blob: 0d1df189e8202871c83521c32c7b3eba4af934a3 [file] [log] [blame]
Chris Packham2e0d2ba2018-12-10 10:41:15 +13001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) Marvell International Ltd. and its affiliates
4 */
Chris Packham1a07d212018-05-10 13:28:29 +12005
6#include "ddr3_init.h"
Moti Buskila2b368e12021-02-19 17:11:22 +01007#include "mv_ddr_common.h"
Chris Packham4bf81db2018-12-03 14:26:49 +13008#include "mv_ddr_training_db.h"
9#include "mv_ddr_regs.h"
Chris Packham1a07d212018-05-10 13:28:29 +120010#include "mv_ddr_sys_env_lib.h"
Simon Glassdbd79542020-05-10 11:40:11 -060011#include <linux/delay.h>
Chris Packham1a07d212018-05-10 13:28:29 +120012
13#define DDR_INTERFACES_NUM 1
14#define DDR_INTERFACE_OCTETS_NUM 5
15
16/*
17 * 1. L2 filter should be set at binary header to 0xD000000,
18 * to avoid conflict with internal register IO.
19 * 2. U-Boot modifies internal registers base to 0xf100000,
20 * and than should update L2 filter accordingly to 0xf000000 (3.75 GB)
21 */
22#define L2_FILTER_FOR_MAX_MEMORY_SIZE 0xC0000000 /* temporary limit l2 filter to 3gb (LSP issue) */
23#define ADDRESS_FILTERING_END_REGISTER 0x8c04
24
25#define DYNAMIC_CS_SIZE_CONFIG
26#define DISABLE_L2_FILTERING_DURING_DDR_TRAINING
27
28/* Termal Sensor Registers */
29#define TSEN_CONTROL_LSB_REG 0xE4070
30#define TSEN_CONTROL_LSB_TC_TRIM_OFFSET 0
31#define TSEN_CONTROL_LSB_TC_TRIM_MASK (0x7 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET)
32#define TSEN_CONTROL_MSB_REG 0xE4074
33#define TSEN_CONTROL_MSB_RST_OFFSET 8
34#define TSEN_CONTROL_MSB_RST_MASK (0x1 << TSEN_CONTROL_MSB_RST_OFFSET)
35#define TSEN_STATUS_REG 0xe4078
36#define TSEN_STATUS_READOUT_VALID_OFFSET 10
37#define TSEN_STATUS_READOUT_VALID_MASK (0x1 << \
38 TSEN_STATUS_READOUT_VALID_OFFSET)
39#define TSEN_STATUS_TEMP_OUT_OFFSET 0
40#define TSEN_STATUS_TEMP_OUT_MASK (0x3ff << TSEN_STATUS_TEMP_OUT_OFFSET)
41
42static struct dlb_config ddr3_dlb_config_table[] = {
43 {DLB_CTRL_REG, 0x2000005c},
44 {DLB_BUS_OPT_WT_REG, 0x00880000},
45 {DLB_AGING_REG, 0x0f7f007f},
46 {DLB_EVICTION_CTRL_REG, 0x0000129f},
47 {DLB_EVICTION_TIMERS_REG, 0x00ff0000},
48 {DLB_WTS_DIFF_CS_REG, 0x04030802},
49 {DLB_WTS_DIFF_BG_REG, 0x00000a02},
50 {DLB_WTS_SAME_BG_REG, 0x09000a01},
51 {DLB_WTS_CMDS_REG, 0x00020005},
52 {DLB_WTS_ATTR_PRIO_REG, 0x00060f10},
53 {DLB_QUEUE_MAP_REG, 0x00000543},
54 {DLB_SPLIT_REG, 0x00000000},
55 {DLB_USER_CMD_REG, 0x00000000},
56 {0x0, 0x0}
57};
58
59static struct dlb_config *sys_env_dlb_config_ptr_get(void)
60{
61 return &ddr3_dlb_config_table[0];
62}
63
Chris Packham4bf81db2018-12-03 14:26:49 +130064static u8 a38x_bw_per_freq[MV_DDR_FREQ_LAST] = {
65 0x3, /* MV_DDR_FREQ_100 */
66 0x4, /* MV_DDR_FREQ_400 */
67 0x4, /* MV_DDR_FREQ_533 */
68 0x5, /* MV_DDR_FREQ_667 */
69 0x5, /* MV_DDR_FREQ_800 */
70 0x5, /* MV_DDR_FREQ_933 */
71 0x5, /* MV_DDR_FREQ_1066 */
72 0x3, /* MV_DDR_FREQ_311 */
73 0x3, /* MV_DDR_FREQ_333 */
74 0x4, /* MV_DDR_FREQ_467 */
75 0x5, /* MV_DDR_FREQ_850 */
76 0x5, /* MV_DDR_FREQ_600 */
77 0x3, /* MV_DDR_FREQ_300 */
78 0x5, /* MV_DDR_FREQ_900 */
79 0x3, /* MV_DDR_FREQ_360 */
80 0x5 /* MV_DDR_FREQ_1000 */
Chris Packham1a07d212018-05-10 13:28:29 +120081};
82
Chris Packham4bf81db2018-12-03 14:26:49 +130083static u8 a38x_rate_per_freq[MV_DDR_FREQ_LAST] = {
84 0x1, /* MV_DDR_FREQ_100 */
85 0x2, /* MV_DDR_FREQ_400 */
86 0x2, /* MV_DDR_FREQ_533 */
87 0x2, /* MV_DDR_FREQ_667 */
88 0x2, /* MV_DDR_FREQ_800 */
89 0x3, /* MV_DDR_FREQ_933 */
90 0x3, /* MV_DDR_FREQ_1066 */
91 0x1, /* MV_DDR_FREQ_311 */
92 0x1, /* MV_DDR_FREQ_333 */
93 0x2, /* MV_DDR_FREQ_467 */
94 0x2, /* MV_DDR_FREQ_850 */
95 0x2, /* MV_DDR_FREQ_600 */
96 0x1, /* MV_DDR_FREQ_300 */
97 0x2, /* MV_DDR_FREQ_900 */
98 0x1, /* MV_DDR_FREQ_360 */
99 0x2 /* MV_DDR_FREQ_1000 */
Chris Packham1a07d212018-05-10 13:28:29 +1200100};
101
102static u16 a38x_vco_freq_per_sar_ref_clk_25_mhz[] = {
103 666, /* 0 */
104 1332,
105 800,
106 1600,
107 1066,
108 2132,
109 1200,
110 2400,
111 1332,
112 1332,
113 1500,
114 1500,
115 1600, /* 12 */
116 1600,
117 1700,
118 1700,
119 1866,
120 1866,
121 1800, /* 18 */
122 2000,
123 2000,
124 4000,
125 2132,
126 2132,
127 2300,
128 2300,
129 2400,
130 2400,
131 2500,
132 2500,
133 800
134};
135
136static u16 a38x_vco_freq_per_sar_ref_clk_40_mhz[] = {
137 666, /* 0 */
138 1332,
139 800,
140 800, /* 0x3 */
141 1066,
142 1066, /* 0x5 */
143 1200,
144 2400,
145 1332,
146 1332,
147 1500, /* 10 */
148 1600, /* 0xB */
149 1600,
150 1600,
151 1700,
152 1560, /* 0xF */
153 1866,
154 1866,
155 1800,
156 2000,
157 2000, /* 20 */
158 4000,
159 2132,
160 2132,
161 2300,
162 2300,
163 2400,
164 2400,
165 2500,
166 2500,
167 1800 /* 30 - 0x1E */
168};
169
170
171static u32 async_mode_at_tf;
172
173static u32 dq_bit_map_2_phy_pin[] = {
174 1, 0, 2, 6, 9, 8, 3, 7, /* 0 */
175 8, 9, 1, 7, 2, 6, 3, 0, /* 1 */
176 3, 9, 7, 8, 1, 0, 2, 6, /* 2 */
177 1, 0, 6, 2, 8, 3, 7, 9, /* 3 */
178 0, 1, 2, 9, 7, 8, 3, 6, /* 4 */
179};
180
181void mv_ddr_mem_scrubbing(void)
182{
Chris Packham4bf81db2018-12-03 14:26:49 +1300183 ddr3_new_tip_ecc_scrub();
Chris Packham1a07d212018-05-10 13:28:29 +1200184}
185
186static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
Chris Packham4bf81db2018-12-03 14:26:49 +1300187 enum mv_ddr_freq freq);
Chris Packham1a07d212018-05-10 13:28:29 +1200188
189/*
190 * Read temperature TJ value
191 */
192static u32 ddr3_ctrl_get_junc_temp(u8 dev_num)
193{
194 int reg = 0;
195
196 /* Initiates TSEN hardware reset once */
197 if ((reg_read(TSEN_CONTROL_MSB_REG) & TSEN_CONTROL_MSB_RST_MASK) == 0) {
198 reg_bit_set(TSEN_CONTROL_MSB_REG, TSEN_CONTROL_MSB_RST_MASK);
199 /* set Tsen Tc Trim to correct default value (errata #132698) */
200 reg = reg_read(TSEN_CONTROL_LSB_REG);
201 reg &= ~TSEN_CONTROL_LSB_TC_TRIM_MASK;
202 reg |= 0x3 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET;
203 reg_write(TSEN_CONTROL_LSB_REG, reg);
204 }
205 mdelay(10);
206
207 /* Check if the readout field is valid */
208 if ((reg_read(TSEN_STATUS_REG) & TSEN_STATUS_READOUT_VALID_MASK) == 0) {
209 printf("%s: TSEN not ready\n", __func__);
210 return 0;
211 }
212
213 reg = reg_read(TSEN_STATUS_REG);
214 reg = (reg & TSEN_STATUS_TEMP_OUT_MASK) >> TSEN_STATUS_TEMP_OUT_OFFSET;
215
216 return ((((10000 * reg) / 21445) * 1000) - 272674) / 1000;
217}
218
219/*
220 * Name: ddr3_tip_a38x_get_freq_config.
221 * Desc:
222 * Args:
223 * Notes:
224 * Returns: MV_OK if success, other error code if fail.
225 */
Chris Packham4bf81db2018-12-03 14:26:49 +1300226static int ddr3_tip_a38x_get_freq_config(u8 dev_num, enum mv_ddr_freq freq,
Chris Packham1a07d212018-05-10 13:28:29 +1200227 struct hws_tip_freq_config_info
228 *freq_config_info)
229{
230 if (a38x_bw_per_freq[freq] == 0xff)
231 return MV_NOT_SUPPORTED;
232
233 if (freq_config_info == NULL)
234 return MV_BAD_PARAM;
235
236 freq_config_info->bw_per_freq = a38x_bw_per_freq[freq];
237 freq_config_info->rate_per_freq = a38x_rate_per_freq[freq];
238 freq_config_info->is_supported = 1;
239
240 return MV_OK;
241}
242
243static void dunit_read(u32 addr, u32 mask, u32 *data)
244{
245 *data = reg_read(addr) & mask;
246}
247
248static void dunit_write(u32 addr, u32 mask, u32 data)
249{
250 u32 reg_val = data;
251
252 if (mask != MASK_ALL_BITS) {
253 dunit_read(addr, MASK_ALL_BITS, &reg_val);
254 reg_val &= (~mask);
255 reg_val |= (data & mask);
256 }
257
258 reg_write(addr, reg_val);
259}
260
261#define ODPG_ENABLE_REG 0x186d4
262#define ODPG_EN_OFFS 0
263#define ODPG_EN_MASK 0x1
264#define ODPG_EN_ENA 1
265#define ODPG_EN_DONE 0
266#define ODPG_DIS_OFFS 8
267#define ODPG_DIS_MASK 0x1
268#define ODPG_DIS_DIS 1
269void mv_ddr_odpg_enable(void)
270{
271 dunit_write(ODPG_ENABLE_REG,
272 ODPG_EN_MASK << ODPG_EN_OFFS,
273 ODPG_EN_ENA << ODPG_EN_OFFS);
274}
275
276void mv_ddr_odpg_disable(void)
277{
278 dunit_write(ODPG_ENABLE_REG,
279 ODPG_DIS_MASK << ODPG_DIS_OFFS,
280 ODPG_DIS_DIS << ODPG_DIS_OFFS);
281}
282
283void mv_ddr_odpg_done_clr(void)
284{
285 return;
286}
287
288int mv_ddr_is_odpg_done(u32 count)
289{
290 u32 i, data;
291
292 for (i = 0; i < count; i++) {
293 dunit_read(ODPG_ENABLE_REG, MASK_ALL_BITS, &data);
294 if (((data >> ODPG_EN_OFFS) & ODPG_EN_MASK) ==
295 ODPG_EN_DONE)
296 break;
297 }
298
299 if (i >= count) {
300 printf("%s: timeout\n", __func__);
301 return MV_FAIL;
302 }
303
304 return MV_OK;
305}
306
307void mv_ddr_training_enable(void)
308{
309 dunit_write(GLOB_CTRL_STATUS_REG,
310 TRAINING_TRIGGER_MASK << TRAINING_TRIGGER_OFFS,
311 TRAINING_TRIGGER_ENA << TRAINING_TRIGGER_OFFS);
312}
313
314#define DRAM_INIT_CTRL_STATUS_REG 0x18488
315#define TRAINING_TRIGGER_OFFS 0
316#define TRAINING_TRIGGER_MASK 0x1
317#define TRAINING_TRIGGER_ENA 1
318#define TRAINING_DONE_OFFS 1
319#define TRAINING_DONE_MASK 0x1
320#define TRAINING_DONE_DONE 1
321#define TRAINING_DONE_NOT_DONE 0
322#define TRAINING_RESULT_OFFS 2
323#define TRAINING_RESULT_MASK 0x1
324#define TRAINING_RESULT_PASS 0
325#define TRAINING_RESULT_FAIL 1
326int mv_ddr_is_training_done(u32 count, u32 *result)
327{
328 u32 i, data;
329
330 if (result == NULL) {
331 printf("%s: NULL result pointer found\n", __func__);
332 return MV_FAIL;
333 }
334
335 for (i = 0; i < count; i++) {
336 dunit_read(DRAM_INIT_CTRL_STATUS_REG, MASK_ALL_BITS, &data);
337 if (((data >> TRAINING_DONE_OFFS) & TRAINING_DONE_MASK) ==
338 TRAINING_DONE_DONE)
339 break;
340 }
341
342 if (i >= count) {
343 printf("%s: timeout\n", __func__);
344 return MV_FAIL;
345 }
346
347 *result = (data >> TRAINING_RESULT_OFFS) & TRAINING_RESULT_MASK;
348
349 return MV_OK;
350}
351
352#define DM_PAD 10
353u32 mv_ddr_dm_pad_get(void)
354{
355 return DM_PAD;
356}
357
358/*
359 * Name: ddr3_tip_a38x_select_ddr_controller.
360 * Desc: Enable/Disable access to Marvell's server.
361 * Args: dev_num - device number
362 * enable - whether to enable or disable the server
363 * Notes:
364 * Returns: MV_OK if success, other error code if fail.
365 */
366static int ddr3_tip_a38x_select_ddr_controller(u8 dev_num, int enable)
367{
368 u32 reg;
369
370 reg = reg_read(DUAL_DUNIT_CFG_REG);
371
372 if (enable)
373 reg |= (1 << 6);
374 else
375 reg &= ~(1 << 6);
376
377 reg_write(DUAL_DUNIT_CFG_REG, reg);
378
379 return MV_OK;
380}
381
382static u8 ddr3_tip_clock_mode(u32 frequency)
383{
Chris Packham4bf81db2018-12-03 14:26:49 +1300384 if ((frequency == MV_DDR_FREQ_LOW_FREQ) || (mv_ddr_freq_get(frequency) <= 400))
Chris Packham1a07d212018-05-10 13:28:29 +1200385 return 1;
386
387 return 2;
388}
389
Chris Packham4bf81db2018-12-03 14:26:49 +1300390static int mv_ddr_sar_freq_get(int dev_num, enum mv_ddr_freq *freq)
Chris Packham1a07d212018-05-10 13:28:29 +1200391{
392 u32 reg, ref_clk_satr;
393
394 /* Read sample at reset setting */
395 reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
396 RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
397 RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
398
399 ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
400 if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
401 DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
402 switch (reg) {
403 case 0x1:
404 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
405 ("Warning: Unsupported freq mode for 333Mhz configured(%d)\n",
406 reg));
407 /* fallthrough */
408 case 0x0:
Chris Packham4bf81db2018-12-03 14:26:49 +1300409 *freq = MV_DDR_FREQ_333;
Chris Packham1a07d212018-05-10 13:28:29 +1200410 break;
411 case 0x3:
412 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
413 ("Warning: Unsupported freq mode for 400Mhz configured(%d)\n",
414 reg));
415 /* fallthrough */
416 case 0x2:
Chris Packham4bf81db2018-12-03 14:26:49 +1300417 *freq = MV_DDR_FREQ_400;
Chris Packham1a07d212018-05-10 13:28:29 +1200418 break;
419 case 0xd:
420 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
421 ("Warning: Unsupported freq mode for 533Mhz configured(%d)\n",
422 reg));
423 /* fallthrough */
424 case 0x4:
Chris Packham4bf81db2018-12-03 14:26:49 +1300425 *freq = MV_DDR_FREQ_533;
Chris Packham1a07d212018-05-10 13:28:29 +1200426 break;
427 case 0x6:
Chris Packham4bf81db2018-12-03 14:26:49 +1300428 *freq = MV_DDR_FREQ_600;
Chris Packham1a07d212018-05-10 13:28:29 +1200429 break;
430 case 0x11:
431 case 0x14:
432 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
433 ("Warning: Unsupported freq mode for 667Mhz configured(%d)\n",
434 reg));
435 /* fallthrough */
436 case 0x8:
Chris Packham4bf81db2018-12-03 14:26:49 +1300437 *freq = MV_DDR_FREQ_667;
Chris Packham1a07d212018-05-10 13:28:29 +1200438 break;
439 case 0x15:
440 case 0x1b:
441 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
442 ("Warning: Unsupported freq mode for 800Mhz configured(%d)\n",
443 reg));
444 /* fallthrough */
445 case 0xc:
Chris Packham4bf81db2018-12-03 14:26:49 +1300446 *freq = MV_DDR_FREQ_800;
Chris Packham1a07d212018-05-10 13:28:29 +1200447 break;
448 case 0x10:
Chris Packham4bf81db2018-12-03 14:26:49 +1300449 *freq = MV_DDR_FREQ_933;
Chris Packham1a07d212018-05-10 13:28:29 +1200450 break;
451 case 0x12:
Chris Packham4bf81db2018-12-03 14:26:49 +1300452 *freq = MV_DDR_FREQ_900;
Chris Packham1a07d212018-05-10 13:28:29 +1200453 break;
454 case 0x13:
Chris Packham4bf81db2018-12-03 14:26:49 +1300455 *freq = MV_DDR_FREQ_933;
Chris Packham1a07d212018-05-10 13:28:29 +1200456 break;
457 default:
458 *freq = 0;
459 return MV_NOT_SUPPORTED;
460 }
461 } else { /* REFCLK 40MHz case */
462 switch (reg) {
463 case 0x3:
Chris Packham4bf81db2018-12-03 14:26:49 +1300464 *freq = MV_DDR_FREQ_400;
Chris Packham1a07d212018-05-10 13:28:29 +1200465 break;
466 case 0x5:
Chris Packham4bf81db2018-12-03 14:26:49 +1300467 *freq = MV_DDR_FREQ_533;
Chris Packham1a07d212018-05-10 13:28:29 +1200468 break;
469 case 0xb:
Chris Packham4bf81db2018-12-03 14:26:49 +1300470 *freq = MV_DDR_FREQ_800;
Chris Packham1a07d212018-05-10 13:28:29 +1200471 break;
472 case 0x1e:
Chris Packham4bf81db2018-12-03 14:26:49 +1300473 *freq = MV_DDR_FREQ_900;
Chris Packham1a07d212018-05-10 13:28:29 +1200474 break;
475 default:
476 *freq = 0;
477 return MV_NOT_SUPPORTED;
478 }
479 }
480
481 return MV_OK;
482}
483
Chris Packham4bf81db2018-12-03 14:26:49 +1300484static int ddr3_tip_a38x_get_medium_freq(int dev_num, enum mv_ddr_freq *freq)
Chris Packham1a07d212018-05-10 13:28:29 +1200485{
486 u32 reg, ref_clk_satr;
487
488 /* Read sample at reset setting */
489 reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
490 RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
491 RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
492
493 ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
494 if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
495 DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
496 switch (reg) {
497 case 0x0:
498 case 0x1:
499 /* Medium is same as TF to run PBS in this freq */
Chris Packham4bf81db2018-12-03 14:26:49 +1300500 *freq = MV_DDR_FREQ_333;
Chris Packham1a07d212018-05-10 13:28:29 +1200501 break;
502 case 0x2:
503 case 0x3:
504 /* Medium is same as TF to run PBS in this freq */
Chris Packham4bf81db2018-12-03 14:26:49 +1300505 *freq = MV_DDR_FREQ_400;
Chris Packham1a07d212018-05-10 13:28:29 +1200506 break;
507 case 0x4:
508 case 0xd:
509 /* Medium is same as TF to run PBS in this freq */
Chris Packham4bf81db2018-12-03 14:26:49 +1300510 *freq = MV_DDR_FREQ_533;
Chris Packham1a07d212018-05-10 13:28:29 +1200511 break;
512 case 0x8:
513 case 0x10:
514 case 0x11:
515 case 0x14:
Chris Packham4bf81db2018-12-03 14:26:49 +1300516 *freq = MV_DDR_FREQ_333;
Chris Packham1a07d212018-05-10 13:28:29 +1200517 break;
518 case 0xc:
519 case 0x15:
520 case 0x1b:
Chris Packham4bf81db2018-12-03 14:26:49 +1300521 *freq = MV_DDR_FREQ_400;
Chris Packham1a07d212018-05-10 13:28:29 +1200522 break;
523 case 0x6:
Chris Packham4bf81db2018-12-03 14:26:49 +1300524 *freq = MV_DDR_FREQ_300;
Chris Packham1a07d212018-05-10 13:28:29 +1200525 break;
526 case 0x12:
Chris Packham4bf81db2018-12-03 14:26:49 +1300527 *freq = MV_DDR_FREQ_360;
Chris Packham1a07d212018-05-10 13:28:29 +1200528 break;
529 case 0x13:
Chris Packham4bf81db2018-12-03 14:26:49 +1300530 *freq = MV_DDR_FREQ_400;
Chris Packham1a07d212018-05-10 13:28:29 +1200531 break;
532 default:
533 *freq = 0;
534 return MV_NOT_SUPPORTED;
535 }
536 } else { /* REFCLK 40MHz case */
537 switch (reg) {
538 case 0x3:
539 /* Medium is same as TF to run PBS in this freq */
Chris Packham4bf81db2018-12-03 14:26:49 +1300540 *freq = MV_DDR_FREQ_400;
Chris Packham1a07d212018-05-10 13:28:29 +1200541 break;
542 case 0x5:
543 /* Medium is same as TF to run PBS in this freq */
Chris Packham4bf81db2018-12-03 14:26:49 +1300544 *freq = MV_DDR_FREQ_533;
Chris Packham1a07d212018-05-10 13:28:29 +1200545 break;
546 case 0xb:
Chris Packham4bf81db2018-12-03 14:26:49 +1300547 *freq = MV_DDR_FREQ_400;
Chris Packham1a07d212018-05-10 13:28:29 +1200548 break;
549 case 0x1e:
Chris Packham4bf81db2018-12-03 14:26:49 +1300550 *freq = MV_DDR_FREQ_360;
Chris Packham1a07d212018-05-10 13:28:29 +1200551 break;
552 default:
553 *freq = 0;
554 return MV_NOT_SUPPORTED;
555 }
556 }
557
558 return MV_OK;
559}
560
561static int ddr3_tip_a38x_get_device_info(u8 dev_num, struct ddr3_device_info *info_ptr)
562{
563#if defined(CONFIG_ARMADA_39X)
564 info_ptr->device_id = 0x6900;
565#else
566 info_ptr->device_id = 0x6800;
567#endif
568 info_ptr->ck_delay = ck_delay;
569
570 return MV_OK;
571}
572
573/* check indirect access to phy register file completed */
574static int is_prfa_done(void)
575{
576 u32 reg_val;
577 u32 iter = 0;
578
579 do {
580 if (iter++ > MAX_POLLING_ITERATIONS) {
581 printf("error: %s: polling timeout\n", __func__);
582 return MV_FAIL;
583 }
584 dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
585 reg_val >>= PRFA_REQ_OFFS;
586 reg_val &= PRFA_REQ_MASK;
587 } while (reg_val == PRFA_REQ_ENA); /* request pending */
588
589 return MV_OK;
590}
591
592/* write to phy register thru indirect access */
593static int prfa_write(enum hws_access_type phy_access, u32 phy,
594 enum hws_ddr_phy phy_type, u32 addr,
595 u32 data, enum hws_operation op_type)
596{
597 u32 reg_val = ((data & PRFA_DATA_MASK) << PRFA_DATA_OFFS) |
598 ((addr & PRFA_REG_NUM_MASK) << PRFA_REG_NUM_OFFS) |
599 ((phy & PRFA_PUP_NUM_MASK) << PRFA_PUP_NUM_OFFS) |
600 ((phy_type & PRFA_PUP_CTRL_DATA_MASK) << PRFA_PUP_CTRL_DATA_OFFS) |
601 ((phy_access & PRFA_PUP_BCAST_WR_ENA_MASK) << PRFA_PUP_BCAST_WR_ENA_OFFS) |
602 (((addr >> 6) & PRFA_REG_NUM_HI_MASK) << PRFA_REG_NUM_HI_OFFS) |
603 ((op_type & PRFA_TYPE_MASK) << PRFA_TYPE_OFFS);
604 dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
605 reg_val |= (PRFA_REQ_ENA << PRFA_REQ_OFFS);
606 dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
607
608 /* polling for prfa request completion */
609 if (is_prfa_done() != MV_OK)
610 return MV_FAIL;
611
612 return MV_OK;
613}
614
615/* read from phy register thru indirect access */
616static int prfa_read(enum hws_access_type phy_access, u32 phy,
617 enum hws_ddr_phy phy_type, u32 addr, u32 *data)
618{
619 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
620 u32 max_phy = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
621 u32 i, reg_val;
622
623 if (phy_access == ACCESS_TYPE_MULTICAST) {
624 for (i = 0; i < max_phy; i++) {
625 VALIDATE_BUS_ACTIVE(tm->bus_act_mask, i);
626 if (prfa_write(ACCESS_TYPE_UNICAST, i, phy_type, addr, 0, OPERATION_READ) != MV_OK)
627 return MV_FAIL;
628 dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
629 data[i] = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
630 }
631 } else {
632 if (prfa_write(phy_access, phy, phy_type, addr, 0, OPERATION_READ) != MV_OK)
633 return MV_FAIL;
634 dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
635 *data = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
636 }
637
638 return MV_OK;
639}
640
641static int mv_ddr_sw_db_init(u32 dev_num, u32 board_id)
642{
643 struct hws_tip_config_func_db config_func;
644
645 /* new read leveling version */
646 config_func.mv_ddr_dunit_read = dunit_read;
647 config_func.mv_ddr_dunit_write = dunit_write;
648 config_func.tip_dunit_mux_select_func =
649 ddr3_tip_a38x_select_ddr_controller;
650 config_func.tip_get_freq_config_info_func =
651 ddr3_tip_a38x_get_freq_config;
652 config_func.tip_set_freq_divider_func = ddr3_tip_a38x_set_divider;
653 config_func.tip_get_device_info_func = ddr3_tip_a38x_get_device_info;
654 config_func.tip_get_temperature = ddr3_ctrl_get_junc_temp;
655 config_func.tip_get_clock_ratio = ddr3_tip_clock_mode;
656 config_func.tip_external_read = ddr3_tip_ext_read;
657 config_func.tip_external_write = ddr3_tip_ext_write;
658 config_func.mv_ddr_phy_read = prfa_read;
659 config_func.mv_ddr_phy_write = prfa_write;
660
661 ddr3_tip_init_config_func(dev_num, &config_func);
662
663 ddr3_tip_register_dq_table(dev_num, dq_bit_map_2_phy_pin);
664
665 /* set device attributes*/
666 ddr3_tip_dev_attr_init(dev_num);
667 ddr3_tip_dev_attr_set(dev_num, MV_ATTR_TIP_REV, MV_TIP_REV_4);
668 ddr3_tip_dev_attr_set(dev_num, MV_ATTR_PHY_EDGE, MV_DDR_PHY_EDGE_POSITIVE);
669 ddr3_tip_dev_attr_set(dev_num, MV_ATTR_OCTET_PER_INTERFACE, DDR_INTERFACE_OCTETS_NUM);
670#ifdef CONFIG_ARMADA_39X
671 ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 1);
672#else
673 ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 0);
674#endif
675
676 ca_delay = 0;
677 delay_enable = 1;
678 dfs_low_freq = DFS_LOW_FREQ_VALUE;
679 calibration_update_control = 1;
680
Chris Packham1a07d212018-05-10 13:28:29 +1200681 ddr3_tip_a38x_get_medium_freq(dev_num, &medium_freq);
682
683 return MV_OK;
684}
685
686static int mv_ddr_training_mask_set(void)
687{
688 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
Chris Packham4bf81db2018-12-03 14:26:49 +1300689 enum mv_ddr_freq ddr_freq = tm->interface_params[0].memory_freq;
Chris Packham1a07d212018-05-10 13:28:29 +1200690
691 mask_tune_func = (SET_LOW_FREQ_MASK_BIT |
692 LOAD_PATTERN_MASK_BIT |
693 SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT |
694 WRITE_LEVELING_SUPP_MASK_BIT |
695 READ_LEVELING_MASK_BIT |
696 PBS_RX_MASK_BIT |
697 PBS_TX_MASK_BIT |
698 SET_TARGET_FREQ_MASK_BIT |
699 WRITE_LEVELING_TF_MASK_BIT |
700 WRITE_LEVELING_SUPP_TF_MASK_BIT |
701 READ_LEVELING_TF_MASK_BIT |
702 CENTRALIZATION_RX_MASK_BIT |
703 CENTRALIZATION_TX_MASK_BIT);
704 rl_mid_freq_wa = 1;
705
Chris Packham4bf81db2018-12-03 14:26:49 +1300706 if ((ddr_freq == MV_DDR_FREQ_333) || (ddr_freq == MV_DDR_FREQ_400)) {
Chris Packham1a07d212018-05-10 13:28:29 +1200707 mask_tune_func = (WRITE_LEVELING_MASK_BIT |
708 LOAD_PATTERN_2_MASK_BIT |
709 WRITE_LEVELING_SUPP_MASK_BIT |
710 READ_LEVELING_MASK_BIT |
711 PBS_RX_MASK_BIT |
712 PBS_TX_MASK_BIT |
713 CENTRALIZATION_RX_MASK_BIT |
714 CENTRALIZATION_TX_MASK_BIT);
715 rl_mid_freq_wa = 0; /* WA not needed if 333/400 is TF */
716 }
717
718 /* Supplementary not supported for ECC modes */
Chris Packham4bf81db2018-12-03 14:26:49 +1300719 if (mv_ddr_is_ecc_ena()) {
Chris Packham1a07d212018-05-10 13:28:29 +1200720 mask_tune_func &= ~WRITE_LEVELING_SUPP_TF_MASK_BIT;
721 mask_tune_func &= ~WRITE_LEVELING_SUPP_MASK_BIT;
722 mask_tune_func &= ~PBS_TX_MASK_BIT;
723 mask_tune_func &= ~PBS_RX_MASK_BIT;
724 }
725
726 return MV_OK;
727}
728
729/* function: mv_ddr_set_calib_controller
730 * this function sets the controller which will control
731 * the calibration cycle in the end of the training.
732 * 1 - internal controller
733 * 2 - external controller
734 */
735void mv_ddr_set_calib_controller(void)
736{
737 calibration_update_control = CAL_UPDATE_CTRL_INT;
738}
739
740static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
Chris Packham4bf81db2018-12-03 14:26:49 +1300741 enum mv_ddr_freq frequency)
Chris Packham1a07d212018-05-10 13:28:29 +1200742{
743 u32 divider = 0;
744 u32 sar_val, ref_clk_satr;
745 u32 async_val;
Chris Packham4bf81db2018-12-03 14:26:49 +1300746 u32 freq = mv_ddr_freq_get(frequency);
Chris Packham1a07d212018-05-10 13:28:29 +1200747
748 if (if_id != 0) {
749 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
750 ("A38x does not support interface 0x%x\n",
751 if_id));
752 return MV_BAD_PARAM;
753 }
754
755 /* get VCO freq index */
756 sar_val = (reg_read(REG_DEVICE_SAR1_ADDR) >>
757 RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
758 RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
759
760 ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
761 if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
762 DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ)
Chris Packham4bf81db2018-12-03 14:26:49 +1300763 divider = a38x_vco_freq_per_sar_ref_clk_25_mhz[sar_val] / freq;
Chris Packham1a07d212018-05-10 13:28:29 +1200764 else
Chris Packham4bf81db2018-12-03 14:26:49 +1300765 divider = a38x_vco_freq_per_sar_ref_clk_40_mhz[sar_val] / freq;
Chris Packham1a07d212018-05-10 13:28:29 +1200766
Chris Packham4bf81db2018-12-03 14:26:49 +1300767 if ((async_mode_at_tf == 1) && (freq > 400)) {
Chris Packham1a07d212018-05-10 13:28:29 +1200768 /* Set async mode */
769 dunit_write(0x20220, 0x1000, 0x1000);
770 dunit_write(0xe42f4, 0x200, 0x200);
771
772 /* Wait for async mode setup */
773 mdelay(5);
774
775 /* Set KNL values */
776 switch (frequency) {
Chris Packham4bf81db2018-12-03 14:26:49 +1300777 case MV_DDR_FREQ_467:
Chris Packham1a07d212018-05-10 13:28:29 +1200778 async_val = 0x806f012;
779 break;
Chris Packham4bf81db2018-12-03 14:26:49 +1300780 case MV_DDR_FREQ_533:
Chris Packham1a07d212018-05-10 13:28:29 +1200781 async_val = 0x807f012;
782 break;
Chris Packham4bf81db2018-12-03 14:26:49 +1300783 case MV_DDR_FREQ_600:
Chris Packham1a07d212018-05-10 13:28:29 +1200784 async_val = 0x805f00a;
785 break;
Chris Packham4bf81db2018-12-03 14:26:49 +1300786 case MV_DDR_FREQ_667:
Chris Packham1a07d212018-05-10 13:28:29 +1200787 async_val = 0x809f012;
788 break;
Chris Packham4bf81db2018-12-03 14:26:49 +1300789 case MV_DDR_FREQ_800:
Chris Packham1a07d212018-05-10 13:28:29 +1200790 async_val = 0x807f00a;
791 break;
Chris Packham4bf81db2018-12-03 14:26:49 +1300792 case MV_DDR_FREQ_850:
Chris Packham1a07d212018-05-10 13:28:29 +1200793 async_val = 0x80cb012;
794 break;
Chris Packham4bf81db2018-12-03 14:26:49 +1300795 case MV_DDR_FREQ_900:
Chris Packham1a07d212018-05-10 13:28:29 +1200796 async_val = 0x80d7012;
797 break;
Chris Packham4bf81db2018-12-03 14:26:49 +1300798 case MV_DDR_FREQ_933:
Chris Packham1a07d212018-05-10 13:28:29 +1200799 async_val = 0x80df012;
800 break;
Chris Packham4bf81db2018-12-03 14:26:49 +1300801 case MV_DDR_FREQ_1000:
Chris Packham1a07d212018-05-10 13:28:29 +1200802 async_val = 0x80ef012;
803 break;
Chris Packham4bf81db2018-12-03 14:26:49 +1300804 case MV_DDR_FREQ_1066:
Chris Packham1a07d212018-05-10 13:28:29 +1200805 async_val = 0x80ff012;
806 break;
807 default:
Chris Packham4bf81db2018-12-03 14:26:49 +1300808 /* set MV_DDR_FREQ_667 as default */
Chris Packham1a07d212018-05-10 13:28:29 +1200809 async_val = 0x809f012;
810 }
811 dunit_write(0xe42f0, 0xffffffff, async_val);
812 } else {
813 /* Set sync mode */
814 dunit_write(0x20220, 0x1000, 0x0);
815 dunit_write(0xe42f4, 0x200, 0x0);
816
817 /* cpupll_clkdiv_reset_mask */
818 dunit_write(0xe4264, 0xff, 0x1f);
819
820 /* cpupll_clkdiv_reload_smooth */
821 dunit_write(0xe4260, (0xff << 8), (0x2 << 8));
822
823 /* cpupll_clkdiv_relax_en */
824 dunit_write(0xe4260, (0xff << 24), (0x2 << 24));
825
826 /* write the divider */
827 dunit_write(0xe4268, (0x3f << 8), (divider << 8));
828
829 /* set cpupll_clkdiv_reload_ratio */
830 dunit_write(0xe4264, (1 << 8), (1 << 8));
831
832 /* undet cpupll_clkdiv_reload_ratio */
833 dunit_write(0xe4264, (1 << 8), 0x0);
834
835 /* clear cpupll_clkdiv_reload_force */
836 dunit_write(0xe4260, (0xff << 8), 0x0);
837
838 /* clear cpupll_clkdiv_relax_en */
839 dunit_write(0xe4260, (0xff << 24), 0x0);
840
841 /* clear cpupll_clkdiv_reset_mask */
842 dunit_write(0xe4264, 0xff, 0x0);
843 }
844
845 /* Dunit training clock + 1:1/2:1 mode */
846 dunit_write(0x18488, (1 << 16), ((ddr3_tip_clock_mode(frequency) & 0x1) << 16));
847 dunit_write(0x1524, (1 << 15), ((ddr3_tip_clock_mode(frequency) - 1) << 15));
848
849 return MV_OK;
850}
851
852/*
853 * external read from memory
854 */
855int ddr3_tip_ext_read(u32 dev_num, u32 if_id, u32 reg_addr,
856 u32 num_of_bursts, u32 *data)
857{
858 u32 burst_num;
859
860 for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
861 data[burst_num] = readl(reg_addr + 4 * burst_num);
862
863 return MV_OK;
864}
865
866/*
867 * external write to memory
868 */
869int ddr3_tip_ext_write(u32 dev_num, u32 if_id, u32 reg_addr,
870 u32 num_of_bursts, u32 *data) {
871 u32 burst_num;
872
873 for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
874 writel(data[burst_num], reg_addr + 4 * burst_num);
875
876 return MV_OK;
877}
878
879int mv_ddr_early_init(void)
880{
881 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
882
883 /* FIXME: change this configuration per ddr type
884 * configure a380 and a390 to work with receiver odt timing
885 * the odt_config is defined:
886 * '1' in ddr4
887 * '0' in ddr3
888 * here the parameter is run over in ddr4 and ddr3 to '1' (in ddr4 the default is '1')
889 * to configure the odt to work with timing restrictions
890 */
891
892 mv_ddr_sw_db_init(0, 0);
893
Chris Packham4bf81db2018-12-03 14:26:49 +1300894 if (tm->interface_params[0].memory_freq != MV_DDR_FREQ_SAR)
Chris Packham1a07d212018-05-10 13:28:29 +1200895 async_mode_at_tf = 1;
896
897 return MV_OK;
898}
899
900int mv_ddr_early_init2(void)
901{
902 mv_ddr_training_mask_set();
903
904 return MV_OK;
905}
906
907int mv_ddr_pre_training_fixup(void)
908{
909 return 0;
910}
911
912int mv_ddr_post_training_fixup(void)
913{
914 return 0;
915}
916
917int ddr3_post_run_alg(void)
918{
919 return MV_OK;
920}
921
922int ddr3_silicon_post_init(void)
923{
924 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
925
926 /* Set half bus width */
927 if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask)) {
928 CHECK_STATUS(ddr3_tip_if_write
929 (0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
930 SDRAM_CFG_REG, 0x0, 0x8000));
931 }
932
933 return MV_OK;
934}
935
936u32 mv_ddr_init_freq_get(void)
937{
Chris Packham4bf81db2018-12-03 14:26:49 +1300938 enum mv_ddr_freq freq;
Chris Packham1a07d212018-05-10 13:28:29 +1200939
940 mv_ddr_sar_freq_get(0, &freq);
941
942 return freq;
943}
944
945static u32 ddr3_get_bus_width(void)
946{
947 u32 bus_width;
948
949 bus_width = (reg_read(SDRAM_CFG_REG) & 0x8000) >>
950 BUS_IN_USE_OFFS;
951
952 return (bus_width == 0) ? 16 : 32;
953}
954
955static u32 ddr3_get_device_width(u32 cs)
956{
957 u32 device_width;
958
959 device_width = (reg_read(SDRAM_ADDR_CTRL_REG) &
960 (CS_STRUCT_MASK << CS_STRUCT_OFFS(cs))) >>
961 CS_STRUCT_OFFS(cs);
962
963 return (device_width == 0) ? 8 : 16;
964}
965
966static u32 ddr3_get_device_size(u32 cs)
967{
968 u32 device_size_low, device_size_high, device_size;
969 u32 data, cs_low_offset, cs_high_offset;
970
971 cs_low_offset = CS_SIZE_OFFS(cs);
972 cs_high_offset = CS_SIZE_HIGH_OFFS(cs);
973
974 data = reg_read(SDRAM_ADDR_CTRL_REG);
975 device_size_low = (data >> cs_low_offset) & 0x3;
976 device_size_high = (data >> cs_high_offset) & 0x1;
977
978 device_size = device_size_low | (device_size_high << 2);
979
980 switch (device_size) {
981 case 0:
982 return 2048;
983 case 2:
984 return 512;
985 case 3:
986 return 1024;
987 case 4:
988 return 4096;
989 case 5:
990 return 8192;
991 case 1:
992 default:
993 DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1);
994 /* zeroes mem size in ddr3_calc_mem_cs_size */
995 return 0;
996 }
997}
998
Chris Packham915f8ee2018-05-10 13:28:31 +1200999int ddr3_calc_mem_cs_size(u32 cs, uint64_t *cs_size)
Chris Packham1a07d212018-05-10 13:28:29 +12001000{
1001 u32 cs_mem_size;
1002
1003 /* Calculate in MiB */
1004 cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) *
1005 ddr3_get_device_size(cs)) / 8;
1006
1007 /*
1008 * Multiple controller bus width, 2x for 64 bit
1009 * (SoC controller may be 32 or 64 bit,
1010 * so bit 15 in 0x1400, that means if whole bus used or only half,
1011 * have a differnt meaning
1012 */
1013 cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER;
1014
1015 if ((cs_mem_size < 128) || (cs_mem_size > 4096)) {
1016 DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1);
1017 return MV_BAD_VALUE;
1018 }
1019
Moti Buskila2b368e12021-02-19 17:11:22 +01001020 *cs_size = cs_mem_size;
Chris Packham1a07d212018-05-10 13:28:29 +12001021
1022 return MV_OK;
1023}
1024
1025static int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena)
1026{
1027 u32 reg, cs;
1028 uint64_t mem_total_size = 0;
Moti Buskila2b368e12021-02-19 17:11:22 +01001029 uint64_t cs_mem_size_mb = 0;
Chris Packham1a07d212018-05-10 13:28:29 +12001030 uint64_t cs_mem_size = 0;
1031 uint64_t mem_total_size_c, cs_mem_size_c;
1032
Moti Buskila2b368e12021-02-19 17:11:22 +01001033
Chris Packham1a07d212018-05-10 13:28:29 +12001034#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
1035 u32 physical_mem_size;
1036 u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
1037 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1038#endif
1039
1040 /* Open fast path windows */
1041 for (cs = 0; cs < MAX_CS_NUM; cs++) {
1042 if (cs_ena & (1 << cs)) {
1043 /* get CS size */
Moti Buskila2b368e12021-02-19 17:11:22 +01001044 if (ddr3_calc_mem_cs_size(cs, &cs_mem_size_mb) != MV_OK)
Chris Packham1a07d212018-05-10 13:28:29 +12001045 return MV_FAIL;
Moti Buskila2b368e12021-02-19 17:11:22 +01001046 cs_mem_size = cs_mem_size_mb * _1M;
Chris Packham1a07d212018-05-10 13:28:29 +12001047
1048#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
1049 /*
1050 * if number of address pins doesn't allow to use max
1051 * mem size that is defined in topology
1052 * mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE
1053 */
1054 physical_mem_size = mem_size
1055 [tm->interface_params[0].memory_size];
1056
1057 if (ddr3_get_device_width(cs) == 16) {
1058 /*
1059 * 16bit mem device can be twice more - no need
1060 * in less significant pin
1061 */
1062 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
1063 }
1064
1065 if (physical_mem_size > max_mem_size) {
1066 cs_mem_size = max_mem_size *
1067 (ddr3_get_bus_width() /
1068 ddr3_get_device_width(cs));
1069 printf("Updated Physical Mem size is from 0x%x to %x\n",
1070 physical_mem_size,
1071 DEVICE_MAX_DRAM_ADDRESS_SIZE);
1072 }
1073#endif
1074
1075 /* set fast path window control for the cs */
1076 reg = 0xffffe1;
1077 reg |= (cs << 2);
1078 reg |= (cs_mem_size - 1) & 0xffff0000;
1079 /*Open fast path Window */
1080 reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg);
1081
1082 /* Set fast path window base address for the cs */
1083 reg = ((cs_mem_size) * cs) & 0xffff0000;
1084 /* Set base address */
1085 reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg);
1086
1087 /*
1088 * Since memory size may be bigger than 4G the summ may
1089 * be more than 32 bit word,
1090 * so to estimate the result divide mem_total_size and
1091 * cs_mem_size by 0x10000 (it is equal to >> 16)
1092 */
1093 mem_total_size_c = (mem_total_size >> 16) & 0xffffffffffff;
1094 cs_mem_size_c = (cs_mem_size >> 16) & 0xffffffffffff;
Moti Buskila2b368e12021-02-19 17:11:22 +01001095
Chris Packham1a07d212018-05-10 13:28:29 +12001096 /* if the sum less than 2 G - calculate the value */
1097 if (mem_total_size_c + cs_mem_size_c < 0x10000)
1098 mem_total_size += cs_mem_size;
1099 else /* put max possible size */
1100 mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE;
1101 }
1102 }
1103
1104 /* Set L2 filtering to Max Memory size */
1105 reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size);
1106
1107 return MV_OK;
1108}
1109
1110static int ddr3_restore_and_set_final_windows(u32 *win, const char *ddr_type)
1111{
1112 u32 win_ctrl_reg, num_of_win_regs;
1113 u32 cs_ena = mv_ddr_sys_env_get_cs_ena_from_reg();
1114 u32 ui;
1115
1116 win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
1117 num_of_win_regs = 16;
1118
1119 /* Return XBAR windows 4-7 or 16-19 init configuration */
1120 for (ui = 0; ui < num_of_win_regs; ui++)
1121 reg_write((win_ctrl_reg + 0x4 * ui), win[ui]);
1122
1123 printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n",
1124 ddr_type);
1125
1126#if defined DYNAMIC_CS_SIZE_CONFIG
1127 if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK)
1128 printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n");
1129#else
1130 u32 reg, cs;
1131 reg = 0x1fffffe1;
1132 for (cs = 0; cs < MAX_CS_NUM; cs++) {
1133 if (cs_ena & (1 << cs)) {
1134 reg |= (cs << 2);
1135 break;
1136 }
1137 }
1138 /* Open fast path Window to - 0.5G */
1139 reg_write(REG_FASTPATH_WIN_CTRL_ADDR(0), reg);
1140#endif
1141
1142 return MV_OK;
1143}
1144
1145static int ddr3_save_and_set_training_windows(u32 *win)
1146{
1147 u32 cs_ena;
1148 u32 reg, tmp_count, cs, ui;
1149 u32 win_ctrl_reg, win_base_reg, win_remap_reg;
1150 u32 num_of_win_regs, win_jump_index;
1151 win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
1152 win_base_reg = REG_XBAR_WIN_4_BASE_ADDR;
1153 win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR;
1154 win_jump_index = 0x10;
1155 num_of_win_regs = 16;
1156 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1157
1158#ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING
1159 /*
1160 * Disable L2 filtering during DDR training
1161 * (when Cross Bar window is open)
1162 */
1163 reg_write(ADDRESS_FILTERING_END_REGISTER, 0);
1164#endif
1165
1166 cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask;
1167
1168 /* Close XBAR Window 19 - Not needed */
1169 /* {0x000200e8} - Open Mbus Window - 2G */
1170 reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0);
1171
1172 /* Save XBAR Windows 4-19 init configurations */
1173 for (ui = 0; ui < num_of_win_regs; ui++)
1174 win[ui] = reg_read(win_ctrl_reg + 0x4 * ui);
1175
1176 /* Open XBAR Windows 4-7 or 16-19 for other CS */
1177 reg = 0;
1178 tmp_count = 0;
1179 for (cs = 0; cs < MAX_CS_NUM; cs++) {
1180 if (cs_ena & (1 << cs)) {
1181 switch (cs) {
1182 case 0:
1183 reg = 0x0e00;
1184 break;
1185 case 1:
1186 reg = 0x0d00;
1187 break;
1188 case 2:
1189 reg = 0x0b00;
1190 break;
1191 case 3:
1192 reg = 0x0700;
1193 break;
1194 }
1195 reg |= (1 << 0);
1196 reg |= (SDRAM_CS_SIZE & 0xffff0000);
1197
1198 reg_write(win_ctrl_reg + win_jump_index * tmp_count,
1199 reg);
1200 reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) &
1201 0xffff0000);
1202 reg_write(win_base_reg + win_jump_index * tmp_count,
1203 reg);
1204
1205 if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR)
1206 reg_write(win_remap_reg +
1207 win_jump_index * tmp_count, 0);
1208
1209 tmp_count++;
1210 }
1211 }
1212
1213 return MV_OK;
1214}
1215
1216static u32 win[16];
1217
1218int mv_ddr_pre_training_soc_config(const char *ddr_type)
1219{
1220 u32 soc_num;
1221 u32 reg_val;
1222
1223 /* Switching CPU to MRVL ID */
1224 soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >>
1225 SAR1_CPU_CORE_OFFSET;
1226 switch (soc_num) {
1227 case 0x3:
1228 reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET);
1229 reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET);
1230 /* fallthrough */
1231 case 0x1:
1232 reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET);
1233 /* fallthrough */
1234 case 0x0:
1235 reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET);
1236 /* fallthrough */
1237 default:
1238 break;
1239 }
1240
1241 /*
1242 * Set DRAM Reset Mask in case detected GPIO indication of wakeup from
1243 * suspend i.e the DRAM values will not be overwritten / reset when
1244 * waking from suspend
1245 */
1246 if (mv_ddr_sys_env_suspend_wakeup_check() ==
1247 SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) {
1248 reg_bit_set(SDRAM_INIT_CTRL_REG,
1249 DRAM_RESET_MASK_MASKED << DRAM_RESET_MASK_OFFS);
1250 }
1251
1252 /* Check if DRAM is already initialized */
1253 if (reg_read(REG_BOOTROM_ROUTINE_ADDR) &
1254 (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) {
1255 printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type);
1256 return MV_OK;
1257 }
1258
1259 /* Fix read ready phases for all SOC in reg 0x15c8 */
1260 reg_val = reg_read(TRAINING_DBG_3_REG);
1261
1262 reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));
1263 reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0)); /* phase 0 */
1264
1265 reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));
1266 reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1)); /* phase 1 */
1267
1268 reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));
1269 reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3)); /* phase 3 */
1270
1271 reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));
1272 reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4)); /* phase 4 */
1273
1274 reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));
1275 reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5)); /* phase 5 */
1276
1277 reg_write(TRAINING_DBG_3_REG, reg_val);
1278
1279 /*
1280 * Axi_bresp_mode[8] = Compliant,
1281 * Axi_addr_decode_cntrl[11] = Internal,
1282 * Axi_data_bus_width[0] = 128bit
1283 * */
1284 /* 0x14a8 - AXI Control Register */
1285 reg_write(AXI_CTRL_REG, 0);
1286
1287 /*
1288 * Stage 2 - Training Values Setup
1289 */
1290 /* Set X-BAR windows for the training sequence */
1291 ddr3_save_and_set_training_windows(win);
1292
1293 return MV_OK;
1294}
1295
1296static int ddr3_new_tip_dlb_config(void)
1297{
1298 u32 reg, i = 0;
1299 struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get();
1300
1301 /* Write the configuration */
1302 while (config_table_ptr[i].reg_addr != 0) {
1303 reg_write(config_table_ptr[i].reg_addr,
1304 config_table_ptr[i].reg_data);
1305 i++;
1306 }
1307
1308
1309 /* Enable DLB */
1310 reg = reg_read(DLB_CTRL_REG);
1311 reg &= ~(DLB_EN_MASK << DLB_EN_OFFS) &
1312 ~(WR_COALESCE_EN_MASK << WR_COALESCE_EN_OFFS) &
1313 ~(AXI_PREFETCH_EN_MASK << AXI_PREFETCH_EN_OFFS) &
1314 ~(MBUS_PREFETCH_EN_MASK << MBUS_PREFETCH_EN_OFFS) &
1315 ~(PREFETCH_NXT_LN_SZ_TRIG_MASK << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
1316
1317 reg |= (DLB_EN_ENA << DLB_EN_OFFS) |
1318 (WR_COALESCE_EN_ENA << WR_COALESCE_EN_OFFS) |
1319 (AXI_PREFETCH_EN_ENA << AXI_PREFETCH_EN_OFFS) |
1320 (MBUS_PREFETCH_EN_ENA << MBUS_PREFETCH_EN_OFFS) |
1321 (PREFETCH_NXT_LN_SZ_TRIG_ENA << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
1322
1323 reg_write(DLB_CTRL_REG, reg);
1324
1325 return MV_OK;
1326}
1327
1328int mv_ddr_post_training_soc_config(const char *ddr_type)
1329{
1330 u32 reg_val;
1331
1332 /* Restore and set windows */
1333 ddr3_restore_and_set_final_windows(win, ddr_type);
1334
1335 /* Update DRAM init indication in bootROM register */
1336 reg_val = reg_read(REG_BOOTROM_ROUTINE_ADDR);
1337 reg_write(REG_BOOTROM_ROUTINE_ADDR,
1338 reg_val | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS));
1339
1340 /* DLB config */
1341 ddr3_new_tip_dlb_config();
1342
1343 return MV_OK;
1344}
1345
1346void mv_ddr_mc_config(void)
1347{
1348 /* Memory controller initializations */
1349 struct init_cntr_param init_param;
1350 int status;
1351
1352 init_param.do_mrs_phy = 1;
1353 init_param.is_ctrl64_bit = 0;
1354 init_param.init_phy = 1;
1355 init_param.msys_init = 1;
1356 status = hws_ddr3_tip_init_controller(0, &init_param);
1357 if (status != MV_OK)
1358 printf("DDR3 init controller - FAILED 0x%x\n", status);
1359
1360 status = mv_ddr_mc_init();
1361 if (status != MV_OK)
1362 printf("DDR3 init_sequence - FAILED 0x%x\n", status);
1363}
1364/* function: mv_ddr_mc_init
1365 * this function enables the dunit after init controller configuration
1366 */
1367int mv_ddr_mc_init(void)
1368{
1369 CHECK_STATUS(ddr3_tip_enable_init_sequence(0));
1370
1371 return MV_OK;
1372}
1373
1374/* function: ddr3_tip_configure_phy
1375 * configures phy and electrical parameters
1376 */
1377int ddr3_tip_configure_phy(u32 dev_num)
1378{
1379 u32 if_id, phy_id;
1380 u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
1381 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1382
1383 CHECK_STATUS(ddr3_tip_bus_write
1384 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1385 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1386 PAD_ZRI_CAL_PHY_REG,
1387 ((0x7f & g_zpri_data) << 7 | (0x7f & g_znri_data))));
1388 CHECK_STATUS(ddr3_tip_bus_write
1389 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1390 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1391 PAD_ZRI_CAL_PHY_REG,
1392 ((0x7f & g_zpri_ctrl) << 7 | (0x7f & g_znri_ctrl))));
1393 CHECK_STATUS(ddr3_tip_bus_write
1394 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1395 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1396 PAD_ODT_CAL_PHY_REG,
1397 ((0x3f & g_zpodt_data) << 6 | (0x3f & g_znodt_data))));
1398 CHECK_STATUS(ddr3_tip_bus_write
1399 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1400 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1401 PAD_ODT_CAL_PHY_REG,
1402 ((0x3f & g_zpodt_ctrl) << 6 | (0x3f & g_znodt_ctrl))));
1403
1404 CHECK_STATUS(ddr3_tip_bus_write
1405 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1406 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1407 PAD_PRE_DISABLE_PHY_REG, 0));
1408 CHECK_STATUS(ddr3_tip_bus_write
1409 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1410 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1411 CMOS_CONFIG_PHY_REG, 0));
1412 CHECK_STATUS(ddr3_tip_bus_write
1413 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1414 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1415 CMOS_CONFIG_PHY_REG, 0));
1416
1417 for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
1418 /* check if the interface is enabled */
1419 VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
1420
1421 for (phy_id = 0;
1422 phy_id < octets_per_if_num;
1423 phy_id++) {
1424 VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
1425 /* Vref & clamp */
1426 CHECK_STATUS(ddr3_tip_bus_read_modify_write
1427 (dev_num, ACCESS_TYPE_UNICAST,
1428 if_id, phy_id, DDR_PHY_DATA,
1429 PAD_CFG_PHY_REG,
1430 ((clamp_tbl[if_id] << 4) | vref_init_val),
1431 ((0x7 << 4) | 0x7)));
1432 /* clamp not relevant for control */
1433 CHECK_STATUS(ddr3_tip_bus_read_modify_write
1434 (dev_num, ACCESS_TYPE_UNICAST,
1435 if_id, phy_id, DDR_PHY_CONTROL,
1436 PAD_CFG_PHY_REG, 0x4, 0x7));
1437 }
1438 }
1439
1440 if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_PHY_EDGE) ==
1441 MV_DDR_PHY_EDGE_POSITIVE)
1442 CHECK_STATUS(ddr3_tip_bus_write
1443 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1444 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1445 DDR_PHY_DATA, 0x90, 0x6002));
1446
1447
1448 return MV_OK;
1449}
1450
1451
1452int mv_ddr_manual_cal_do(void)
1453{
1454 return 0;
1455}