blob: 777783a91bf192664f5180e63ef005a7ce7d4959 [file] [log] [blame]
wdenk4e112c12003-06-03 23:54:09 +00001/**************************************************************************
Andre Schwarz68c2a302008-03-06 16:45:44 +01002Intel Pro 1000 for ppcboot/das-u-boot
wdenk4e112c12003-06-03 23:54:09 +00003Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
wdenk57b2d802003-06-27 21:31:46 +00009
wdenk4e112c12003-06-03 23:54:09 +000010 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk57b2d802003-06-27 21:31:46 +000011
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
wdenk4e112c12003-06-03 23:54:09 +000015 any later version.
wdenk57b2d802003-06-27 21:31:46 +000016
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
wdenk4e112c12003-06-03 23:54:09 +000020 more details.
wdenk57b2d802003-06-27 21:31:46 +000021
wdenk4e112c12003-06-03 23:54:09 +000022 You should have received a copy of the GNU General Public License along with
wdenk57b2d802003-06-27 21:31:46 +000023 this program; if not, write to the Free Software Foundation, Inc., 59
Wolfgang Denk35f734f2008-04-13 09:59:26 -070024 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
wdenk57b2d802003-06-27 21:31:46 +000025
wdenk4e112c12003-06-03 23:54:09 +000026 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
wdenk57b2d802003-06-27 21:31:46 +000028
wdenk4e112c12003-06-03 23:54:09 +000029 Contact Information:
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33*******************************************************************************/
34/*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
43 */
44
45#include "e1000.h"
46
wdenk4e112c12003-06-03 23:54:09 +000047#define TOUT_LOOP 100000
48
49#undef virt_to_bus
50#define virt_to_bus(x) ((unsigned long)x)
51#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
Wolfgang Denk35f734f2008-04-13 09:59:26 -070052#define mdelay(n) udelay((n)*1000)
wdenk4e112c12003-06-03 23:54:09 +000053
Roy Zang28f7a052009-07-31 13:34:02 +080054#define E1000_DEFAULT_PBA 0x000a0026
wdenk4e112c12003-06-03 23:54:09 +000055
56/* NIC specific static variables go here */
57
58static char tx_pool[128 + 16];
59static char rx_pool[128 + 16];
60static char packet[2096];
61
62static struct e1000_tx_desc *tx_base;
63static struct e1000_rx_desc *rx_base;
64
65static int tx_tail;
66static int rx_tail, rx_last;
67
68static struct pci_device_id supported[] = {
69 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
70 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
Paul Gortmaker7d13b8d2008-07-09 17:50:45 -040078 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
wdenk4e112c12003-06-03 23:54:09 +000079 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
80 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
Andre Schwarz68c2a302008-03-06 16:45:44 +010083 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
Wolfgang Grandegger8562c382008-05-28 19:55:19 +020084 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
Roy Zang28f7a052009-07-31 13:34:02 +080085 /* E1000 PCIe card */
86 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
87 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
96 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
98 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
99 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
103 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
104 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
105 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
106 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
Stefan Althoeferbc6d2fc2008-12-20 19:40:41 +0100107 {}
wdenk4e112c12003-06-03 23:54:09 +0000108};
109
110/* Function forward declarations */
111static int e1000_setup_link(struct eth_device *nic);
112static int e1000_setup_fiber_link(struct eth_device *nic);
113static int e1000_setup_copper_link(struct eth_device *nic);
114static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
115static void e1000_config_collision_dist(struct e1000_hw *hw);
116static int e1000_config_mac_to_phy(struct e1000_hw *hw);
117static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
118static int e1000_check_for_link(struct eth_device *nic);
119static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800120static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk4e112c12003-06-03 23:54:09 +0000121 uint16_t * duplex);
122static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
123 uint16_t * phy_data);
124static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
125 uint16_t phy_data);
Roy Zang28f7a052009-07-31 13:34:02 +0800126static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000127static int e1000_phy_reset(struct e1000_hw *hw);
128static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800129static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
130static void e1000_set_media_type(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000131
Roy Zang28f7a052009-07-31 13:34:02 +0800132static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
133static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000134#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
135#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
136#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
137 writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
138#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
wdenk57b2d802003-06-27 21:31:46 +0000139 readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
wdenk4e112c12003-06-03 23:54:09 +0000140#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
141
Wolfgang Denk56811f62005-10-09 01:04:33 +0200142#ifndef CONFIG_AP1000 /* remove for warnings */
Roy Zang9b7c4302009-08-11 03:48:05 +0800143static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
144 uint16_t words,
145 uint16_t *data);
wdenk4e112c12003-06-03 23:54:09 +0000146/******************************************************************************
147 * Raises the EEPROM's clock input.
148 *
149 * hw - Struct containing variables accessed by shared code
150 * eecd - EECD's current value
151 *****************************************************************************/
152static void
153e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
154{
155 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
156 * wait 50 microseconds.
157 */
158 *eecd = *eecd | E1000_EECD_SK;
159 E1000_WRITE_REG(hw, EECD, *eecd);
160 E1000_WRITE_FLUSH(hw);
161 udelay(50);
162}
163
164/******************************************************************************
165 * Lowers the EEPROM's clock input.
166 *
wdenk57b2d802003-06-27 21:31:46 +0000167 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000168 * eecd - EECD's current value
169 *****************************************************************************/
170static void
171e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
172{
wdenk57b2d802003-06-27 21:31:46 +0000173 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
174 * wait 50 microseconds.
wdenk4e112c12003-06-03 23:54:09 +0000175 */
176 *eecd = *eecd & ~E1000_EECD_SK;
177 E1000_WRITE_REG(hw, EECD, *eecd);
178 E1000_WRITE_FLUSH(hw);
179 udelay(50);
180}
181
182/******************************************************************************
183 * Shift data bits out to the EEPROM.
184 *
185 * hw - Struct containing variables accessed by shared code
186 * data - data to send to the EEPROM
187 * count - number of bits to shift out
188 *****************************************************************************/
189static void
190e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
191{
192 uint32_t eecd;
193 uint32_t mask;
194
195 /* We need to shift "count" bits out to the EEPROM. So, value in the
196 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk57b2d802003-06-27 21:31:46 +0000197 * In order to do this, "data" must be broken down into bits.
wdenk4e112c12003-06-03 23:54:09 +0000198 */
199 mask = 0x01 << (count - 1);
200 eecd = E1000_READ_REG(hw, EECD);
201 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
202 do {
203 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
204 * and then raising and then lowering the clock (the SK bit controls
205 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
206 * by setting "DI" to "0" and then raising and then lowering the clock.
207 */
208 eecd &= ~E1000_EECD_DI;
209
210 if (data & mask)
211 eecd |= E1000_EECD_DI;
212
213 E1000_WRITE_REG(hw, EECD, eecd);
214 E1000_WRITE_FLUSH(hw);
215
216 udelay(50);
217
218 e1000_raise_ee_clk(hw, &eecd);
219 e1000_lower_ee_clk(hw, &eecd);
220
221 mask = mask >> 1;
222
223 } while (mask);
224
225 /* We leave the "DI" bit set to "0" when we leave this routine. */
226 eecd &= ~E1000_EECD_DI;
227 E1000_WRITE_REG(hw, EECD, eecd);
228}
229
230/******************************************************************************
231 * Shift data bits in from the EEPROM
232 *
233 * hw - Struct containing variables accessed by shared code
234 *****************************************************************************/
235static uint16_t
Roy Zang28f7a052009-07-31 13:34:02 +0800236e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk4e112c12003-06-03 23:54:09 +0000237{
238 uint32_t eecd;
239 uint32_t i;
240 uint16_t data;
241
Roy Zang28f7a052009-07-31 13:34:02 +0800242 /* In order to read a register from the EEPROM, we need to shift 'count'
243 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
244 * input to the EEPROM (setting the SK bit), and then reading the
245 * value of the "DO" bit. During this "shifting in" process the
246 * "DI" bit should always be clear.
wdenk4e112c12003-06-03 23:54:09 +0000247 */
248
249 eecd = E1000_READ_REG(hw, EECD);
250
251 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
252 data = 0;
253
Roy Zang28f7a052009-07-31 13:34:02 +0800254 for (i = 0; i < count; i++) {
wdenk4e112c12003-06-03 23:54:09 +0000255 data = data << 1;
256 e1000_raise_ee_clk(hw, &eecd);
257
258 eecd = E1000_READ_REG(hw, EECD);
259
260 eecd &= ~(E1000_EECD_DI);
261 if (eecd & E1000_EECD_DO)
262 data |= 1;
263
264 e1000_lower_ee_clk(hw, &eecd);
265 }
266
267 return data;
268}
269
270/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800271 * Returns EEPROM to a "standby" state
wdenk4e112c12003-06-03 23:54:09 +0000272 *
273 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000274 *****************************************************************************/
275static void
Roy Zang28f7a052009-07-31 13:34:02 +0800276e1000_standby_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000277{
Roy Zang28f7a052009-07-31 13:34:02 +0800278 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk4e112c12003-06-03 23:54:09 +0000279 uint32_t eecd;
280
281 eecd = E1000_READ_REG(hw, EECD);
282
Roy Zang28f7a052009-07-31 13:34:02 +0800283 if (eeprom->type == e1000_eeprom_microwire) {
284 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
285 E1000_WRITE_REG(hw, EECD, eecd);
286 E1000_WRITE_FLUSH(hw);
287 udelay(eeprom->delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000288
Roy Zang28f7a052009-07-31 13:34:02 +0800289 /* Clock high */
290 eecd |= E1000_EECD_SK;
291 E1000_WRITE_REG(hw, EECD, eecd);
292 E1000_WRITE_FLUSH(hw);
293 udelay(eeprom->delay_usec);
294
295 /* Select EEPROM */
296 eecd |= E1000_EECD_CS;
297 E1000_WRITE_REG(hw, EECD, eecd);
298 E1000_WRITE_FLUSH(hw);
299 udelay(eeprom->delay_usec);
300
301 /* Clock low */
302 eecd &= ~E1000_EECD_SK;
303 E1000_WRITE_REG(hw, EECD, eecd);
304 E1000_WRITE_FLUSH(hw);
305 udelay(eeprom->delay_usec);
306 } else if (eeprom->type == e1000_eeprom_spi) {
307 /* Toggle CS to flush commands */
308 eecd |= E1000_EECD_CS;
309 E1000_WRITE_REG(hw, EECD, eecd);
310 E1000_WRITE_FLUSH(hw);
311 udelay(eeprom->delay_usec);
312 eecd &= ~E1000_EECD_CS;
313 E1000_WRITE_REG(hw, EECD, eecd);
314 E1000_WRITE_FLUSH(hw);
315 udelay(eeprom->delay_usec);
316 }
317}
318
319/***************************************************************************
320* Description: Determines if the onboard NVM is FLASH or EEPROM.
321*
322* hw - Struct containing variables accessed by shared code
323****************************************************************************/
324static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
325{
326 uint32_t eecd = 0;
327
328 DEBUGFUNC();
329
330 if (hw->mac_type == e1000_ich8lan)
331 return FALSE;
332
333 if (hw->mac_type == e1000_82573) {
334 eecd = E1000_READ_REG(hw, EECD);
335
336 /* Isolate bits 15 & 16 */
337 eecd = ((eecd >> 15) & 0x03);
338
339 /* If both bits are set, device is Flash type */
340 if (eecd == 0x03)
341 return FALSE;
342 }
343 return TRUE;
wdenk4e112c12003-06-03 23:54:09 +0000344}
345
346/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800347 * Prepares EEPROM for access
wdenk57b2d802003-06-27 21:31:46 +0000348 *
wdenk4e112c12003-06-03 23:54:09 +0000349 * hw - Struct containing variables accessed by shared code
Roy Zang28f7a052009-07-31 13:34:02 +0800350 *
351 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
352 * function should be called before issuing a command to the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000353 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800354static int32_t
355e1000_acquire_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000356{
Roy Zang28f7a052009-07-31 13:34:02 +0800357 struct e1000_eeprom_info *eeprom = &hw->eeprom;
358 uint32_t eecd, i = 0;
359
360 DEBUGOUT();
wdenk4e112c12003-06-03 23:54:09 +0000361
Roy Zang28f7a052009-07-31 13:34:02 +0800362 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
363 return -E1000_ERR_SWFW_SYNC;
wdenk4e112c12003-06-03 23:54:09 +0000364 eecd = E1000_READ_REG(hw, EECD);
365
Roy Zang28f7a052009-07-31 13:34:02 +0800366 if (hw->mac_type != e1000_82573) {
367 /* Request EEPROM Access */
368 if (hw->mac_type > e1000_82544) {
369 eecd |= E1000_EECD_REQ;
370 E1000_WRITE_REG(hw, EECD, eecd);
371 eecd = E1000_READ_REG(hw, EECD);
372 while ((!(eecd & E1000_EECD_GNT)) &&
373 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
374 i++;
375 udelay(5);
376 eecd = E1000_READ_REG(hw, EECD);
377 }
378 if (!(eecd & E1000_EECD_GNT)) {
379 eecd &= ~E1000_EECD_REQ;
380 E1000_WRITE_REG(hw, EECD, eecd);
381 DEBUGOUT("Could not acquire EEPROM grant\n");
382 return -E1000_ERR_EEPROM;
383 }
384 }
385 }
wdenk4e112c12003-06-03 23:54:09 +0000386
Roy Zang28f7a052009-07-31 13:34:02 +0800387 /* Setup EEPROM for Read/Write */
wdenk4e112c12003-06-03 23:54:09 +0000388
Roy Zang28f7a052009-07-31 13:34:02 +0800389 if (eeprom->type == e1000_eeprom_microwire) {
390 /* Clear SK and DI */
391 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
392 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000393
Roy Zang28f7a052009-07-31 13:34:02 +0800394 /* Set CS */
395 eecd |= E1000_EECD_CS;
396 E1000_WRITE_REG(hw, EECD, eecd);
397 } else if (eeprom->type == e1000_eeprom_spi) {
398 /* Clear SK and CS */
399 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
400 E1000_WRITE_REG(hw, EECD, eecd);
401 udelay(1);
402 }
403
404 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000405}
406
407/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800408 * Sets up eeprom variables in the hw struct. Must be called after mac_type
409 * is configured. Additionally, if this is ICH8, the flash controller GbE
410 * registers must be mapped, or this will crash.
wdenk4e112c12003-06-03 23:54:09 +0000411 *
412 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000413 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800414static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000415{
Roy Zang28f7a052009-07-31 13:34:02 +0800416 struct e1000_eeprom_info *eeprom = &hw->eeprom;
417 uint32_t eecd = E1000_READ_REG(hw, EECD);
418 int32_t ret_val = E1000_SUCCESS;
419 uint16_t eeprom_size;
wdenk4e112c12003-06-03 23:54:09 +0000420
Roy Zang28f7a052009-07-31 13:34:02 +0800421 DEBUGOUT();
422
423 switch (hw->mac_type) {
424 case e1000_82542_rev2_0:
425 case e1000_82542_rev2_1:
426 case e1000_82543:
427 case e1000_82544:
428 eeprom->type = e1000_eeprom_microwire;
429 eeprom->word_size = 64;
430 eeprom->opcode_bits = 3;
431 eeprom->address_bits = 6;
432 eeprom->delay_usec = 50;
433 eeprom->use_eerd = FALSE;
434 eeprom->use_eewr = FALSE;
435 break;
436 case e1000_82540:
437 case e1000_82545:
438 case e1000_82545_rev_3:
439 case e1000_82546:
440 case e1000_82546_rev_3:
441 eeprom->type = e1000_eeprom_microwire;
442 eeprom->opcode_bits = 3;
443 eeprom->delay_usec = 50;
444 if (eecd & E1000_EECD_SIZE) {
445 eeprom->word_size = 256;
446 eeprom->address_bits = 8;
447 } else {
448 eeprom->word_size = 64;
449 eeprom->address_bits = 6;
450 }
451 eeprom->use_eerd = FALSE;
452 eeprom->use_eewr = FALSE;
453 break;
454 case e1000_82541:
455 case e1000_82541_rev_2:
456 case e1000_82547:
457 case e1000_82547_rev_2:
458 if (eecd & E1000_EECD_TYPE) {
459 eeprom->type = e1000_eeprom_spi;
460 eeprom->opcode_bits = 8;
461 eeprom->delay_usec = 1;
462 if (eecd & E1000_EECD_ADDR_BITS) {
463 eeprom->page_size = 32;
464 eeprom->address_bits = 16;
465 } else {
466 eeprom->page_size = 8;
467 eeprom->address_bits = 8;
468 }
469 } else {
470 eeprom->type = e1000_eeprom_microwire;
471 eeprom->opcode_bits = 3;
472 eeprom->delay_usec = 50;
473 if (eecd & E1000_EECD_ADDR_BITS) {
474 eeprom->word_size = 256;
475 eeprom->address_bits = 8;
476 } else {
477 eeprom->word_size = 64;
478 eeprom->address_bits = 6;
479 }
480 }
481 eeprom->use_eerd = FALSE;
482 eeprom->use_eewr = FALSE;
483 break;
484 case e1000_82571:
485 case e1000_82572:
486 eeprom->type = e1000_eeprom_spi;
487 eeprom->opcode_bits = 8;
488 eeprom->delay_usec = 1;
489 if (eecd & E1000_EECD_ADDR_BITS) {
490 eeprom->page_size = 32;
491 eeprom->address_bits = 16;
492 } else {
493 eeprom->page_size = 8;
494 eeprom->address_bits = 8;
495 }
496 eeprom->use_eerd = FALSE;
497 eeprom->use_eewr = FALSE;
498 break;
499 case e1000_82573:
500 eeprom->type = e1000_eeprom_spi;
501 eeprom->opcode_bits = 8;
502 eeprom->delay_usec = 1;
503 if (eecd & E1000_EECD_ADDR_BITS) {
504 eeprom->page_size = 32;
505 eeprom->address_bits = 16;
506 } else {
507 eeprom->page_size = 8;
508 eeprom->address_bits = 8;
wdenk4e112c12003-06-03 23:54:09 +0000509 }
Roy Zang28f7a052009-07-31 13:34:02 +0800510 eeprom->use_eerd = TRUE;
511 eeprom->use_eewr = TRUE;
512 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
513 eeprom->type = e1000_eeprom_flash;
514 eeprom->word_size = 2048;
515
516 /* Ensure that the Autonomous FLASH update bit is cleared due to
517 * Flash update issue on parts which use a FLASH for NVM. */
518 eecd &= ~E1000_EECD_AUPDEN;
wdenk4e112c12003-06-03 23:54:09 +0000519 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000520 }
Roy Zang28f7a052009-07-31 13:34:02 +0800521 break;
522 case e1000_80003es2lan:
523 eeprom->type = e1000_eeprom_spi;
524 eeprom->opcode_bits = 8;
525 eeprom->delay_usec = 1;
526 if (eecd & E1000_EECD_ADDR_BITS) {
527 eeprom->page_size = 32;
528 eeprom->address_bits = 16;
529 } else {
530 eeprom->page_size = 8;
531 eeprom->address_bits = 8;
532 }
533 eeprom->use_eerd = TRUE;
534 eeprom->use_eewr = FALSE;
535 break;
wdenk4e112c12003-06-03 23:54:09 +0000536
Roy Zang28f7a052009-07-31 13:34:02 +0800537 /* ich8lan does not support currently. if needed, please
538 * add corresponding code and functions.
539 */
540#if 0
541 case e1000_ich8lan:
542 {
543 int32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000544
Roy Zang28f7a052009-07-31 13:34:02 +0800545 eeprom->type = e1000_eeprom_ich8;
546 eeprom->use_eerd = FALSE;
547 eeprom->use_eewr = FALSE;
548 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
549 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
550 ICH_FLASH_GFPREG);
551 /* Zero the shadow RAM structure. But don't load it from NVM
552 * so as to save time for driver init */
553 if (hw->eeprom_shadow_ram != NULL) {
554 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
555 hw->eeprom_shadow_ram[i].modified = FALSE;
556 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
557 }
558 }
wdenk4e112c12003-06-03 23:54:09 +0000559
Roy Zang28f7a052009-07-31 13:34:02 +0800560 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
561 ICH_FLASH_SECTOR_SIZE;
wdenk4e112c12003-06-03 23:54:09 +0000562
Roy Zang28f7a052009-07-31 13:34:02 +0800563 hw->flash_bank_size = ((flash_size >> 16)
564 & ICH_GFPREG_BASE_MASK) + 1;
565 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
wdenk4e112c12003-06-03 23:54:09 +0000566
Roy Zang28f7a052009-07-31 13:34:02 +0800567 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
568
569 hw->flash_bank_size /= 2 * sizeof(uint16_t);
570 break;
571 }
572#endif
573 default:
574 break;
wdenk4e112c12003-06-03 23:54:09 +0000575 }
576
Roy Zang28f7a052009-07-31 13:34:02 +0800577 if (eeprom->type == e1000_eeprom_spi) {
578 /* eeprom_size will be an enum [0..8] that maps
579 * to eeprom sizes 128B to
580 * 32KB (incremented by powers of 2).
581 */
582 if (hw->mac_type <= e1000_82547_rev_2) {
583 /* Set to default value for initial eeprom read. */
584 eeprom->word_size = 64;
585 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
586 &eeprom_size);
587 if (ret_val)
588 return ret_val;
589 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
590 >> EEPROM_SIZE_SHIFT;
591 /* 256B eeprom size was not supported in earlier
592 * hardware, so we bump eeprom_size up one to
593 * ensure that "1" (which maps to 256B) is never
594 * the result used in the shifting logic below. */
595 if (eeprom_size)
596 eeprom_size++;
597 } else {
598 eeprom_size = (uint16_t)((eecd &
599 E1000_EECD_SIZE_EX_MASK) >>
600 E1000_EECD_SIZE_EX_SHIFT);
601 }
602
603 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
604 }
605 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +0000606}
607
Roy Zang28f7a052009-07-31 13:34:02 +0800608/******************************************************************************
609 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
610 *
611 * hw - Struct containing variables accessed by shared code
612 *****************************************************************************/
613static int32_t
614e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
wdenk4e112c12003-06-03 23:54:09 +0000615{
Roy Zang28f7a052009-07-31 13:34:02 +0800616 uint32_t attempts = 100000;
617 uint32_t i, reg = 0;
618 int32_t done = E1000_ERR_EEPROM;
wdenk4e112c12003-06-03 23:54:09 +0000619
Roy Zang28f7a052009-07-31 13:34:02 +0800620 for (i = 0; i < attempts; i++) {
621 if (eerd == E1000_EEPROM_POLL_READ)
622 reg = E1000_READ_REG(hw, EERD);
623 else
624 reg = E1000_READ_REG(hw, EEWR);
625
626 if (reg & E1000_EEPROM_RW_REG_DONE) {
627 done = E1000_SUCCESS;
628 break;
629 }
630 udelay(5);
631 }
632
633 return done;
wdenk4e112c12003-06-03 23:54:09 +0000634}
635
Roy Zang28f7a052009-07-31 13:34:02 +0800636/******************************************************************************
637 * Reads a 16 bit word from the EEPROM using the EERD register.
638 *
639 * hw - Struct containing variables accessed by shared code
640 * offset - offset of word in the EEPROM to read
641 * data - word read from the EEPROM
642 * words - number of words to read
643 *****************************************************************************/
644static int32_t
645e1000_read_eeprom_eerd(struct e1000_hw *hw,
646 uint16_t offset,
647 uint16_t words,
648 uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000649{
Roy Zang28f7a052009-07-31 13:34:02 +0800650 uint32_t i, eerd = 0;
651 int32_t error = 0;
wdenk4e112c12003-06-03 23:54:09 +0000652
Roy Zang28f7a052009-07-31 13:34:02 +0800653 for (i = 0; i < words; i++) {
654 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
655 E1000_EEPROM_RW_REG_START;
656
657 E1000_WRITE_REG(hw, EERD, eerd);
658 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
659
660 if (error)
661 break;
662 data[i] = (E1000_READ_REG(hw, EERD) >>
663 E1000_EEPROM_RW_REG_DATA);
664
wdenk4e112c12003-06-03 23:54:09 +0000665 }
Roy Zang28f7a052009-07-31 13:34:02 +0800666
667 return error;
wdenk4e112c12003-06-03 23:54:09 +0000668}
669
Roy Zang28f7a052009-07-31 13:34:02 +0800670static void
671e1000_release_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000672{
673 uint32_t eecd;
wdenk4e112c12003-06-03 23:54:09 +0000674
Roy Zang28f7a052009-07-31 13:34:02 +0800675 DEBUGFUNC();
676
677 eecd = E1000_READ_REG(hw, EECD);
678
679 if (hw->eeprom.type == e1000_eeprom_spi) {
680 eecd |= E1000_EECD_CS; /* Pull CS high */
681 eecd &= ~E1000_EECD_SK; /* Lower SCK */
682
wdenk4e112c12003-06-03 23:54:09 +0000683 E1000_WRITE_REG(hw, EECD, eecd);
Roy Zang28f7a052009-07-31 13:34:02 +0800684
685 udelay(hw->eeprom.delay_usec);
686 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
687 /* cleanup eeprom */
688
689 /* CS on Microwire is active-high */
690 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
691
692 E1000_WRITE_REG(hw, EECD, eecd);
693
694 /* Rising edge of clock */
695 eecd |= E1000_EECD_SK;
696 E1000_WRITE_REG(hw, EECD, eecd);
697 E1000_WRITE_FLUSH(hw);
698 udelay(hw->eeprom.delay_usec);
699
700 /* Falling edge of clock */
701 eecd &= ~E1000_EECD_SK;
702 E1000_WRITE_REG(hw, EECD, eecd);
703 E1000_WRITE_FLUSH(hw);
704 udelay(hw->eeprom.delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000705 }
wdenk4e112c12003-06-03 23:54:09 +0000706
707 /* Stop requesting EEPROM access */
708 if (hw->mac_type > e1000_82544) {
wdenk4e112c12003-06-03 23:54:09 +0000709 eecd &= ~E1000_EECD_REQ;
710 E1000_WRITE_REG(hw, EECD, eecd);
711 }
wdenk4e112c12003-06-03 23:54:09 +0000712}
wdenk4e112c12003-06-03 23:54:09 +0000713/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800714 * Reads a 16 bit word from the EEPROM.
wdenk57b2d802003-06-27 21:31:46 +0000715 *
wdenk4e112c12003-06-03 23:54:09 +0000716 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000717 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800718static int32_t
719e1000_spi_eeprom_ready(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000720{
Roy Zang28f7a052009-07-31 13:34:02 +0800721 uint16_t retry_count = 0;
722 uint8_t spi_stat_reg;
wdenk4e112c12003-06-03 23:54:09 +0000723
724 DEBUGFUNC();
725
Roy Zang28f7a052009-07-31 13:34:02 +0800726 /* Read "Status Register" repeatedly until the LSB is cleared. The
727 * EEPROM will signal that the command has been completed by clearing
728 * bit 0 of the internal status register. If it's not cleared within
729 * 5 milliseconds, then error out.
730 */
731 retry_count = 0;
732 do {
733 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
734 hw->eeprom.opcode_bits);
735 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
736 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
737 break;
wdenk57b2d802003-06-27 21:31:46 +0000738
Roy Zang28f7a052009-07-31 13:34:02 +0800739 udelay(5);
740 retry_count += 5;
741
742 e1000_standby_eeprom(hw);
743 } while (retry_count < EEPROM_MAX_RETRY_SPI);
744
745 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
746 * only 0-5mSec on 5V devices)
747 */
748 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
749 DEBUGOUT("SPI EEPROM Status error\n");
wdenk4e112c12003-06-03 23:54:09 +0000750 return -E1000_ERR_EEPROM;
751 }
Roy Zang28f7a052009-07-31 13:34:02 +0800752
753 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000754}
755
756/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800757 * Reads a 16 bit word from the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000758 *
Roy Zang28f7a052009-07-31 13:34:02 +0800759 * hw - Struct containing variables accessed by shared code
760 * offset - offset of word in the EEPROM to read
761 * data - word read from the EEPROM
wdenk4e112c12003-06-03 23:54:09 +0000762 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800763static int32_t
764e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
765 uint16_t words, uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000766{
Roy Zang28f7a052009-07-31 13:34:02 +0800767 struct e1000_eeprom_info *eeprom = &hw->eeprom;
768 uint32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000769
770 DEBUGFUNC();
771
Roy Zang28f7a052009-07-31 13:34:02 +0800772 /* If eeprom is not yet detected, do so now */
773 if (eeprom->word_size == 0)
774 e1000_init_eeprom_params(hw);
775
776 /* A check for invalid values: offset too large, too many words,
777 * and not enough words.
778 */
779 if ((offset >= eeprom->word_size) ||
780 (words > eeprom->word_size - offset) ||
781 (words == 0)) {
782 DEBUGOUT("\"words\" parameter out of bounds."
783 "Words = %d, size = %d\n", offset, eeprom->word_size);
784 return -E1000_ERR_EEPROM;
785 }
786
787 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
788 * directly. In this case, we need to acquire the EEPROM so that
789 * FW or other port software does not interrupt.
790 */
791 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
792 hw->eeprom.use_eerd == FALSE) {
793
794 /* Prepare the EEPROM for bit-bang reading */
795 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
796 return -E1000_ERR_EEPROM;
797 }
798
799 /* Eerd register EEPROM access requires no eeprom aquire/release */
800 if (eeprom->use_eerd == TRUE)
801 return e1000_read_eeprom_eerd(hw, offset, words, data);
802
803 /* ich8lan does not support currently. if needed, please
804 * add corresponding code and functions.
805 */
806#if 0
807 /* ICH EEPROM access is done via the ICH flash controller */
808 if (eeprom->type == e1000_eeprom_ich8)
809 return e1000_read_eeprom_ich8(hw, offset, words, data);
810#endif
811 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
812 * acquired the EEPROM at this point, so any returns should relase it */
813 if (eeprom->type == e1000_eeprom_spi) {
814 uint16_t word_in;
815 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
816
817 if (e1000_spi_eeprom_ready(hw)) {
818 e1000_release_eeprom(hw);
819 return -E1000_ERR_EEPROM;
820 }
821
822 e1000_standby_eeprom(hw);
823
824 /* Some SPI eeproms use the 8th address bit embedded in
825 * the opcode */
826 if ((eeprom->address_bits == 8) && (offset >= 128))
827 read_opcode |= EEPROM_A8_OPCODE_SPI;
828
829 /* Send the READ command (opcode + addr) */
830 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
831 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
832 eeprom->address_bits);
833
834 /* Read the data. The address of the eeprom internally
835 * increments with each byte (spi) being read, saving on the
836 * overhead of eeprom setup and tear-down. The address
837 * counter will roll over if reading beyond the size of
838 * the eeprom, thus allowing the entire memory to be read
839 * starting from any offset. */
840 for (i = 0; i < words; i++) {
841 word_in = e1000_shift_in_ee_bits(hw, 16);
842 data[i] = (word_in >> 8) | (word_in << 8);
843 }
844 } else if (eeprom->type == e1000_eeprom_microwire) {
845 for (i = 0; i < words; i++) {
846 /* Send the READ command (opcode + addr) */
847 e1000_shift_out_ee_bits(hw,
848 EEPROM_READ_OPCODE_MICROWIRE,
849 eeprom->opcode_bits);
850 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
851 eeprom->address_bits);
852
853 /* Read the data. For microwire, each word requires
854 * the overhead of eeprom setup and tear-down. */
855 data[i] = e1000_shift_in_ee_bits(hw, 16);
856 e1000_standby_eeprom(hw);
857 }
858 }
859
860 /* End this read operation */
861 e1000_release_eeprom(hw);
862
863 return E1000_SUCCESS;
864}
865
866/******************************************************************************
867 * Verifies that the EEPROM has a valid checksum
868 *
869 * hw - Struct containing variables accessed by shared code
870 *
871 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
872 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
873 * valid.
874 *****************************************************************************/
875static int
876e1000_validate_eeprom_checksum(struct eth_device *nic)
877{
878 struct e1000_hw *hw = nic->priv;
879 uint16_t checksum = 0;
880 uint16_t i, eeprom_data;
881
882 DEBUGFUNC();
883
884 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
885 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
886 DEBUGOUT("EEPROM Read Error\n");
887 return -E1000_ERR_EEPROM;
888 }
889 checksum += eeprom_data;
890 }
891
892 if (checksum == (uint16_t) EEPROM_SUM) {
893 return 0;
894 } else {
895 DEBUGOUT("EEPROM Checksum Invalid\n");
896 return -E1000_ERR_EEPROM;
897 }
Roy Zang9b7c4302009-08-11 03:48:05 +0800898}
899
900/*****************************************************************************
901 * Set PHY to class A mode
902 * Assumes the following operations will follow to enable the new class mode.
903 * 1. Do a PHY soft reset
904 * 2. Restart auto-negotiation or force link.
905 *
906 * hw - Struct containing variables accessed by shared code
907 ****************************************************************************/
908static int32_t
909e1000_set_phy_mode(struct e1000_hw *hw)
910{
911 int32_t ret_val;
912 uint16_t eeprom_data;
913
914 DEBUGFUNC();
915
916 if ((hw->mac_type == e1000_82545_rev_3) &&
917 (hw->media_type == e1000_media_type_copper)) {
918 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
919 1, &eeprom_data);
920 if (ret_val)
921 return ret_val;
922
923 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
924 (eeprom_data & EEPROM_PHY_CLASS_A)) {
925 ret_val = e1000_write_phy_reg(hw,
926 M88E1000_PHY_PAGE_SELECT, 0x000B);
927 if (ret_val)
928 return ret_val;
929 ret_val = e1000_write_phy_reg(hw,
930 M88E1000_PHY_GEN_CONTROL, 0x8104);
931 if (ret_val)
932 return ret_val;
933
934 hw->phy_reset_disable = FALSE;
935 }
936 }
937
938 return E1000_SUCCESS;
Roy Zang28f7a052009-07-31 13:34:02 +0800939}
940#endif /* #ifndef CONFIG_AP1000 */
941
942/***************************************************************************
943 *
944 * Obtaining software semaphore bit (SMBI) before resetting PHY.
945 *
946 * hw: Struct containing variables accessed by shared code
947 *
948 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
949 * E1000_SUCCESS at any other case.
950 *
951 ***************************************************************************/
952static int32_t
953e1000_get_software_semaphore(struct e1000_hw *hw)
954{
955 int32_t timeout = hw->eeprom.word_size + 1;
956 uint32_t swsm;
957
958 DEBUGFUNC();
959
960 if (hw->mac_type != e1000_80003es2lan)
961 return E1000_SUCCESS;
962
963 while (timeout) {
964 swsm = E1000_READ_REG(hw, SWSM);
965 /* If SMBI bit cleared, it is now set and we hold
966 * the semaphore */
967 if (!(swsm & E1000_SWSM_SMBI))
968 break;
969 mdelay(1);
970 timeout--;
971 }
972
973 if (!timeout) {
974 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
975 return -E1000_ERR_RESET;
976 }
977
978 return E1000_SUCCESS;
979}
980
981/***************************************************************************
982 * This function clears HW semaphore bits.
983 *
984 * hw: Struct containing variables accessed by shared code
985 *
986 * returns: - None.
987 *
988 ***************************************************************************/
989static void
990e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
991{
992 uint32_t swsm;
993
994 DEBUGFUNC();
995
996 if (!hw->eeprom_semaphore_present)
997 return;
998
999 swsm = E1000_READ_REG(hw, SWSM);
1000 if (hw->mac_type == e1000_80003es2lan) {
1001 /* Release both semaphores. */
1002 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1003 } else
1004 swsm &= ~(E1000_SWSM_SWESMBI);
1005 E1000_WRITE_REG(hw, SWSM, swsm);
1006}
1007
1008/***************************************************************************
1009 *
1010 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1011 * adapter or Eeprom access.
1012 *
1013 * hw: Struct containing variables accessed by shared code
1014 *
1015 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1016 * E1000_SUCCESS at any other case.
1017 *
1018 ***************************************************************************/
1019static int32_t
1020e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1021{
1022 int32_t timeout;
1023 uint32_t swsm;
1024
1025 DEBUGFUNC();
1026
1027 if (!hw->eeprom_semaphore_present)
1028 return E1000_SUCCESS;
1029
1030 if (hw->mac_type == e1000_80003es2lan) {
1031 /* Get the SW semaphore. */
1032 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1033 return -E1000_ERR_EEPROM;
1034 }
1035
1036 /* Get the FW semaphore. */
1037 timeout = hw->eeprom.word_size + 1;
1038 while (timeout) {
1039 swsm = E1000_READ_REG(hw, SWSM);
1040 swsm |= E1000_SWSM_SWESMBI;
1041 E1000_WRITE_REG(hw, SWSM, swsm);
1042 /* if we managed to set the bit we got the semaphore. */
1043 swsm = E1000_READ_REG(hw, SWSM);
1044 if (swsm & E1000_SWSM_SWESMBI)
1045 break;
1046
1047 udelay(50);
1048 timeout--;
1049 }
1050
1051 if (!timeout) {
1052 /* Release semaphores */
1053 e1000_put_hw_eeprom_semaphore(hw);
1054 DEBUGOUT("Driver can't access the Eeprom - "
1055 "SWESMBI bit is set.\n");
1056 return -E1000_ERR_EEPROM;
1057 }
1058
1059 return E1000_SUCCESS;
1060}
1061
1062static int32_t
1063e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1064{
1065 uint32_t swfw_sync = 0;
1066 uint32_t swmask = mask;
1067 uint32_t fwmask = mask << 16;
1068 int32_t timeout = 200;
1069
1070 DEBUGFUNC();
1071 while (timeout) {
1072 if (e1000_get_hw_eeprom_semaphore(hw))
1073 return -E1000_ERR_SWFW_SYNC;
1074
1075 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1076 if (!(swfw_sync & (fwmask | swmask)))
1077 break;
1078
1079 /* firmware currently using resource (fwmask) */
1080 /* or other software thread currently using resource (swmask) */
1081 e1000_put_hw_eeprom_semaphore(hw);
1082 mdelay(5);
1083 timeout--;
1084 }
1085
1086 if (!timeout) {
1087 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1088 return -E1000_ERR_SWFW_SYNC;
1089 }
1090
1091 swfw_sync |= swmask;
1092 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1093
1094 e1000_put_hw_eeprom_semaphore(hw);
1095 return E1000_SUCCESS;
1096}
1097
1098/******************************************************************************
1099 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1100 * second function of dual function devices
1101 *
1102 * nic - Struct containing variables accessed by shared code
1103 *****************************************************************************/
1104static int
1105e1000_read_mac_addr(struct eth_device *nic)
1106{
1107#ifndef CONFIG_AP1000
1108 struct e1000_hw *hw = nic->priv;
1109 uint16_t offset;
1110 uint16_t eeprom_data;
1111 int i;
1112
1113 DEBUGFUNC();
1114
1115 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
wdenk4e112c12003-06-03 23:54:09 +00001116 offset = i >> 1;
Roy Zang28f7a052009-07-31 13:34:02 +08001117 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001118 DEBUGOUT("EEPROM Read Error\n");
1119 return -E1000_ERR_EEPROM;
1120 }
1121 nic->enetaddr[i] = eeprom_data & 0xff;
1122 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1123 }
1124 if ((hw->mac_type == e1000_82546) &&
1125 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
1126 /* Invert the last bit if this is the second device */
1127 nic->enetaddr[5] += 1;
1128 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01001129#ifdef CONFIG_E1000_FALLBACK_MAC
Stefan Roese37628252008-08-06 14:05:38 +02001130 if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1131 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1132
1133 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1134 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01001135#endif
Wolfgang Denk56811f62005-10-09 01:04:33 +02001136#else
1137 /*
1138 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1139 * environment variables. Currently this does not support the addition
1140 * of a PMC e1000 card, which is certainly a possibility, so this should
1141 * be updated to properly use the env variable only for the onboard e1000
1142 */
1143
1144 int ii;
1145 char *s, *e;
1146
1147 DEBUGFUNC();
1148
1149 s = getenv ("ethaddr");
Stefan Roese37628252008-08-06 14:05:38 +02001150 if (s == NULL) {
Wolfgang Denk56811f62005-10-09 01:04:33 +02001151 return -E1000_ERR_EEPROM;
Stefan Roese37628252008-08-06 14:05:38 +02001152 } else {
Wolfgang Denk56811f62005-10-09 01:04:33 +02001153 for(ii = 0; ii < 6; ii++) {
1154 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1155 if (s){
1156 s = (*e) ? e + 1 : e;
1157 }
1158 }
1159 }
1160#endif
wdenk4e112c12003-06-03 23:54:09 +00001161 return 0;
1162}
1163
1164/******************************************************************************
1165 * Initializes receive address filters.
1166 *
wdenk57b2d802003-06-27 21:31:46 +00001167 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +00001168 *
1169 * Places the MAC address in receive address register 0 and clears the rest
1170 * of the receive addresss registers. Clears the multicast table. Assumes
1171 * the receiver is in reset when the routine is called.
1172 *****************************************************************************/
1173static void
1174e1000_init_rx_addrs(struct eth_device *nic)
1175{
1176 struct e1000_hw *hw = nic->priv;
1177 uint32_t i;
1178 uint32_t addr_low;
1179 uint32_t addr_high;
1180
1181 DEBUGFUNC();
1182
1183 /* Setup the receive address. */
1184 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1185 addr_low = (nic->enetaddr[0] |
1186 (nic->enetaddr[1] << 8) |
1187 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1188
1189 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1190
1191 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1192 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1193
1194 /* Zero out the other 15 receive addresses. */
1195 DEBUGOUT("Clearing RAR[1-15]\n");
1196 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1197 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1198 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1199 }
1200}
1201
1202/******************************************************************************
1203 * Clears the VLAN filer table
1204 *
1205 * hw - Struct containing variables accessed by shared code
1206 *****************************************************************************/
1207static void
1208e1000_clear_vfta(struct e1000_hw *hw)
1209{
1210 uint32_t offset;
1211
1212 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1213 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1214}
1215
1216/******************************************************************************
1217 * Set the mac type member in the hw struct.
wdenk57b2d802003-06-27 21:31:46 +00001218 *
wdenk4e112c12003-06-03 23:54:09 +00001219 * hw - Struct containing variables accessed by shared code
1220 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08001221int32_t
wdenk4e112c12003-06-03 23:54:09 +00001222e1000_set_mac_type(struct e1000_hw *hw)
1223{
1224 DEBUGFUNC();
1225
1226 switch (hw->device_id) {
1227 case E1000_DEV_ID_82542:
1228 switch (hw->revision_id) {
1229 case E1000_82542_2_0_REV_ID:
1230 hw->mac_type = e1000_82542_rev2_0;
1231 break;
1232 case E1000_82542_2_1_REV_ID:
1233 hw->mac_type = e1000_82542_rev2_1;
1234 break;
1235 default:
1236 /* Invalid 82542 revision ID */
1237 return -E1000_ERR_MAC_TYPE;
1238 }
1239 break;
1240 case E1000_DEV_ID_82543GC_FIBER:
1241 case E1000_DEV_ID_82543GC_COPPER:
1242 hw->mac_type = e1000_82543;
1243 break;
1244 case E1000_DEV_ID_82544EI_COPPER:
1245 case E1000_DEV_ID_82544EI_FIBER:
1246 case E1000_DEV_ID_82544GC_COPPER:
1247 case E1000_DEV_ID_82544GC_LOM:
1248 hw->mac_type = e1000_82544;
1249 break;
1250 case E1000_DEV_ID_82540EM:
1251 case E1000_DEV_ID_82540EM_LOM:
Roy Zang28f7a052009-07-31 13:34:02 +08001252 case E1000_DEV_ID_82540EP:
1253 case E1000_DEV_ID_82540EP_LOM:
1254 case E1000_DEV_ID_82540EP_LP:
wdenk4e112c12003-06-03 23:54:09 +00001255 hw->mac_type = e1000_82540;
1256 break;
1257 case E1000_DEV_ID_82545EM_COPPER:
1258 case E1000_DEV_ID_82545EM_FIBER:
1259 hw->mac_type = e1000_82545;
1260 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001261 case E1000_DEV_ID_82545GM_COPPER:
1262 case E1000_DEV_ID_82545GM_FIBER:
1263 case E1000_DEV_ID_82545GM_SERDES:
1264 hw->mac_type = e1000_82545_rev_3;
1265 break;
wdenk4e112c12003-06-03 23:54:09 +00001266 case E1000_DEV_ID_82546EB_COPPER:
1267 case E1000_DEV_ID_82546EB_FIBER:
Roy Zang28f7a052009-07-31 13:34:02 +08001268 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk4e112c12003-06-03 23:54:09 +00001269 hw->mac_type = e1000_82546;
1270 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001271 case E1000_DEV_ID_82546GB_COPPER:
1272 case E1000_DEV_ID_82546GB_FIBER:
1273 case E1000_DEV_ID_82546GB_SERDES:
1274 case E1000_DEV_ID_82546GB_PCIE:
1275 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1276 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1277 hw->mac_type = e1000_82546_rev_3;
1278 break;
1279 case E1000_DEV_ID_82541EI:
1280 case E1000_DEV_ID_82541EI_MOBILE:
1281 case E1000_DEV_ID_82541ER_LOM:
1282 hw->mac_type = e1000_82541;
1283 break;
Andre Schwarz68c2a302008-03-06 16:45:44 +01001284 case E1000_DEV_ID_82541ER:
Roy Zang28f7a052009-07-31 13:34:02 +08001285 case E1000_DEV_ID_82541GI:
Wolfgang Grandegger8562c382008-05-28 19:55:19 +02001286 case E1000_DEV_ID_82541GI_LF:
Roy Zang28f7a052009-07-31 13:34:02 +08001287 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001288 hw->mac_type = e1000_82541_rev_2;
1289 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001290 case E1000_DEV_ID_82547EI:
1291 case E1000_DEV_ID_82547EI_MOBILE:
1292 hw->mac_type = e1000_82547;
1293 break;
1294 case E1000_DEV_ID_82547GI:
1295 hw->mac_type = e1000_82547_rev_2;
1296 break;
1297 case E1000_DEV_ID_82571EB_COPPER:
1298 case E1000_DEV_ID_82571EB_FIBER:
1299 case E1000_DEV_ID_82571EB_SERDES:
1300 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1301 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1302 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1303 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1304 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1305 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1306 hw->mac_type = e1000_82571;
1307 break;
1308 case E1000_DEV_ID_82572EI_COPPER:
1309 case E1000_DEV_ID_82572EI_FIBER:
1310 case E1000_DEV_ID_82572EI_SERDES:
1311 case E1000_DEV_ID_82572EI:
1312 hw->mac_type = e1000_82572;
1313 break;
1314 case E1000_DEV_ID_82573E:
1315 case E1000_DEV_ID_82573E_IAMT:
1316 case E1000_DEV_ID_82573L:
1317 hw->mac_type = e1000_82573;
1318 break;
1319 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1320 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1321 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1322 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1323 hw->mac_type = e1000_80003es2lan;
1324 break;
1325 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1326 case E1000_DEV_ID_ICH8_IGP_AMT:
1327 case E1000_DEV_ID_ICH8_IGP_C:
1328 case E1000_DEV_ID_ICH8_IFE:
1329 case E1000_DEV_ID_ICH8_IFE_GT:
1330 case E1000_DEV_ID_ICH8_IFE_G:
1331 case E1000_DEV_ID_ICH8_IGP_M:
1332 hw->mac_type = e1000_ich8lan;
1333 break;
wdenk4e112c12003-06-03 23:54:09 +00001334 default:
1335 /* Should never have loaded on this device */
1336 return -E1000_ERR_MAC_TYPE;
1337 }
1338 return E1000_SUCCESS;
1339}
1340
1341/******************************************************************************
1342 * Reset the transmit and receive units; mask and clear all interrupts.
1343 *
1344 * hw - Struct containing variables accessed by shared code
1345 *****************************************************************************/
1346void
1347e1000_reset_hw(struct e1000_hw *hw)
1348{
1349 uint32_t ctrl;
1350 uint32_t ctrl_ext;
1351 uint32_t icr;
1352 uint32_t manc;
1353
1354 DEBUGFUNC();
1355
1356 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1357 if (hw->mac_type == e1000_82542_rev2_0) {
1358 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1359 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zang28f7a052009-07-31 13:34:02 +08001360 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
wdenk4e112c12003-06-03 23:54:09 +00001361 }
1362
1363 /* Clear interrupt mask to stop board from generating interrupts */
1364 DEBUGOUT("Masking off all interrupts\n");
1365 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1366
1367 /* Disable the Transmit and Receive units. Then delay to allow
1368 * any pending transactions to complete before we hit the MAC with
1369 * the global reset.
1370 */
1371 E1000_WRITE_REG(hw, RCTL, 0);
1372 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1373 E1000_WRITE_FLUSH(hw);
1374
1375 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1376 hw->tbi_compatibility_on = FALSE;
1377
1378 /* Delay to allow any outstanding PCI transactions to complete before
1379 * resetting the device
1380 */
1381 mdelay(10);
1382
1383 /* Issue a global reset to the MAC. This will reset the chip's
1384 * transmit, receive, DMA, and link units. It will not effect
1385 * the current PCI configuration. The global reset bit is self-
1386 * clearing, and should clear within a microsecond.
1387 */
1388 DEBUGOUT("Issuing a global reset to MAC\n");
1389 ctrl = E1000_READ_REG(hw, CTRL);
1390
Roy Zang28f7a052009-07-31 13:34:02 +08001391 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk4e112c12003-06-03 23:54:09 +00001392
1393 /* Force a reload from the EEPROM if necessary */
1394 if (hw->mac_type < e1000_82540) {
1395 /* Wait for reset to complete */
1396 udelay(10);
1397 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1398 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1399 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1400 E1000_WRITE_FLUSH(hw);
1401 /* Wait for EEPROM reload */
1402 mdelay(2);
1403 } else {
1404 /* Wait for EEPROM reload (it happens automatically) */
1405 mdelay(4);
1406 /* Dissable HW ARPs on ASF enabled adapters */
1407 manc = E1000_READ_REG(hw, MANC);
1408 manc &= ~(E1000_MANC_ARP_EN);
1409 E1000_WRITE_REG(hw, MANC, manc);
1410 }
1411
1412 /* Clear interrupt mask to stop board from generating interrupts */
1413 DEBUGOUT("Masking off all interrupts\n");
1414 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1415
1416 /* Clear any pending interrupt events. */
1417 icr = E1000_READ_REG(hw, ICR);
1418
1419 /* If MWI was previously enabled, reenable it. */
1420 if (hw->mac_type == e1000_82542_rev2_0) {
1421 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1422 }
Roy Zang28f7a052009-07-31 13:34:02 +08001423 E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
1424}
1425
1426/******************************************************************************
1427 *
1428 * Initialize a number of hardware-dependent bits
1429 *
1430 * hw: Struct containing variables accessed by shared code
1431 *
1432 * This function contains hardware limitation workarounds for PCI-E adapters
1433 *
1434 *****************************************************************************/
1435static void
1436e1000_initialize_hardware_bits(struct e1000_hw *hw)
1437{
1438 if ((hw->mac_type >= e1000_82571) &&
1439 (!hw->initialize_hw_bits_disable)) {
1440 /* Settings common to all PCI-express silicon */
1441 uint32_t reg_ctrl, reg_ctrl_ext;
1442 uint32_t reg_tarc0, reg_tarc1;
1443 uint32_t reg_tctl;
1444 uint32_t reg_txdctl, reg_txdctl1;
1445
1446 /* link autonegotiation/sync workarounds */
1447 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1448 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1449
1450 /* Enable not-done TX descriptor counting */
1451 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1452 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1453 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1454
1455 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1456 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1457 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1458
1459 switch (hw->mac_type) {
1460 case e1000_82571:
1461 case e1000_82572:
1462 /* Clear PHY TX compatible mode bits */
1463 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1464 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1465
1466 /* link autonegotiation/sync workarounds */
1467 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1468
1469 /* TX ring control fixes */
1470 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1471
1472 /* Multiple read bit is reversed polarity */
1473 reg_tctl = E1000_READ_REG(hw, TCTL);
1474 if (reg_tctl & E1000_TCTL_MULR)
1475 reg_tarc1 &= ~(1 << 28);
1476 else
1477 reg_tarc1 |= (1 << 28);
1478
1479 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1480 break;
1481 case e1000_82573:
1482 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1483 reg_ctrl_ext &= ~(1 << 23);
1484 reg_ctrl_ext |= (1 << 22);
1485
1486 /* TX byte count fix */
1487 reg_ctrl = E1000_READ_REG(hw, CTRL);
1488 reg_ctrl &= ~(1 << 29);
1489
1490 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1491 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1492 break;
1493 case e1000_80003es2lan:
1494 /* improve small packet performace for fiber/serdes */
1495 if ((hw->media_type == e1000_media_type_fiber)
1496 || (hw->media_type ==
1497 e1000_media_type_internal_serdes)) {
1498 reg_tarc0 &= ~(1 << 20);
1499 }
1500
1501 /* Multiple read bit is reversed polarity */
1502 reg_tctl = E1000_READ_REG(hw, TCTL);
1503 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1504 if (reg_tctl & E1000_TCTL_MULR)
1505 reg_tarc1 &= ~(1 << 28);
1506 else
1507 reg_tarc1 |= (1 << 28);
1508
1509 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1510 break;
1511 case e1000_ich8lan:
1512 /* Reduce concurrent DMA requests to 3 from 4 */
1513 if ((hw->revision_id < 3) ||
1514 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1515 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1516 reg_tarc0 |= ((1 << 29)|(1 << 28));
1517
1518 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1519 reg_ctrl_ext |= (1 << 22);
1520 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1521
1522 /* workaround TX hang with TSO=on */
1523 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1524
1525 /* Multiple read bit is reversed polarity */
1526 reg_tctl = E1000_READ_REG(hw, TCTL);
1527 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1528 if (reg_tctl & E1000_TCTL_MULR)
1529 reg_tarc1 &= ~(1 << 28);
1530 else
1531 reg_tarc1 |= (1 << 28);
1532
1533 /* workaround TX hang with TSO=on */
1534 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1535
1536 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1537 break;
1538 default:
1539 break;
1540 }
1541
1542 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1543 }
wdenk4e112c12003-06-03 23:54:09 +00001544}
1545
1546/******************************************************************************
1547 * Performs basic configuration of the adapter.
1548 *
1549 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001550 *
1551 * Assumes that the controller has previously been reset and is in a
wdenk4e112c12003-06-03 23:54:09 +00001552 * post-reset uninitialized state. Initializes the receive address registers,
1553 * multicast table, and VLAN filter table. Calls routines to setup link
1554 * configuration and flow control settings. Clears all on-chip counters. Leaves
1555 * the transmit and receive units disabled and uninitialized.
1556 *****************************************************************************/
1557static int
1558e1000_init_hw(struct eth_device *nic)
1559{
1560 struct e1000_hw *hw = nic->priv;
Roy Zang28f7a052009-07-31 13:34:02 +08001561 uint32_t ctrl;
wdenk4e112c12003-06-03 23:54:09 +00001562 uint32_t i;
1563 int32_t ret_val;
1564 uint16_t pcix_cmd_word;
1565 uint16_t pcix_stat_hi_word;
1566 uint16_t cmd_mmrbc;
1567 uint16_t stat_mmrbc;
Roy Zang28f7a052009-07-31 13:34:02 +08001568 uint32_t mta_size;
1569 uint32_t reg_data;
1570 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001571 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08001572 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1573 if ((hw->mac_type == e1000_ich8lan) &&
1574 ((hw->revision_id < 3) ||
1575 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1576 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1577 reg_data = E1000_READ_REG(hw, STATUS);
1578 reg_data &= ~0x80000000;
1579 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk4e112c12003-06-03 23:54:09 +00001580 }
Roy Zang28f7a052009-07-31 13:34:02 +08001581 /* Do not need initialize Identification LED */
wdenk4e112c12003-06-03 23:54:09 +00001582
Roy Zang28f7a052009-07-31 13:34:02 +08001583 /* Set the media type and TBI compatibility */
1584 e1000_set_media_type(hw);
1585
1586 /* Must be called after e1000_set_media_type
1587 * because media_type is used */
1588 e1000_initialize_hardware_bits(hw);
wdenk4e112c12003-06-03 23:54:09 +00001589
1590 /* Disabling VLAN filtering. */
1591 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001592 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1593 if (hw->mac_type != e1000_ich8lan) {
1594 if (hw->mac_type < e1000_82545_rev_3)
1595 E1000_WRITE_REG(hw, VET, 0);
1596 e1000_clear_vfta(hw);
1597 }
wdenk4e112c12003-06-03 23:54:09 +00001598
1599 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1600 if (hw->mac_type == e1000_82542_rev2_0) {
1601 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1602 pci_write_config_word(hw->pdev, PCI_COMMAND,
1603 hw->
1604 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1605 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1606 E1000_WRITE_FLUSH(hw);
1607 mdelay(5);
1608 }
1609
1610 /* Setup the receive address. This involves initializing all of the Receive
1611 * Address Registers (RARs 0 - 15).
1612 */
1613 e1000_init_rx_addrs(nic);
1614
1615 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1616 if (hw->mac_type == e1000_82542_rev2_0) {
1617 E1000_WRITE_REG(hw, RCTL, 0);
1618 E1000_WRITE_FLUSH(hw);
1619 mdelay(1);
1620 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1621 }
1622
1623 /* Zero out the Multicast HASH table */
1624 DEBUGOUT("Zeroing the MTA\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001625 mta_size = E1000_MC_TBL_SIZE;
1626 if (hw->mac_type == e1000_ich8lan)
1627 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1628 for (i = 0; i < mta_size; i++) {
wdenk4e112c12003-06-03 23:54:09 +00001629 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zang28f7a052009-07-31 13:34:02 +08001630 /* use write flush to prevent Memory Write Block (MWB) from
1631 * occuring when accessing our register space */
1632 E1000_WRITE_FLUSH(hw);
1633 }
wdenk4e112c12003-06-03 23:54:09 +00001634#if 0
1635 /* Set the PCI priority bit correctly in the CTRL register. This
1636 * determines if the adapter gives priority to receives, or if it
Roy Zang28f7a052009-07-31 13:34:02 +08001637 * gives equal priority to transmits and receives. Valid only on
1638 * 82542 and 82543 silicon.
wdenk4e112c12003-06-03 23:54:09 +00001639 */
Roy Zang28f7a052009-07-31 13:34:02 +08001640 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
wdenk4e112c12003-06-03 23:54:09 +00001641 ctrl = E1000_READ_REG(hw, CTRL);
1642 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1643 }
1644#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001645 switch (hw->mac_type) {
1646 case e1000_82545_rev_3:
1647 case e1000_82546_rev_3:
1648 break;
1649 default:
wdenk4e112c12003-06-03 23:54:09 +00001650 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zang28f7a052009-07-31 13:34:02 +08001651 if (hw->bus_type == e1000_bus_type_pcix) {
wdenk4e112c12003-06-03 23:54:09 +00001652 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1653 &pcix_cmd_word);
1654 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1655 &pcix_stat_hi_word);
1656 cmd_mmrbc =
1657 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1658 PCIX_COMMAND_MMRBC_SHIFT;
1659 stat_mmrbc =
1660 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1661 PCIX_STATUS_HI_MMRBC_SHIFT;
1662 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1663 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1664 if (cmd_mmrbc > stat_mmrbc) {
1665 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1666 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1667 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1668 pcix_cmd_word);
1669 }
1670 }
Roy Zang28f7a052009-07-31 13:34:02 +08001671 break;
1672 }
wdenk4e112c12003-06-03 23:54:09 +00001673
Roy Zang28f7a052009-07-31 13:34:02 +08001674 /* More time needed for PHY to initialize */
1675 if (hw->mac_type == e1000_ich8lan)
1676 mdelay(15);
1677
wdenk4e112c12003-06-03 23:54:09 +00001678 /* Call a subroutine to configure the link and setup flow control. */
1679 ret_val = e1000_setup_link(nic);
1680
1681 /* Set the transmit descriptor write-back policy */
1682 if (hw->mac_type > e1000_82544) {
1683 ctrl = E1000_READ_REG(hw, TXDCTL);
1684 ctrl =
1685 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1686 E1000_TXDCTL_FULL_TX_DESC_WB;
1687 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1688 }
Roy Zang28f7a052009-07-31 13:34:02 +08001689
1690 switch (hw->mac_type) {
1691 default:
1692 break;
1693 case e1000_80003es2lan:
1694 /* Enable retransmit on late collisions */
1695 reg_data = E1000_READ_REG(hw, TCTL);
1696 reg_data |= E1000_TCTL_RTLC;
1697 E1000_WRITE_REG(hw, TCTL, reg_data);
1698
1699 /* Configure Gigabit Carry Extend Padding */
1700 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1701 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1702 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1703 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1704
1705 /* Configure Transmit Inter-Packet Gap */
1706 reg_data = E1000_READ_REG(hw, TIPG);
1707 reg_data &= ~E1000_TIPG_IPGT_MASK;
1708 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1709 E1000_WRITE_REG(hw, TIPG, reg_data);
1710
1711 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1712 reg_data &= ~0x00100000;
1713 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1714 /* Fall through */
1715 case e1000_82571:
1716 case e1000_82572:
1717 case e1000_ich8lan:
1718 ctrl = E1000_READ_REG(hw, TXDCTL1);
1719 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1720 | E1000_TXDCTL_FULL_TX_DESC_WB;
1721 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1722 break;
1723 }
1724
1725 if (hw->mac_type == e1000_82573) {
1726 uint32_t gcr = E1000_READ_REG(hw, GCR);
1727 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1728 E1000_WRITE_REG(hw, GCR, gcr);
1729 }
1730
wdenk4e112c12003-06-03 23:54:09 +00001731#if 0
1732 /* Clear all of the statistics registers (clear on read). It is
1733 * important that we do this after we have tried to establish link
1734 * because the symbol error count will increment wildly if there
1735 * is no link.
1736 */
1737 e1000_clear_hw_cntrs(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08001738
1739 /* ICH8 No-snoop bits are opposite polarity.
1740 * Set to snoop by default after reset. */
1741 if (hw->mac_type == e1000_ich8lan)
1742 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
wdenk4e112c12003-06-03 23:54:09 +00001743#endif
1744
Roy Zang28f7a052009-07-31 13:34:02 +08001745 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1746 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1747 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1748 /* Relaxed ordering must be disabled to avoid a parity
1749 * error crash in a PCI slot. */
1750 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1751 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1752 }
1753
1754 return ret_val;
1755}
wdenk4e112c12003-06-03 23:54:09 +00001756
1757/******************************************************************************
1758 * Configures flow control and link settings.
wdenk57b2d802003-06-27 21:31:46 +00001759 *
wdenk4e112c12003-06-03 23:54:09 +00001760 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001761 *
wdenk4e112c12003-06-03 23:54:09 +00001762 * Determines which flow control settings to use. Calls the apropriate media-
1763 * specific link configuration function. Configures the flow control settings.
1764 * Assuming the adapter has a valid link partner, a valid link should be
wdenk57b2d802003-06-27 21:31:46 +00001765 * established. Assumes the hardware has previously been reset and the
wdenk4e112c12003-06-03 23:54:09 +00001766 * transmitter and receiver are not enabled.
1767 *****************************************************************************/
1768static int
1769e1000_setup_link(struct eth_device *nic)
1770{
1771 struct e1000_hw *hw = nic->priv;
1772 uint32_t ctrl_ext;
1773 int32_t ret_val;
1774 uint16_t eeprom_data;
1775
1776 DEBUGFUNC();
1777
Roy Zang28f7a052009-07-31 13:34:02 +08001778 /* In the case of the phy reset being blocked, we already have a link.
1779 * We do not have to set it up again. */
1780 if (e1000_check_phy_reset_block(hw))
1781 return E1000_SUCCESS;
1782
Wolfgang Denk56811f62005-10-09 01:04:33 +02001783#ifndef CONFIG_AP1000
wdenk4e112c12003-06-03 23:54:09 +00001784 /* Read and store word 0x0F of the EEPROM. This word contains bits
1785 * that determine the hardware's default PAUSE (flow control) mode,
1786 * a bit that determines whether the HW defaults to enabling or
1787 * disabling auto-negotiation, and the direction of the
1788 * SW defined pins. If there is no SW over-ride of the flow
1789 * control setting, then the variable hw->fc will
1790 * be initialized based on a value in the EEPROM.
1791 */
Roy Zang28f7a052009-07-31 13:34:02 +08001792 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1793 &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001794 DEBUGOUT("EEPROM Read Error\n");
1795 return -E1000_ERR_EEPROM;
1796 }
Wolfgang Denk56811f62005-10-09 01:04:33 +02001797#else
1798 /* we have to hardcode the proper value for our hardware. */
1799 /* this value is for the 82540EM pci card used for prototyping, and it works. */
1800 eeprom_data = 0xb220;
1801#endif
wdenk4e112c12003-06-03 23:54:09 +00001802
1803 if (hw->fc == e1000_fc_default) {
Roy Zang28f7a052009-07-31 13:34:02 +08001804 switch (hw->mac_type) {
1805 case e1000_ich8lan:
1806 case e1000_82573:
wdenk4e112c12003-06-03 23:54:09 +00001807 hw->fc = e1000_fc_full;
Roy Zang28f7a052009-07-31 13:34:02 +08001808 break;
1809 default:
1810#ifndef CONFIG_AP1000
1811 ret_val = e1000_read_eeprom(hw,
1812 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1813 if (ret_val) {
1814 DEBUGOUT("EEPROM Read Error\n");
1815 return -E1000_ERR_EEPROM;
1816 }
1817#else
1818 eeprom_data = 0xb220;
1819#endif
1820 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1821 hw->fc = e1000_fc_none;
1822 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1823 EEPROM_WORD0F_ASM_DIR)
1824 hw->fc = e1000_fc_tx_pause;
1825 else
1826 hw->fc = e1000_fc_full;
1827 break;
1828 }
wdenk4e112c12003-06-03 23:54:09 +00001829 }
1830
1831 /* We want to save off the original Flow Control configuration just
1832 * in case we get disconnected and then reconnected into a different
1833 * hub or switch with different Flow Control capabilities.
1834 */
1835 if (hw->mac_type == e1000_82542_rev2_0)
1836 hw->fc &= (~e1000_fc_tx_pause);
1837
1838 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1839 hw->fc &= (~e1000_fc_rx_pause);
1840
1841 hw->original_fc = hw->fc;
1842
1843 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1844
1845 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1846 * polarity value for the SW controlled pins, and setup the
1847 * Extended Device Control reg with that info.
1848 * This is needed because one of the SW controlled pins is used for
1849 * signal detection. So this should be done before e1000_setup_pcs_link()
1850 * or e1000_phy_setup() is called.
1851 */
1852 if (hw->mac_type == e1000_82543) {
1853 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1854 SWDPIO__EXT_SHIFT);
1855 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1856 }
1857
1858 /* Call the necessary subroutine to configure the link. */
1859 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1860 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1861 if (ret_val < 0) {
1862 return ret_val;
1863 }
1864
1865 /* Initialize the flow control address, type, and PAUSE timer
1866 * registers to their default values. This is done even if flow
1867 * control is disabled, because it does not hurt anything to
1868 * initialize these registers.
1869 */
Roy Zang28f7a052009-07-31 13:34:02 +08001870 DEBUGOUT("Initializing the Flow Control address, type"
1871 "and timer regs\n");
1872
1873 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1874 if (hw->mac_type != e1000_ich8lan) {
1875 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1876 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1877 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1878 }
wdenk4e112c12003-06-03 23:54:09 +00001879
wdenk4e112c12003-06-03 23:54:09 +00001880 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1881
1882 /* Set the flow control receive threshold registers. Normally,
1883 * these registers will be set to a default threshold that may be
1884 * adjusted later by the driver's runtime code. However, if the
1885 * ability to transmit pause frames in not enabled, then these
wdenk57b2d802003-06-27 21:31:46 +00001886 * registers will be set to 0.
wdenk4e112c12003-06-03 23:54:09 +00001887 */
1888 if (!(hw->fc & e1000_fc_tx_pause)) {
1889 E1000_WRITE_REG(hw, FCRTL, 0);
1890 E1000_WRITE_REG(hw, FCRTH, 0);
1891 } else {
1892 /* We need to set up the Receive Threshold high and low water marks
1893 * as well as (optionally) enabling the transmission of XON frames.
1894 */
1895 if (hw->fc_send_xon) {
1896 E1000_WRITE_REG(hw, FCRTL,
1897 (hw->fc_low_water | E1000_FCRTL_XONE));
1898 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1899 } else {
1900 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1901 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1902 }
1903 }
1904 return ret_val;
1905}
1906
1907/******************************************************************************
1908 * Sets up link for a fiber based adapter
1909 *
1910 * hw - Struct containing variables accessed by shared code
1911 *
1912 * Manipulates Physical Coding Sublayer functions in order to configure
1913 * link. Assumes the hardware has been previously reset and the transmitter
1914 * and receiver are not enabled.
1915 *****************************************************************************/
1916static int
1917e1000_setup_fiber_link(struct eth_device *nic)
1918{
1919 struct e1000_hw *hw = nic->priv;
1920 uint32_t ctrl;
1921 uint32_t status;
1922 uint32_t txcw = 0;
1923 uint32_t i;
1924 uint32_t signal;
1925 int32_t ret_val;
1926
1927 DEBUGFUNC();
wdenk57b2d802003-06-27 21:31:46 +00001928 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1929 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00001930 * cleared when there is a signal
1931 */
1932 ctrl = E1000_READ_REG(hw, CTRL);
1933 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1934 signal = E1000_CTRL_SWDPIN1;
1935 else
1936 signal = 0;
1937
1938 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1939 ctrl);
1940 /* Take the link out of reset */
1941 ctrl &= ~(E1000_CTRL_LRST);
1942
1943 e1000_config_collision_dist(hw);
1944
1945 /* Check for a software override of the flow control settings, and setup
1946 * the device accordingly. If auto-negotiation is enabled, then software
1947 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1948 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk57b2d802003-06-27 21:31:46 +00001949 * auto-negotiation is disabled, then software will have to manually
wdenk4e112c12003-06-03 23:54:09 +00001950 * configure the two flow control enable bits in the CTRL register.
1951 *
1952 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001953 * 0: Flow control is completely disabled
1954 * 1: Rx flow control is enabled (we can receive pause frames, but
1955 * not send pause frames).
1956 * 2: Tx flow control is enabled (we can send pause frames but we do
1957 * not support receiving pause frames).
1958 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00001959 */
1960 switch (hw->fc) {
1961 case e1000_fc_none:
1962 /* Flow control is completely disabled by a software over-ride. */
1963 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1964 break;
1965 case e1000_fc_rx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001966 /* RX Flow control is enabled and TX Flow control is disabled by a
1967 * software over-ride. Since there really isn't a way to advertise
wdenk4e112c12003-06-03 23:54:09 +00001968 * that we are capable of RX Pause ONLY, we will advertise that we
1969 * support both symmetric and asymmetric RX PAUSE. Later, we will
1970 * disable the adapter's ability to send PAUSE frames.
1971 */
1972 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1973 break;
1974 case e1000_fc_tx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001975 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk4e112c12003-06-03 23:54:09 +00001976 * software over-ride.
1977 */
1978 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1979 break;
1980 case e1000_fc_full:
1981 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1982 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1983 break;
1984 default:
1985 DEBUGOUT("Flow control param set incorrectly\n");
1986 return -E1000_ERR_CONFIG;
1987 break;
1988 }
1989
1990 /* Since auto-negotiation is enabled, take the link out of reset (the link
1991 * will be in reset, because we previously reset the chip). This will
1992 * restart auto-negotiation. If auto-neogtiation is successful then the
1993 * link-up status bit will be set and the flow control enable bits (RFCE
1994 * and TFCE) will be set according to their negotiated value.
1995 */
1996 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
1997
1998 E1000_WRITE_REG(hw, TXCW, txcw);
1999 E1000_WRITE_REG(hw, CTRL, ctrl);
2000 E1000_WRITE_FLUSH(hw);
2001
2002 hw->txcw = txcw;
2003 mdelay(1);
2004
2005 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk57b2d802003-06-27 21:31:46 +00002006 * indication in the Device Status Register. Time-out if a link isn't
2007 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk4e112c12003-06-03 23:54:09 +00002008 * less than 500 milliseconds even if the other end is doing it in SW).
2009 */
2010 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2011 DEBUGOUT("Looking for Link\n");
2012 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2013 mdelay(10);
2014 status = E1000_READ_REG(hw, STATUS);
2015 if (status & E1000_STATUS_LU)
2016 break;
2017 }
2018 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk57b2d802003-06-27 21:31:46 +00002019 /* AutoNeg failed to achieve a link, so we'll call
wdenk4e112c12003-06-03 23:54:09 +00002020 * e1000_check_for_link. This routine will force the link up if we
2021 * detect a signal. This will allow us to communicate with
2022 * non-autonegotiating link partners.
2023 */
2024 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2025 hw->autoneg_failed = 1;
2026 ret_val = e1000_check_for_link(nic);
2027 if (ret_val < 0) {
2028 DEBUGOUT("Error while checking for link\n");
2029 return ret_val;
2030 }
2031 hw->autoneg_failed = 0;
2032 } else {
2033 hw->autoneg_failed = 0;
2034 DEBUGOUT("Valid Link Found\n");
2035 }
2036 } else {
2037 DEBUGOUT("No Signal Detected\n");
2038 return -E1000_ERR_NOLINK;
2039 }
2040 return 0;
2041}
2042
2043/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08002044* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk4e112c12003-06-03 23:54:09 +00002045*
2046* hw - Struct containing variables accessed by shared code
2047******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08002048static int32_t
2049e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002050{
wdenk4e112c12003-06-03 23:54:09 +00002051 uint32_t ctrl;
2052 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002053 uint16_t phy_data;
2054
2055 DEBUGFUNC();
2056
2057 ctrl = E1000_READ_REG(hw, CTRL);
2058 /* With 82543, we need to force speed and duplex on the MAC equal to what
2059 * the PHY speed and duplex configuration is. In addition, we need to
2060 * perform a hardware reset on the PHY to take it out of reset.
2061 */
2062 if (hw->mac_type > e1000_82543) {
2063 ctrl |= E1000_CTRL_SLU;
2064 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2065 E1000_WRITE_REG(hw, CTRL, ctrl);
2066 } else {
Roy Zang28f7a052009-07-31 13:34:02 +08002067 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2068 | E1000_CTRL_SLU);
wdenk4e112c12003-06-03 23:54:09 +00002069 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002070 ret_val = e1000_phy_hw_reset(hw);
2071 if (ret_val)
2072 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002073 }
2074
2075 /* Make sure we have a valid PHY */
2076 ret_val = e1000_detect_gig_phy(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002077 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002078 DEBUGOUT("Error, did not detect valid phy.\n");
2079 return ret_val;
2080 }
2081 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2082
Roy Zang28f7a052009-07-31 13:34:02 +08002083#ifndef CONFIG_AP1000
2084 /* Set PHY to class A mode (if necessary) */
2085 ret_val = e1000_set_phy_mode(hw);
2086 if (ret_val)
2087 return ret_val;
2088#endif
2089 if ((hw->mac_type == e1000_82545_rev_3) ||
2090 (hw->mac_type == e1000_82546_rev_3)) {
2091 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2092 &phy_data);
2093 phy_data |= 0x00000008;
2094 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2095 phy_data);
2096 }
2097
2098 if (hw->mac_type <= e1000_82543 ||
2099 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2100 hw->mac_type == e1000_82541_rev_2
2101 || hw->mac_type == e1000_82547_rev_2)
2102 hw->phy_reset_disable = FALSE;
2103
2104 return E1000_SUCCESS;
2105}
2106
2107/*****************************************************************************
2108 *
2109 * This function sets the lplu state according to the active flag. When
2110 * activating lplu this function also disables smart speed and vise versa.
2111 * lplu will not be activated unless the device autonegotiation advertisment
2112 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2113 * hw: Struct containing variables accessed by shared code
2114 * active - true to enable lplu false to disable lplu.
2115 *
2116 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2117 * E1000_SUCCESS at any other case.
2118 *
2119 ****************************************************************************/
2120
2121static int32_t
2122e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2123{
2124 uint32_t phy_ctrl = 0;
2125 int32_t ret_val;
2126 uint16_t phy_data;
2127 DEBUGFUNC();
2128
2129 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2130 && hw->phy_type != e1000_phy_igp_3)
2131 return E1000_SUCCESS;
2132
2133 /* During driver activity LPLU should not be used or it will attain link
2134 * from the lowest speeds starting from 10Mbps. The capability is used
2135 * for Dx transitions and states */
2136 if (hw->mac_type == e1000_82541_rev_2
2137 || hw->mac_type == e1000_82547_rev_2) {
2138 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2139 &phy_data);
2140 if (ret_val)
2141 return ret_val;
2142 } else if (hw->mac_type == e1000_ich8lan) {
2143 /* MAC writes into PHY register based on the state transition
2144 * and start auto-negotiation. SW driver can overwrite the
2145 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2146 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2147 } else {
2148 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2149 &phy_data);
2150 if (ret_val)
2151 return ret_val;
2152 }
2153
2154 if (!active) {
2155 if (hw->mac_type == e1000_82541_rev_2 ||
2156 hw->mac_type == e1000_82547_rev_2) {
2157 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2158 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2159 phy_data);
2160 if (ret_val)
2161 return ret_val;
2162 } else {
2163 if (hw->mac_type == e1000_ich8lan) {
2164 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2165 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2166 } else {
2167 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2168 ret_val = e1000_write_phy_reg(hw,
2169 IGP02E1000_PHY_POWER_MGMT, phy_data);
2170 if (ret_val)
2171 return ret_val;
2172 }
2173 }
2174
2175 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2176 * Dx states where the power conservation is most important. During
2177 * driver activity we should enable SmartSpeed, so performance is
2178 * maintained. */
2179 if (hw->smart_speed == e1000_smart_speed_on) {
2180 ret_val = e1000_read_phy_reg(hw,
2181 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2182 if (ret_val)
2183 return ret_val;
2184
2185 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2186 ret_val = e1000_write_phy_reg(hw,
2187 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2188 if (ret_val)
2189 return ret_val;
2190 } else if (hw->smart_speed == e1000_smart_speed_off) {
2191 ret_val = e1000_read_phy_reg(hw,
2192 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2193 if (ret_val)
2194 return ret_val;
2195
2196 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2197 ret_val = e1000_write_phy_reg(hw,
2198 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2199 if (ret_val)
2200 return ret_val;
2201 }
2202
2203 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2204 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2205 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2206
2207 if (hw->mac_type == e1000_82541_rev_2 ||
2208 hw->mac_type == e1000_82547_rev_2) {
2209 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2210 ret_val = e1000_write_phy_reg(hw,
2211 IGP01E1000_GMII_FIFO, phy_data);
2212 if (ret_val)
2213 return ret_val;
2214 } else {
2215 if (hw->mac_type == e1000_ich8lan) {
2216 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2217 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2218 } else {
2219 phy_data |= IGP02E1000_PM_D3_LPLU;
2220 ret_val = e1000_write_phy_reg(hw,
2221 IGP02E1000_PHY_POWER_MGMT, phy_data);
2222 if (ret_val)
2223 return ret_val;
2224 }
2225 }
2226
2227 /* When LPLU is enabled we should disable SmartSpeed */
2228 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2229 &phy_data);
2230 if (ret_val)
2231 return ret_val;
2232
2233 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2234 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2235 phy_data);
2236 if (ret_val)
2237 return ret_val;
2238 }
2239 return E1000_SUCCESS;
2240}
2241
2242/*****************************************************************************
2243 *
2244 * This function sets the lplu d0 state according to the active flag. When
2245 * activating lplu this function also disables smart speed and vise versa.
2246 * lplu will not be activated unless the device autonegotiation advertisment
2247 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2248 * hw: Struct containing variables accessed by shared code
2249 * active - true to enable lplu false to disable lplu.
2250 *
2251 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2252 * E1000_SUCCESS at any other case.
2253 *
2254 ****************************************************************************/
2255
2256static int32_t
2257e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2258{
2259 uint32_t phy_ctrl = 0;
2260 int32_t ret_val;
2261 uint16_t phy_data;
2262 DEBUGFUNC();
2263
2264 if (hw->mac_type <= e1000_82547_rev_2)
2265 return E1000_SUCCESS;
2266
2267 if (hw->mac_type == e1000_ich8lan) {
2268 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2269 } else {
2270 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2271 &phy_data);
2272 if (ret_val)
2273 return ret_val;
2274 }
2275
2276 if (!active) {
2277 if (hw->mac_type == e1000_ich8lan) {
2278 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2279 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2280 } else {
2281 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2282 ret_val = e1000_write_phy_reg(hw,
2283 IGP02E1000_PHY_POWER_MGMT, phy_data);
2284 if (ret_val)
2285 return ret_val;
2286 }
2287
2288 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2289 * Dx states where the power conservation is most important. During
2290 * driver activity we should enable SmartSpeed, so performance is
2291 * maintained. */
2292 if (hw->smart_speed == e1000_smart_speed_on) {
2293 ret_val = e1000_read_phy_reg(hw,
2294 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2295 if (ret_val)
2296 return ret_val;
2297
2298 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2299 ret_val = e1000_write_phy_reg(hw,
2300 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2301 if (ret_val)
2302 return ret_val;
2303 } else if (hw->smart_speed == e1000_smart_speed_off) {
2304 ret_val = e1000_read_phy_reg(hw,
2305 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2306 if (ret_val)
2307 return ret_val;
2308
2309 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2310 ret_val = e1000_write_phy_reg(hw,
2311 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2312 if (ret_val)
2313 return ret_val;
2314 }
2315
2316
2317 } else {
2318
2319 if (hw->mac_type == e1000_ich8lan) {
2320 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2321 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2322 } else {
2323 phy_data |= IGP02E1000_PM_D0_LPLU;
2324 ret_val = e1000_write_phy_reg(hw,
2325 IGP02E1000_PHY_POWER_MGMT, phy_data);
2326 if (ret_val)
2327 return ret_val;
2328 }
2329
2330 /* When LPLU is enabled we should disable SmartSpeed */
2331 ret_val = e1000_read_phy_reg(hw,
2332 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2333 if (ret_val)
2334 return ret_val;
2335
2336 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2337 ret_val = e1000_write_phy_reg(hw,
2338 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2339 if (ret_val)
2340 return ret_val;
2341
2342 }
2343 return E1000_SUCCESS;
2344}
2345
2346/********************************************************************
2347* Copper link setup for e1000_phy_igp series.
2348*
2349* hw - Struct containing variables accessed by shared code
2350*********************************************************************/
2351static int32_t
2352e1000_copper_link_igp_setup(struct e1000_hw *hw)
2353{
2354 uint32_t led_ctrl;
2355 int32_t ret_val;
2356 uint16_t phy_data;
2357
2358 DEBUGOUT();
2359
2360 if (hw->phy_reset_disable)
2361 return E1000_SUCCESS;
2362
2363 ret_val = e1000_phy_reset(hw);
2364 if (ret_val) {
2365 DEBUGOUT("Error Resetting the PHY\n");
2366 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002367 }
Roy Zang28f7a052009-07-31 13:34:02 +08002368
2369 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2370 mdelay(15);
2371 if (hw->mac_type != e1000_ich8lan) {
2372 /* Configure activity LED after PHY reset */
2373 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2374 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2375 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2376 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2377 }
2378
2379 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2380 if (hw->phy_type == e1000_phy_igp) {
2381 /* disable lplu d3 during driver init */
2382 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2383 if (ret_val) {
2384 DEBUGOUT("Error Disabling LPLU D3\n");
2385 return ret_val;
2386 }
2387 }
2388
2389 /* disable lplu d0 during driver init */
2390 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2391 if (ret_val) {
2392 DEBUGOUT("Error Disabling LPLU D0\n");
2393 return ret_val;
2394 }
2395 /* Configure mdi-mdix settings */
2396 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2397 if (ret_val)
2398 return ret_val;
2399
2400 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2401 hw->dsp_config_state = e1000_dsp_config_disabled;
2402 /* Force MDI for earlier revs of the IGP PHY */
2403 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2404 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2405 hw->mdix = 1;
2406
2407 } else {
2408 hw->dsp_config_state = e1000_dsp_config_enabled;
2409 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2410
2411 switch (hw->mdix) {
2412 case 1:
2413 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2414 break;
2415 case 2:
2416 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2417 break;
2418 case 0:
2419 default:
2420 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2421 break;
2422 }
2423 }
2424 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2425 if (ret_val)
2426 return ret_val;
2427
2428 /* set auto-master slave resolution settings */
2429 if (hw->autoneg) {
2430 e1000_ms_type phy_ms_setting = hw->master_slave;
2431
2432 if (hw->ffe_config_state == e1000_ffe_config_active)
2433 hw->ffe_config_state = e1000_ffe_config_enabled;
2434
2435 if (hw->dsp_config_state == e1000_dsp_config_activated)
2436 hw->dsp_config_state = e1000_dsp_config_enabled;
2437
2438 /* when autonegotiation advertisment is only 1000Mbps then we
2439 * should disable SmartSpeed and enable Auto MasterSlave
2440 * resolution as hardware default. */
2441 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2442 /* Disable SmartSpeed */
2443 ret_val = e1000_read_phy_reg(hw,
2444 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2445 if (ret_val)
2446 return ret_val;
2447 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2448 ret_val = e1000_write_phy_reg(hw,
2449 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2450 if (ret_val)
2451 return ret_val;
2452 /* Set auto Master/Slave resolution process */
2453 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2454 &phy_data);
2455 if (ret_val)
2456 return ret_val;
2457 phy_data &= ~CR_1000T_MS_ENABLE;
2458 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2459 phy_data);
2460 if (ret_val)
2461 return ret_val;
2462 }
2463
2464 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2465 if (ret_val)
2466 return ret_val;
2467
2468 /* load defaults for future use */
2469 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2470 ((phy_data & CR_1000T_MS_VALUE) ?
2471 e1000_ms_force_master :
2472 e1000_ms_force_slave) :
2473 e1000_ms_auto;
2474
2475 switch (phy_ms_setting) {
2476 case e1000_ms_force_master:
2477 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2478 break;
2479 case e1000_ms_force_slave:
2480 phy_data |= CR_1000T_MS_ENABLE;
2481 phy_data &= ~(CR_1000T_MS_VALUE);
2482 break;
2483 case e1000_ms_auto:
2484 phy_data &= ~CR_1000T_MS_ENABLE;
2485 default:
2486 break;
2487 }
2488 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2489 if (ret_val)
2490 return ret_val;
2491 }
2492
2493 return E1000_SUCCESS;
2494}
2495
2496/*****************************************************************************
2497 * This function checks the mode of the firmware.
2498 *
2499 * returns - TRUE when the mode is IAMT or FALSE.
2500 ****************************************************************************/
2501boolean_t
2502e1000_check_mng_mode(struct e1000_hw *hw)
2503{
2504 uint32_t fwsm;
2505 DEBUGFUNC();
2506
2507 fwsm = E1000_READ_REG(hw, FWSM);
2508
2509 if (hw->mac_type == e1000_ich8lan) {
2510 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2511 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2512 return TRUE;
2513 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2514 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2515 return TRUE;
2516
2517 return FALSE;
2518}
2519
2520static int32_t
2521e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2522{
2523 uint32_t reg_val;
2524 uint16_t swfw;
2525 DEBUGFUNC();
2526
2527 if ((hw->mac_type == e1000_80003es2lan) &&
2528 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2529 swfw = E1000_SWFW_PHY1_SM;
2530 } else {
2531 swfw = E1000_SWFW_PHY0_SM;
2532 }
2533 if (e1000_swfw_sync_acquire(hw, swfw))
2534 return -E1000_ERR_SWFW_SYNC;
2535
2536 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2537 & E1000_KUMCTRLSTA_OFFSET) | data;
2538 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2539 udelay(2);
2540
2541 return E1000_SUCCESS;
2542}
2543
2544static int32_t
2545e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2546{
2547 uint32_t reg_val;
2548 uint16_t swfw;
2549 DEBUGFUNC();
2550
2551 if ((hw->mac_type == e1000_80003es2lan) &&
2552 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
2553 swfw = E1000_SWFW_PHY1_SM;
2554 } else {
2555 swfw = E1000_SWFW_PHY0_SM;
2556 }
2557 if (e1000_swfw_sync_acquire(hw, swfw))
2558 return -E1000_ERR_SWFW_SYNC;
2559
2560 /* Write register address */
2561 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2562 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2563 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2564 udelay(2);
2565
2566 /* Read the data returned */
2567 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2568 *data = (uint16_t)reg_val;
2569
2570 return E1000_SUCCESS;
2571}
2572
2573/********************************************************************
2574* Copper link setup for e1000_phy_gg82563 series.
2575*
2576* hw - Struct containing variables accessed by shared code
2577*********************************************************************/
2578static int32_t
2579e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2580{
2581 int32_t ret_val;
2582 uint16_t phy_data;
2583 uint32_t reg_data;
2584
2585 DEBUGFUNC();
2586
2587 if (!hw->phy_reset_disable) {
2588 /* Enable CRS on TX for half-duplex operation. */
2589 ret_val = e1000_read_phy_reg(hw,
2590 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2591 if (ret_val)
2592 return ret_val;
2593
2594 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2595 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2596 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2597
2598 ret_val = e1000_write_phy_reg(hw,
2599 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2600 if (ret_val)
2601 return ret_val;
2602
2603 /* Options:
2604 * MDI/MDI-X = 0 (default)
2605 * 0 - Auto for all speeds
2606 * 1 - MDI mode
2607 * 2 - MDI-X mode
2608 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2609 */
2610 ret_val = e1000_read_phy_reg(hw,
2611 GG82563_PHY_SPEC_CTRL, &phy_data);
2612 if (ret_val)
2613 return ret_val;
2614
2615 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2616
2617 switch (hw->mdix) {
2618 case 1:
2619 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2620 break;
2621 case 2:
2622 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2623 break;
2624 case 0:
2625 default:
2626 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2627 break;
2628 }
2629
2630 /* Options:
2631 * disable_polarity_correction = 0 (default)
2632 * Automatic Correction for Reversed Cable Polarity
2633 * 0 - Disabled
2634 * 1 - Enabled
2635 */
2636 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2637 ret_val = e1000_write_phy_reg(hw,
2638 GG82563_PHY_SPEC_CTRL, phy_data);
2639
2640 if (ret_val)
2641 return ret_val;
2642
2643 /* SW Reset the PHY so all changes take effect */
2644 ret_val = e1000_phy_reset(hw);
2645 if (ret_val) {
2646 DEBUGOUT("Error Resetting the PHY\n");
2647 return ret_val;
2648 }
2649 } /* phy_reset_disable */
2650
2651 if (hw->mac_type == e1000_80003es2lan) {
2652 /* Bypass RX and TX FIFO's */
2653 ret_val = e1000_write_kmrn_reg(hw,
2654 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2655 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2656 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2657 if (ret_val)
2658 return ret_val;
2659
2660 ret_val = e1000_read_phy_reg(hw,
2661 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2662 if (ret_val)
2663 return ret_val;
2664
2665 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2666 ret_val = e1000_write_phy_reg(hw,
2667 GG82563_PHY_SPEC_CTRL_2, phy_data);
2668
2669 if (ret_val)
2670 return ret_val;
2671
2672 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2673 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2674 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2675
2676 ret_val = e1000_read_phy_reg(hw,
2677 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2678 if (ret_val)
2679 return ret_val;
2680
2681 /* Do not init these registers when the HW is in IAMT mode, since the
2682 * firmware will have already initialized them. We only initialize
2683 * them if the HW is not in IAMT mode.
2684 */
2685 if (e1000_check_mng_mode(hw) == FALSE) {
2686 /* Enable Electrical Idle on the PHY */
2687 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2688 ret_val = e1000_write_phy_reg(hw,
2689 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2690 if (ret_val)
2691 return ret_val;
2692
2693 ret_val = e1000_read_phy_reg(hw,
2694 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2695 if (ret_val)
2696 return ret_val;
2697
2698 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2699 ret_val = e1000_write_phy_reg(hw,
2700 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2701
2702 if (ret_val)
2703 return ret_val;
2704 }
2705
2706 /* Workaround: Disable padding in Kumeran interface in the MAC
2707 * and in the PHY to avoid CRC errors.
2708 */
2709 ret_val = e1000_read_phy_reg(hw,
2710 GG82563_PHY_INBAND_CTRL, &phy_data);
2711 if (ret_val)
2712 return ret_val;
2713 phy_data |= GG82563_ICR_DIS_PADDING;
2714 ret_val = e1000_write_phy_reg(hw,
2715 GG82563_PHY_INBAND_CTRL, phy_data);
2716 if (ret_val)
2717 return ret_val;
2718 }
2719 return E1000_SUCCESS;
2720}
2721
2722/********************************************************************
2723* Copper link setup for e1000_phy_m88 series.
2724*
2725* hw - Struct containing variables accessed by shared code
2726*********************************************************************/
2727static int32_t
2728e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2729{
2730 int32_t ret_val;
2731 uint16_t phy_data;
2732
2733 DEBUGFUNC();
2734
2735 if (hw->phy_reset_disable)
2736 return E1000_SUCCESS;
2737
2738 /* Enable CRS on TX. This must be set for half-duplex operation. */
2739 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2740 if (ret_val)
2741 return ret_val;
2742
wdenk4e112c12003-06-03 23:54:09 +00002743 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2744
wdenk4e112c12003-06-03 23:54:09 +00002745 /* Options:
2746 * MDI/MDI-X = 0 (default)
2747 * 0 - Auto for all speeds
2748 * 1 - MDI mode
2749 * 2 - MDI-X mode
2750 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2751 */
2752 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zang28f7a052009-07-31 13:34:02 +08002753
wdenk4e112c12003-06-03 23:54:09 +00002754 switch (hw->mdix) {
2755 case 1:
2756 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2757 break;
2758 case 2:
2759 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2760 break;
2761 case 3:
2762 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2763 break;
2764 case 0:
2765 default:
2766 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2767 break;
2768 }
wdenk4e112c12003-06-03 23:54:09 +00002769
wdenk4e112c12003-06-03 23:54:09 +00002770 /* Options:
2771 * disable_polarity_correction = 0 (default)
Roy Zang28f7a052009-07-31 13:34:02 +08002772 * Automatic Correction for Reversed Cable Polarity
wdenk4e112c12003-06-03 23:54:09 +00002773 * 0 - Disabled
2774 * 1 - Enabled
2775 */
2776 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zang28f7a052009-07-31 13:34:02 +08002777 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2778 if (ret_val)
2779 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002780
Roy Zang28f7a052009-07-31 13:34:02 +08002781 if (hw->phy_revision < M88E1011_I_REV_4) {
2782 /* Force TX_CLK in the Extended PHY Specific Control Register
2783 * to 25MHz clock.
2784 */
2785 ret_val = e1000_read_phy_reg(hw,
2786 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2787 if (ret_val)
2788 return ret_val;
2789
2790 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2791
2792 if ((hw->phy_revision == E1000_REVISION_2) &&
2793 (hw->phy_id == M88E1111_I_PHY_ID)) {
2794 /* Vidalia Phy, set the downshift counter to 5x */
2795 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2796 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2797 ret_val = e1000_write_phy_reg(hw,
2798 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2799 if (ret_val)
2800 return ret_val;
2801 } else {
2802 /* Configure Master and Slave downshift values */
2803 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2804 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2805 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2806 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2807 ret_val = e1000_write_phy_reg(hw,
2808 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2809 if (ret_val)
2810 return ret_val;
2811 }
wdenk4e112c12003-06-03 23:54:09 +00002812 }
2813
2814 /* SW Reset the PHY so all changes take effect */
2815 ret_val = e1000_phy_reset(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002816 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002817 DEBUGOUT("Error Resetting the PHY\n");
2818 return ret_val;
2819 }
2820
Roy Zang28f7a052009-07-31 13:34:02 +08002821 return E1000_SUCCESS;
2822}
wdenk4e112c12003-06-03 23:54:09 +00002823
Roy Zang28f7a052009-07-31 13:34:02 +08002824/********************************************************************
2825* Setup auto-negotiation and flow control advertisements,
2826* and then perform auto-negotiation.
2827*
2828* hw - Struct containing variables accessed by shared code
2829*********************************************************************/
2830static int32_t
2831e1000_copper_link_autoneg(struct e1000_hw *hw)
2832{
2833 int32_t ret_val;
2834 uint16_t phy_data;
2835
2836 DEBUGFUNC();
2837
wdenk4e112c12003-06-03 23:54:09 +00002838 /* Perform some bounds checking on the hw->autoneg_advertised
2839 * parameter. If this variable is zero, then set it to the default.
2840 */
2841 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2842
2843 /* If autoneg_advertised is zero, we assume it was not defaulted
2844 * by the calling code so we set to advertise full capability.
2845 */
2846 if (hw->autoneg_advertised == 0)
2847 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2848
Roy Zang28f7a052009-07-31 13:34:02 +08002849 /* IFE phy only supports 10/100 */
2850 if (hw->phy_type == e1000_phy_ife)
2851 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2852
wdenk4e112c12003-06-03 23:54:09 +00002853 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2854 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002855 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002856 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2857 return ret_val;
2858 }
2859 DEBUGOUT("Restarting Auto-Neg\n");
2860
2861 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2862 * the Auto Neg Restart bit in the PHY control register.
2863 */
Roy Zang28f7a052009-07-31 13:34:02 +08002864 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2865 if (ret_val)
2866 return ret_val;
2867
wdenk4e112c12003-06-03 23:54:09 +00002868 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zang28f7a052009-07-31 13:34:02 +08002869 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2870 if (ret_val)
2871 return ret_val;
2872
wdenk4e112c12003-06-03 23:54:09 +00002873 /* Does the user want to wait for Auto-Neg to complete here, or
2874 * check at a later time (for example, callback routine).
2875 */
Roy Zang28f7a052009-07-31 13:34:02 +08002876 /* If we do not wait for autonegtation to complete I
2877 * do not see a valid link status.
2878 * wait_autoneg_complete = 1 .
2879 */
wdenk4e112c12003-06-03 23:54:09 +00002880 if (hw->wait_autoneg_complete) {
2881 ret_val = e1000_wait_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002882 if (ret_val) {
2883 DEBUGOUT("Error while waiting for autoneg"
2884 "to complete\n");
wdenk4e112c12003-06-03 23:54:09 +00002885 return ret_val;
2886 }
2887 }
Roy Zang28f7a052009-07-31 13:34:02 +08002888
2889 hw->get_link_status = TRUE;
2890
2891 return E1000_SUCCESS;
2892}
2893
2894/******************************************************************************
2895* Config the MAC and the PHY after link is up.
2896* 1) Set up the MAC to the current PHY speed/duplex
2897* if we are on 82543. If we
2898* are on newer silicon, we only need to configure
2899* collision distance in the Transmit Control Register.
2900* 2) Set up flow control on the MAC to that established with
2901* the link partner.
2902* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2903*
2904* hw - Struct containing variables accessed by shared code
2905******************************************************************************/
2906static int32_t
2907e1000_copper_link_postconfig(struct e1000_hw *hw)
2908{
2909 int32_t ret_val;
2910 DEBUGFUNC();
2911
2912 if (hw->mac_type >= e1000_82544) {
2913 e1000_config_collision_dist(hw);
2914 } else {
2915 ret_val = e1000_config_mac_to_phy(hw);
2916 if (ret_val) {
2917 DEBUGOUT("Error configuring MAC to PHY settings\n");
2918 return ret_val;
2919 }
2920 }
2921 ret_val = e1000_config_fc_after_link_up(hw);
2922 if (ret_val) {
2923 DEBUGOUT("Error Configuring Flow Control\n");
wdenk4e112c12003-06-03 23:54:09 +00002924 return ret_val;
2925 }
Roy Zang28f7a052009-07-31 13:34:02 +08002926 return E1000_SUCCESS;
2927}
2928
2929/******************************************************************************
2930* Detects which PHY is present and setup the speed and duplex
2931*
2932* hw - Struct containing variables accessed by shared code
2933******************************************************************************/
2934static int
2935e1000_setup_copper_link(struct eth_device *nic)
2936{
2937 struct e1000_hw *hw = nic->priv;
2938 int32_t ret_val;
2939 uint16_t i;
2940 uint16_t phy_data;
2941 uint16_t reg_data;
2942
2943 DEBUGFUNC();
2944
2945 switch (hw->mac_type) {
2946 case e1000_80003es2lan:
2947 case e1000_ich8lan:
2948 /* Set the mac to wait the maximum time between each
2949 * iteration and increase the max iterations when
2950 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2951 ret_val = e1000_write_kmrn_reg(hw,
2952 GG82563_REG(0x34, 4), 0xFFFF);
2953 if (ret_val)
2954 return ret_val;
2955 ret_val = e1000_read_kmrn_reg(hw,
2956 GG82563_REG(0x34, 9), &reg_data);
2957 if (ret_val)
2958 return ret_val;
2959 reg_data |= 0x3F;
2960 ret_val = e1000_write_kmrn_reg(hw,
2961 GG82563_REG(0x34, 9), reg_data);
2962 if (ret_val)
2963 return ret_val;
2964 default:
2965 break;
2966 }
2967
2968 /* Check if it is a valid PHY and set PHY mode if necessary. */
2969 ret_val = e1000_copper_link_preconfig(hw);
2970 if (ret_val)
2971 return ret_val;
2972 switch (hw->mac_type) {
2973 case e1000_80003es2lan:
2974 /* Kumeran registers are written-only */
2975 reg_data =
2976 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
2977 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
2978 ret_val = e1000_write_kmrn_reg(hw,
2979 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
2980 if (ret_val)
2981 return ret_val;
2982 break;
2983 default:
2984 break;
2985 }
2986
2987 if (hw->phy_type == e1000_phy_igp ||
2988 hw->phy_type == e1000_phy_igp_3 ||
2989 hw->phy_type == e1000_phy_igp_2) {
2990 ret_val = e1000_copper_link_igp_setup(hw);
2991 if (ret_val)
2992 return ret_val;
2993 } else if (hw->phy_type == e1000_phy_m88) {
2994 ret_val = e1000_copper_link_mgp_setup(hw);
2995 if (ret_val)
2996 return ret_val;
2997 } else if (hw->phy_type == e1000_phy_gg82563) {
2998 ret_val = e1000_copper_link_ggp_setup(hw);
2999 if (ret_val)
3000 return ret_val;
3001 }
3002
3003 /* always auto */
3004 /* Setup autoneg and flow control advertisement
3005 * and perform autonegotiation */
3006 ret_val = e1000_copper_link_autoneg(hw);
3007 if (ret_val)
3008 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003009
3010 /* Check link status. Wait up to 100 microseconds for link to become
3011 * valid.
3012 */
3013 for (i = 0; i < 10; i++) {
Roy Zang28f7a052009-07-31 13:34:02 +08003014 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3015 if (ret_val)
3016 return ret_val;
3017 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3018 if (ret_val)
3019 return ret_val;
3020
wdenk4e112c12003-06-03 23:54:09 +00003021 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zang28f7a052009-07-31 13:34:02 +08003022 /* Config the MAC and PHY after link is up */
3023 ret_val = e1000_copper_link_postconfig(hw);
3024 if (ret_val)
wdenk4e112c12003-06-03 23:54:09 +00003025 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08003026
wdenk4e112c12003-06-03 23:54:09 +00003027 DEBUGOUT("Valid link established!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003028 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003029 }
3030 udelay(10);
3031 }
3032
3033 DEBUGOUT("Unable to establish link!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003034 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003035}
3036
3037/******************************************************************************
3038* Configures PHY autoneg and flow control advertisement settings
3039*
3040* hw - Struct containing variables accessed by shared code
3041******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003042int32_t
wdenk4e112c12003-06-03 23:54:09 +00003043e1000_phy_setup_autoneg(struct e1000_hw *hw)
3044{
Roy Zang28f7a052009-07-31 13:34:02 +08003045 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003046 uint16_t mii_autoneg_adv_reg;
3047 uint16_t mii_1000t_ctrl_reg;
3048
3049 DEBUGFUNC();
3050
3051 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zang28f7a052009-07-31 13:34:02 +08003052 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3053 if (ret_val)
3054 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003055
Roy Zang28f7a052009-07-31 13:34:02 +08003056 if (hw->phy_type != e1000_phy_ife) {
3057 /* Read the MII 1000Base-T Control Register (Address 9). */
3058 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3059 &mii_1000t_ctrl_reg);
3060 if (ret_val)
3061 return ret_val;
3062 } else
3063 mii_1000t_ctrl_reg = 0;
wdenk4e112c12003-06-03 23:54:09 +00003064
3065 /* Need to parse both autoneg_advertised and fc and set up
3066 * the appropriate PHY registers. First we will parse for
3067 * autoneg_advertised software override. Since we can advertise
3068 * a plethora of combinations, we need to check each bit
3069 * individually.
3070 */
3071
3072 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3073 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zang28f7a052009-07-31 13:34:02 +08003074 * the 1000Base-T Control Register (Address 9).
wdenk4e112c12003-06-03 23:54:09 +00003075 */
3076 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3077 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3078
3079 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3080
3081 /* Do we want to advertise 10 Mb Half Duplex? */
3082 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3083 DEBUGOUT("Advertise 10mb Half duplex\n");
3084 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3085 }
3086
3087 /* Do we want to advertise 10 Mb Full Duplex? */
3088 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3089 DEBUGOUT("Advertise 10mb Full duplex\n");
3090 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3091 }
3092
3093 /* Do we want to advertise 100 Mb Half Duplex? */
3094 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3095 DEBUGOUT("Advertise 100mb Half duplex\n");
3096 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3097 }
3098
3099 /* Do we want to advertise 100 Mb Full Duplex? */
3100 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3101 DEBUGOUT("Advertise 100mb Full duplex\n");
3102 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3103 }
3104
3105 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3106 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3107 DEBUGOUT
3108 ("Advertise 1000mb Half duplex requested, request denied!\n");
3109 }
3110
3111 /* Do we want to advertise 1000 Mb Full Duplex? */
3112 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3113 DEBUGOUT("Advertise 1000mb Full duplex\n");
3114 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3115 }
3116
3117 /* Check for a software override of the flow control settings, and
3118 * setup the PHY advertisement registers accordingly. If
3119 * auto-negotiation is enabled, then software will have to set the
3120 * "PAUSE" bits to the correct value in the Auto-Negotiation
3121 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3122 *
3123 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003124 * 0: Flow control is completely disabled
3125 * 1: Rx flow control is enabled (we can receive pause frames
3126 * but not send pause frames).
3127 * 2: Tx flow control is enabled (we can send pause frames
3128 * but we do not support receiving pause frames).
3129 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00003130 * other: No software override. The flow control configuration
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003131 * in the EEPROM is used.
wdenk4e112c12003-06-03 23:54:09 +00003132 */
3133 switch (hw->fc) {
3134 case e1000_fc_none: /* 0 */
3135 /* Flow control (RX & TX) is completely disabled by a
3136 * software over-ride.
3137 */
3138 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3139 break;
3140 case e1000_fc_rx_pause: /* 1 */
3141 /* RX Flow control is enabled, and TX Flow control is
3142 * disabled, by a software over-ride.
3143 */
3144 /* Since there really isn't a way to advertise that we are
3145 * capable of RX Pause ONLY, we will advertise that we
3146 * support both symmetric and asymmetric RX PAUSE. Later
3147 * (in e1000_config_fc_after_link_up) we will disable the
3148 *hw's ability to send PAUSE frames.
3149 */
3150 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3151 break;
3152 case e1000_fc_tx_pause: /* 2 */
3153 /* TX Flow control is enabled, and RX Flow control is
3154 * disabled, by a software over-ride.
3155 */
3156 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3157 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3158 break;
3159 case e1000_fc_full: /* 3 */
3160 /* Flow control (both RX and TX) is enabled by a software
3161 * over-ride.
3162 */
3163 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3164 break;
3165 default:
3166 DEBUGOUT("Flow control param set incorrectly\n");
3167 return -E1000_ERR_CONFIG;
3168 }
3169
Roy Zang28f7a052009-07-31 13:34:02 +08003170 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3171 if (ret_val)
3172 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003173
3174 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3175
Roy Zang28f7a052009-07-31 13:34:02 +08003176 if (hw->phy_type != e1000_phy_ife) {
3177 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3178 mii_1000t_ctrl_reg);
3179 if (ret_val)
3180 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003181 }
Roy Zang28f7a052009-07-31 13:34:02 +08003182
3183 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003184}
3185
3186/******************************************************************************
3187* Sets the collision distance in the Transmit Control register
3188*
3189* hw - Struct containing variables accessed by shared code
3190*
3191* Link should have been established previously. Reads the speed and duplex
3192* information from the Device Status register.
3193******************************************************************************/
3194static void
3195e1000_config_collision_dist(struct e1000_hw *hw)
3196{
Roy Zang28f7a052009-07-31 13:34:02 +08003197 uint32_t tctl, coll_dist;
3198
3199 DEBUGFUNC();
3200
3201 if (hw->mac_type < e1000_82543)
3202 coll_dist = E1000_COLLISION_DISTANCE_82542;
3203 else
3204 coll_dist = E1000_COLLISION_DISTANCE;
wdenk4e112c12003-06-03 23:54:09 +00003205
3206 tctl = E1000_READ_REG(hw, TCTL);
3207
3208 tctl &= ~E1000_TCTL_COLD;
Roy Zang28f7a052009-07-31 13:34:02 +08003209 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00003210
3211 E1000_WRITE_REG(hw, TCTL, tctl);
3212 E1000_WRITE_FLUSH(hw);
3213}
3214
3215/******************************************************************************
3216* Sets MAC speed and duplex settings to reflect the those in the PHY
3217*
3218* hw - Struct containing variables accessed by shared code
3219* mii_reg - data to write to the MII control register
3220*
3221* The contents of the PHY register containing the needed information need to
3222* be passed in.
3223******************************************************************************/
3224static int
3225e1000_config_mac_to_phy(struct e1000_hw *hw)
3226{
3227 uint32_t ctrl;
3228 uint16_t phy_data;
3229
3230 DEBUGFUNC();
3231
3232 /* Read the Device Control Register and set the bits to Force Speed
3233 * and Duplex.
3234 */
3235 ctrl = E1000_READ_REG(hw, CTRL);
3236 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3237 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3238
3239 /* Set up duplex in the Device Control and Transmit Control
3240 * registers depending on negotiated values.
3241 */
3242 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3243 DEBUGOUT("PHY Read Error\n");
3244 return -E1000_ERR_PHY;
3245 }
3246 if (phy_data & M88E1000_PSSR_DPLX)
3247 ctrl |= E1000_CTRL_FD;
3248 else
3249 ctrl &= ~E1000_CTRL_FD;
3250
3251 e1000_config_collision_dist(hw);
3252
3253 /* Set up speed in the Device Control register depending on
3254 * negotiated values.
3255 */
3256 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3257 ctrl |= E1000_CTRL_SPD_1000;
3258 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3259 ctrl |= E1000_CTRL_SPD_100;
3260 /* Write the configured values back to the Device Control Reg. */
3261 E1000_WRITE_REG(hw, CTRL, ctrl);
3262 return 0;
3263}
3264
3265/******************************************************************************
3266 * Forces the MAC's flow control settings.
wdenk57b2d802003-06-27 21:31:46 +00003267 *
wdenk4e112c12003-06-03 23:54:09 +00003268 * hw - Struct containing variables accessed by shared code
3269 *
3270 * Sets the TFCE and RFCE bits in the device control register to reflect
3271 * the adapter settings. TFCE and RFCE need to be explicitly set by
3272 * software when a Copper PHY is used because autonegotiation is managed
3273 * by the PHY rather than the MAC. Software must also configure these
3274 * bits when link is forced on a fiber connection.
3275 *****************************************************************************/
3276static int
3277e1000_force_mac_fc(struct e1000_hw *hw)
3278{
3279 uint32_t ctrl;
3280
3281 DEBUGFUNC();
3282
3283 /* Get the current configuration of the Device Control Register */
3284 ctrl = E1000_READ_REG(hw, CTRL);
3285
3286 /* Because we didn't get link via the internal auto-negotiation
3287 * mechanism (we either forced link or we got link via PHY
3288 * auto-neg), we have to manually enable/disable transmit an
3289 * receive flow control.
3290 *
3291 * The "Case" statement below enables/disable flow control
3292 * according to the "hw->fc" parameter.
3293 *
3294 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003295 * 0: Flow control is completely disabled
3296 * 1: Rx flow control is enabled (we can receive pause
3297 * frames but not send pause frames).
3298 * 2: Tx flow control is enabled (we can send pause frames
3299 * frames but we do not receive pause frames).
3300 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk4e112c12003-06-03 23:54:09 +00003301 * other: No other values should be possible at this point.
3302 */
3303
3304 switch (hw->fc) {
3305 case e1000_fc_none:
3306 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3307 break;
3308 case e1000_fc_rx_pause:
3309 ctrl &= (~E1000_CTRL_TFCE);
3310 ctrl |= E1000_CTRL_RFCE;
3311 break;
3312 case e1000_fc_tx_pause:
3313 ctrl &= (~E1000_CTRL_RFCE);
3314 ctrl |= E1000_CTRL_TFCE;
3315 break;
3316 case e1000_fc_full:
3317 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3318 break;
3319 default:
3320 DEBUGOUT("Flow control param set incorrectly\n");
3321 return -E1000_ERR_CONFIG;
3322 }
3323
3324 /* Disable TX Flow Control for 82542 (rev 2.0) */
3325 if (hw->mac_type == e1000_82542_rev2_0)
3326 ctrl &= (~E1000_CTRL_TFCE);
3327
3328 E1000_WRITE_REG(hw, CTRL, ctrl);
3329 return 0;
3330}
3331
3332/******************************************************************************
3333 * Configures flow control settings after link is established
wdenk57b2d802003-06-27 21:31:46 +00003334 *
wdenk4e112c12003-06-03 23:54:09 +00003335 * hw - Struct containing variables accessed by shared code
3336 *
3337 * Should be called immediately after a valid link has been established.
3338 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3339 * and autonegotiation is enabled, the MAC flow control settings will be set
3340 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3341 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3342 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003343static int32_t
wdenk4e112c12003-06-03 23:54:09 +00003344e1000_config_fc_after_link_up(struct e1000_hw *hw)
3345{
3346 int32_t ret_val;
3347 uint16_t mii_status_reg;
3348 uint16_t mii_nway_adv_reg;
3349 uint16_t mii_nway_lp_ability_reg;
3350 uint16_t speed;
3351 uint16_t duplex;
3352
3353 DEBUGFUNC();
3354
3355 /* Check for the case where we have fiber media and auto-neg failed
3356 * so we had to force link. In this case, we need to force the
3357 * configuration of the MAC to match the "fc" parameter.
3358 */
Roy Zang28f7a052009-07-31 13:34:02 +08003359 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3360 || ((hw->media_type == e1000_media_type_internal_serdes)
3361 && (hw->autoneg_failed))
3362 || ((hw->media_type == e1000_media_type_copper)
3363 && (!hw->autoneg))) {
wdenk4e112c12003-06-03 23:54:09 +00003364 ret_val = e1000_force_mac_fc(hw);
3365 if (ret_val < 0) {
3366 DEBUGOUT("Error forcing flow control settings\n");
3367 return ret_val;
3368 }
3369 }
3370
3371 /* Check for the case where we have copper media and auto-neg is
3372 * enabled. In this case, we need to check and see if Auto-Neg
3373 * has completed, and if so, how the PHY and link partner has
3374 * flow control configured.
3375 */
3376 if (hw->media_type == e1000_media_type_copper) {
3377 /* Read the MII Status Register and check to see if AutoNeg
3378 * has completed. We read this twice because this reg has
3379 * some "sticky" (latched) bits.
3380 */
3381 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3382 DEBUGOUT("PHY Read Error \n");
3383 return -E1000_ERR_PHY;
3384 }
3385 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3386 DEBUGOUT("PHY Read Error \n");
3387 return -E1000_ERR_PHY;
3388 }
3389
3390 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3391 /* The AutoNeg process has completed, so we now need to
3392 * read both the Auto Negotiation Advertisement Register
3393 * (Address 4) and the Auto_Negotiation Base Page Ability
3394 * Register (Address 5) to determine how flow control was
3395 * negotiated.
3396 */
3397 if (e1000_read_phy_reg
3398 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3399 DEBUGOUT("PHY Read Error\n");
3400 return -E1000_ERR_PHY;
3401 }
3402 if (e1000_read_phy_reg
3403 (hw, PHY_LP_ABILITY,
3404 &mii_nway_lp_ability_reg) < 0) {
3405 DEBUGOUT("PHY Read Error\n");
3406 return -E1000_ERR_PHY;
3407 }
3408
3409 /* Two bits in the Auto Negotiation Advertisement Register
3410 * (Address 4) and two bits in the Auto Negotiation Base
3411 * Page Ability Register (Address 5) determine flow control
3412 * for both the PHY and the link partner. The following
3413 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3414 * 1999, describes these PAUSE resolution bits and how flow
3415 * control is determined based upon these settings.
3416 * NOTE: DC = Don't Care
3417 *
3418 * LOCAL DEVICE | LINK PARTNER
3419 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3420 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003421 * 0 | 0 | DC | DC | e1000_fc_none
3422 * 0 | 1 | 0 | DC | e1000_fc_none
3423 * 0 | 1 | 1 | 0 | e1000_fc_none
3424 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3425 * 1 | 0 | 0 | DC | e1000_fc_none
3426 * 1 | DC | 1 | DC | e1000_fc_full
3427 * 1 | 1 | 0 | 0 | e1000_fc_none
3428 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003429 *
3430 */
3431 /* Are both PAUSE bits set to 1? If so, this implies
3432 * Symmetric Flow Control is enabled at both ends. The
3433 * ASM_DIR bits are irrelevant per the spec.
3434 *
3435 * For Symmetric Flow Control:
3436 *
3437 * LOCAL DEVICE | LINK PARTNER
3438 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3439 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003440 * 1 | DC | 1 | DC | e1000_fc_full
wdenk4e112c12003-06-03 23:54:09 +00003441 *
3442 */
3443 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3444 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3445 /* Now we need to check if the user selected RX ONLY
3446 * of pause frames. In this case, we had to advertise
3447 * FULL flow control because we could not advertise RX
3448 * ONLY. Hence, we must now check to see if we need to
3449 * turn OFF the TRANSMISSION of PAUSE frames.
3450 */
3451 if (hw->original_fc == e1000_fc_full) {
3452 hw->fc = e1000_fc_full;
3453 DEBUGOUT("Flow Control = FULL.\r\n");
3454 } else {
3455 hw->fc = e1000_fc_rx_pause;
3456 DEBUGOUT
3457 ("Flow Control = RX PAUSE frames only.\r\n");
3458 }
3459 }
3460 /* For receiving PAUSE frames ONLY.
3461 *
3462 * LOCAL DEVICE | LINK PARTNER
3463 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3464 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003465 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk4e112c12003-06-03 23:54:09 +00003466 *
3467 */
3468 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3469 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3470 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3471 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3472 {
3473 hw->fc = e1000_fc_tx_pause;
3474 DEBUGOUT
3475 ("Flow Control = TX PAUSE frames only.\r\n");
3476 }
3477 /* For transmitting PAUSE frames ONLY.
3478 *
3479 * LOCAL DEVICE | LINK PARTNER
3480 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3481 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003482 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003483 *
3484 */
3485 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3486 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3487 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3488 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3489 {
3490 hw->fc = e1000_fc_rx_pause;
3491 DEBUGOUT
3492 ("Flow Control = RX PAUSE frames only.\r\n");
3493 }
3494 /* Per the IEEE spec, at this point flow control should be
3495 * disabled. However, we want to consider that we could
3496 * be connected to a legacy switch that doesn't advertise
3497 * desired flow control, but can be forced on the link
3498 * partner. So if we advertised no flow control, that is
3499 * what we will resolve to. If we advertised some kind of
3500 * receive capability (Rx Pause Only or Full Flow Control)
3501 * and the link partner advertised none, we will configure
3502 * ourselves to enable Rx Flow Control only. We can do
3503 * this safely for two reasons: If the link partner really
3504 * didn't want flow control enabled, and we enable Rx, no
3505 * harm done since we won't be receiving any PAUSE frames
3506 * anyway. If the intent on the link partner was to have
3507 * flow control enabled, then by us enabling RX only, we
3508 * can at least receive pause frames and process them.
3509 * This is a good idea because in most cases, since we are
3510 * predominantly a server NIC, more times than not we will
3511 * be asked to delay transmission of packets than asking
3512 * our link partner to pause transmission of frames.
3513 */
3514 else if (hw->original_fc == e1000_fc_none ||
3515 hw->original_fc == e1000_fc_tx_pause) {
3516 hw->fc = e1000_fc_none;
3517 DEBUGOUT("Flow Control = NONE.\r\n");
3518 } else {
3519 hw->fc = e1000_fc_rx_pause;
3520 DEBUGOUT
3521 ("Flow Control = RX PAUSE frames only.\r\n");
3522 }
3523
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003524 /* Now we need to do one last check... If we auto-
wdenk4e112c12003-06-03 23:54:09 +00003525 * negotiated to HALF DUPLEX, flow control should not be
3526 * enabled per IEEE 802.3 spec.
3527 */
3528 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3529
3530 if (duplex == HALF_DUPLEX)
3531 hw->fc = e1000_fc_none;
3532
3533 /* Now we call a subroutine to actually force the MAC
3534 * controller to use the correct flow control settings.
3535 */
3536 ret_val = e1000_force_mac_fc(hw);
3537 if (ret_val < 0) {
3538 DEBUGOUT
3539 ("Error forcing flow control settings\n");
3540 return ret_val;
3541 }
3542 } else {
3543 DEBUGOUT
3544 ("Copper PHY and Auto Neg has not completed.\r\n");
3545 }
3546 }
Roy Zang28f7a052009-07-31 13:34:02 +08003547 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003548}
3549
3550/******************************************************************************
3551 * Checks to see if the link status of the hardware has changed.
3552 *
3553 * hw - Struct containing variables accessed by shared code
3554 *
3555 * Called by any function that needs to check the link status of the adapter.
3556 *****************************************************************************/
3557static int
3558e1000_check_for_link(struct eth_device *nic)
3559{
3560 struct e1000_hw *hw = nic->priv;
3561 uint32_t rxcw;
3562 uint32_t ctrl;
3563 uint32_t status;
3564 uint32_t rctl;
3565 uint32_t signal;
3566 int32_t ret_val;
3567 uint16_t phy_data;
3568 uint16_t lp_capability;
3569
3570 DEBUGFUNC();
3571
wdenk57b2d802003-06-27 21:31:46 +00003572 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3573 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00003574 * cleared when there is a signal
3575 */
3576 ctrl = E1000_READ_REG(hw, CTRL);
3577 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3578 signal = E1000_CTRL_SWDPIN1;
3579 else
3580 signal = 0;
3581
3582 status = E1000_READ_REG(hw, STATUS);
3583 rxcw = E1000_READ_REG(hw, RXCW);
3584 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3585
3586 /* If we have a copper PHY then we only want to go out to the PHY
3587 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003588 * status has changed. The get_link_status flag will be set if we
wdenk4e112c12003-06-03 23:54:09 +00003589 * receive a Link Status Change interrupt or we have Rx Sequence
3590 * Errors.
3591 */
3592 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3593 /* First we want to see if the MII Status Register reports
3594 * link. If so, then we want to get the current speed/duplex
3595 * of the PHY.
3596 * Read the register twice since the link bit is sticky.
3597 */
3598 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3599 DEBUGOUT("PHY Read Error\n");
3600 return -E1000_ERR_PHY;
3601 }
3602 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3603 DEBUGOUT("PHY Read Error\n");
3604 return -E1000_ERR_PHY;
3605 }
3606
3607 if (phy_data & MII_SR_LINK_STATUS) {
3608 hw->get_link_status = FALSE;
3609 } else {
3610 /* No link detected */
3611 return -E1000_ERR_NOLINK;
3612 }
3613
3614 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3615 * have Si on board that is 82544 or newer, Auto
3616 * Speed Detection takes care of MAC speed/duplex
3617 * configuration. So we only need to configure Collision
3618 * Distance in the MAC. Otherwise, we need to force
3619 * speed/duplex on the MAC to the current PHY speed/duplex
3620 * settings.
3621 */
3622 if (hw->mac_type >= e1000_82544)
3623 e1000_config_collision_dist(hw);
3624 else {
3625 ret_val = e1000_config_mac_to_phy(hw);
3626 if (ret_val < 0) {
3627 DEBUGOUT
3628 ("Error configuring MAC to PHY settings\n");
3629 return ret_val;
3630 }
3631 }
3632
wdenk57b2d802003-06-27 21:31:46 +00003633 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk4e112c12003-06-03 23:54:09 +00003634 * need to restore the desired flow control settings because we may
3635 * have had to re-autoneg with a different link partner.
3636 */
3637 ret_val = e1000_config_fc_after_link_up(hw);
3638 if (ret_val < 0) {
3639 DEBUGOUT("Error configuring flow control\n");
3640 return ret_val;
3641 }
3642
3643 /* At this point we know that we are on copper and we have
3644 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003645 * parter capability register. We use the link partner capability to
wdenk4e112c12003-06-03 23:54:09 +00003646 * determine if TBI Compatibility needs to be turned on or off. If
3647 * the link partner advertises any speed in addition to Gigabit, then
3648 * we assume that they are GMII-based, and TBI compatibility is not
3649 * needed. If no other speeds are advertised, we assume the link
3650 * partner is TBI-based, and we turn on TBI Compatibility.
3651 */
3652 if (hw->tbi_compatibility_en) {
3653 if (e1000_read_phy_reg
3654 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3655 DEBUGOUT("PHY Read Error\n");
3656 return -E1000_ERR_PHY;
3657 }
3658 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3659 NWAY_LPAR_10T_FD_CAPS |
3660 NWAY_LPAR_100TX_HD_CAPS |
3661 NWAY_LPAR_100TX_FD_CAPS |
3662 NWAY_LPAR_100T4_CAPS)) {
wdenk57b2d802003-06-27 21:31:46 +00003663 /* If our link partner advertises anything in addition to
wdenk4e112c12003-06-03 23:54:09 +00003664 * gigabit, we do not need to enable TBI compatibility.
3665 */
3666 if (hw->tbi_compatibility_on) {
3667 /* If we previously were in the mode, turn it off. */
3668 rctl = E1000_READ_REG(hw, RCTL);
3669 rctl &= ~E1000_RCTL_SBP;
3670 E1000_WRITE_REG(hw, RCTL, rctl);
3671 hw->tbi_compatibility_on = FALSE;
3672 }
3673 } else {
3674 /* If TBI compatibility is was previously off, turn it on. For
3675 * compatibility with a TBI link partner, we will store bad
3676 * packets. Some frames have an additional byte on the end and
3677 * will look like CRC errors to to the hardware.
3678 */
3679 if (!hw->tbi_compatibility_on) {
3680 hw->tbi_compatibility_on = TRUE;
3681 rctl = E1000_READ_REG(hw, RCTL);
3682 rctl |= E1000_RCTL_SBP;
3683 E1000_WRITE_REG(hw, RCTL, rctl);
3684 }
3685 }
3686 }
3687 }
3688 /* If we don't have link (auto-negotiation failed or link partner cannot
3689 * auto-negotiate), the cable is plugged in (we have signal), and our
3690 * link partner is not trying to auto-negotiate with us (we are receiving
3691 * idles or data), we need to force link up. We also need to give
3692 * auto-negotiation time to complete, in case the cable was just plugged
3693 * in. The autoneg_failed flag does this.
3694 */
3695 else if ((hw->media_type == e1000_media_type_fiber) &&
3696 (!(status & E1000_STATUS_LU)) &&
3697 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3698 (!(rxcw & E1000_RXCW_C))) {
3699 if (hw->autoneg_failed == 0) {
3700 hw->autoneg_failed = 1;
3701 return 0;
3702 }
3703 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3704
3705 /* Disable auto-negotiation in the TXCW register */
3706 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3707
3708 /* Force link-up and also force full-duplex. */
3709 ctrl = E1000_READ_REG(hw, CTRL);
3710 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3711 E1000_WRITE_REG(hw, CTRL, ctrl);
3712
3713 /* Configure Flow Control after forcing link up. */
3714 ret_val = e1000_config_fc_after_link_up(hw);
3715 if (ret_val < 0) {
3716 DEBUGOUT("Error configuring flow control\n");
3717 return ret_val;
3718 }
3719 }
3720 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3721 * auto-negotiation in the TXCW register and disable forced link in the
3722 * Device Control register in an attempt to auto-negotiate with our link
3723 * partner.
3724 */
3725 else if ((hw->media_type == e1000_media_type_fiber) &&
3726 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3727 DEBUGOUT
3728 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3729 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3730 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3731 }
3732 return 0;
3733}
3734
3735/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08003736* Configure the MAC-to-PHY interface for 10/100Mbps
3737*
3738* hw - Struct containing variables accessed by shared code
3739******************************************************************************/
3740static int32_t
3741e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3742{
3743 int32_t ret_val = E1000_SUCCESS;
3744 uint32_t tipg;
3745 uint16_t reg_data;
3746
3747 DEBUGFUNC();
3748
3749 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3750 ret_val = e1000_write_kmrn_reg(hw,
3751 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3752 if (ret_val)
3753 return ret_val;
3754
3755 /* Configure Transmit Inter-Packet Gap */
3756 tipg = E1000_READ_REG(hw, TIPG);
3757 tipg &= ~E1000_TIPG_IPGT_MASK;
3758 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3759 E1000_WRITE_REG(hw, TIPG, tipg);
3760
3761 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3762
3763 if (ret_val)
3764 return ret_val;
3765
3766 if (duplex == HALF_DUPLEX)
3767 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3768 else
3769 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3770
3771 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3772
3773 return ret_val;
3774}
3775
3776static int32_t
3777e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3778{
3779 int32_t ret_val = E1000_SUCCESS;
3780 uint16_t reg_data;
3781 uint32_t tipg;
3782
3783 DEBUGFUNC();
3784
3785 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3786 ret_val = e1000_write_kmrn_reg(hw,
3787 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3788 if (ret_val)
3789 return ret_val;
3790
3791 /* Configure Transmit Inter-Packet Gap */
3792 tipg = E1000_READ_REG(hw, TIPG);
3793 tipg &= ~E1000_TIPG_IPGT_MASK;
3794 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3795 E1000_WRITE_REG(hw, TIPG, tipg);
3796
3797 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3798
3799 if (ret_val)
3800 return ret_val;
3801
3802 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3803 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3804
3805 return ret_val;
3806}
3807
3808/******************************************************************************
wdenk4e112c12003-06-03 23:54:09 +00003809 * Detects the current speed and duplex settings of the hardware.
3810 *
3811 * hw - Struct containing variables accessed by shared code
3812 * speed - Speed of the connection
3813 * duplex - Duplex setting of the connection
3814 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003815static int
3816e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3817 uint16_t *duplex)
wdenk4e112c12003-06-03 23:54:09 +00003818{
3819 uint32_t status;
Roy Zang28f7a052009-07-31 13:34:02 +08003820 int32_t ret_val;
3821 uint16_t phy_data;
wdenk4e112c12003-06-03 23:54:09 +00003822
3823 DEBUGFUNC();
3824
3825 if (hw->mac_type >= e1000_82543) {
3826 status = E1000_READ_REG(hw, STATUS);
3827 if (status & E1000_STATUS_SPEED_1000) {
3828 *speed = SPEED_1000;
3829 DEBUGOUT("1000 Mbs, ");
3830 } else if (status & E1000_STATUS_SPEED_100) {
3831 *speed = SPEED_100;
3832 DEBUGOUT("100 Mbs, ");
3833 } else {
3834 *speed = SPEED_10;
3835 DEBUGOUT("10 Mbs, ");
3836 }
3837
3838 if (status & E1000_STATUS_FD) {
3839 *duplex = FULL_DUPLEX;
3840 DEBUGOUT("Full Duplex\r\n");
3841 } else {
3842 *duplex = HALF_DUPLEX;
3843 DEBUGOUT(" Half Duplex\r\n");
3844 }
3845 } else {
3846 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3847 *speed = SPEED_1000;
3848 *duplex = FULL_DUPLEX;
3849 }
Roy Zang28f7a052009-07-31 13:34:02 +08003850
3851 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3852 * even if it is operating at half duplex. Here we set the duplex
3853 * settings to match the duplex in the link partner's capabilities.
3854 */
3855 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3856 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3857 if (ret_val)
3858 return ret_val;
3859
3860 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3861 *duplex = HALF_DUPLEX;
3862 else {
3863 ret_val = e1000_read_phy_reg(hw,
3864 PHY_LP_ABILITY, &phy_data);
3865 if (ret_val)
3866 return ret_val;
3867 if ((*speed == SPEED_100 &&
3868 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3869 || (*speed == SPEED_10
3870 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3871 *duplex = HALF_DUPLEX;
3872 }
3873 }
3874
3875 if ((hw->mac_type == e1000_80003es2lan) &&
3876 (hw->media_type == e1000_media_type_copper)) {
3877 if (*speed == SPEED_1000)
3878 ret_val = e1000_configure_kmrn_for_1000(hw);
3879 else
3880 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3881 if (ret_val)
3882 return ret_val;
3883 }
3884 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003885}
3886
3887/******************************************************************************
3888* Blocks until autoneg completes or times out (~4.5 seconds)
3889*
3890* hw - Struct containing variables accessed by shared code
3891******************************************************************************/
3892static int
3893e1000_wait_autoneg(struct e1000_hw *hw)
3894{
3895 uint16_t i;
3896 uint16_t phy_data;
3897
3898 DEBUGFUNC();
3899 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3900
3901 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3902 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3903 /* Read the MII Status Register and wait for Auto-Neg
3904 * Complete bit to be set.
3905 */
3906 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3907 DEBUGOUT("PHY Read Error\n");
3908 return -E1000_ERR_PHY;
3909 }
3910 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3911 DEBUGOUT("PHY Read Error\n");
3912 return -E1000_ERR_PHY;
3913 }
3914 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3915 DEBUGOUT("Auto-Neg complete.\n");
3916 return 0;
3917 }
3918 mdelay(100);
3919 }
3920 DEBUGOUT("Auto-Neg timedout.\n");
3921 return -E1000_ERR_TIMEOUT;
3922}
3923
3924/******************************************************************************
3925* Raises the Management Data Clock
3926*
3927* hw - Struct containing variables accessed by shared code
3928* ctrl - Device control register's current value
3929******************************************************************************/
3930static void
3931e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3932{
3933 /* Raise the clock input to the Management Data Clock (by setting the MDC
3934 * bit), and then delay 2 microseconds.
3935 */
3936 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3937 E1000_WRITE_FLUSH(hw);
3938 udelay(2);
3939}
3940
3941/******************************************************************************
3942* Lowers the Management Data Clock
3943*
3944* hw - Struct containing variables accessed by shared code
3945* ctrl - Device control register's current value
3946******************************************************************************/
3947static void
3948e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3949{
3950 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3951 * bit), and then delay 2 microseconds.
3952 */
3953 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3954 E1000_WRITE_FLUSH(hw);
3955 udelay(2);
3956}
3957
3958/******************************************************************************
3959* Shifts data bits out to the PHY
3960*
3961* hw - Struct containing variables accessed by shared code
3962* data - Data to send out to the PHY
3963* count - Number of bits to shift out
3964*
3965* Bits are shifted out in MSB to LSB order.
3966******************************************************************************/
3967static void
3968e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3969{
3970 uint32_t ctrl;
3971 uint32_t mask;
3972
3973 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk57b2d802003-06-27 21:31:46 +00003974 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk4e112c12003-06-03 23:54:09 +00003975 * time. In order to do this, "data" must be broken down into bits.
3976 */
3977 mask = 0x01;
3978 mask <<= (count - 1);
3979
3980 ctrl = E1000_READ_REG(hw, CTRL);
3981
3982 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3983 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3984
3985 while (mask) {
3986 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3987 * then raising and lowering the Management Data Clock. A "0" is
3988 * shifted out to the PHY by setting the MDIO bit to "0" and then
3989 * raising and lowering the clock.
3990 */
3991 if (data & mask)
3992 ctrl |= E1000_CTRL_MDIO;
3993 else
3994 ctrl &= ~E1000_CTRL_MDIO;
3995
3996 E1000_WRITE_REG(hw, CTRL, ctrl);
3997 E1000_WRITE_FLUSH(hw);
3998
3999 udelay(2);
4000
4001 e1000_raise_mdi_clk(hw, &ctrl);
4002 e1000_lower_mdi_clk(hw, &ctrl);
4003
4004 mask = mask >> 1;
4005 }
4006}
4007
4008/******************************************************************************
4009* Shifts data bits in from the PHY
4010*
4011* hw - Struct containing variables accessed by shared code
4012*
wdenk57b2d802003-06-27 21:31:46 +00004013* Bits are shifted in in MSB to LSB order.
wdenk4e112c12003-06-03 23:54:09 +00004014******************************************************************************/
4015static uint16_t
4016e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4017{
4018 uint32_t ctrl;
4019 uint16_t data = 0;
4020 uint8_t i;
4021
4022 /* In order to read a register from the PHY, we need to shift in a total
4023 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4024 * to avoid contention on the MDIO pin when a read operation is performed.
4025 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4026 * by raising the input to the Management Data Clock (setting the MDC bit),
4027 * and then reading the value of the MDIO bit.
4028 */
4029 ctrl = E1000_READ_REG(hw, CTRL);
4030
4031 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4032 ctrl &= ~E1000_CTRL_MDIO_DIR;
4033 ctrl &= ~E1000_CTRL_MDIO;
4034
4035 E1000_WRITE_REG(hw, CTRL, ctrl);
4036 E1000_WRITE_FLUSH(hw);
4037
4038 /* Raise and Lower the clock before reading in the data. This accounts for
4039 * the turnaround bits. The first clock occurred when we clocked out the
4040 * last bit of the Register Address.
4041 */
4042 e1000_raise_mdi_clk(hw, &ctrl);
4043 e1000_lower_mdi_clk(hw, &ctrl);
4044
4045 for (data = 0, i = 0; i < 16; i++) {
4046 data = data << 1;
4047 e1000_raise_mdi_clk(hw, &ctrl);
4048 ctrl = E1000_READ_REG(hw, CTRL);
4049 /* Check to see if we shifted in a "1". */
4050 if (ctrl & E1000_CTRL_MDIO)
4051 data |= 1;
4052 e1000_lower_mdi_clk(hw, &ctrl);
4053 }
4054
4055 e1000_raise_mdi_clk(hw, &ctrl);
4056 e1000_lower_mdi_clk(hw, &ctrl);
4057
4058 return data;
4059}
4060
4061/*****************************************************************************
4062* Reads the value from a PHY register
4063*
4064* hw - Struct containing variables accessed by shared code
4065* reg_addr - address of the PHY register to read
4066******************************************************************************/
4067static int
4068e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4069{
4070 uint32_t i;
4071 uint32_t mdic = 0;
4072 const uint32_t phy_addr = 1;
4073
4074 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4075 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4076 return -E1000_ERR_PARAM;
4077 }
4078
4079 if (hw->mac_type > e1000_82543) {
4080 /* Set up Op-code, Phy Address, and register address in the MDI
4081 * Control register. The MAC will take care of interfacing with the
4082 * PHY to retrieve the desired data.
4083 */
4084 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4085 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4086 (E1000_MDIC_OP_READ));
4087
4088 E1000_WRITE_REG(hw, MDIC, mdic);
4089
4090 /* Poll the ready bit to see if the MDI read completed */
4091 for (i = 0; i < 64; i++) {
4092 udelay(10);
4093 mdic = E1000_READ_REG(hw, MDIC);
4094 if (mdic & E1000_MDIC_READY)
4095 break;
4096 }
4097 if (!(mdic & E1000_MDIC_READY)) {
4098 DEBUGOUT("MDI Read did not complete\n");
4099 return -E1000_ERR_PHY;
4100 }
4101 if (mdic & E1000_MDIC_ERROR) {
4102 DEBUGOUT("MDI Error\n");
4103 return -E1000_ERR_PHY;
4104 }
4105 *phy_data = (uint16_t) mdic;
4106 } else {
4107 /* We must first send a preamble through the MDIO pin to signal the
4108 * beginning of an MII instruction. This is done by sending 32
4109 * consecutive "1" bits.
4110 */
4111 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4112
4113 /* Now combine the next few fields that are required for a read
4114 * operation. We use this method instead of calling the
4115 * e1000_shift_out_mdi_bits routine five different times. The format of
4116 * a MII read instruction consists of a shift out of 14 bits and is
4117 * defined as follows:
4118 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4119 * followed by a shift in of 18 bits. This first two bits shifted in
4120 * are TurnAround bits used to avoid contention on the MDIO pin when a
4121 * READ operation is performed. These two bits are thrown away
4122 * followed by a shift in of 16 bits which contains the desired data.
4123 */
4124 mdic = ((reg_addr) | (phy_addr << 5) |
4125 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4126
4127 e1000_shift_out_mdi_bits(hw, mdic, 14);
4128
4129 /* Now that we've shifted out the read command to the MII, we need to
4130 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4131 * register address.
4132 */
4133 *phy_data = e1000_shift_in_mdi_bits(hw);
4134 }
4135 return 0;
4136}
4137
4138/******************************************************************************
4139* Writes a value to a PHY register
4140*
4141* hw - Struct containing variables accessed by shared code
4142* reg_addr - address of the PHY register to write
4143* data - data to write to the PHY
4144******************************************************************************/
4145static int
4146e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4147{
4148 uint32_t i;
4149 uint32_t mdic = 0;
4150 const uint32_t phy_addr = 1;
4151
4152 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4153 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4154 return -E1000_ERR_PARAM;
4155 }
4156
4157 if (hw->mac_type > e1000_82543) {
4158 /* Set up Op-code, Phy Address, register address, and data intended
4159 * for the PHY register in the MDI Control register. The MAC will take
4160 * care of interfacing with the PHY to send the desired data.
4161 */
4162 mdic = (((uint32_t) phy_data) |
4163 (reg_addr << E1000_MDIC_REG_SHIFT) |
4164 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4165 (E1000_MDIC_OP_WRITE));
4166
4167 E1000_WRITE_REG(hw, MDIC, mdic);
4168
4169 /* Poll the ready bit to see if the MDI read completed */
4170 for (i = 0; i < 64; i++) {
4171 udelay(10);
4172 mdic = E1000_READ_REG(hw, MDIC);
4173 if (mdic & E1000_MDIC_READY)
4174 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004175 }
4176 if (!(mdic & E1000_MDIC_READY)) {
4177 DEBUGOUT("MDI Write did not complete\n");
4178 return -E1000_ERR_PHY;
4179 }
4180 } else {
4181 /* We'll need to use the SW defined pins to shift the write command
4182 * out to the PHY. We first send a preamble to the PHY to signal the
4183 * beginning of the MII instruction. This is done by sending 32
4184 * consecutive "1" bits.
4185 */
4186 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4187
4188 /* Now combine the remaining required fields that will indicate a
4189 * write operation. We use this method instead of calling the
4190 * e1000_shift_out_mdi_bits routine for each field in the command. The
4191 * format of a MII write instruction is as follows:
4192 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4193 */
4194 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4195 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4196 mdic <<= 16;
4197 mdic |= (uint32_t) phy_data;
4198
4199 e1000_shift_out_mdi_bits(hw, mdic, 32);
4200 }
4201 return 0;
4202}
4203
4204/******************************************************************************
4205 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4206 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4207 * the caller to figure out how to deal with it.
4208 *
4209 * hw - Struct containing variables accessed by shared code
4210 *
4211 * returns: - E1000_BLK_PHY_RESET
4212 * E1000_SUCCESS
4213 *
4214 *****************************************************************************/
4215int32_t
4216e1000_check_phy_reset_block(struct e1000_hw *hw)
4217{
4218 uint32_t manc = 0;
4219 uint32_t fwsm = 0;
4220
4221 if (hw->mac_type == e1000_ich8lan) {
4222 fwsm = E1000_READ_REG(hw, FWSM);
4223 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4224 : E1000_BLK_PHY_RESET;
4225 }
4226
4227 if (hw->mac_type > e1000_82547_rev_2)
4228 manc = E1000_READ_REG(hw, MANC);
4229 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4230 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4231}
4232
4233/***************************************************************************
4234 * Checks if the PHY configuration is done
4235 *
4236 * hw: Struct containing variables accessed by shared code
4237 *
4238 * returns: - E1000_ERR_RESET if fail to reset MAC
4239 * E1000_SUCCESS at any other case.
4240 *
4241 ***************************************************************************/
4242static int32_t
4243e1000_get_phy_cfg_done(struct e1000_hw *hw)
4244{
4245 int32_t timeout = PHY_CFG_TIMEOUT;
4246 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4247
4248 DEBUGFUNC();
4249
4250 switch (hw->mac_type) {
4251 default:
4252 mdelay(10);
4253 break;
4254 case e1000_80003es2lan:
4255 /* Separate *_CFG_DONE_* bit for each port */
4256 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
4257 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4258 /* Fall Through */
4259 case e1000_82571:
4260 case e1000_82572:
4261 while (timeout) {
4262 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4263 break;
4264 else
4265 mdelay(1);
4266 timeout--;
wdenk4e112c12003-06-03 23:54:09 +00004267 }
Roy Zang28f7a052009-07-31 13:34:02 +08004268 if (!timeout) {
4269 DEBUGOUT("MNG configuration cycle has not "
4270 "completed.\n");
4271 return -E1000_ERR_RESET;
wdenk4e112c12003-06-03 23:54:09 +00004272 }
Roy Zang28f7a052009-07-31 13:34:02 +08004273 break;
wdenk4e112c12003-06-03 23:54:09 +00004274 }
Roy Zang28f7a052009-07-31 13:34:02 +08004275
4276 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004277}
4278
4279/******************************************************************************
4280* Returns the PHY to the power-on reset state
4281*
4282* hw - Struct containing variables accessed by shared code
4283******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004284int32_t
wdenk4e112c12003-06-03 23:54:09 +00004285e1000_phy_hw_reset(struct e1000_hw *hw)
4286{
Roy Zang28f7a052009-07-31 13:34:02 +08004287 uint32_t ctrl, ctrl_ext;
4288 uint32_t led_ctrl;
4289 int32_t ret_val;
4290 uint16_t swfw;
wdenk4e112c12003-06-03 23:54:09 +00004291
4292 DEBUGFUNC();
4293
Roy Zang28f7a052009-07-31 13:34:02 +08004294 /* In the case of the phy reset being blocked, it's not an error, we
4295 * simply return success without performing the reset. */
4296 ret_val = e1000_check_phy_reset_block(hw);
4297 if (ret_val)
4298 return E1000_SUCCESS;
4299
wdenk4e112c12003-06-03 23:54:09 +00004300 DEBUGOUT("Resetting Phy...\n");
4301
4302 if (hw->mac_type > e1000_82543) {
Roy Zang28f7a052009-07-31 13:34:02 +08004303 if ((hw->mac_type == e1000_80003es2lan) &&
4304 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
4305 swfw = E1000_SWFW_PHY1_SM;
4306 } else {
4307 swfw = E1000_SWFW_PHY0_SM;
4308 }
4309 if (e1000_swfw_sync_acquire(hw, swfw)) {
4310 DEBUGOUT("Unable to acquire swfw sync\n");
4311 return -E1000_ERR_SWFW_SYNC;
4312 }
wdenk4e112c12003-06-03 23:54:09 +00004313 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4314 * bit. Then, take it out of reset.
4315 */
4316 ctrl = E1000_READ_REG(hw, CTRL);
4317 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4318 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004319
4320 if (hw->mac_type < e1000_82571)
4321 udelay(10);
4322 else
4323 udelay(100);
4324
wdenk4e112c12003-06-03 23:54:09 +00004325 E1000_WRITE_REG(hw, CTRL, ctrl);
4326 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004327
4328 if (hw->mac_type >= e1000_82571)
4329 mdelay(10);
4330
wdenk4e112c12003-06-03 23:54:09 +00004331 } else {
4332 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4333 * bit to put the PHY into reset. Then, take it out of reset.
4334 */
4335 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4336 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4337 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4338 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4339 E1000_WRITE_FLUSH(hw);
4340 mdelay(10);
4341 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4342 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4343 E1000_WRITE_FLUSH(hw);
4344 }
4345 udelay(150);
Roy Zang28f7a052009-07-31 13:34:02 +08004346
4347 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4348 /* Configure activity LED after PHY reset */
4349 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4350 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4351 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4352 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4353 }
4354
4355 /* Wait for FW to finish PHY configuration. */
4356 ret_val = e1000_get_phy_cfg_done(hw);
4357 if (ret_val != E1000_SUCCESS)
4358 return ret_val;
4359
4360 return ret_val;
4361}
4362
4363/******************************************************************************
4364 * IGP phy init script - initializes the GbE PHY
4365 *
4366 * hw - Struct containing variables accessed by shared code
4367 *****************************************************************************/
4368static void
4369e1000_phy_init_script(struct e1000_hw *hw)
4370{
4371 uint32_t ret_val;
4372 uint16_t phy_saved_data;
4373 DEBUGFUNC();
4374
4375 if (hw->phy_init_script) {
4376 mdelay(20);
4377
4378 /* Save off the current value of register 0x2F5B to be
4379 * restored at the end of this routine. */
4380 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4381
4382 /* Disabled the PHY transmitter */
4383 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4384
4385 mdelay(20);
4386
4387 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4388
4389 mdelay(5);
4390
4391 switch (hw->mac_type) {
4392 case e1000_82541:
4393 case e1000_82547:
4394 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4395
4396 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4397
4398 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4399
4400 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4401
4402 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4403
4404 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4405
4406 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4407
4408 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4409
4410 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4411 break;
4412
4413 case e1000_82541_rev_2:
4414 case e1000_82547_rev_2:
4415 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4416 break;
4417 default:
4418 break;
4419 }
4420
4421 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4422
4423 mdelay(20);
4424
4425 /* Now enable the transmitter */
4426 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4427
4428 if (hw->mac_type == e1000_82547) {
4429 uint16_t fused, fine, coarse;
4430
4431 /* Move to analog registers page */
4432 e1000_read_phy_reg(hw,
4433 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4434
4435 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4436 e1000_read_phy_reg(hw,
4437 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4438
4439 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4440 coarse = fused
4441 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4442
4443 if (coarse >
4444 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4445 coarse -=
4446 IGP01E1000_ANALOG_FUSE_COARSE_10;
4447 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4448 } else if (coarse
4449 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4450 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4451
4452 fused = (fused
4453 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4454 (fine
4455 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4456 (coarse
4457 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4458
4459 e1000_write_phy_reg(hw,
4460 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4461 e1000_write_phy_reg(hw,
4462 IGP01E1000_ANALOG_FUSE_BYPASS,
4463 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4464 }
4465 }
4466 }
wdenk4e112c12003-06-03 23:54:09 +00004467}
4468
4469/******************************************************************************
4470* Resets the PHY
4471*
4472* hw - Struct containing variables accessed by shared code
4473*
Roy Zang28f7a052009-07-31 13:34:02 +08004474* Sets bit 15 of the MII Control register
wdenk4e112c12003-06-03 23:54:09 +00004475******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004476int32_t
wdenk4e112c12003-06-03 23:54:09 +00004477e1000_phy_reset(struct e1000_hw *hw)
4478{
Roy Zang28f7a052009-07-31 13:34:02 +08004479 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004480 uint16_t phy_data;
4481
4482 DEBUGFUNC();
4483
Roy Zang28f7a052009-07-31 13:34:02 +08004484 /* In the case of the phy reset being blocked, it's not an error, we
4485 * simply return success without performing the reset. */
4486 ret_val = e1000_check_phy_reset_block(hw);
4487 if (ret_val)
4488 return E1000_SUCCESS;
4489
4490 switch (hw->phy_type) {
4491 case e1000_phy_igp:
4492 case e1000_phy_igp_2:
4493 case e1000_phy_igp_3:
4494 case e1000_phy_ife:
4495 ret_val = e1000_phy_hw_reset(hw);
4496 if (ret_val)
4497 return ret_val;
4498 break;
4499 default:
4500 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4501 if (ret_val)
4502 return ret_val;
4503
4504 phy_data |= MII_CR_RESET;
4505 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4506 if (ret_val)
4507 return ret_val;
4508
4509 udelay(1);
4510 break;
wdenk4e112c12003-06-03 23:54:09 +00004511 }
Roy Zang28f7a052009-07-31 13:34:02 +08004512
4513 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4514 e1000_phy_init_script(hw);
4515
4516 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004517}
4518
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004519static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarz68c2a302008-03-06 16:45:44 +01004520{
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004521 DEBUGFUNC ();
Andre Schwarz68c2a302008-03-06 16:45:44 +01004522
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004523 if (hw->mac_type == e1000_undefined)
4524 return -E1000_ERR_PHY_TYPE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004525
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004526 switch (hw->phy_id) {
4527 case M88E1000_E_PHY_ID:
4528 case M88E1000_I_PHY_ID:
4529 case M88E1011_I_PHY_ID:
Roy Zang28f7a052009-07-31 13:34:02 +08004530 case M88E1111_I_PHY_ID:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004531 hw->phy_type = e1000_phy_m88;
4532 break;
4533 case IGP01E1000_I_PHY_ID:
4534 if (hw->mac_type == e1000_82541 ||
Roy Zang28f7a052009-07-31 13:34:02 +08004535 hw->mac_type == e1000_82541_rev_2 ||
4536 hw->mac_type == e1000_82547 ||
4537 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004538 hw->phy_type = e1000_phy_igp;
Roy Zang28f7a052009-07-31 13:34:02 +08004539 hw->phy_type = e1000_phy_igp;
4540 break;
4541 }
4542 case IGP03E1000_E_PHY_ID:
4543 hw->phy_type = e1000_phy_igp_3;
4544 break;
4545 case IFE_E_PHY_ID:
4546 case IFE_PLUS_E_PHY_ID:
4547 case IFE_C_E_PHY_ID:
4548 hw->phy_type = e1000_phy_ife;
4549 break;
4550 case GG82563_E_PHY_ID:
4551 if (hw->mac_type == e1000_80003es2lan) {
4552 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004553 break;
4554 }
4555 /* Fall Through */
4556 default:
4557 /* Should never have loaded on this device */
4558 hw->phy_type = e1000_phy_undefined;
4559 return -E1000_ERR_PHY_TYPE;
4560 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004561
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004562 return E1000_SUCCESS;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004563}
4564
wdenk4e112c12003-06-03 23:54:09 +00004565/******************************************************************************
4566* Probes the expected PHY address for known PHY IDs
4567*
4568* hw - Struct containing variables accessed by shared code
4569******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004570static int32_t
wdenk4e112c12003-06-03 23:54:09 +00004571e1000_detect_gig_phy(struct e1000_hw *hw)
4572{
Roy Zang28f7a052009-07-31 13:34:02 +08004573 int32_t phy_init_status, ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004574 uint16_t phy_id_high, phy_id_low;
Roy Zang28f7a052009-07-31 13:34:02 +08004575 boolean_t match = FALSE;
wdenk4e112c12003-06-03 23:54:09 +00004576
4577 DEBUGFUNC();
4578
Roy Zang28f7a052009-07-31 13:34:02 +08004579 /* The 82571 firmware may still be configuring the PHY. In this
4580 * case, we cannot access the PHY until the configuration is done. So
4581 * we explicitly set the PHY values. */
4582 if (hw->mac_type == e1000_82571 ||
4583 hw->mac_type == e1000_82572) {
4584 hw->phy_id = IGP01E1000_I_PHY_ID;
4585 hw->phy_type = e1000_phy_igp_2;
4586 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004587 }
Roy Zang28f7a052009-07-31 13:34:02 +08004588
4589 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4590 * work- around that forces PHY page 0 to be set or the reads fail.
4591 * The rest of the code in this routine uses e1000_read_phy_reg to
4592 * read the PHY ID. So for ESB-2 we need to have this set so our
4593 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4594 * the routines below will figure this out as well. */
4595 if (hw->mac_type == e1000_80003es2lan)
4596 hw->phy_type = e1000_phy_gg82563;
4597
4598 /* Read the PHY ID Registers to identify which PHY is onboard. */
4599 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4600 if (ret_val)
4601 return ret_val;
4602
wdenk4e112c12003-06-03 23:54:09 +00004603 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zang28f7a052009-07-31 13:34:02 +08004604 udelay(20);
4605 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4606 if (ret_val)
4607 return ret_val;
4608
wdenk4e112c12003-06-03 23:54:09 +00004609 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zang28f7a052009-07-31 13:34:02 +08004610 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk4e112c12003-06-03 23:54:09 +00004611
4612 switch (hw->mac_type) {
4613 case e1000_82543:
4614 if (hw->phy_id == M88E1000_E_PHY_ID)
4615 match = TRUE;
4616 break;
4617 case e1000_82544:
4618 if (hw->phy_id == M88E1000_I_PHY_ID)
4619 match = TRUE;
4620 break;
4621 case e1000_82540:
4622 case e1000_82545:
Roy Zang28f7a052009-07-31 13:34:02 +08004623 case e1000_82545_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004624 case e1000_82546:
Roy Zang28f7a052009-07-31 13:34:02 +08004625 case e1000_82546_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004626 if (hw->phy_id == M88E1011_I_PHY_ID)
4627 match = TRUE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004628 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004629 case e1000_82541:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004630 case e1000_82541_rev_2:
Roy Zang28f7a052009-07-31 13:34:02 +08004631 case e1000_82547:
4632 case e1000_82547_rev_2:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004633 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4634 match = TRUE;
4635
wdenk4e112c12003-06-03 23:54:09 +00004636 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004637 case e1000_82573:
4638 if (hw->phy_id == M88E1111_I_PHY_ID)
4639 match = TRUE;
4640 break;
4641 case e1000_80003es2lan:
4642 if (hw->phy_id == GG82563_E_PHY_ID)
4643 match = TRUE;
4644 break;
4645 case e1000_ich8lan:
4646 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4647 match = TRUE;
4648 if (hw->phy_id == IFE_E_PHY_ID)
4649 match = TRUE;
4650 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4651 match = TRUE;
4652 if (hw->phy_id == IFE_C_E_PHY_ID)
4653 match = TRUE;
4654 break;
wdenk4e112c12003-06-03 23:54:09 +00004655 default:
4656 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4657 return -E1000_ERR_CONFIG;
4658 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004659
4660 phy_init_status = e1000_set_phy_type(hw);
4661
4662 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk4e112c12003-06-03 23:54:09 +00004663 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4664 return 0;
4665 }
4666 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4667 return -E1000_ERR_PHY;
4668}
4669
Roy Zang28f7a052009-07-31 13:34:02 +08004670/*****************************************************************************
4671 * Set media type and TBI compatibility.
4672 *
4673 * hw - Struct containing variables accessed by shared code
4674 * **************************************************************************/
4675void
4676e1000_set_media_type(struct e1000_hw *hw)
4677{
4678 uint32_t status;
4679
4680 DEBUGFUNC();
4681
4682 if (hw->mac_type != e1000_82543) {
4683 /* tbi_compatibility is only valid on 82543 */
4684 hw->tbi_compatibility_en = FALSE;
4685 }
4686
4687 switch (hw->device_id) {
4688 case E1000_DEV_ID_82545GM_SERDES:
4689 case E1000_DEV_ID_82546GB_SERDES:
4690 case E1000_DEV_ID_82571EB_SERDES:
4691 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4692 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4693 case E1000_DEV_ID_82572EI_SERDES:
4694 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4695 hw->media_type = e1000_media_type_internal_serdes;
4696 break;
4697 default:
4698 switch (hw->mac_type) {
4699 case e1000_82542_rev2_0:
4700 case e1000_82542_rev2_1:
4701 hw->media_type = e1000_media_type_fiber;
4702 break;
4703 case e1000_ich8lan:
4704 case e1000_82573:
4705 /* The STATUS_TBIMODE bit is reserved or reused
4706 * for the this device.
4707 */
4708 hw->media_type = e1000_media_type_copper;
4709 break;
4710 default:
4711 status = E1000_READ_REG(hw, STATUS);
4712 if (status & E1000_STATUS_TBIMODE) {
4713 hw->media_type = e1000_media_type_fiber;
4714 /* tbi_compatibility not valid on fiber */
4715 hw->tbi_compatibility_en = FALSE;
4716 } else {
4717 hw->media_type = e1000_media_type_copper;
4718 }
4719 break;
4720 }
4721 }
4722}
4723
wdenk4e112c12003-06-03 23:54:09 +00004724/**
4725 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4726 *
4727 * e1000_sw_init initializes the Adapter private data structure.
4728 * Fields are initialized based on PCI device information and
4729 * OS network device settings (MTU size).
4730 **/
4731
4732static int
4733e1000_sw_init(struct eth_device *nic, int cardnum)
4734{
4735 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4736 int result;
4737
4738 /* PCI config space info */
4739 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4740 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4741 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4742 &hw->subsystem_vendor_id);
4743 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4744
4745 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4746 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4747
4748 /* identify the MAC */
4749 result = e1000_set_mac_type(hw);
4750 if (result) {
4751 E1000_ERR("Unknown MAC Type\n");
4752 return result;
4753 }
4754
Roy Zang28f7a052009-07-31 13:34:02 +08004755 switch (hw->mac_type) {
4756 default:
4757 break;
4758 case e1000_82541:
4759 case e1000_82547:
4760 case e1000_82541_rev_2:
4761 case e1000_82547_rev_2:
4762 hw->phy_init_script = 1;
4763 break;
4764 }
4765
wdenk4e112c12003-06-03 23:54:09 +00004766 /* lan a vs. lan b settings */
4767 if (hw->mac_type == e1000_82546)
4768 /*this also works w/ multiple 82546 cards */
4769 /*but not if they're intermingled /w other e1000s */
4770 hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
4771 else
4772 hw->lan_loc = e1000_lan_a;
4773
4774 /* flow control settings */
4775 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4776 hw->fc_low_water = E1000_FC_LOW_THRESH;
4777 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4778 hw->fc_send_xon = 1;
4779
4780 /* Media type - copper or fiber */
Roy Zang28f7a052009-07-31 13:34:02 +08004781 e1000_set_media_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00004782
4783 if (hw->mac_type >= e1000_82543) {
4784 uint32_t status = E1000_READ_REG(hw, STATUS);
4785
4786 if (status & E1000_STATUS_TBIMODE) {
4787 DEBUGOUT("fiber interface\n");
4788 hw->media_type = e1000_media_type_fiber;
4789 } else {
4790 DEBUGOUT("copper interface\n");
4791 hw->media_type = e1000_media_type_copper;
4792 }
4793 } else {
4794 hw->media_type = e1000_media_type_fiber;
4795 }
4796
Roy Zang28f7a052009-07-31 13:34:02 +08004797 hw->tbi_compatibility_en = TRUE;
4798 hw->wait_autoneg_complete = TRUE;
wdenk4e112c12003-06-03 23:54:09 +00004799 if (hw->mac_type < e1000_82543)
4800 hw->report_tx_early = 0;
4801 else
4802 hw->report_tx_early = 1;
4803
wdenk4e112c12003-06-03 23:54:09 +00004804 return E1000_SUCCESS;
4805}
4806
4807void
4808fill_rx(struct e1000_hw *hw)
4809{
4810 struct e1000_rx_desc *rd;
4811
4812 rx_last = rx_tail;
4813 rd = rx_base + rx_tail;
4814 rx_tail = (rx_tail + 1) % 8;
4815 memset(rd, 0, 16);
4816 rd->buffer_addr = cpu_to_le64((u32) & packet);
4817 E1000_WRITE_REG(hw, RDT, rx_tail);
4818}
4819
4820/**
4821 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4822 * @adapter: board private structure
4823 *
4824 * Configure the Tx unit of the MAC after a reset.
4825 **/
4826
4827static void
4828e1000_configure_tx(struct e1000_hw *hw)
4829{
4830 unsigned long ptr;
4831 unsigned long tctl;
Roy Zang28f7a052009-07-31 13:34:02 +08004832 unsigned long tipg, tarc;
4833 uint32_t ipgr1, ipgr2;
wdenk4e112c12003-06-03 23:54:09 +00004834
4835 ptr = (u32) tx_pool;
4836 if (ptr & 0xf)
4837 ptr = (ptr + 0x10) & (~0xf);
4838
4839 tx_base = (typeof(tx_base)) ptr;
4840
4841 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4842 E1000_WRITE_REG(hw, TDBAH, 0);
4843
4844 E1000_WRITE_REG(hw, TDLEN, 128);
4845
4846 /* Setup the HW Tx Head and Tail descriptor pointers */
4847 E1000_WRITE_REG(hw, TDH, 0);
4848 E1000_WRITE_REG(hw, TDT, 0);
4849 tx_tail = 0;
4850
4851 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zang28f7a052009-07-31 13:34:02 +08004852 if (hw->mac_type <= e1000_82547_rev_2 &&
4853 (hw->media_type == e1000_media_type_fiber ||
4854 hw->media_type == e1000_media_type_internal_serdes))
4855 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4856 else
4857 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4858
4859 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk4e112c12003-06-03 23:54:09 +00004860 switch (hw->mac_type) {
4861 case e1000_82542_rev2_0:
4862 case e1000_82542_rev2_1:
4863 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zang28f7a052009-07-31 13:34:02 +08004864 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4865 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4866 break;
4867 case e1000_80003es2lan:
4868 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4869 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk4e112c12003-06-03 23:54:09 +00004870 break;
4871 default:
Roy Zang28f7a052009-07-31 13:34:02 +08004872 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4873 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4874 break;
wdenk4e112c12003-06-03 23:54:09 +00004875 }
Roy Zang28f7a052009-07-31 13:34:02 +08004876 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4877 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00004878 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk4e112c12003-06-03 23:54:09 +00004879 /* Program the Transmit Control Register */
4880 tctl = E1000_READ_REG(hw, TCTL);
4881 tctl &= ~E1000_TCTL_CT;
4882 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4883 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zang28f7a052009-07-31 13:34:02 +08004884
4885 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4886 tarc = E1000_READ_REG(hw, TARC0);
4887 /* set the speed mode bit, we'll clear it if we're not at
4888 * gigabit link later */
4889 /* git bit can be set to 1*/
4890 } else if (hw->mac_type == e1000_80003es2lan) {
4891 tarc = E1000_READ_REG(hw, TARC0);
4892 tarc |= 1;
4893 E1000_WRITE_REG(hw, TARC0, tarc);
4894 tarc = E1000_READ_REG(hw, TARC1);
4895 tarc |= 1;
4896 E1000_WRITE_REG(hw, TARC1, tarc);
4897 }
4898
wdenk4e112c12003-06-03 23:54:09 +00004899
4900 e1000_config_collision_dist(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004901 /* Setup Transmit Descriptor Settings for eop descriptor */
4902 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk4e112c12003-06-03 23:54:09 +00004903
Roy Zang28f7a052009-07-31 13:34:02 +08004904 /* Need to set up RS bit */
4905 if (hw->mac_type < e1000_82543)
4906 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk4e112c12003-06-03 23:54:09 +00004907 else
Roy Zang28f7a052009-07-31 13:34:02 +08004908 hw->txd_cmd |= E1000_TXD_CMD_RS;
4909 E1000_WRITE_REG(hw, TCTL, tctl);
wdenk4e112c12003-06-03 23:54:09 +00004910}
4911
4912/**
4913 * e1000_setup_rctl - configure the receive control register
4914 * @adapter: Board private structure
4915 **/
4916static void
4917e1000_setup_rctl(struct e1000_hw *hw)
4918{
4919 uint32_t rctl;
4920
4921 rctl = E1000_READ_REG(hw, RCTL);
4922
4923 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4924
Roy Zang28f7a052009-07-31 13:34:02 +08004925 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4926 | E1000_RCTL_RDMTS_HALF; /* |
4927 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk4e112c12003-06-03 23:54:09 +00004928
4929 if (hw->tbi_compatibility_on == 1)
4930 rctl |= E1000_RCTL_SBP;
4931 else
4932 rctl &= ~E1000_RCTL_SBP;
4933
4934 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk4e112c12003-06-03 23:54:09 +00004935 rctl |= E1000_RCTL_SZ_2048;
4936 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk4e112c12003-06-03 23:54:09 +00004937 E1000_WRITE_REG(hw, RCTL, rctl);
4938}
4939
4940/**
4941 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4942 * @adapter: board private structure
4943 *
4944 * Configure the Rx unit of the MAC after a reset.
4945 **/
4946static void
4947e1000_configure_rx(struct e1000_hw *hw)
4948{
4949 unsigned long ptr;
Roy Zang28f7a052009-07-31 13:34:02 +08004950 unsigned long rctl, ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00004951 rx_tail = 0;
4952 /* make sure receives are disabled while setting up the descriptors */
4953 rctl = E1000_READ_REG(hw, RCTL);
4954 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk4e112c12003-06-03 23:54:09 +00004955 if (hw->mac_type >= e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00004956 /* Set the interrupt throttling rate. Value is calculated
4957 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004958#define MAX_INTS_PER_SEC 8000
4959#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk4e112c12003-06-03 23:54:09 +00004960 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4961 }
4962
Roy Zang28f7a052009-07-31 13:34:02 +08004963 if (hw->mac_type >= e1000_82571) {
4964 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4965 /* Reset delay timers after every interrupt */
4966 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4967 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4968 E1000_WRITE_FLUSH(hw);
4969 }
wdenk4e112c12003-06-03 23:54:09 +00004970 /* Setup the Base and Length of the Rx Descriptor Ring */
4971 ptr = (u32) rx_pool;
4972 if (ptr & 0xf)
4973 ptr = (ptr + 0x10) & (~0xf);
4974 rx_base = (typeof(rx_base)) ptr;
4975 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
4976 E1000_WRITE_REG(hw, RDBAH, 0);
4977
4978 E1000_WRITE_REG(hw, RDLEN, 128);
4979
4980 /* Setup the HW Rx Head and Tail Descriptor Pointers */
4981 E1000_WRITE_REG(hw, RDH, 0);
4982 E1000_WRITE_REG(hw, RDT, 0);
wdenk4e112c12003-06-03 23:54:09 +00004983 /* Enable Receives */
4984
4985 E1000_WRITE_REG(hw, RCTL, rctl);
4986 fill_rx(hw);
4987}
4988
4989/**************************************************************************
4990POLL - Wait for a frame
4991***************************************************************************/
4992static int
4993e1000_poll(struct eth_device *nic)
4994{
4995 struct e1000_hw *hw = nic->priv;
4996 struct e1000_rx_desc *rd;
4997 /* return true if there's an ethernet packet ready to read */
4998 rd = rx_base + rx_last;
4999 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5000 return 0;
5001 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
Wolfgang Denk7fb52662005-10-13 16:45:02 +02005002 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
wdenk4e112c12003-06-03 23:54:09 +00005003 fill_rx(hw);
5004 return 1;
5005}
5006
5007/**************************************************************************
5008TRANSMIT - Transmit a frame
5009***************************************************************************/
5010static int
5011e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5012{
5013 struct e1000_hw *hw = nic->priv;
5014 struct e1000_tx_desc *txp;
5015 int i = 0;
5016
5017 txp = tx_base + tx_tail;
5018 tx_tail = (tx_tail + 1) % 8;
5019
5020 txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
Roy Zang28f7a052009-07-31 13:34:02 +08005021 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk4e112c12003-06-03 23:54:09 +00005022 txp->upper.data = 0;
5023 E1000_WRITE_REG(hw, TDT, tx_tail);
5024
Roy Zang28f7a052009-07-31 13:34:02 +08005025 E1000_WRITE_FLUSH(hw);
wdenk4e112c12003-06-03 23:54:09 +00005026 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5027 if (i++ > TOUT_LOOP) {
5028 DEBUGOUT("e1000: tx timeout\n");
5029 return 0;
5030 }
5031 udelay(10); /* give the nic a chance to write to the register */
5032 }
5033 return 1;
5034}
5035
5036/*reset function*/
5037static inline int
5038e1000_reset(struct eth_device *nic)
5039{
5040 struct e1000_hw *hw = nic->priv;
5041
5042 e1000_reset_hw(hw);
5043 if (hw->mac_type >= e1000_82544) {
5044 E1000_WRITE_REG(hw, WUC, 0);
5045 }
5046 return e1000_init_hw(nic);
5047}
5048
5049/**************************************************************************
5050DISABLE - Turn off ethernet interface
5051***************************************************************************/
5052static void
5053e1000_disable(struct eth_device *nic)
5054{
5055 struct e1000_hw *hw = nic->priv;
5056
5057 /* Turn off the ethernet interface */
5058 E1000_WRITE_REG(hw, RCTL, 0);
5059 E1000_WRITE_REG(hw, TCTL, 0);
5060
5061 /* Clear the transmit ring */
5062 E1000_WRITE_REG(hw, TDH, 0);
5063 E1000_WRITE_REG(hw, TDT, 0);
5064
5065 /* Clear the receive ring */
5066 E1000_WRITE_REG(hw, RDH, 0);
5067 E1000_WRITE_REG(hw, RDT, 0);
5068
5069 /* put the card in its initial state */
5070#if 0
5071 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5072#endif
5073 mdelay(10);
5074
5075}
5076
5077/**************************************************************************
5078INIT - set up ethernet interface(s)
5079***************************************************************************/
5080static int
5081e1000_init(struct eth_device *nic, bd_t * bis)
5082{
5083 struct e1000_hw *hw = nic->priv;
5084 int ret_val = 0;
5085
5086 ret_val = e1000_reset(nic);
5087 if (ret_val < 0) {
5088 if ((ret_val == -E1000_ERR_NOLINK) ||
5089 (ret_val == -E1000_ERR_TIMEOUT)) {
5090 E1000_ERR("Valid Link not detected\n");
5091 } else {
5092 E1000_ERR("Hardware Initialization Failed\n");
5093 }
5094 return 0;
5095 }
5096 e1000_configure_tx(hw);
5097 e1000_setup_rctl(hw);
5098 e1000_configure_rx(hw);
5099 return 1;
5100}
5101
Roy Zang28f7a052009-07-31 13:34:02 +08005102/******************************************************************************
5103 * Gets the current PCI bus type of hardware
5104 *
5105 * hw - Struct containing variables accessed by shared code
5106 *****************************************************************************/
5107void e1000_get_bus_type(struct e1000_hw *hw)
5108{
5109 uint32_t status;
5110
5111 switch (hw->mac_type) {
5112 case e1000_82542_rev2_0:
5113 case e1000_82542_rev2_1:
5114 hw->bus_type = e1000_bus_type_pci;
5115 break;
5116 case e1000_82571:
5117 case e1000_82572:
5118 case e1000_82573:
5119 case e1000_80003es2lan:
5120 hw->bus_type = e1000_bus_type_pci_express;
5121 break;
5122 case e1000_ich8lan:
5123 hw->bus_type = e1000_bus_type_pci_express;
5124 break;
5125 default:
5126 status = E1000_READ_REG(hw, STATUS);
5127 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5128 e1000_bus_type_pcix : e1000_bus_type_pci;
5129 break;
5130 }
5131}
5132
wdenk4e112c12003-06-03 23:54:09 +00005133/**************************************************************************
5134PROBE - Look for an adapter, this routine's visible to the outside
5135You should omit the last argument struct pci_device * for a non-PCI NIC
5136***************************************************************************/
5137int
5138e1000_initialize(bd_t * bis)
5139{
5140 pci_dev_t devno;
5141 int card_number = 0;
5142 struct eth_device *nic = NULL;
5143 struct e1000_hw *hw = NULL;
5144 u32 iobase;
5145 int idx = 0;
5146 u32 PciCommandWord;
5147
5148 while (1) { /* Find PCI device(s) */
5149 if ((devno = pci_find_devices(supported, idx++)) < 0) {
5150 break;
5151 }
5152
5153 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
5154 iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
5155 DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
5156
5157 pci_write_config_dword(devno, PCI_COMMAND,
5158 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
5159 /* Check if I/O accesses and Bus Mastering are enabled. */
5160 pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
5161 if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
5162 printf("Error: Can not enable MEM access.\n");
5163 continue;
5164 } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
5165 printf("Error: Can not enable Bus Mastering.\n");
5166 continue;
5167 }
5168
5169 nic = (struct eth_device *) malloc(sizeof (*nic));
5170 hw = (struct e1000_hw *) malloc(sizeof (*hw));
5171 hw->pdev = devno;
5172 nic->priv = hw;
5173 nic->iobase = bus_to_phys(devno, iobase);
5174
5175 sprintf(nic->name, "e1000#%d", card_number);
5176
5177 /* Are these variables needed? */
wdenk4e112c12003-06-03 23:54:09 +00005178 hw->fc = e1000_fc_default;
5179 hw->original_fc = e1000_fc_default;
wdenk4e112c12003-06-03 23:54:09 +00005180 hw->autoneg_failed = 0;
Roy Zang28f7a052009-07-31 13:34:02 +08005181 hw->autoneg = 1;
wdenk4e112c12003-06-03 23:54:09 +00005182 hw->get_link_status = TRUE;
5183 hw->hw_addr = (typeof(hw->hw_addr)) iobase;
5184 hw->mac_type = e1000_undefined;
5185
5186 /* MAC and Phy settings */
5187 if (e1000_sw_init(nic, card_number) < 0) {
5188 free(hw);
5189 free(nic);
5190 return 0;
5191 }
Roy Zang28f7a052009-07-31 13:34:02 +08005192 if (e1000_check_phy_reset_block(hw))
5193 printf("phy reset block error \n");
5194 e1000_reset_hw(hw);
Andre Schwarz68c2a302008-03-06 16:45:44 +01005195#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
Roy Zang28f7a052009-07-31 13:34:02 +08005196 if (e1000_init_eeprom_params(hw)) {
5197 printf("The EEPROM Checksum Is Not Valid\n");
5198 free(hw);
5199 free(nic);
5200 return 0;
5201 }
wdenk4e112c12003-06-03 23:54:09 +00005202 if (e1000_validate_eeprom_checksum(nic) < 0) {
5203 printf("The EEPROM Checksum Is Not Valid\n");
5204 free(hw);
5205 free(nic);
5206 return 0;
5207 }
Wolfgang Denk56811f62005-10-09 01:04:33 +02005208#endif
wdenk4e112c12003-06-03 23:54:09 +00005209 e1000_read_mac_addr(nic);
5210
Roy Zang28f7a052009-07-31 13:34:02 +08005211 /* get the bus type information */
5212 e1000_get_bus_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00005213
5214 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
5215 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5216 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5217
5218 nic->init = e1000_init;
5219 nic->recv = e1000_poll;
5220 nic->send = e1000_transmit;
5221 nic->halt = e1000_disable;
5222
5223 eth_register(nic);
5224
5225 card_number++;
5226 }
Ben Warren050019d2008-08-31 10:44:19 -07005227 return card_number;
wdenk4e112c12003-06-03 23:54:09 +00005228}