blob: ce672e9dd4facb008bc3a8b527132a280fbb0cfb [file] [log] [blame]
Chris Packham1a07d212018-05-10 13:28:29 +12001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) Marvell International Ltd. and its affiliates
4 */
5
6#include "ddr3_init.h"
7
8#include "mv_ddr_sys_env_lib.h"
9
10#define DDR_INTERFACES_NUM 1
11#define DDR_INTERFACE_OCTETS_NUM 5
12
13/*
14 * 1. L2 filter should be set at binary header to 0xD000000,
15 * to avoid conflict with internal register IO.
16 * 2. U-Boot modifies internal registers base to 0xf100000,
17 * and than should update L2 filter accordingly to 0xf000000 (3.75 GB)
18 */
19#define L2_FILTER_FOR_MAX_MEMORY_SIZE 0xC0000000 /* temporary limit l2 filter to 3gb (LSP issue) */
20#define ADDRESS_FILTERING_END_REGISTER 0x8c04
21
22#define DYNAMIC_CS_SIZE_CONFIG
23#define DISABLE_L2_FILTERING_DURING_DDR_TRAINING
24
25/* Termal Sensor Registers */
26#define TSEN_CONTROL_LSB_REG 0xE4070
27#define TSEN_CONTROL_LSB_TC_TRIM_OFFSET 0
28#define TSEN_CONTROL_LSB_TC_TRIM_MASK (0x7 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET)
29#define TSEN_CONTROL_MSB_REG 0xE4074
30#define TSEN_CONTROL_MSB_RST_OFFSET 8
31#define TSEN_CONTROL_MSB_RST_MASK (0x1 << TSEN_CONTROL_MSB_RST_OFFSET)
32#define TSEN_STATUS_REG 0xe4078
33#define TSEN_STATUS_READOUT_VALID_OFFSET 10
34#define TSEN_STATUS_READOUT_VALID_MASK (0x1 << \
35 TSEN_STATUS_READOUT_VALID_OFFSET)
36#define TSEN_STATUS_TEMP_OUT_OFFSET 0
37#define TSEN_STATUS_TEMP_OUT_MASK (0x3ff << TSEN_STATUS_TEMP_OUT_OFFSET)
38
39static struct dlb_config ddr3_dlb_config_table[] = {
40 {DLB_CTRL_REG, 0x2000005c},
41 {DLB_BUS_OPT_WT_REG, 0x00880000},
42 {DLB_AGING_REG, 0x0f7f007f},
43 {DLB_EVICTION_CTRL_REG, 0x0000129f},
44 {DLB_EVICTION_TIMERS_REG, 0x00ff0000},
45 {DLB_WTS_DIFF_CS_REG, 0x04030802},
46 {DLB_WTS_DIFF_BG_REG, 0x00000a02},
47 {DLB_WTS_SAME_BG_REG, 0x09000a01},
48 {DLB_WTS_CMDS_REG, 0x00020005},
49 {DLB_WTS_ATTR_PRIO_REG, 0x00060f10},
50 {DLB_QUEUE_MAP_REG, 0x00000543},
51 {DLB_SPLIT_REG, 0x00000000},
52 {DLB_USER_CMD_REG, 0x00000000},
53 {0x0, 0x0}
54};
55
56static struct dlb_config *sys_env_dlb_config_ptr_get(void)
57{
58 return &ddr3_dlb_config_table[0];
59}
60
61static u8 a38x_bw_per_freq[DDR_FREQ_LAST] = {
62 0x3, /* DDR_FREQ_100 */
63 0x4, /* DDR_FREQ_400 */
64 0x4, /* DDR_FREQ_533 */
65 0x5, /* DDR_FREQ_667 */
66 0x5, /* DDR_FREQ_800 */
67 0x5, /* DDR_FREQ_933 */
68 0x5, /* DDR_FREQ_1066 */
69 0x3, /* DDR_FREQ_311 */
70 0x3, /* DDR_FREQ_333 */
71 0x4, /* DDR_FREQ_467 */
72 0x5, /* DDR_FREQ_850 */
73 0x5, /* DDR_FREQ_600 */
74 0x3, /* DDR_FREQ_300 */
75 0x5, /* DDR_FREQ_900 */
76 0x3, /* DDR_FREQ_360 */
77 0x5 /* DDR_FREQ_1000 */
78};
79
80static u8 a38x_rate_per_freq[DDR_FREQ_LAST] = {
81 0x1, /* DDR_FREQ_100 */
82 0x2, /* DDR_FREQ_400 */
83 0x2, /* DDR_FREQ_533 */
84 0x2, /* DDR_FREQ_667 */
85 0x2, /* DDR_FREQ_800 */
86 0x3, /* DDR_FREQ_933 */
87 0x3, /* DDR_FREQ_1066 */
88 0x1, /* DDR_FREQ_311 */
89 0x1, /* DDR_FREQ_333 */
90 0x2, /* DDR_FREQ_467 */
91 0x2, /* DDR_FREQ_850 */
92 0x2, /* DDR_FREQ_600 */
93 0x1, /* DDR_FREQ_300 */
94 0x2, /* DDR_FREQ_900 */
95 0x1, /* DDR_FREQ_360 */
96 0x2 /* DDR_FREQ_1000 */
97};
98
99static u16 a38x_vco_freq_per_sar_ref_clk_25_mhz[] = {
100 666, /* 0 */
101 1332,
102 800,
103 1600,
104 1066,
105 2132,
106 1200,
107 2400,
108 1332,
109 1332,
110 1500,
111 1500,
112 1600, /* 12 */
113 1600,
114 1700,
115 1700,
116 1866,
117 1866,
118 1800, /* 18 */
119 2000,
120 2000,
121 4000,
122 2132,
123 2132,
124 2300,
125 2300,
126 2400,
127 2400,
128 2500,
129 2500,
130 800
131};
132
133static u16 a38x_vco_freq_per_sar_ref_clk_40_mhz[] = {
134 666, /* 0 */
135 1332,
136 800,
137 800, /* 0x3 */
138 1066,
139 1066, /* 0x5 */
140 1200,
141 2400,
142 1332,
143 1332,
144 1500, /* 10 */
145 1600, /* 0xB */
146 1600,
147 1600,
148 1700,
149 1560, /* 0xF */
150 1866,
151 1866,
152 1800,
153 2000,
154 2000, /* 20 */
155 4000,
156 2132,
157 2132,
158 2300,
159 2300,
160 2400,
161 2400,
162 2500,
163 2500,
164 1800 /* 30 - 0x1E */
165};
166
167
168static u32 async_mode_at_tf;
169
170static u32 dq_bit_map_2_phy_pin[] = {
171 1, 0, 2, 6, 9, 8, 3, 7, /* 0 */
172 8, 9, 1, 7, 2, 6, 3, 0, /* 1 */
173 3, 9, 7, 8, 1, 0, 2, 6, /* 2 */
174 1, 0, 6, 2, 8, 3, 7, 9, /* 3 */
175 0, 1, 2, 9, 7, 8, 3, 6, /* 4 */
176};
177
178void mv_ddr_mem_scrubbing(void)
179{
180}
181
182static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
183 enum hws_ddr_freq freq);
184
185/*
186 * Read temperature TJ value
187 */
188static u32 ddr3_ctrl_get_junc_temp(u8 dev_num)
189{
190 int reg = 0;
191
192 /* Initiates TSEN hardware reset once */
193 if ((reg_read(TSEN_CONTROL_MSB_REG) & TSEN_CONTROL_MSB_RST_MASK) == 0) {
194 reg_bit_set(TSEN_CONTROL_MSB_REG, TSEN_CONTROL_MSB_RST_MASK);
195 /* set Tsen Tc Trim to correct default value (errata #132698) */
196 reg = reg_read(TSEN_CONTROL_LSB_REG);
197 reg &= ~TSEN_CONTROL_LSB_TC_TRIM_MASK;
198 reg |= 0x3 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET;
199 reg_write(TSEN_CONTROL_LSB_REG, reg);
200 }
201 mdelay(10);
202
203 /* Check if the readout field is valid */
204 if ((reg_read(TSEN_STATUS_REG) & TSEN_STATUS_READOUT_VALID_MASK) == 0) {
205 printf("%s: TSEN not ready\n", __func__);
206 return 0;
207 }
208
209 reg = reg_read(TSEN_STATUS_REG);
210 reg = (reg & TSEN_STATUS_TEMP_OUT_MASK) >> TSEN_STATUS_TEMP_OUT_OFFSET;
211
212 return ((((10000 * reg) / 21445) * 1000) - 272674) / 1000;
213}
214
215/*
216 * Name: ddr3_tip_a38x_get_freq_config.
217 * Desc:
218 * Args:
219 * Notes:
220 * Returns: MV_OK if success, other error code if fail.
221 */
222static int ddr3_tip_a38x_get_freq_config(u8 dev_num, enum hws_ddr_freq freq,
223 struct hws_tip_freq_config_info
224 *freq_config_info)
225{
226 if (a38x_bw_per_freq[freq] == 0xff)
227 return MV_NOT_SUPPORTED;
228
229 if (freq_config_info == NULL)
230 return MV_BAD_PARAM;
231
232 freq_config_info->bw_per_freq = a38x_bw_per_freq[freq];
233 freq_config_info->rate_per_freq = a38x_rate_per_freq[freq];
234 freq_config_info->is_supported = 1;
235
236 return MV_OK;
237}
238
239static void dunit_read(u32 addr, u32 mask, u32 *data)
240{
241 *data = reg_read(addr) & mask;
242}
243
244static void dunit_write(u32 addr, u32 mask, u32 data)
245{
246 u32 reg_val = data;
247
248 if (mask != MASK_ALL_BITS) {
249 dunit_read(addr, MASK_ALL_BITS, &reg_val);
250 reg_val &= (~mask);
251 reg_val |= (data & mask);
252 }
253
254 reg_write(addr, reg_val);
255}
256
257#define ODPG_ENABLE_REG 0x186d4
258#define ODPG_EN_OFFS 0
259#define ODPG_EN_MASK 0x1
260#define ODPG_EN_ENA 1
261#define ODPG_EN_DONE 0
262#define ODPG_DIS_OFFS 8
263#define ODPG_DIS_MASK 0x1
264#define ODPG_DIS_DIS 1
265void mv_ddr_odpg_enable(void)
266{
267 dunit_write(ODPG_ENABLE_REG,
268 ODPG_EN_MASK << ODPG_EN_OFFS,
269 ODPG_EN_ENA << ODPG_EN_OFFS);
270}
271
272void mv_ddr_odpg_disable(void)
273{
274 dunit_write(ODPG_ENABLE_REG,
275 ODPG_DIS_MASK << ODPG_DIS_OFFS,
276 ODPG_DIS_DIS << ODPG_DIS_OFFS);
277}
278
279void mv_ddr_odpg_done_clr(void)
280{
281 return;
282}
283
284int mv_ddr_is_odpg_done(u32 count)
285{
286 u32 i, data;
287
288 for (i = 0; i < count; i++) {
289 dunit_read(ODPG_ENABLE_REG, MASK_ALL_BITS, &data);
290 if (((data >> ODPG_EN_OFFS) & ODPG_EN_MASK) ==
291 ODPG_EN_DONE)
292 break;
293 }
294
295 if (i >= count) {
296 printf("%s: timeout\n", __func__);
297 return MV_FAIL;
298 }
299
300 return MV_OK;
301}
302
303void mv_ddr_training_enable(void)
304{
305 dunit_write(GLOB_CTRL_STATUS_REG,
306 TRAINING_TRIGGER_MASK << TRAINING_TRIGGER_OFFS,
307 TRAINING_TRIGGER_ENA << TRAINING_TRIGGER_OFFS);
308}
309
310#define DRAM_INIT_CTRL_STATUS_REG 0x18488
311#define TRAINING_TRIGGER_OFFS 0
312#define TRAINING_TRIGGER_MASK 0x1
313#define TRAINING_TRIGGER_ENA 1
314#define TRAINING_DONE_OFFS 1
315#define TRAINING_DONE_MASK 0x1
316#define TRAINING_DONE_DONE 1
317#define TRAINING_DONE_NOT_DONE 0
318#define TRAINING_RESULT_OFFS 2
319#define TRAINING_RESULT_MASK 0x1
320#define TRAINING_RESULT_PASS 0
321#define TRAINING_RESULT_FAIL 1
322int mv_ddr_is_training_done(u32 count, u32 *result)
323{
324 u32 i, data;
325
326 if (result == NULL) {
327 printf("%s: NULL result pointer found\n", __func__);
328 return MV_FAIL;
329 }
330
331 for (i = 0; i < count; i++) {
332 dunit_read(DRAM_INIT_CTRL_STATUS_REG, MASK_ALL_BITS, &data);
333 if (((data >> TRAINING_DONE_OFFS) & TRAINING_DONE_MASK) ==
334 TRAINING_DONE_DONE)
335 break;
336 }
337
338 if (i >= count) {
339 printf("%s: timeout\n", __func__);
340 return MV_FAIL;
341 }
342
343 *result = (data >> TRAINING_RESULT_OFFS) & TRAINING_RESULT_MASK;
344
345 return MV_OK;
346}
347
348#define DM_PAD 10
349u32 mv_ddr_dm_pad_get(void)
350{
351 return DM_PAD;
352}
353
354/*
355 * Name: ddr3_tip_a38x_select_ddr_controller.
356 * Desc: Enable/Disable access to Marvell's server.
357 * Args: dev_num - device number
358 * enable - whether to enable or disable the server
359 * Notes:
360 * Returns: MV_OK if success, other error code if fail.
361 */
362static int ddr3_tip_a38x_select_ddr_controller(u8 dev_num, int enable)
363{
364 u32 reg;
365
366 reg = reg_read(DUAL_DUNIT_CFG_REG);
367
368 if (enable)
369 reg |= (1 << 6);
370 else
371 reg &= ~(1 << 6);
372
373 reg_write(DUAL_DUNIT_CFG_REG, reg);
374
375 return MV_OK;
376}
377
378static u8 ddr3_tip_clock_mode(u32 frequency)
379{
380 if ((frequency == DDR_FREQ_LOW_FREQ) || (freq_val[frequency] <= 400))
381 return 1;
382
383 return 2;
384}
385
386static int mv_ddr_sar_freq_get(int dev_num, enum hws_ddr_freq *freq)
387{
388 u32 reg, ref_clk_satr;
389
390 /* Read sample at reset setting */
391 reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
392 RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
393 RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
394
395 ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
396 if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
397 DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
398 switch (reg) {
399 case 0x1:
400 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
401 ("Warning: Unsupported freq mode for 333Mhz configured(%d)\n",
402 reg));
403 /* fallthrough */
404 case 0x0:
405 *freq = DDR_FREQ_333;
406 break;
407 case 0x3:
408 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
409 ("Warning: Unsupported freq mode for 400Mhz configured(%d)\n",
410 reg));
411 /* fallthrough */
412 case 0x2:
413 *freq = DDR_FREQ_400;
414 break;
415 case 0xd:
416 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
417 ("Warning: Unsupported freq mode for 533Mhz configured(%d)\n",
418 reg));
419 /* fallthrough */
420 case 0x4:
421 *freq = DDR_FREQ_533;
422 break;
423 case 0x6:
424 *freq = DDR_FREQ_600;
425 break;
426 case 0x11:
427 case 0x14:
428 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
429 ("Warning: Unsupported freq mode for 667Mhz configured(%d)\n",
430 reg));
431 /* fallthrough */
432 case 0x8:
433 *freq = DDR_FREQ_667;
434 break;
435 case 0x15:
436 case 0x1b:
437 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
438 ("Warning: Unsupported freq mode for 800Mhz configured(%d)\n",
439 reg));
440 /* fallthrough */
441 case 0xc:
442 *freq = DDR_FREQ_800;
443 break;
444 case 0x10:
445 *freq = DDR_FREQ_933;
446 break;
447 case 0x12:
448 *freq = DDR_FREQ_900;
449 break;
450 case 0x13:
451 *freq = DDR_FREQ_933;
452 break;
453 default:
454 *freq = 0;
455 return MV_NOT_SUPPORTED;
456 }
457 } else { /* REFCLK 40MHz case */
458 switch (reg) {
459 case 0x3:
460 *freq = DDR_FREQ_400;
461 break;
462 case 0x5:
463 *freq = DDR_FREQ_533;
464 break;
465 case 0xb:
466 *freq = DDR_FREQ_800;
467 break;
468 case 0x1e:
469 *freq = DDR_FREQ_900;
470 break;
471 default:
472 *freq = 0;
473 return MV_NOT_SUPPORTED;
474 }
475 }
476
477 return MV_OK;
478}
479
480static int ddr3_tip_a38x_get_medium_freq(int dev_num, enum hws_ddr_freq *freq)
481{
482 u32 reg, ref_clk_satr;
483
484 /* Read sample at reset setting */
485 reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
486 RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
487 RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
488
489 ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
490 if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
491 DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
492 switch (reg) {
493 case 0x0:
494 case 0x1:
495 /* Medium is same as TF to run PBS in this freq */
496 *freq = DDR_FREQ_333;
497 break;
498 case 0x2:
499 case 0x3:
500 /* Medium is same as TF to run PBS in this freq */
501 *freq = DDR_FREQ_400;
502 break;
503 case 0x4:
504 case 0xd:
505 /* Medium is same as TF to run PBS in this freq */
506 *freq = DDR_FREQ_533;
507 break;
508 case 0x8:
509 case 0x10:
510 case 0x11:
511 case 0x14:
512 *freq = DDR_FREQ_333;
513 break;
514 case 0xc:
515 case 0x15:
516 case 0x1b:
517 *freq = DDR_FREQ_400;
518 break;
519 case 0x6:
520 *freq = DDR_FREQ_300;
521 break;
522 case 0x12:
523 *freq = DDR_FREQ_360;
524 break;
525 case 0x13:
526 *freq = DDR_FREQ_400;
527 break;
528 default:
529 *freq = 0;
530 return MV_NOT_SUPPORTED;
531 }
532 } else { /* REFCLK 40MHz case */
533 switch (reg) {
534 case 0x3:
535 /* Medium is same as TF to run PBS in this freq */
536 *freq = DDR_FREQ_400;
537 break;
538 case 0x5:
539 /* Medium is same as TF to run PBS in this freq */
540 *freq = DDR_FREQ_533;
541 break;
542 case 0xb:
543 *freq = DDR_FREQ_400;
544 break;
545 case 0x1e:
546 *freq = DDR_FREQ_360;
547 break;
548 default:
549 *freq = 0;
550 return MV_NOT_SUPPORTED;
551 }
552 }
553
554 return MV_OK;
555}
556
557static int ddr3_tip_a38x_get_device_info(u8 dev_num, struct ddr3_device_info *info_ptr)
558{
559#if defined(CONFIG_ARMADA_39X)
560 info_ptr->device_id = 0x6900;
561#else
562 info_ptr->device_id = 0x6800;
563#endif
564 info_ptr->ck_delay = ck_delay;
565
566 return MV_OK;
567}
568
569/* check indirect access to phy register file completed */
570static int is_prfa_done(void)
571{
572 u32 reg_val;
573 u32 iter = 0;
574
575 do {
576 if (iter++ > MAX_POLLING_ITERATIONS) {
577 printf("error: %s: polling timeout\n", __func__);
578 return MV_FAIL;
579 }
580 dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
581 reg_val >>= PRFA_REQ_OFFS;
582 reg_val &= PRFA_REQ_MASK;
583 } while (reg_val == PRFA_REQ_ENA); /* request pending */
584
585 return MV_OK;
586}
587
588/* write to phy register thru indirect access */
589static int prfa_write(enum hws_access_type phy_access, u32 phy,
590 enum hws_ddr_phy phy_type, u32 addr,
591 u32 data, enum hws_operation op_type)
592{
593 u32 reg_val = ((data & PRFA_DATA_MASK) << PRFA_DATA_OFFS) |
594 ((addr & PRFA_REG_NUM_MASK) << PRFA_REG_NUM_OFFS) |
595 ((phy & PRFA_PUP_NUM_MASK) << PRFA_PUP_NUM_OFFS) |
596 ((phy_type & PRFA_PUP_CTRL_DATA_MASK) << PRFA_PUP_CTRL_DATA_OFFS) |
597 ((phy_access & PRFA_PUP_BCAST_WR_ENA_MASK) << PRFA_PUP_BCAST_WR_ENA_OFFS) |
598 (((addr >> 6) & PRFA_REG_NUM_HI_MASK) << PRFA_REG_NUM_HI_OFFS) |
599 ((op_type & PRFA_TYPE_MASK) << PRFA_TYPE_OFFS);
600 dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
601 reg_val |= (PRFA_REQ_ENA << PRFA_REQ_OFFS);
602 dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
603
604 /* polling for prfa request completion */
605 if (is_prfa_done() != MV_OK)
606 return MV_FAIL;
607
608 return MV_OK;
609}
610
611/* read from phy register thru indirect access */
612static int prfa_read(enum hws_access_type phy_access, u32 phy,
613 enum hws_ddr_phy phy_type, u32 addr, u32 *data)
614{
615 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
616 u32 max_phy = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
617 u32 i, reg_val;
618
619 if (phy_access == ACCESS_TYPE_MULTICAST) {
620 for (i = 0; i < max_phy; i++) {
621 VALIDATE_BUS_ACTIVE(tm->bus_act_mask, i);
622 if (prfa_write(ACCESS_TYPE_UNICAST, i, phy_type, addr, 0, OPERATION_READ) != MV_OK)
623 return MV_FAIL;
624 dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
625 data[i] = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
626 }
627 } else {
628 if (prfa_write(phy_access, phy, phy_type, addr, 0, OPERATION_READ) != MV_OK)
629 return MV_FAIL;
630 dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
631 *data = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
632 }
633
634 return MV_OK;
635}
636
637static int mv_ddr_sw_db_init(u32 dev_num, u32 board_id)
638{
639 struct hws_tip_config_func_db config_func;
640
641 /* new read leveling version */
642 config_func.mv_ddr_dunit_read = dunit_read;
643 config_func.mv_ddr_dunit_write = dunit_write;
644 config_func.tip_dunit_mux_select_func =
645 ddr3_tip_a38x_select_ddr_controller;
646 config_func.tip_get_freq_config_info_func =
647 ddr3_tip_a38x_get_freq_config;
648 config_func.tip_set_freq_divider_func = ddr3_tip_a38x_set_divider;
649 config_func.tip_get_device_info_func = ddr3_tip_a38x_get_device_info;
650 config_func.tip_get_temperature = ddr3_ctrl_get_junc_temp;
651 config_func.tip_get_clock_ratio = ddr3_tip_clock_mode;
652 config_func.tip_external_read = ddr3_tip_ext_read;
653 config_func.tip_external_write = ddr3_tip_ext_write;
654 config_func.mv_ddr_phy_read = prfa_read;
655 config_func.mv_ddr_phy_write = prfa_write;
656
657 ddr3_tip_init_config_func(dev_num, &config_func);
658
659 ddr3_tip_register_dq_table(dev_num, dq_bit_map_2_phy_pin);
660
661 /* set device attributes*/
662 ddr3_tip_dev_attr_init(dev_num);
663 ddr3_tip_dev_attr_set(dev_num, MV_ATTR_TIP_REV, MV_TIP_REV_4);
664 ddr3_tip_dev_attr_set(dev_num, MV_ATTR_PHY_EDGE, MV_DDR_PHY_EDGE_POSITIVE);
665 ddr3_tip_dev_attr_set(dev_num, MV_ATTR_OCTET_PER_INTERFACE, DDR_INTERFACE_OCTETS_NUM);
666#ifdef CONFIG_ARMADA_39X
667 ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 1);
668#else
669 ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 0);
670#endif
671
672 ca_delay = 0;
673 delay_enable = 1;
674 dfs_low_freq = DFS_LOW_FREQ_VALUE;
675 calibration_update_control = 1;
676
677#ifdef CONFIG_ARMADA_38X
678 /* For a38x only, change to 2T mode to resolve low freq instability */
679 mode_2t = 1;
680#endif
681
682 ddr3_tip_a38x_get_medium_freq(dev_num, &medium_freq);
683
684 return MV_OK;
685}
686
687static int mv_ddr_training_mask_set(void)
688{
689 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
690 enum hws_ddr_freq ddr_freq = tm->interface_params[0].memory_freq;
691
692 mask_tune_func = (SET_LOW_FREQ_MASK_BIT |
693 LOAD_PATTERN_MASK_BIT |
694 SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT |
695 WRITE_LEVELING_SUPP_MASK_BIT |
696 READ_LEVELING_MASK_BIT |
697 PBS_RX_MASK_BIT |
698 PBS_TX_MASK_BIT |
699 SET_TARGET_FREQ_MASK_BIT |
700 WRITE_LEVELING_TF_MASK_BIT |
701 WRITE_LEVELING_SUPP_TF_MASK_BIT |
702 READ_LEVELING_TF_MASK_BIT |
703 CENTRALIZATION_RX_MASK_BIT |
704 CENTRALIZATION_TX_MASK_BIT);
705 rl_mid_freq_wa = 1;
706
707 if ((ddr_freq == DDR_FREQ_333) || (ddr_freq == DDR_FREQ_400)) {
708 mask_tune_func = (WRITE_LEVELING_MASK_BIT |
709 LOAD_PATTERN_2_MASK_BIT |
710 WRITE_LEVELING_SUPP_MASK_BIT |
711 READ_LEVELING_MASK_BIT |
712 PBS_RX_MASK_BIT |
713 PBS_TX_MASK_BIT |
714 CENTRALIZATION_RX_MASK_BIT |
715 CENTRALIZATION_TX_MASK_BIT);
716 rl_mid_freq_wa = 0; /* WA not needed if 333/400 is TF */
717 }
718
719 /* Supplementary not supported for ECC modes */
720 if (1 == ddr3_if_ecc_enabled()) {
721 mask_tune_func &= ~WRITE_LEVELING_SUPP_TF_MASK_BIT;
722 mask_tune_func &= ~WRITE_LEVELING_SUPP_MASK_BIT;
723 mask_tune_func &= ~PBS_TX_MASK_BIT;
724 mask_tune_func &= ~PBS_RX_MASK_BIT;
725 }
726
727 return MV_OK;
728}
729
730/* function: mv_ddr_set_calib_controller
731 * this function sets the controller which will control
732 * the calibration cycle in the end of the training.
733 * 1 - internal controller
734 * 2 - external controller
735 */
736void mv_ddr_set_calib_controller(void)
737{
738 calibration_update_control = CAL_UPDATE_CTRL_INT;
739}
740
741static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
742 enum hws_ddr_freq frequency)
743{
744 u32 divider = 0;
745 u32 sar_val, ref_clk_satr;
746 u32 async_val;
747
748 if (if_id != 0) {
749 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
750 ("A38x does not support interface 0x%x\n",
751 if_id));
752 return MV_BAD_PARAM;
753 }
754
755 /* get VCO freq index */
756 sar_val = (reg_read(REG_DEVICE_SAR1_ADDR) >>
757 RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
758 RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
759
760 ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
761 if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
762 DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ)
763 divider = a38x_vco_freq_per_sar_ref_clk_25_mhz[sar_val] / freq_val[frequency];
764 else
765 divider = a38x_vco_freq_per_sar_ref_clk_40_mhz[sar_val] / freq_val[frequency];
766
767 if ((async_mode_at_tf == 1) && (freq_val[frequency] > 400)) {
768 /* Set async mode */
769 dunit_write(0x20220, 0x1000, 0x1000);
770 dunit_write(0xe42f4, 0x200, 0x200);
771
772 /* Wait for async mode setup */
773 mdelay(5);
774
775 /* Set KNL values */
776 switch (frequency) {
777#ifdef CONFIG_DDR3
778 case DDR_FREQ_467:
779 async_val = 0x806f012;
780 break;
781 case DDR_FREQ_533:
782 async_val = 0x807f012;
783 break;
784 case DDR_FREQ_600:
785 async_val = 0x805f00a;
786 break;
787#endif
788 case DDR_FREQ_667:
789 async_val = 0x809f012;
790 break;
791 case DDR_FREQ_800:
792 async_val = 0x807f00a;
793 break;
794#ifdef CONFIG_DDR3
795 case DDR_FREQ_850:
796 async_val = 0x80cb012;
797 break;
798#endif
799 case DDR_FREQ_900:
800 async_val = 0x80d7012;
801 break;
802 case DDR_FREQ_933:
803 async_val = 0x80df012;
804 break;
805 case DDR_FREQ_1000:
806 async_val = 0x80ef012;
807 break;
808 case DDR_FREQ_1066:
809 async_val = 0x80ff012;
810 break;
811 default:
812 /* set DDR_FREQ_667 as default */
813 async_val = 0x809f012;
814 }
815 dunit_write(0xe42f0, 0xffffffff, async_val);
816 } else {
817 /* Set sync mode */
818 dunit_write(0x20220, 0x1000, 0x0);
819 dunit_write(0xe42f4, 0x200, 0x0);
820
821 /* cpupll_clkdiv_reset_mask */
822 dunit_write(0xe4264, 0xff, 0x1f);
823
824 /* cpupll_clkdiv_reload_smooth */
825 dunit_write(0xe4260, (0xff << 8), (0x2 << 8));
826
827 /* cpupll_clkdiv_relax_en */
828 dunit_write(0xe4260, (0xff << 24), (0x2 << 24));
829
830 /* write the divider */
831 dunit_write(0xe4268, (0x3f << 8), (divider << 8));
832
833 /* set cpupll_clkdiv_reload_ratio */
834 dunit_write(0xe4264, (1 << 8), (1 << 8));
835
836 /* undet cpupll_clkdiv_reload_ratio */
837 dunit_write(0xe4264, (1 << 8), 0x0);
838
839 /* clear cpupll_clkdiv_reload_force */
840 dunit_write(0xe4260, (0xff << 8), 0x0);
841
842 /* clear cpupll_clkdiv_relax_en */
843 dunit_write(0xe4260, (0xff << 24), 0x0);
844
845 /* clear cpupll_clkdiv_reset_mask */
846 dunit_write(0xe4264, 0xff, 0x0);
847 }
848
849 /* Dunit training clock + 1:1/2:1 mode */
850 dunit_write(0x18488, (1 << 16), ((ddr3_tip_clock_mode(frequency) & 0x1) << 16));
851 dunit_write(0x1524, (1 << 15), ((ddr3_tip_clock_mode(frequency) - 1) << 15));
852
853 return MV_OK;
854}
855
856/*
857 * external read from memory
858 */
859int ddr3_tip_ext_read(u32 dev_num, u32 if_id, u32 reg_addr,
860 u32 num_of_bursts, u32 *data)
861{
862 u32 burst_num;
863
864 for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
865 data[burst_num] = readl(reg_addr + 4 * burst_num);
866
867 return MV_OK;
868}
869
870/*
871 * external write to memory
872 */
873int ddr3_tip_ext_write(u32 dev_num, u32 if_id, u32 reg_addr,
874 u32 num_of_bursts, u32 *data) {
875 u32 burst_num;
876
877 for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
878 writel(data[burst_num], reg_addr + 4 * burst_num);
879
880 return MV_OK;
881}
882
883int mv_ddr_early_init(void)
884{
885 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
886
887 /* FIXME: change this configuration per ddr type
888 * configure a380 and a390 to work with receiver odt timing
889 * the odt_config is defined:
890 * '1' in ddr4
891 * '0' in ddr3
892 * here the parameter is run over in ddr4 and ddr3 to '1' (in ddr4 the default is '1')
893 * to configure the odt to work with timing restrictions
894 */
895
896 mv_ddr_sw_db_init(0, 0);
897
898 if (tm->interface_params[0].memory_freq != DDR_FREQ_SAR)
899 async_mode_at_tf = 1;
900
901 return MV_OK;
902}
903
904int mv_ddr_early_init2(void)
905{
906 mv_ddr_training_mask_set();
907
908 return MV_OK;
909}
910
911int mv_ddr_pre_training_fixup(void)
912{
913 return 0;
914}
915
916int mv_ddr_post_training_fixup(void)
917{
918 return 0;
919}
920
921int ddr3_post_run_alg(void)
922{
923 return MV_OK;
924}
925
926int ddr3_silicon_post_init(void)
927{
928 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
929
930 /* Set half bus width */
931 if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask)) {
932 CHECK_STATUS(ddr3_tip_if_write
933 (0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
934 SDRAM_CFG_REG, 0x0, 0x8000));
935 }
936
937 return MV_OK;
938}
939
940u32 mv_ddr_init_freq_get(void)
941{
942 enum hws_ddr_freq freq;
943
944 mv_ddr_sar_freq_get(0, &freq);
945
946 return freq;
947}
948
949static u32 ddr3_get_bus_width(void)
950{
951 u32 bus_width;
952
953 bus_width = (reg_read(SDRAM_CFG_REG) & 0x8000) >>
954 BUS_IN_USE_OFFS;
955
956 return (bus_width == 0) ? 16 : 32;
957}
958
959static u32 ddr3_get_device_width(u32 cs)
960{
961 u32 device_width;
962
963 device_width = (reg_read(SDRAM_ADDR_CTRL_REG) &
964 (CS_STRUCT_MASK << CS_STRUCT_OFFS(cs))) >>
965 CS_STRUCT_OFFS(cs);
966
967 return (device_width == 0) ? 8 : 16;
968}
969
970static u32 ddr3_get_device_size(u32 cs)
971{
972 u32 device_size_low, device_size_high, device_size;
973 u32 data, cs_low_offset, cs_high_offset;
974
975 cs_low_offset = CS_SIZE_OFFS(cs);
976 cs_high_offset = CS_SIZE_HIGH_OFFS(cs);
977
978 data = reg_read(SDRAM_ADDR_CTRL_REG);
979 device_size_low = (data >> cs_low_offset) & 0x3;
980 device_size_high = (data >> cs_high_offset) & 0x1;
981
982 device_size = device_size_low | (device_size_high << 2);
983
984 switch (device_size) {
985 case 0:
986 return 2048;
987 case 2:
988 return 512;
989 case 3:
990 return 1024;
991 case 4:
992 return 4096;
993 case 5:
994 return 8192;
995 case 1:
996 default:
997 DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1);
998 /* zeroes mem size in ddr3_calc_mem_cs_size */
999 return 0;
1000 }
1001}
1002
1003static int ddr3_calc_mem_cs_size(u32 cs, uint64_t *cs_size)
1004{
1005 u32 cs_mem_size;
1006
1007 /* Calculate in MiB */
1008 cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) *
1009 ddr3_get_device_size(cs)) / 8;
1010
1011 /*
1012 * Multiple controller bus width, 2x for 64 bit
1013 * (SoC controller may be 32 or 64 bit,
1014 * so bit 15 in 0x1400, that means if whole bus used or only half,
1015 * have a differnt meaning
1016 */
1017 cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER;
1018
1019 if ((cs_mem_size < 128) || (cs_mem_size > 4096)) {
1020 DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1);
1021 return MV_BAD_VALUE;
1022 }
1023
1024 *cs_size = cs_mem_size << 20; /* write cs size in bytes */
1025
1026 return MV_OK;
1027}
1028
1029static int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena)
1030{
1031 u32 reg, cs;
1032 uint64_t mem_total_size = 0;
1033 uint64_t cs_mem_size = 0;
1034 uint64_t mem_total_size_c, cs_mem_size_c;
1035
1036#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
1037 u32 physical_mem_size;
1038 u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
1039 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1040#endif
1041
1042 /* Open fast path windows */
1043 for (cs = 0; cs < MAX_CS_NUM; cs++) {
1044 if (cs_ena & (1 << cs)) {
1045 /* get CS size */
1046 if (ddr3_calc_mem_cs_size(cs, &cs_mem_size) != MV_OK)
1047 return MV_FAIL;
1048
1049#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
1050 /*
1051 * if number of address pins doesn't allow to use max
1052 * mem size that is defined in topology
1053 * mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE
1054 */
1055 physical_mem_size = mem_size
1056 [tm->interface_params[0].memory_size];
1057
1058 if (ddr3_get_device_width(cs) == 16) {
1059 /*
1060 * 16bit mem device can be twice more - no need
1061 * in less significant pin
1062 */
1063 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
1064 }
1065
1066 if (physical_mem_size > max_mem_size) {
1067 cs_mem_size = max_mem_size *
1068 (ddr3_get_bus_width() /
1069 ddr3_get_device_width(cs));
1070 printf("Updated Physical Mem size is from 0x%x to %x\n",
1071 physical_mem_size,
1072 DEVICE_MAX_DRAM_ADDRESS_SIZE);
1073 }
1074#endif
1075
1076 /* set fast path window control for the cs */
1077 reg = 0xffffe1;
1078 reg |= (cs << 2);
1079 reg |= (cs_mem_size - 1) & 0xffff0000;
1080 /*Open fast path Window */
1081 reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg);
1082
1083 /* Set fast path window base address for the cs */
1084 reg = ((cs_mem_size) * cs) & 0xffff0000;
1085 /* Set base address */
1086 reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg);
1087
1088 /*
1089 * Since memory size may be bigger than 4G the summ may
1090 * be more than 32 bit word,
1091 * so to estimate the result divide mem_total_size and
1092 * cs_mem_size by 0x10000 (it is equal to >> 16)
1093 */
1094 mem_total_size_c = (mem_total_size >> 16) & 0xffffffffffff;
1095 cs_mem_size_c = (cs_mem_size >> 16) & 0xffffffffffff;
1096 /* if the sum less than 2 G - calculate the value */
1097 if (mem_total_size_c + cs_mem_size_c < 0x10000)
1098 mem_total_size += cs_mem_size;
1099 else /* put max possible size */
1100 mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE;
1101 }
1102 }
1103
1104 /* Set L2 filtering to Max Memory size */
1105 reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size);
1106
1107 return MV_OK;
1108}
1109
1110static int ddr3_restore_and_set_final_windows(u32 *win, const char *ddr_type)
1111{
1112 u32 win_ctrl_reg, num_of_win_regs;
1113 u32 cs_ena = mv_ddr_sys_env_get_cs_ena_from_reg();
1114 u32 ui;
1115
1116 win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
1117 num_of_win_regs = 16;
1118
1119 /* Return XBAR windows 4-7 or 16-19 init configuration */
1120 for (ui = 0; ui < num_of_win_regs; ui++)
1121 reg_write((win_ctrl_reg + 0x4 * ui), win[ui]);
1122
1123 printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n",
1124 ddr_type);
1125
1126#if defined DYNAMIC_CS_SIZE_CONFIG
1127 if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK)
1128 printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n");
1129#else
1130 u32 reg, cs;
1131 reg = 0x1fffffe1;
1132 for (cs = 0; cs < MAX_CS_NUM; cs++) {
1133 if (cs_ena & (1 << cs)) {
1134 reg |= (cs << 2);
1135 break;
1136 }
1137 }
1138 /* Open fast path Window to - 0.5G */
1139 reg_write(REG_FASTPATH_WIN_CTRL_ADDR(0), reg);
1140#endif
1141
1142 return MV_OK;
1143}
1144
1145static int ddr3_save_and_set_training_windows(u32 *win)
1146{
1147 u32 cs_ena;
1148 u32 reg, tmp_count, cs, ui;
1149 u32 win_ctrl_reg, win_base_reg, win_remap_reg;
1150 u32 num_of_win_regs, win_jump_index;
1151 win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
1152 win_base_reg = REG_XBAR_WIN_4_BASE_ADDR;
1153 win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR;
1154 win_jump_index = 0x10;
1155 num_of_win_regs = 16;
1156 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1157
1158#ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING
1159 /*
1160 * Disable L2 filtering during DDR training
1161 * (when Cross Bar window is open)
1162 */
1163 reg_write(ADDRESS_FILTERING_END_REGISTER, 0);
1164#endif
1165
1166 cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask;
1167
1168 /* Close XBAR Window 19 - Not needed */
1169 /* {0x000200e8} - Open Mbus Window - 2G */
1170 reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0);
1171
1172 /* Save XBAR Windows 4-19 init configurations */
1173 for (ui = 0; ui < num_of_win_regs; ui++)
1174 win[ui] = reg_read(win_ctrl_reg + 0x4 * ui);
1175
1176 /* Open XBAR Windows 4-7 or 16-19 for other CS */
1177 reg = 0;
1178 tmp_count = 0;
1179 for (cs = 0; cs < MAX_CS_NUM; cs++) {
1180 if (cs_ena & (1 << cs)) {
1181 switch (cs) {
1182 case 0:
1183 reg = 0x0e00;
1184 break;
1185 case 1:
1186 reg = 0x0d00;
1187 break;
1188 case 2:
1189 reg = 0x0b00;
1190 break;
1191 case 3:
1192 reg = 0x0700;
1193 break;
1194 }
1195 reg |= (1 << 0);
1196 reg |= (SDRAM_CS_SIZE & 0xffff0000);
1197
1198 reg_write(win_ctrl_reg + win_jump_index * tmp_count,
1199 reg);
1200 reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) &
1201 0xffff0000);
1202 reg_write(win_base_reg + win_jump_index * tmp_count,
1203 reg);
1204
1205 if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR)
1206 reg_write(win_remap_reg +
1207 win_jump_index * tmp_count, 0);
1208
1209 tmp_count++;
1210 }
1211 }
1212
1213 return MV_OK;
1214}
1215
1216static u32 win[16];
1217
1218int mv_ddr_pre_training_soc_config(const char *ddr_type)
1219{
1220 u32 soc_num;
1221 u32 reg_val;
1222
1223 /* Switching CPU to MRVL ID */
1224 soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >>
1225 SAR1_CPU_CORE_OFFSET;
1226 switch (soc_num) {
1227 case 0x3:
1228 reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET);
1229 reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET);
1230 /* fallthrough */
1231 case 0x1:
1232 reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET);
1233 /* fallthrough */
1234 case 0x0:
1235 reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET);
1236 /* fallthrough */
1237 default:
1238 break;
1239 }
1240
1241 /*
1242 * Set DRAM Reset Mask in case detected GPIO indication of wakeup from
1243 * suspend i.e the DRAM values will not be overwritten / reset when
1244 * waking from suspend
1245 */
1246 if (mv_ddr_sys_env_suspend_wakeup_check() ==
1247 SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) {
1248 reg_bit_set(SDRAM_INIT_CTRL_REG,
1249 DRAM_RESET_MASK_MASKED << DRAM_RESET_MASK_OFFS);
1250 }
1251
1252 /* Check if DRAM is already initialized */
1253 if (reg_read(REG_BOOTROM_ROUTINE_ADDR) &
1254 (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) {
1255 printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type);
1256 return MV_OK;
1257 }
1258
1259 /* Fix read ready phases for all SOC in reg 0x15c8 */
1260 reg_val = reg_read(TRAINING_DBG_3_REG);
1261
1262 reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));
1263 reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0)); /* phase 0 */
1264
1265 reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));
1266 reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1)); /* phase 1 */
1267
1268 reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));
1269 reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3)); /* phase 3 */
1270
1271 reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));
1272 reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4)); /* phase 4 */
1273
1274 reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));
1275 reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5)); /* phase 5 */
1276
1277 reg_write(TRAINING_DBG_3_REG, reg_val);
1278
1279 /*
1280 * Axi_bresp_mode[8] = Compliant,
1281 * Axi_addr_decode_cntrl[11] = Internal,
1282 * Axi_data_bus_width[0] = 128bit
1283 * */
1284 /* 0x14a8 - AXI Control Register */
1285 reg_write(AXI_CTRL_REG, 0);
1286
1287 /*
1288 * Stage 2 - Training Values Setup
1289 */
1290 /* Set X-BAR windows for the training sequence */
1291 ddr3_save_and_set_training_windows(win);
1292
1293 return MV_OK;
1294}
1295
1296static int ddr3_new_tip_dlb_config(void)
1297{
1298 u32 reg, i = 0;
1299 struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get();
1300
1301 /* Write the configuration */
1302 while (config_table_ptr[i].reg_addr != 0) {
1303 reg_write(config_table_ptr[i].reg_addr,
1304 config_table_ptr[i].reg_data);
1305 i++;
1306 }
1307
1308
1309 /* Enable DLB */
1310 reg = reg_read(DLB_CTRL_REG);
1311 reg &= ~(DLB_EN_MASK << DLB_EN_OFFS) &
1312 ~(WR_COALESCE_EN_MASK << WR_COALESCE_EN_OFFS) &
1313 ~(AXI_PREFETCH_EN_MASK << AXI_PREFETCH_EN_OFFS) &
1314 ~(MBUS_PREFETCH_EN_MASK << MBUS_PREFETCH_EN_OFFS) &
1315 ~(PREFETCH_NXT_LN_SZ_TRIG_MASK << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
1316
1317 reg |= (DLB_EN_ENA << DLB_EN_OFFS) |
1318 (WR_COALESCE_EN_ENA << WR_COALESCE_EN_OFFS) |
1319 (AXI_PREFETCH_EN_ENA << AXI_PREFETCH_EN_OFFS) |
1320 (MBUS_PREFETCH_EN_ENA << MBUS_PREFETCH_EN_OFFS) |
1321 (PREFETCH_NXT_LN_SZ_TRIG_ENA << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
1322
1323 reg_write(DLB_CTRL_REG, reg);
1324
1325 return MV_OK;
1326}
1327
1328int mv_ddr_post_training_soc_config(const char *ddr_type)
1329{
1330 u32 reg_val;
1331
1332 /* Restore and set windows */
1333 ddr3_restore_and_set_final_windows(win, ddr_type);
1334
1335 /* Update DRAM init indication in bootROM register */
1336 reg_val = reg_read(REG_BOOTROM_ROUTINE_ADDR);
1337 reg_write(REG_BOOTROM_ROUTINE_ADDR,
1338 reg_val | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS));
1339
1340 /* DLB config */
1341 ddr3_new_tip_dlb_config();
1342
1343 return MV_OK;
1344}
1345
1346void mv_ddr_mc_config(void)
1347{
1348 /* Memory controller initializations */
1349 struct init_cntr_param init_param;
1350 int status;
1351
1352 init_param.do_mrs_phy = 1;
1353 init_param.is_ctrl64_bit = 0;
1354 init_param.init_phy = 1;
1355 init_param.msys_init = 1;
1356 status = hws_ddr3_tip_init_controller(0, &init_param);
1357 if (status != MV_OK)
1358 printf("DDR3 init controller - FAILED 0x%x\n", status);
1359
1360 status = mv_ddr_mc_init();
1361 if (status != MV_OK)
1362 printf("DDR3 init_sequence - FAILED 0x%x\n", status);
1363}
1364/* function: mv_ddr_mc_init
1365 * this function enables the dunit after init controller configuration
1366 */
1367int mv_ddr_mc_init(void)
1368{
1369 CHECK_STATUS(ddr3_tip_enable_init_sequence(0));
1370
1371 return MV_OK;
1372}
1373
1374/* function: ddr3_tip_configure_phy
1375 * configures phy and electrical parameters
1376 */
1377int ddr3_tip_configure_phy(u32 dev_num)
1378{
1379 u32 if_id, phy_id;
1380 u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
1381 struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1382
1383 CHECK_STATUS(ddr3_tip_bus_write
1384 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1385 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1386 PAD_ZRI_CAL_PHY_REG,
1387 ((0x7f & g_zpri_data) << 7 | (0x7f & g_znri_data))));
1388 CHECK_STATUS(ddr3_tip_bus_write
1389 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1390 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1391 PAD_ZRI_CAL_PHY_REG,
1392 ((0x7f & g_zpri_ctrl) << 7 | (0x7f & g_znri_ctrl))));
1393 CHECK_STATUS(ddr3_tip_bus_write
1394 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1395 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1396 PAD_ODT_CAL_PHY_REG,
1397 ((0x3f & g_zpodt_data) << 6 | (0x3f & g_znodt_data))));
1398 CHECK_STATUS(ddr3_tip_bus_write
1399 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1400 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1401 PAD_ODT_CAL_PHY_REG,
1402 ((0x3f & g_zpodt_ctrl) << 6 | (0x3f & g_znodt_ctrl))));
1403
1404 CHECK_STATUS(ddr3_tip_bus_write
1405 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1406 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1407 PAD_PRE_DISABLE_PHY_REG, 0));
1408 CHECK_STATUS(ddr3_tip_bus_write
1409 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1410 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1411 CMOS_CONFIG_PHY_REG, 0));
1412 CHECK_STATUS(ddr3_tip_bus_write
1413 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1414 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1415 CMOS_CONFIG_PHY_REG, 0));
1416
1417 for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
1418 /* check if the interface is enabled */
1419 VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
1420
1421 for (phy_id = 0;
1422 phy_id < octets_per_if_num;
1423 phy_id++) {
1424 VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
1425 /* Vref & clamp */
1426 CHECK_STATUS(ddr3_tip_bus_read_modify_write
1427 (dev_num, ACCESS_TYPE_UNICAST,
1428 if_id, phy_id, DDR_PHY_DATA,
1429 PAD_CFG_PHY_REG,
1430 ((clamp_tbl[if_id] << 4) | vref_init_val),
1431 ((0x7 << 4) | 0x7)));
1432 /* clamp not relevant for control */
1433 CHECK_STATUS(ddr3_tip_bus_read_modify_write
1434 (dev_num, ACCESS_TYPE_UNICAST,
1435 if_id, phy_id, DDR_PHY_CONTROL,
1436 PAD_CFG_PHY_REG, 0x4, 0x7));
1437 }
1438 }
1439
1440 if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_PHY_EDGE) ==
1441 MV_DDR_PHY_EDGE_POSITIVE)
1442 CHECK_STATUS(ddr3_tip_bus_write
1443 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1444 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1445 DDR_PHY_DATA, 0x90, 0x6002));
1446
1447
1448 return MV_OK;
1449}
1450
1451
1452int mv_ddr_manual_cal_do(void)
1453{
1454 return 0;
1455}