 if (hw->mac_type == e1000_ich8lan) {
4527 fwsm = E1000_READ_REG(hw, FWSM);
4528 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4529 : E1000_BLK_PHY_RESET;
4530 }
4531
4532 if (hw->mac_type > e1000_82547_rev_2)
4533 manc = E1000_READ_REG(hw, MANC);
4534 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4535 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4536}
4537
4538/***************************************************************************
4539 * Checks if the PHY configuration is done
4540 *
4541 * hw: Struct containing variables accessed by shared code
4542 *
4543 * returns: - E1000_ERR_RESET if fail to reset MAC
4544 * E1000_SUCCESS at any other case.
4545 *
4546 ***************************************************************************/
4547static int32_t
4548e1000_get_phy_cfg_done(struct e1000_hw *hw)
4549{
4550 int32_t timeout = PHY_CFG_TIMEOUT;
4551 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4552
4553 DEBUGFUNC();
4554
4555 switch (hw->mac_type) {
4556 default:
4557 mdelay(10);
4558 break;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004559
Roy Zang28f7a052009-07-31 13:34:02 +08004560 case e1000_80003es2lan:
4561 /* Separate *_CFG_DONE_* bit for each port */
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004562 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004563 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004564 /* Fall Through */
4565
Roy Zang28f7a052009-07-31 13:34:02 +08004566 case e1000_82571:
4567 case e1000_82572:
Marek Vasut74a13c22014-08-08 07:41:39 -07004568 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08004569 while (timeout) {
Marek Vasut74a13c22014-08-08 07:41:39 -07004570 if (hw->mac_type == e1000_igb) {
4571 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4572 break;
4573 } else {
4574 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4575 break;
4576 }
4577 mdelay(1);
Roy Zang28f7a052009-07-31 13:34:02 +08004578 timeout--;
wdenk4e112c12003-06-03 23:54:09 +00004579 }
Roy Zang28f7a052009-07-31 13:34:02 +08004580 if (!timeout) {
4581 DEBUGOUT("MNG configuration cycle has not "
4582 "completed.\n");
4583 return -E1000_ERR_RESET;
wdenk4e112c12003-06-03 23:54:09 +00004584 }
Roy Zang28f7a052009-07-31 13:34:02 +08004585 break;
wdenk4e112c12003-06-03 23:54:09 +00004586 }
Roy Zang28f7a052009-07-31 13:34:02 +08004587
4588 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004589}
4590
4591/******************************************************************************
4592* Returns the PHY to the power-on reset state
4593*
4594* hw - Struct containing variables accessed by shared code
4595******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004596int32_t
wdenk4e112c12003-06-03 23:54:09 +00004597e1000_phy_hw_reset(struct e1000_hw *hw)
4598{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004599 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08004600 uint32_t ctrl, ctrl_ext;
4601 uint32_t led_ctrl;
4602 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004603
4604 DEBUGFUNC();
4605
Roy Zang28f7a052009-07-31 13:34:02 +08004606 /* In the case of the phy reset being blocked, it's not an error, we
4607 * simply return success without performing the reset. */
4608 ret_val = e1000_check_phy_reset_block(hw);
4609 if (ret_val)
4610 return E1000_SUCCESS;
4611
wdenk4e112c12003-06-03 23:54:09 +00004612 DEBUGOUT("Resetting Phy...\n");
4613
4614 if (hw->mac_type > e1000_82543) {
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004615 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004616 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004617
Roy Zang28f7a052009-07-31 13:34:02 +08004618 if (e1000_swfw_sync_acquire(hw, swfw)) {
4619 DEBUGOUT("Unable to acquire swfw sync\n");
4620 return -E1000_ERR_SWFW_SYNC;
4621 }
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004622
wdenk4e112c12003-06-03 23:54:09 +00004623 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4624 * bit. Then, take it out of reset.
4625 */
4626 ctrl = E1000_READ_REG(hw, CTRL);
4627 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4628 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004629
4630 if (hw->mac_type < e1000_82571)
4631 udelay(10);
4632 else
4633 udelay(100);
4634
wdenk4e112c12003-06-03 23:54:09 +00004635 E1000_WRITE_REG(hw, CTRL, ctrl);
4636 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004637
4638 if (hw->mac_type >= e1000_82571)
4639 mdelay(10);
Tim Harveydca35652015-05-19 10:01:19 -07004640
wdenk4e112c12003-06-03 23:54:09 +00004641 } else {
4642 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4643 * bit to put the PHY into reset. Then, take it out of reset.
4644 */
4645 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4646 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4647 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4648 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4649 E1000_WRITE_FLUSH(hw);
4650 mdelay(10);
4651 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4652 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4653 E1000_WRITE_FLUSH(hw);
4654 }
4655 udelay(150);
Roy Zang28f7a052009-07-31 13:34:02 +08004656
4657 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4658 /* Configure activity LED after PHY reset */
4659 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4660 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4661 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4662 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4663 }
4664
Tim Harvey5cb59ec2015-05-19 10:01:18 -07004665 e1000_swfw_sync_release(hw, swfw);
4666
Roy Zang28f7a052009-07-31 13:34:02 +08004667 /* Wait for FW to finish PHY configuration. */
4668 ret_val = e1000_get_phy_cfg_done(hw);
4669 if (ret_val != E1000_SUCCESS)
4670 return ret_val;
4671
4672 return ret_val;
4673}
4674
4675/******************************************************************************
4676 * IGP phy init script - initializes the GbE PHY
4677 *
4678 * hw - Struct containing variables accessed by shared code
4679 *****************************************************************************/
4680static void
4681e1000_phy_init_script(struct e1000_hw *hw)
4682{
4683 uint32_t ret_val;
4684 uint16_t phy_saved_data;
4685 DEBUGFUNC();
4686
4687 if (hw->phy_init_script) {
4688 mdelay(20);
4689
4690 /* Save off the current value of register 0x2F5B to be
4691 * restored at the end of this routine. */
4692 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4693
4694 /* Disabled the PHY transmitter */
4695 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4696
4697 mdelay(20);
4698
4699 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4700
4701 mdelay(5);
4702
4703 switch (hw->mac_type) {
4704 case e1000_82541:
4705 case e1000_82547:
4706 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4707
4708 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4709
4710 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4711
4712 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4713
4714 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4715
4716 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4717
4718 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4719
4720 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4721
4722 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4723 break;
4724
4725 case e1000_82541_rev_2:
4726 case e1000_82547_rev_2:
4727 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4728 break;
4729 default:
4730 break;
4731 }
4732
4733 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4734
4735 mdelay(20);
4736
4737 /* Now enable the transmitter */
Zang Roy-R61911e36d67c2011-11-06 22:22:36 +00004738 if (!ret_val)
4739 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Roy Zang28f7a052009-07-31 13:34:02 +08004740
4741 if (hw->mac_type == e1000_82547) {
4742 uint16_t fused, fine, coarse;
4743
4744 /* Move to analog registers page */
4745 e1000_read_phy_reg(hw,
4746 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4747
4748 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4749 e1000_read_phy_reg(hw,
4750 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4751
4752 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4753 coarse = fused
4754 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4755
4756 if (coarse >
4757 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4758 coarse -=
4759 IGP01E1000_ANALOG_FUSE_COARSE_10;
4760 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4761 } else if (coarse
4762 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4763 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4764
4765 fused = (fused
4766 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4767 (fine
4768 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4769 (coarse
4770 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4771
4772 e1000_write_phy_reg(hw,
4773 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4774 e1000_write_phy_reg(hw,
4775 IGP01E1000_ANALOG_FUSE_BYPASS,
4776 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4777 }
4778 }
4779 }
wdenk4e112c12003-06-03 23:54:09 +00004780}
4781
4782/******************************************************************************
4783* Resets the PHY
4784*
4785* hw - Struct containing variables accessed by shared code
4786*
Roy Zang28f7a052009-07-31 13:34:02 +08004787* Sets bit 15 of the MII Control register
wdenk4e112c12003-06-03 23:54:09 +00004788******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004789int32_t
wdenk4e112c12003-06-03 23:54:09 +00004790e1000_phy_reset(struct e1000_hw *hw)
4791{
Roy Zang28f7a052009-07-31 13:34:02 +08004792 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004793 uint16_t phy_data;
4794
4795 DEBUGFUNC();
4796
Roy Zang28f7a052009-07-31 13:34:02 +08004797 /* In the case of the phy reset being blocked, it's not an error, we
4798 * simply return success without performing the reset. */
4799 ret_val = e1000_check_phy_reset_block(hw);
4800 if (ret_val)
4801 return E1000_SUCCESS;
4802
4803 switch (hw->phy_type) {
4804 case e1000_phy_igp:
4805 case e1000_phy_igp_2:
4806 case e1000_phy_igp_3:
4807 case e1000_phy_ife:
Marek Vasut74a13c22014-08-08 07:41:39 -07004808 case e1000_phy_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08004809 ret_val = e1000_phy_hw_reset(hw);
4810 if (ret_val)
4811 return ret_val;
4812 break;
4813 default:
4814 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4815 if (ret_val)
4816 return ret_val;
4817
4818 phy_data |= MII_CR_RESET;
4819 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4820 if (ret_val)
4821 return ret_val;
4822
4823 udelay(1);
4824 break;
wdenk4e112c12003-06-03 23:54:09 +00004825 }
Roy Zang28f7a052009-07-31 13:34:02 +08004826
4827 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4828 e1000_phy_init_script(hw);
4829
4830 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004831}
4832
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004833static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarz68c2a302008-03-06 16:45:44 +01004834{
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004835 DEBUGFUNC ();
Andre Schwarz68c2a302008-03-06 16:45:44 +01004836
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004837 if (hw->mac_type == e1000_undefined)
4838 return -E1000_ERR_PHY_TYPE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004839
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004840 switch (hw->phy_id) {
4841 case M88E1000_E_PHY_ID:
4842 case M88E1000_I_PHY_ID:
4843 case M88E1011_I_PHY_ID:
Roy Zang28f7a052009-07-31 13:34:02 +08004844 case M88E1111_I_PHY_ID:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004845 hw->phy_type = e1000_phy_m88;
4846 break;
4847 case IGP01E1000_I_PHY_ID:
4848 if (hw->mac_type == e1000_82541 ||
Roy Zang28f7a052009-07-31 13:34:02 +08004849 hw->mac_type == e1000_82541_rev_2 ||
4850 hw->mac_type == e1000_82547 ||
4851 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004852 hw->phy_type = e1000_phy_igp;
Roy Zang28f7a052009-07-31 13:34:02 +08004853 break;
4854 }
4855 case IGP03E1000_E_PHY_ID:
4856 hw->phy_type = e1000_phy_igp_3;
4857 break;
4858 case IFE_E_PHY_ID:
4859 case IFE_PLUS_E_PHY_ID:
4860 case IFE_C_E_PHY_ID:
4861 hw->phy_type = e1000_phy_ife;
4862 break;
4863 case GG82563_E_PHY_ID:
4864 if (hw->mac_type == e1000_80003es2lan) {
4865 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004866 break;
4867 }
Roy Zang181119b2011-01-21 11:29:38 +08004868 case BME1000_E_PHY_ID:
4869 hw->phy_type = e1000_phy_bm;
4870 break;
Marek Vasut74a13c22014-08-08 07:41:39 -07004871 case I210_I_PHY_ID:
4872 hw->phy_type = e1000_phy_igb;
4873 break;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004874 /* Fall Through */
4875 default:
4876 /* Should never have loaded on this device */
4877 hw->phy_type = e1000_phy_undefined;
4878 return -E1000_ERR_PHY_TYPE;
4879 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004880
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004881 return E1000_SUCCESS;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004882}
4883
wdenk4e112c12003-06-03 23:54:09 +00004884/******************************************************************************
4885* Probes the expected PHY address for known PHY IDs
4886*
4887* hw - Struct containing variables accessed by shared code
4888******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004889static int32_t
wdenk4e112c12003-06-03 23:54:09 +00004890e1000_detect_gig_phy(struct e1000_hw *hw)
4891{
Roy Zang28f7a052009-07-31 13:34:02 +08004892 int32_t phy_init_status, ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004893 uint16_t phy_id_high, phy_id_low;
York Sun4a598092013-04-01 11:29:11 -07004894 bool match = false;
wdenk4e112c12003-06-03 23:54:09 +00004895
4896 DEBUGFUNC();
4897
Roy Zang28f7a052009-07-31 13:34:02 +08004898 /* The 82571 firmware may still be configuring the PHY. In this
4899 * case, we cannot access the PHY until the configuration is done. So
4900 * we explicitly set the PHY values. */
4901 if (hw->mac_type == e1000_82571 ||
4902 hw->mac_type == e1000_82572) {
4903 hw->phy_id = IGP01E1000_I_PHY_ID;
4904 hw->phy_type = e1000_phy_igp_2;
4905 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004906 }
Roy Zang28f7a052009-07-31 13:34:02 +08004907
4908 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4909 * work- around that forces PHY page 0 to be set or the reads fail.
4910 * The rest of the code in this routine uses e1000_read_phy_reg to
4911 * read the PHY ID. So for ESB-2 we need to have this set so our
4912 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4913 * the routines below will figure this out as well. */
4914 if (hw->mac_type == e1000_80003es2lan)
4915 hw->phy_type = e1000_phy_gg82563;
4916
4917 /* Read the PHY ID Registers to identify which PHY is onboard. */
4918 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4919 if (ret_val)
4920 return ret_val;
4921
wdenk4e112c12003-06-03 23:54:09 +00004922 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zang28f7a052009-07-31 13:34:02 +08004923 udelay(20);
4924 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4925 if (ret_val)
4926 return ret_val;
4927
wdenk4e112c12003-06-03 23:54:09 +00004928 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zang28f7a052009-07-31 13:34:02 +08004929 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk4e112c12003-06-03 23:54:09 +00004930
4931 switch (hw->mac_type) {
4932 case e1000_82543:
4933 if (hw->phy_id == M88E1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004934 match = true;
wdenk4e112c12003-06-03 23:54:09 +00004935 break;
4936 case e1000_82544:
4937 if (hw->phy_id == M88E1000_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004938 match = true;
wdenk4e112c12003-06-03 23:54:09 +00004939 break;
4940 case e1000_82540:
4941 case e1000_82545:
Roy Zang28f7a052009-07-31 13:34:02 +08004942 case e1000_82545_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004943 case e1000_82546:
Roy Zang28f7a052009-07-31 13:34:02 +08004944 case e1000_82546_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004945 if (hw->phy_id == M88E1011_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004946 match = true;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004947 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004948 case e1000_82541:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004949 case e1000_82541_rev_2:
Roy Zang28f7a052009-07-31 13:34:02 +08004950 case e1000_82547:
4951 case e1000_82547_rev_2:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004952 if(hw->phy_id == IGP01E1000_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004953 match = true;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004954
wdenk4e112c12003-06-03 23:54:09 +00004955 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004956 case e1000_82573:
4957 if (hw->phy_id == M88E1111_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004958 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004959 break;
Roy Zang181119b2011-01-21 11:29:38 +08004960 case e1000_82574:
4961 if (hw->phy_id == BME1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004962 match = true;
Roy Zang181119b2011-01-21 11:29:38 +08004963 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004964 case e1000_80003es2lan:
4965 if (hw->phy_id == GG82563_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004966 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004967 break;
4968 case e1000_ich8lan:
4969 if (hw->phy_id == IGP03E1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004970 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004971 if (hw->phy_id == IFE_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004972 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004973 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004974 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004975 if (hw->phy_id == IFE_C_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004976 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004977 break;
Marek Vasut74a13c22014-08-08 07:41:39 -07004978 case e1000_igb:
4979 if (hw->phy_id == I210_I_PHY_ID)
4980 match = true;
4981 break;
wdenk4e112c12003-06-03 23:54:09 +00004982 default:
4983 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4984 return -E1000_ERR_CONFIG;
4985 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004986
4987 phy_init_status = e1000_set_phy_type(hw);
4988
4989 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk4e112c12003-06-03 23:54:09 +00004990 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4991 return 0;
4992 }
4993 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4994 return -E1000_ERR_PHY;
4995}
4996
Roy Zang28f7a052009-07-31 13:34:02 +08004997/*****************************************************************************
4998 * Set media type and TBI compatibility.
4999 *
5000 * hw - Struct containing variables accessed by shared code
5001 * **************************************************************************/
5002void
5003e1000_set_media_type(struct e1000_hw *hw)
5004{
5005 uint32_t status;
5006
5007 DEBUGFUNC();
5008
5009 if (hw->mac_type != e1000_82543) {
5010 /* tbi_compatibility is only valid on 82543 */
York Sun4a598092013-04-01 11:29:11 -07005011 hw->tbi_compatibility_en = false;
Roy Zang28f7a052009-07-31 13:34:02 +08005012 }
5013
5014 switch (hw->device_id) {
5015 case E1000_DEV_ID_82545GM_SERDES:
5016 case E1000_DEV_ID_82546GB_SERDES:
5017 case E1000_DEV_ID_82571EB_SERDES:
5018 case E1000_DEV_ID_82571EB_SERDES_DUAL:
5019 case E1000_DEV_ID_82571EB_SERDES_QUAD:
5020 case E1000_DEV_ID_82572EI_SERDES:
5021 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
5022 hw->media_type = e1000_media_type_internal_serdes;
5023 break;
5024 default:
5025 switch (hw->mac_type) {
5026 case e1000_82542_rev2_0:
5027 case e1000_82542_rev2_1:
5028 hw->media_type = e1000_media_type_fiber;
5029 break;
5030 case e1000_ich8lan:
5031 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08005032 case e1000_82574:
Marek Vasut74a13c22014-08-08 07:41:39 -07005033 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08005034 /* The STATUS_TBIMODE bit is reserved or reused
5035 * for the this device.
5036 */
5037 hw->media_type = e1000_media_type_copper;
5038 break;
5039 default:
5040 status = E1000_READ_REG(hw, STATUS);
5041 if (status & E1000_STATUS_TBIMODE) {
5042 hw->media_type = e1000_media_type_fiber;
5043 /* tbi_compatibility not valid on fiber */
York Sun4a598092013-04-01 11:29:11 -07005044 hw->tbi_compatibility_en = false;
Roy Zang28f7a052009-07-31 13:34:02 +08005045 } else {
5046 hw->media_type = e1000_media_type_copper;
5047 }
5048 break;
5049 }
5050 }
5051}
5052
wdenk4e112c12003-06-03 23:54:09 +00005053/**
5054 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
5055 *
5056 * e1000_sw_init initializes the Adapter private data structure.
5057 * Fields are initialized based on PCI device information and
5058 * OS network device settings (MTU size).
5059 **/
5060
5061static int
Simon Glassc53abc32015-08-19 09:33:39 -06005062e1000_sw_init(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00005063{
wdenk4e112c12003-06-03 23:54:09 +00005064 int result;
5065
5066 /* PCI config space info */
Bin Meng83cf24c2016-02-02 05:58:01 -08005067#ifdef CONFIG_DM_ETH
5068 dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5069 dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5070 dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5071 &hw->subsystem_vendor_id);
5072 dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5073
5074 dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5075 dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
5076#else
wdenk4e112c12003-06-03 23:54:09 +00005077 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
5078 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
5079 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
5080 &hw->subsystem_vendor_id);
5081 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
5082
5083 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
5084 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
Bin Meng83cf24c2016-02-02 05:58:01 -08005085#endif
wdenk4e112c12003-06-03 23:54:09 +00005086
5087 /* identify the MAC */
5088 result = e1000_set_mac_type(hw);
5089 if (result) {
Simon Glassc53abc32015-08-19 09:33:39 -06005090 E1000_ERR(hw, "Unknown MAC Type\n");
wdenk4e112c12003-06-03 23:54:09 +00005091 return result;
5092 }
5093
Roy Zang28f7a052009-07-31 13:34:02 +08005094 switch (hw->mac_type) {
5095 default:
5096 break;
5097 case e1000_82541:
5098 case e1000_82547:
5099 case e1000_82541_rev_2:
5100 case e1000_82547_rev_2:
5101 hw->phy_init_script = 1;
5102 break;
5103 }
5104
wdenk4e112c12003-06-03 23:54:09 +00005105 /* flow control settings */
5106 hw->fc_high_water = E1000_FC_HIGH_THRESH;
5107 hw->fc_low_water = E1000_FC_LOW_THRESH;
5108 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
5109 hw->fc_send_xon = 1;
5110
5111 /* Media type - copper or fiber */
Marek Vasut74a13c22014-08-08 07:41:39 -07005112 hw->tbi_compatibility_en = true;
Roy Zang28f7a052009-07-31 13:34:02 +08005113 e1000_set_media_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00005114
5115 if (hw->mac_type >= e1000_82543) {
5116 uint32_t status = E1000_READ_REG(hw, STATUS);
5117
5118 if (status & E1000_STATUS_TBIMODE) {
5119 DEBUGOUT("fiber interface\n");
5120 hw->media_type = e1000_media_type_fiber;
5121 } else {
5122 DEBUGOUT("copper interface\n");
5123 hw->media_type = e1000_media_type_copper;
5124 }
5125 } else {
5126 hw->media_type = e1000_media_type_fiber;
5127 }
5128
York Sun4a598092013-04-01 11:29:11 -07005129 hw->wait_autoneg_complete = true;
wdenk4e112c12003-06-03 23:54:09 +00005130 if (hw->mac_type < e1000_82543)
5131 hw->report_tx_early = 0;
5132 else
5133 hw->report_tx_early = 1;
5134
wdenk4e112c12003-06-03 23:54:09 +00005135 return E1000_SUCCESS;
5136}
5137
5138void
5139fill_rx(struct e1000_hw *hw)
5140{
5141 struct e1000_rx_desc *rd;
Minghuan Liane2e4b782015-01-22 13:21:54 +08005142 unsigned long flush_start, flush_end;
wdenk4e112c12003-06-03 23:54:09 +00005143
5144 rx_last = rx_tail;
5145 rd = rx_base + rx_tail;
5146 rx_tail = (rx_tail + 1) % 8;
5147 memset(rd, 0, 16);
Minghuan Liane2e4b782015-01-22 13:21:54 +08005148 rd->buffer_addr = cpu_to_le64((unsigned long)packet);
Marek Vasut742c5c22014-08-08 07:41:38 -07005149
5150 /*
5151 * Make sure there are no stale data in WB over this area, which
5152 * might get written into the memory while the e1000 also writes
5153 * into the same memory area.
5154 */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005155 invalidate_dcache_range((unsigned long)packet,
5156 (unsigned long)packet + 4096);
Marek Vasut742c5c22014-08-08 07:41:38 -07005157 /* Dump the DMA descriptor into RAM. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005158 flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut742c5c22014-08-08 07:41:38 -07005159 flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5160 flush_dcache_range(flush_start, flush_end);
5161
wdenk4e112c12003-06-03 23:54:09 +00005162 E1000_WRITE_REG(hw, RDT, rx_tail);
5163}
5164
5165/**
5166 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
5167 * @adapter: board private structure
5168 *
5169 * Configure the Tx unit of the MAC after a reset.
5170 **/
5171
5172static void
5173e1000_configure_tx(struct e1000_hw *hw)
5174{
wdenk4e112c12003-06-03 23:54:09 +00005175 unsigned long tctl;
Roy Zang28f7a052009-07-31 13:34:02 +08005176 unsigned long tipg, tarc;
5177 uint32_t ipgr1, ipgr2;
wdenk4e112c12003-06-03 23:54:09 +00005178
Bin Mengd0ee7d02015-08-26 06:17:27 -07005179 E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
5180 E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
wdenk4e112c12003-06-03 23:54:09 +00005181
5182 E1000_WRITE_REG(hw, TDLEN, 128);
5183
5184 /* Setup the HW Tx Head and Tail descriptor pointers */
5185 E1000_WRITE_REG(hw, TDH, 0);
5186 E1000_WRITE_REG(hw, TDT, 0);
5187 tx_tail = 0;
5188
5189 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zang28f7a052009-07-31 13:34:02 +08005190 if (hw->mac_type <= e1000_82547_rev_2 &&
5191 (hw->media_type == e1000_media_type_fiber ||
5192 hw->media_type == e1000_media_type_internal_serdes))
5193 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
5194 else
5195 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
5196
5197 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk4e112c12003-06-03 23:54:09 +00005198 switch (hw->mac_type) {
5199 case e1000_82542_rev2_0:
5200 case e1000_82542_rev2_1:
5201 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zang28f7a052009-07-31 13:34:02 +08005202 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
5203 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
5204 break;
5205 case e1000_80003es2lan:
5206 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5207 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk4e112c12003-06-03 23:54:09 +00005208 break;
5209 default:
Roy Zang28f7a052009-07-31 13:34:02 +08005210 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
5211 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
5212 break;
wdenk4e112c12003-06-03 23:54:09 +00005213 }
Roy Zang28f7a052009-07-31 13:34:02 +08005214 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
5215 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00005216 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk4e112c12003-06-03 23:54:09 +00005217 /* Program the Transmit Control Register */
5218 tctl = E1000_READ_REG(hw, TCTL);
5219 tctl &= ~E1000_TCTL_CT;
5220 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5221 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zang28f7a052009-07-31 13:34:02 +08005222
5223 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5224 tarc = E1000_READ_REG(hw, TARC0);
5225 /* set the speed mode bit, we'll clear it if we're not at
5226 * gigabit link later */
5227 /* git bit can be set to 1*/
5228 } else if (hw->mac_type == e1000_80003es2lan) {
5229 tarc = E1000_READ_REG(hw, TARC0);
5230 tarc |= 1;
5231 E1000_WRITE_REG(hw, TARC0, tarc);
5232 tarc = E1000_READ_REG(hw, TARC1);
5233 tarc |= 1;
5234 E1000_WRITE_REG(hw, TARC1, tarc);
5235 }
5236
wdenk4e112c12003-06-03 23:54:09 +00005237
5238 e1000_config_collision_dist(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08005239 /* Setup Transmit Descriptor Settings for eop descriptor */
5240 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk4e112c12003-06-03 23:54:09 +00005241
Roy Zang28f7a052009-07-31 13:34:02 +08005242 /* Need to set up RS bit */
5243 if (hw->mac_type < e1000_82543)
5244 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk4e112c12003-06-03 23:54:09 +00005245 else
Roy Zang28f7a052009-07-31 13:34:02 +08005246 hw->txd_cmd |= E1000_TXD_CMD_RS;
Marek Vasut74a13c22014-08-08 07:41:39 -07005247
5248
5249 if (hw->mac_type == e1000_igb) {
5250 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5251
5252 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5253 reg_txdctl |= 1 << 25;
5254 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5255 mdelay(20);
5256 }
5257
5258
5259
Roy Zang28f7a052009-07-31 13:34:02 +08005260 E1000_WRITE_REG(hw, TCTL, tctl);
Marek Vasut74a13c22014-08-08 07:41:39 -07005261
5262
wdenk4e112c12003-06-03 23:54:09 +00005263}
5264
5265/**
5266 * e1000_setup_rctl - configure the receive control register
5267 * @adapter: Board private structure
5268 **/
5269static void
5270e1000_setup_rctl(struct e1000_hw *hw)
5271{
5272 uint32_t rctl;
5273
5274 rctl = E1000_READ_REG(hw, RCTL);
5275
5276 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5277
Roy Zang28f7a052009-07-31 13:34:02 +08005278 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5279 | E1000_RCTL_RDMTS_HALF; /* |
5280 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk4e112c12003-06-03 23:54:09 +00005281
5282 if (hw->tbi_compatibility_on == 1)
5283 rctl |= E1000_RCTL_SBP;
5284 else
5285 rctl &= ~E1000_RCTL_SBP;
5286
5287 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk4e112c12003-06-03 23:54:09 +00005288 rctl |= E1000_RCTL_SZ_2048;
5289 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk4e112c12003-06-03 23:54:09 +00005290 E1000_WRITE_REG(hw, RCTL, rctl);
5291}
5292
5293/**
5294 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5295 * @adapter: board private structure
5296 *
5297 * Configure the Rx unit of the MAC after a reset.
5298 **/
5299static void
5300e1000_configure_rx(struct e1000_hw *hw)
5301{
Roy Zang28f7a052009-07-31 13:34:02 +08005302 unsigned long rctl, ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00005303 rx_tail = 0;
Bin Mengd0ee7d02015-08-26 06:17:27 -07005304
wdenk4e112c12003-06-03 23:54:09 +00005305 /* make sure receives are disabled while setting up the descriptors */
5306 rctl = E1000_READ_REG(hw, RCTL);
5307 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk4e112c12003-06-03 23:54:09 +00005308 if (hw->mac_type >= e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00005309 /* Set the interrupt throttling rate. Value is calculated
5310 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk35f734f2008-04-13 09:59:26 -07005311#define MAX_INTS_PER_SEC 8000
5312#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk4e112c12003-06-03 23:54:09 +00005313 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5314 }
5315
Roy Zang28f7a052009-07-31 13:34:02 +08005316 if (hw->mac_type >= e1000_82571) {
5317 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5318 /* Reset delay timers after every interrupt */
5319 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5320 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5321 E1000_WRITE_FLUSH(hw);
5322 }
wdenk4e112c12003-06-03 23:54:09 +00005323 /* Setup the Base and Length of the Rx Descriptor Ring */
Bin Mengd0ee7d02015-08-26 06:17:27 -07005324 E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5325 E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
wdenk4e112c12003-06-03 23:54:09 +00005326
5327 E1000_WRITE_REG(hw, RDLEN, 128);
5328
5329 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5330 E1000_WRITE_REG(hw, RDH, 0);
5331 E1000_WRITE_REG(hw, RDT, 0);
wdenk4e112c12003-06-03 23:54:09 +00005332 /* Enable Receives */
5333
Marek Vasut74a13c22014-08-08 07:41:39 -07005334 if (hw->mac_type == e1000_igb) {
5335
5336 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5337 reg_rxdctl |= 1 << 25;
5338 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5339 mdelay(20);
5340 }
5341
wdenk4e112c12003-06-03 23:54:09 +00005342 E1000_WRITE_REG(hw, RCTL, rctl);
Marek Vasut74a13c22014-08-08 07:41:39 -07005343
wdenk4e112c12003-06-03 23:54:09 +00005344 fill_rx(hw);
5345}
5346
5347/**************************************************************************
5348POLL - Wait for a frame
5349***************************************************************************/
5350static int
Simon Glassc53abc32015-08-19 09:33:39 -06005351_e1000_poll(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00005352{
wdenk4e112c12003-06-03 23:54:09 +00005353 struct e1000_rx_desc *rd;
Minghuan Liane2e4b782015-01-22 13:21:54 +08005354 unsigned long inval_start, inval_end;
Marek Vasut742c5c22014-08-08 07:41:38 -07005355 uint32_t len;
5356
wdenk4e112c12003-06-03 23:54:09 +00005357 /* return true if there's an ethernet packet ready to read */
5358 rd = rx_base + rx_last;
Marek Vasut742c5c22014-08-08 07:41:38 -07005359
5360 /* Re-load the descriptor from RAM. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005361 inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut742c5c22014-08-08 07:41:38 -07005362 inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5363 invalidate_dcache_range(inval_start, inval_end);
5364
Miao Yan41a084a2015-12-21 02:07:02 -08005365 if (!(rd->status & E1000_RXD_STAT_DD))
wdenk4e112c12003-06-03 23:54:09 +00005366 return 0;
Minghuan Lian674bcd52015-03-19 09:43:51 -07005367 /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
Marek Vasut742c5c22014-08-08 07:41:38 -07005368 /* Packet received, make sure the data are re-loaded from RAM. */
Miao Yan41a084a2015-12-21 02:07:02 -08005369 len = le16_to_cpu(rd->length);
Minghuan Liane2e4b782015-01-22 13:21:54 +08005370 invalidate_dcache_range((unsigned long)packet,
5371 (unsigned long)packet +
5372 roundup(len, ARCH_DMA_MINALIGN));
Simon Glassc53abc32015-08-19 09:33:39 -06005373 return len;
wdenk4e112c12003-06-03 23:54:09 +00005374}
5375
Simon Glassc53abc32015-08-19 09:33:39 -06005376static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
wdenk4e112c12003-06-03 23:54:09 +00005377{
Marek Vasut742c5c22014-08-08 07:41:38 -07005378 void *nv_packet = (void *)txpacket;
wdenk4e112c12003-06-03 23:54:09 +00005379 struct e1000_tx_desc *txp;
5380 int i = 0;
Minghuan Liane2e4b782015-01-22 13:21:54 +08005381 unsigned long flush_start, flush_end;
wdenk4e112c12003-06-03 23:54:09 +00005382
5383 txp = tx_base + tx_tail;
5384 tx_tail = (tx_tail + 1) % 8;
5385
Wolfgang Denkf83102e2010-11-22 09:48:45 +01005386 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
Roy Zang28f7a052009-07-31 13:34:02 +08005387 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk4e112c12003-06-03 23:54:09 +00005388 txp->upper.data = 0;
Marek Vasut742c5c22014-08-08 07:41:38 -07005389
5390 /* Dump the packet into RAM so e1000 can pick them. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005391 flush_dcache_range((unsigned long)nv_packet,
5392 (unsigned long)nv_packet +
5393 roundup(length, ARCH_DMA_MINALIGN));
Marek Vasut742c5c22014-08-08 07:41:38 -07005394 /* Dump the descriptor into RAM as well. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005395 flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut742c5c22014-08-08 07:41:38 -07005396 flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5397 flush_dcache_range(flush_start, flush_end);
5398
wdenk4e112c12003-06-03 23:54:09 +00005399 E1000_WRITE_REG(hw, TDT, tx_tail);
5400
Roy Zang28f7a052009-07-31 13:34:02 +08005401 E1000_WRITE_FLUSH(hw);
Marek Vasut742c5c22014-08-08 07:41:38 -07005402 while (1) {
5403 invalidate_dcache_range(flush_start, flush_end);
5404 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5405 break;
wdenk4e112c12003-06-03 23:54:09 +00005406 if (i++ > TOUT_LOOP) {
5407 DEBUGOUT("e1000: tx timeout\n");
5408 return 0;
5409 }
5410 udelay(10); /* give the nic a chance to write to the register */
5411 }
5412 return 1;
5413}
5414
wdenk4e112c12003-06-03 23:54:09 +00005415static void
Simon Glassc53abc32015-08-19 09:33:39 -06005416_e1000_disable(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00005417{
wdenk4e112c12003-06-03 23:54:09 +00005418 /* Turn off the ethernet interface */
5419 E1000_WRITE_REG(hw, RCTL, 0);
5420 E1000_WRITE_REG(hw, TCTL, 0);
5421
5422 /* Clear the transmit ring */
5423 E1000_WRITE_REG(hw, TDH, 0);
5424 E1000_WRITE_REG(hw, TDT, 0);
5425
5426 /* Clear the receive ring */
5427 E1000_WRITE_REG(hw, RDH, 0);
5428 E1000_WRITE_REG(hw, RDT, 0);
5429
wdenk4e112c12003-06-03 23:54:09 +00005430 mdelay(10);
Simon Glassc53abc32015-08-19 09:33:39 -06005431}
wdenk4e112c12003-06-03 23:54:09 +00005432
Simon Glassc53abc32015-08-19 09:33:39 -06005433/*reset function*/
5434static inline int
5435e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5436{
5437 e1000_reset_hw(hw);
5438 if (hw->mac_type >= e1000_82544)
5439 E1000_WRITE_REG(hw, WUC, 0);
5440
5441 return e1000_init_hw(hw, enetaddr);
wdenk4e112c12003-06-03 23:54:09 +00005442}
5443
wdenk4e112c12003-06-03 23:54:09 +00005444static int
Simon Glassc53abc32015-08-19 09:33:39 -06005445_e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
wdenk4e112c12003-06-03 23:54:09 +00005446{
wdenk4e112c12003-06-03 23:54:09 +00005447 int ret_val = 0;
5448
Simon Glassc53abc32015-08-19 09:33:39 -06005449 ret_val = e1000_reset(hw, enetaddr);
wdenk4e112c12003-06-03 23:54:09 +00005450 if (ret_val < 0) {
5451 if ((ret_val == -E1000_ERR_NOLINK) ||
5452 (ret_val == -E1000_ERR_TIMEOUT)) {
Simon Glassc53abc32015-08-19 09:33:39 -06005453 E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
wdenk4e112c12003-06-03 23:54:09 +00005454 } else {
Simon Glassc53abc32015-08-19 09:33:39 -06005455 E1000_ERR(hw, "Hardware Initialization Failed\n");
wdenk4e112c12003-06-03 23:54:09 +00005456 }
Simon Glassc53abc32015-08-19 09:33:39 -06005457 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00005458 }
5459 e1000_configure_tx(hw);
5460 e1000_setup_rctl(hw);
5461 e1000_configure_rx(hw);
Simon Glassc53abc32015-08-19 09:33:39 -06005462 return 0;
wdenk4e112c12003-06-03 23:54:09 +00005463}
5464
Roy Zang28f7a052009-07-31 13:34:02 +08005465/******************************************************************************
5466 * Gets the current PCI bus type of hardware
5467 *
5468 * hw - Struct containing variables accessed by shared code
5469 *****************************************************************************/
5470void e1000_get_bus_type(struct e1000_hw *hw)
5471{
5472 uint32_t status;
5473
5474 switch (hw->mac_type) {
5475 case e1000_82542_rev2_0:
5476 case e1000_82542_rev2_1:
5477 hw->bus_type = e1000_bus_type_pci;
5478 break;
5479 case e1000_82571:
5480 case e1000_82572:
5481 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08005482 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08005483 case e1000_80003es2lan:
Roy Zang28f7a052009-07-31 13:34:02 +08005484 case e1000_ich8lan:
Marek Vasut74a13c22014-08-08 07:41:39 -07005485 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08005486 hw->bus_type = e1000_bus_type_pci_express;
5487 break;
5488 default:
5489 status = E1000_READ_REG(hw, STATUS);
5490 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5491 e1000_bus_type_pcix : e1000_bus_type_pci;
5492 break;
5493 }
5494}
5495
Simon Glass9f86b382015-08-19 09:33:40 -06005496#ifndef CONFIG_DM_ETH
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005497/* A list of all registered e1000 devices */
5498static LIST_HEAD(e1000_hw_list);
Simon Glass9f86b382015-08-19 09:33:40 -06005499#endif
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005500
Bin Meng83cf24c2016-02-02 05:58:01 -08005501#ifdef CONFIG_DM_ETH
5502static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5503 struct udevice *devno, unsigned char enetaddr[6])
5504#else
Simon Glassc53abc32015-08-19 09:33:39 -06005505static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5506 unsigned char enetaddr[6])
Bin Meng83cf24c2016-02-02 05:58:01 -08005507#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005508{
5509 u32 val;
5510
5511 /* Assign the passed-in values */
Bin Meng83cf24c2016-02-02 05:58:01 -08005512#ifdef CONFIG_DM_ETH
Simon Glassc53abc32015-08-19 09:33:39 -06005513 hw->pdev = devno;
Bin Meng83cf24c2016-02-02 05:58:01 -08005514#else
5515 hw->pdev = devno;
5516#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005517 hw->cardnum = cardnum;
5518
5519 /* Print a debug message with the IO base address */
Bin Meng83cf24c2016-02-02 05:58:01 -08005520#ifdef CONFIG_DM_ETH
5521 dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5522#else
Simon Glassc53abc32015-08-19 09:33:39 -06005523 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
Bin Meng83cf24c2016-02-02 05:58:01 -08005524#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005525 E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5526
5527 /* Try to enable I/O accesses and bus-mastering */
5528 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
Bin Meng83cf24c2016-02-02 05:58:01 -08005529#ifdef CONFIG_DM_ETH
5530 dm_pci_write_config32(devno, PCI_COMMAND, val);
5531#else
Simon Glassc53abc32015-08-19 09:33:39 -06005532 pci_write_config_dword(devno, PCI_COMMAND, val);
Bin Meng83cf24c2016-02-02 05:58:01 -08005533#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005534
5535 /* Make sure it worked */
Bin Meng83cf24c2016-02-02 05:58:01 -08005536#ifdef CONFIG_DM_ETH
5537 dm_pci_read_config32(devno, PCI_COMMAND, &val);
5538#else
Simon Glassc53abc32015-08-19 09:33:39 -06005539 pci_read_config_dword(devno, PCI_COMMAND, &val);
Bin Meng83cf24c2016-02-02 05:58:01 -08005540#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005541 if (!(val & PCI_COMMAND_MEMORY)) {
5542 E1000_ERR(hw, "Can't enable I/O memory\n");
5543 return -ENOSPC;
5544 }
5545 if (!(val & PCI_COMMAND_MASTER)) {
5546 E1000_ERR(hw, "Can't enable bus-mastering\n");
5547 return -EPERM;
5548 }
5549
5550 /* Are these variables needed? */
5551 hw->fc = e1000_fc_default;
5552 hw->original_fc = e1000_fc_default;
5553 hw->autoneg_failed = 0;
5554 hw->autoneg = 1;
5555 hw->get_link_status = true;
5556#ifndef CONFIG_E1000_NO_NVM
5557 hw->eeprom_semaphore_present = true;
5558#endif
Bin Meng83cf24c2016-02-02 05:58:01 -08005559#ifdef CONFIG_DM_ETH
5560 hw->hw_addr = dm_pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5561 PCI_REGION_MEM);
5562#else
Simon Glassc53abc32015-08-19 09:33:39 -06005563 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5564 PCI_REGION_MEM);
Bin Meng83cf24c2016-02-02 05:58:01 -08005565#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005566 hw->mac_type = e1000_undefined;
5567
5568 /* MAC and Phy settings */
5569 if (e1000_sw_init(hw) < 0) {
5570 E1000_ERR(hw, "Software init failed\n");
5571 return -EIO;
5572 }
5573 if (e1000_check_phy_reset_block(hw))
5574 E1000_ERR(hw, "PHY Reset is blocked!\n");
5575
5576 /* Basic init was OK, reset the hardware and allow SPI access */
5577 e1000_reset_hw(hw);
5578
5579#ifndef CONFIG_E1000_NO_NVM
5580 /* Validate the EEPROM and get chipset information */
Simon Glassc53abc32015-08-19 09:33:39 -06005581 if (e1000_init_eeprom_params(hw)) {
5582 E1000_ERR(hw, "EEPROM is invalid!\n");
5583 return -EINVAL;
5584 }
5585 if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5586 e1000_validate_eeprom_checksum(hw))
5587 return -ENXIO;
Simon Glassc53abc32015-08-19 09:33:39 -06005588 e1000_read_mac_addr(hw, enetaddr);
5589#endif
5590 e1000_get_bus_type(hw);
5591
5592#ifndef CONFIG_E1000_NO_NVM
5593 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
5594 enetaddr[0], enetaddr[1], enetaddr[2],
5595 enetaddr[3], enetaddr[4], enetaddr[5]);
5596#else
5597 memset(enetaddr, 0, 6);
5598 printf("e1000: no NVM\n");
5599#endif
5600
5601 return 0;
5602}
5603
5604/* Put the name of a device in a string */
5605static void e1000_name(char *str, int cardnum)
5606{
5607 sprintf(str, "e1000#%u", cardnum);
5608}
5609
Simon Glass9f86b382015-08-19 09:33:40 -06005610#ifndef CONFIG_DM_ETH
Simon Glassc53abc32015-08-19 09:33:39 -06005611/**************************************************************************
5612TRANSMIT - Transmit a frame
5613***************************************************************************/
5614static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5615{
5616 struct e1000_hw *hw = nic->priv;
5617
5618 return _e1000_transmit(hw, txpacket, length);
5619}
5620
5621/**************************************************************************
5622DISABLE - Turn off ethernet interface
5623***************************************************************************/
5624static void
5625e1000_disable(struct eth_device *nic)
5626{
5627 struct e1000_hw *hw = nic->priv;
5628
5629 _e1000_disable(hw);
5630}
5631
5632/**************************************************************************
5633INIT - set up ethernet interface(s)
5634***************************************************************************/
5635static int
5636e1000_init(struct eth_device *nic, bd_t *bis)
5637{
5638 struct e1000_hw *hw = nic->priv;
5639
5640 return _e1000_init(hw, nic->enetaddr);
5641}
5642
5643static int
5644e1000_poll(struct eth_device *nic)
5645{
5646 struct e1000_hw *hw = nic->priv;
5647 int len;
5648
5649 len = _e1000_poll(hw);
5650 if (len) {
5651 net_process_received_packet((uchar *)packet, len);
5652 fill_rx(hw);
5653 }
5654
5655 return len ? 1 : 0;
5656}
5657
Hannu Lounento68d31f62018-01-10 20:31:26 +01005658static int e1000_write_hwaddr(struct eth_device *dev)
5659{
5660#ifndef CONFIG_E1000_NO_NVM
5661 unsigned char *mac = dev->enetaddr;
5662 unsigned char current_mac[6];
5663 struct e1000_hw *hw = dev->priv;
5664 uint16_t data[3];
5665 int ret_val, i;
5666
5667 DEBUGOUT("%s: mac=%pM\n", __func__, mac);
5668
5669 memset(current_mac, 0, 6);
5670
5671 /* Read from EEPROM, not from registers, to make sure
5672 * the address is persistently configured
5673 */
5674 ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
5675 DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
5676
5677 /* Only write to EEPROM if the given address is different or
5678 * reading the current address failed
5679 */
5680 if (!ret_val && memcmp(current_mac, mac, 6) == 0)
5681 return 0;
5682
5683 for (i = 0; i < 3; ++i)
5684 data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
5685
5686 ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
5687
5688 if (!ret_val)
5689 ret_val = e1000_update_eeprom_checksum_i210(hw);
5690
5691 return ret_val;
5692#else
5693 return 0;
5694#endif
5695}
5696
wdenk4e112c12003-06-03 23:54:09 +00005697/**************************************************************************
5698PROBE - Look for an adapter, this routine's visible to the outside
5699You should omit the last argument struct pci_device * for a non-PCI NIC
5700***************************************************************************/
5701int
5702e1000_initialize(bd_t * bis)
5703{
Kyle Moffett7b698d52011-10-18 11:05:26 +00005704 unsigned int i;
wdenk4e112c12003-06-03 23:54:09 +00005705 pci_dev_t devno;
Simon Glassc53abc32015-08-19 09:33:39 -06005706 int ret;
wdenk4e112c12003-06-03 23:54:09 +00005707
Timur Tabiedc45b52009-08-17 15:55:38 -05005708 DEBUGFUNC();
5709
Kyle Moffett7b698d52011-10-18 11:05:26 +00005710 /* Find and probe all the matching PCI devices */
5711 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005712 /*
5713 * These will never get freed due to errors, this allows us to
Bin Meng75574052016-02-05 19:30:11 -08005714 * perform SPI EEPROM programming from U-Boot, for example.
Kyle Moffett7b698d52011-10-18 11:05:26 +00005715 */
5716 struct eth_device *nic = malloc(sizeof(*nic));
5717 struct e1000_hw *hw = malloc(sizeof(*hw));
5718 if (!nic || !hw) {
5719 printf("e1000#%u: Out of Memory!\n", i);
Kumar Gala76933572010-11-12 04:13:06 -06005720 free(nic);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005721 free(hw);
5722 continue;
Kumar Gala76933572010-11-12 04:13:06 -06005723 }
5724
Kyle Moffett7b698d52011-10-18 11:05:26 +00005725 /* Make sure all of the fields are initially zeroed */
Matthew McClintock5761ce42010-11-15 18:02:53 -06005726 memset(nic, 0, sizeof(*nic));
Kumar Gala76933572010-11-12 04:13:06 -06005727 memset(hw, 0, sizeof(*hw));
wdenk4e112c12003-06-03 23:54:09 +00005728 nic->priv = hw;
wdenk4e112c12003-06-03 23:54:09 +00005729
Kyle Moffett7b698d52011-10-18 11:05:26 +00005730 /* Generate a card name */
Simon Glassc53abc32015-08-19 09:33:39 -06005731 e1000_name(nic->name, i);
5732 hw->name = nic->name;
wdenk4e112c12003-06-03 23:54:09 +00005733
Simon Glassc53abc32015-08-19 09:33:39 -06005734 ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5735 if (ret)
Kyle Moffett7b698d52011-10-18 11:05:26 +00005736 continue;
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005737 list_add_tail(&hw->list_node, &e1000_hw_list);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005738
Simon Glassc53abc32015-08-19 09:33:39 -06005739 hw->nic = nic;
wdenk4e112c12003-06-03 23:54:09 +00005740
Kyle Moffett7b698d52011-10-18 11:05:26 +00005741 /* Set up the function pointers and register the device */
wdenk4e112c12003-06-03 23:54:09 +00005742 nic->init = e1000_init;
5743 nic->recv = e1000_poll;
5744 nic->send = e1000_transmit;
5745 nic->halt = e1000_disable;
Hannu Lounento68d31f62018-01-10 20:31:26 +01005746 nic->write_hwaddr = e1000_write_hwaddr;
wdenk4e112c12003-06-03 23:54:09 +00005747 eth_register(nic);
wdenk4e112c12003-06-03 23:54:09 +00005748 }
Kyle Moffett7b698d52011-10-18 11:05:26 +00005749
5750 return i;
wdenk4e112c12003-06-03 23:54:09 +00005751}
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005752
5753struct e1000_hw *e1000_find_card(unsigned int cardnum)
5754{
5755 struct e1000_hw *hw;
5756
5757 list_for_each_entry(hw, &e1000_hw_list, list_node)
5758 if (hw->cardnum == cardnum)
5759 return hw;
5760
5761 return NULL;
5762}
Simon Glass9f86b382015-08-19 09:33:40 -06005763#endif /* !CONFIG_DM_ETH */
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005764
5765#ifdef CONFIG_CMD_E1000
Simon Glassed38aef2020-05-10 11:40:03 -06005766static int do_e1000(struct cmd_tbl *cmdtp, int flag, int argc,
5767 char *const argv[])
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005768{
Simon Glassc53abc32015-08-19 09:33:39 -06005769 unsigned char *mac = NULL;
Simon Glass9f86b382015-08-19 09:33:40 -06005770#ifdef CONFIG_DM_ETH
5771 struct eth_pdata *plat;
5772 struct udevice *dev;
5773 char name[30];
5774 int ret;
Alban Bedelc1255dd2016-08-03 11:31:03 +02005775#endif
5776#if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005777 struct e1000_hw *hw;
Simon Glass9f86b382015-08-19 09:33:40 -06005778#endif
5779 int cardnum;
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005780
5781 if (argc < 3) {
5782 cmd_usage(cmdtp);
5783 return 1;
5784 }
5785
5786 /* Make sure we can find the requested e1000 card */
Simon Glassc53abc32015-08-19 09:33:39 -06005787 cardnum = simple_strtoul(argv[1], NULL, 10);
Simon Glass9f86b382015-08-19 09:33:40 -06005788#ifdef CONFIG_DM_ETH
5789 e1000_name(name, cardnum);
5790 ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5791 if (!ret) {
5792 plat = dev_get_platdata(dev);
5793 mac = plat->enetaddr;
5794 }
5795#else
Simon Glassc53abc32015-08-19 09:33:39 -06005796 hw = e1000_find_card(cardnum);
5797 if (hw)
5798 mac = hw->nic->enetaddr;
Simon Glass9f86b382015-08-19 09:33:40 -06005799#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005800 if (!mac) {
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005801 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5802 return 1;
5803 }
5804
5805 if (!strcmp(argv[2], "print-mac-address")) {
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005806 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5807 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5808 return 0;
5809 }
5810
5811#ifdef CONFIG_E1000_SPI
Alban Bedelc1255dd2016-08-03 11:31:03 +02005812#ifdef CONFIG_DM_ETH
5813 hw = dev_get_priv(dev);
5814#endif
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005815 /* Handle the "SPI" subcommand */
5816 if (!strcmp(argv[2], "spi"))
5817 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5818#endif
5819
5820 cmd_usage(cmdtp);
5821 return 1;
5822}
5823
5824U_BOOT_CMD(
5825 e1000, 7, 0, do_e1000,
5826 "Intel e1000 controller management",
5827 /* */"<card#> print-mac-address\n"
5828#ifdef CONFIG_E1000_SPI
5829 "e1000 <card#> spi show [<offset> [<length>]]\n"
5830 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5831 "e1000 <card#> spi program <addr> <offset> <length>\n"
5832 "e1000 <card#> spi checksum [update]\n"
5833#endif
5834 " - Manage the Intel E1000 PCI device"
5835);
5836#endif /* not CONFIG_CMD_E1000 */
Simon Glass9f86b382015-08-19 09:33:40 -06005837
5838#ifdef CONFIG_DM_ETH
5839static int e1000_eth_start(struct udevice *dev)
5840{
5841 struct eth_pdata *plat = dev_get_platdata(dev);
5842 struct e1000_hw *hw = dev_get_priv(dev);
5843
5844 return _e1000_init(hw, plat->enetaddr);
5845}
5846
5847static void e1000_eth_stop(struct udevice *dev)
5848{
5849 struct e1000_hw *hw = dev_get_priv(dev);
5850
5851 _e1000_disable(hw);
5852}
5853
5854static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5855{
5856 struct e1000_hw *hw = dev_get_priv(dev);
5857 int ret;
5858
5859 ret = _e1000_transmit(hw, packet, length);
5860
5861 return ret ? 0 : -ETIMEDOUT;
5862}
5863
5864static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5865{
5866 struct e1000_hw *hw = dev_get_priv(dev);
5867 int len;
5868
5869 len = _e1000_poll(hw);
5870 if (len)
5871 *packetp = packet;
5872
5873 return len ? len : -EAGAIN;
5874}
5875
5876static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5877{
5878 struct e1000_hw *hw = dev_get_priv(dev);
5879
5880 fill_rx(hw);
5881
5882 return 0;
5883}
5884
5885static int e1000_eth_probe(struct udevice *dev)
5886{
5887 struct eth_pdata *plat = dev_get_platdata(dev);
5888 struct e1000_hw *hw = dev_get_priv(dev);
5889 int ret;
5890
5891 hw->name = dev->name;
Simon Glasseaa14892015-11-29 13:17:47 -07005892 ret = e1000_init_one(hw, trailing_strtol(dev->name),
Bin Meng83cf24c2016-02-02 05:58:01 -08005893 dev, plat->enetaddr);
Simon Glass9f86b382015-08-19 09:33:40 -06005894 if (ret < 0) {
5895 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5896 return ret;
5897 }
5898
5899 return 0;
5900}
5901
5902static int e1000_eth_bind(struct udevice *dev)
5903{
5904 char name[20];
5905
5906 /*
5907 * A simple way to number the devices. When device tree is used this
5908 * is unnecessary, but when the device is just discovered on the PCI
5909 * bus we need a name. We could instead have the uclass figure out
5910 * which devices are different and number them.
5911 */
5912 e1000_name(name, num_cards++);
5913
5914 return device_set_name(dev, name);
5915}
5916
5917static const struct eth_ops e1000_eth_ops = {
5918 .start = e1000_eth_start,
5919 .send = e1000_eth_send,
5920 .recv = e1000_eth_recv,
5921 .stop = e1000_eth_stop,
5922 .free_pkt = e1000_free_pkt,
5923};
5924
5925static const struct udevice_id e1000_eth_ids[] = {
5926 { .compatible = "intel,e1000" },
5927 { }
5928};
5929
5930U_BOOT_DRIVER(eth_e1000) = {
5931 .name = "eth_e1000",
5932 .id = UCLASS_ETH,
5933 .of_match = e1000_eth_ids,
5934 .bind = e1000_eth_bind,
5935 .probe = e1000_eth_probe,
5936 .ops = &e1000_eth_ops,
5937 .priv_auto_alloc_size = sizeof(struct e1000_hw),
5938 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5939};
5940
5941U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5942#endif