| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) Marvell International Ltd. and its affiliates |
| */ |
| |
| #include "ddr3_init.h" |
| #include "mv_ddr_common.h" |
| #include "mv_ddr_training_db.h" |
| #include "mv_ddr_regs.h" |
| #include "mv_ddr_sys_env_lib.h" |
| #include <linux/delay.h> |
| |
| #define DDR_INTERFACES_NUM 1 |
| #define DDR_INTERFACE_OCTETS_NUM 5 |
| |
| /* |
| * 1. L2 filter should be set at binary header to 0xD000000, |
| * to avoid conflict with internal register IO. |
| * 2. U-Boot modifies internal registers base to 0xf100000, |
| * and than should update L2 filter accordingly to 0xf000000 (3.75 GB) |
| */ |
| #define L2_FILTER_FOR_MAX_MEMORY_SIZE 0xC0000000 /* temporary limit l2 filter to 3gb (LSP issue) */ |
| #define ADDRESS_FILTERING_END_REGISTER 0x8c04 |
| |
| #define DYNAMIC_CS_SIZE_CONFIG |
| #define DISABLE_L2_FILTERING_DURING_DDR_TRAINING |
| |
| /* Termal Sensor Registers */ |
| #define TSEN_CONTROL_LSB_REG 0xE4070 |
| #define TSEN_CONTROL_LSB_TC_TRIM_OFFSET 0 |
| #define TSEN_CONTROL_LSB_TC_TRIM_MASK (0x7 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET) |
| #define TSEN_CONTROL_MSB_REG 0xE4074 |
| #define TSEN_CONTROL_MSB_RST_OFFSET 8 |
| #define TSEN_CONTROL_MSB_RST_MASK (0x1 << TSEN_CONTROL_MSB_RST_OFFSET) |
| #define TSEN_STATUS_REG 0xe4078 |
| #define TSEN_STATUS_READOUT_VALID_OFFSET 10 |
| #define TSEN_STATUS_READOUT_VALID_MASK (0x1 << \ |
| TSEN_STATUS_READOUT_VALID_OFFSET) |
| #define TSEN_STATUS_TEMP_OUT_OFFSET 0 |
| #define TSEN_STATUS_TEMP_OUT_MASK (0x3ff << TSEN_STATUS_TEMP_OUT_OFFSET) |
| |
| static struct dlb_config ddr3_dlb_config_table[] = { |
| {DLB_CTRL_REG, 0x2000005c}, |
| {DLB_BUS_OPT_WT_REG, 0x00880000}, |
| {DLB_AGING_REG, 0x0f7f007f}, |
| {DLB_EVICTION_CTRL_REG, 0x0000129f}, |
| {DLB_EVICTION_TIMERS_REG, 0x00ff0000}, |
| {DLB_WTS_DIFF_CS_REG, 0x04030802}, |
| {DLB_WTS_DIFF_BG_REG, 0x00000a02}, |
| {DLB_WTS_SAME_BG_REG, 0x09000a01}, |
| {DLB_WTS_CMDS_REG, 0x00020005}, |
| {DLB_WTS_ATTR_PRIO_REG, 0x00060f10}, |
| {DLB_QUEUE_MAP_REG, 0x00000543}, |
| {DLB_SPLIT_REG, 0x00000000}, |
| {DLB_USER_CMD_REG, 0x00000000}, |
| {0x0, 0x0} |
| }; |
| |
| static struct dlb_config *sys_env_dlb_config_ptr_get(void) |
| { |
| return &ddr3_dlb_config_table[0]; |
| } |
| |
| static u8 a38x_bw_per_freq[MV_DDR_FREQ_LAST] = { |
| 0x3, /* MV_DDR_FREQ_100 */ |
| 0x4, /* MV_DDR_FREQ_400 */ |
| 0x4, /* MV_DDR_FREQ_533 */ |
| 0x5, /* MV_DDR_FREQ_667 */ |
| 0x5, /* MV_DDR_FREQ_800 */ |
| 0x5, /* MV_DDR_FREQ_933 */ |
| 0x5, /* MV_DDR_FREQ_1066 */ |
| 0x3, /* MV_DDR_FREQ_311 */ |
| 0x3, /* MV_DDR_FREQ_333 */ |
| 0x4, /* MV_DDR_FREQ_467 */ |
| 0x5, /* MV_DDR_FREQ_850 */ |
| 0x5, /* MV_DDR_FREQ_600 */ |
| 0x3, /* MV_DDR_FREQ_300 */ |
| 0x5, /* MV_DDR_FREQ_900 */ |
| 0x3, /* MV_DDR_FREQ_360 */ |
| 0x5 /* MV_DDR_FREQ_1000 */ |
| }; |
| |
| static u8 a38x_rate_per_freq[MV_DDR_FREQ_LAST] = { |
| 0x1, /* MV_DDR_FREQ_100 */ |
| 0x2, /* MV_DDR_FREQ_400 */ |
| 0x2, /* MV_DDR_FREQ_533 */ |
| 0x2, /* MV_DDR_FREQ_667 */ |
| 0x2, /* MV_DDR_FREQ_800 */ |
| 0x3, /* MV_DDR_FREQ_933 */ |
| 0x3, /* MV_DDR_FREQ_1066 */ |
| 0x1, /* MV_DDR_FREQ_311 */ |
| 0x1, /* MV_DDR_FREQ_333 */ |
| 0x2, /* MV_DDR_FREQ_467 */ |
| 0x2, /* MV_DDR_FREQ_850 */ |
| 0x2, /* MV_DDR_FREQ_600 */ |
| 0x1, /* MV_DDR_FREQ_300 */ |
| 0x2, /* MV_DDR_FREQ_900 */ |
| 0x1, /* MV_DDR_FREQ_360 */ |
| 0x2 /* MV_DDR_FREQ_1000 */ |
| }; |
| |
| static u16 a38x_vco_freq_per_sar_ref_clk_25_mhz[] = { |
| 666, /* 0 */ |
| 1332, |
| 800, |
| 1600, |
| 1066, |
| 2132, |
| 1200, |
| 2400, |
| 1332, |
| 1332, |
| 1500, |
| 1500, |
| 1600, /* 12 */ |
| 1600, |
| 1700, |
| 1700, |
| 1866, |
| 1866, |
| 1800, /* 18 */ |
| 2000, |
| 2000, |
| 4000, |
| 2132, |
| 2132, |
| 2300, |
| 2300, |
| 2400, |
| 2400, |
| 2500, |
| 2500, |
| 800 |
| }; |
| |
| static u16 a38x_vco_freq_per_sar_ref_clk_40_mhz[] = { |
| 666, /* 0 */ |
| 1332, |
| 800, |
| 800, /* 0x3 */ |
| 1066, |
| 1066, /* 0x5 */ |
| 1200, |
| 2400, |
| 1332, |
| 1332, |
| 1500, /* 10 */ |
| 1600, /* 0xB */ |
| 1600, |
| 1600, |
| 1700, |
| 1560, /* 0xF */ |
| 1866, |
| 1866, |
| 1800, |
| 2000, |
| 2000, /* 20 */ |
| 4000, |
| 2132, |
| 2132, |
| 2300, |
| 2300, |
| 2400, |
| 2400, |
| 2500, |
| 2500, |
| 1800 /* 30 - 0x1E */ |
| }; |
| |
| |
| static u32 async_mode_at_tf; |
| |
| static u32 dq_bit_map_2_phy_pin[] = { |
| 1, 0, 2, 6, 9, 8, 3, 7, /* 0 */ |
| 8, 9, 1, 7, 2, 6, 3, 0, /* 1 */ |
| 3, 9, 7, 8, 1, 0, 2, 6, /* 2 */ |
| 1, 0, 6, 2, 8, 3, 7, 9, /* 3 */ |
| 0, 1, 2, 9, 7, 8, 3, 6, /* 4 */ |
| }; |
| |
| void mv_ddr_mem_scrubbing(void) |
| { |
| ddr3_new_tip_ecc_scrub(); |
| } |
| |
| static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id, |
| enum mv_ddr_freq freq); |
| |
| /* |
| * Read temperature TJ value |
| */ |
| static u32 ddr3_ctrl_get_junc_temp(u8 dev_num) |
| { |
| int reg = 0; |
| |
| /* Initiates TSEN hardware reset once */ |
| if ((reg_read(TSEN_CONTROL_MSB_REG) & TSEN_CONTROL_MSB_RST_MASK) == 0) { |
| reg_bit_set(TSEN_CONTROL_MSB_REG, TSEN_CONTROL_MSB_RST_MASK); |
| /* set Tsen Tc Trim to correct default value (errata #132698) */ |
| reg = reg_read(TSEN_CONTROL_LSB_REG); |
| reg &= ~TSEN_CONTROL_LSB_TC_TRIM_MASK; |
| reg |= 0x3 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET; |
| reg_write(TSEN_CONTROL_LSB_REG, reg); |
| } |
| mdelay(10); |
| |
| /* Check if the readout field is valid */ |
| if ((reg_read(TSEN_STATUS_REG) & TSEN_STATUS_READOUT_VALID_MASK) == 0) { |
| printf("%s: TSEN not ready\n", __func__); |
| return 0; |
| } |
| |
| reg = reg_read(TSEN_STATUS_REG); |
| reg = (reg & TSEN_STATUS_TEMP_OUT_MASK) >> TSEN_STATUS_TEMP_OUT_OFFSET; |
| |
| return ((((10000 * reg) / 21445) * 1000) - 272674) / 1000; |
| } |
| |
| /* |
| * Name: ddr3_tip_a38x_get_freq_config. |
| * Desc: |
| * Args: |
| * Notes: |
| * Returns: MV_OK if success, other error code if fail. |
| */ |
| static int ddr3_tip_a38x_get_freq_config(u8 dev_num, enum mv_ddr_freq freq, |
| struct hws_tip_freq_config_info |
| *freq_config_info) |
| { |
| if (a38x_bw_per_freq[freq] == 0xff) |
| return MV_NOT_SUPPORTED; |
| |
| if (freq_config_info == NULL) |
| return MV_BAD_PARAM; |
| |
| freq_config_info->bw_per_freq = a38x_bw_per_freq[freq]; |
| freq_config_info->rate_per_freq = a38x_rate_per_freq[freq]; |
| freq_config_info->is_supported = 1; |
| |
| return MV_OK; |
| } |
| |
| static void dunit_read(u32 addr, u32 mask, u32 *data) |
| { |
| *data = reg_read(addr) & mask; |
| } |
| |
| static void dunit_write(u32 addr, u32 mask, u32 data) |
| { |
| u32 reg_val = data; |
| |
| if (mask != MASK_ALL_BITS) { |
| dunit_read(addr, MASK_ALL_BITS, ®_val); |
| reg_val &= (~mask); |
| reg_val |= (data & mask); |
| } |
| |
| reg_write(addr, reg_val); |
| } |
| |
| #define ODPG_ENABLE_REG 0x186d4 |
| #define ODPG_EN_OFFS 0 |
| #define ODPG_EN_MASK 0x1 |
| #define ODPG_EN_ENA 1 |
| #define ODPG_EN_DONE 0 |
| #define ODPG_DIS_OFFS 8 |
| #define ODPG_DIS_MASK 0x1 |
| #define ODPG_DIS_DIS 1 |
| void mv_ddr_odpg_enable(void) |
| { |
| dunit_write(ODPG_ENABLE_REG, |
| ODPG_EN_MASK << ODPG_EN_OFFS, |
| ODPG_EN_ENA << ODPG_EN_OFFS); |
| } |
| |
| void mv_ddr_odpg_disable(void) |
| { |
| dunit_write(ODPG_ENABLE_REG, |
| ODPG_DIS_MASK << ODPG_DIS_OFFS, |
| ODPG_DIS_DIS << ODPG_DIS_OFFS); |
| } |
| |
| void mv_ddr_odpg_done_clr(void) |
| { |
| return; |
| } |
| |
| int mv_ddr_is_odpg_done(u32 count) |
| { |
| u32 i, data; |
| |
| for (i = 0; i < count; i++) { |
| dunit_read(ODPG_ENABLE_REG, MASK_ALL_BITS, &data); |
| if (((data >> ODPG_EN_OFFS) & ODPG_EN_MASK) == |
| ODPG_EN_DONE) |
| break; |
| } |
| |
| if (i >= count) { |
| printf("%s: timeout\n", __func__); |
| return MV_FAIL; |
| } |
| |
| return MV_OK; |
| } |
| |
| void mv_ddr_training_enable(void) |
| { |
| dunit_write(GLOB_CTRL_STATUS_REG, |
| TRAINING_TRIGGER_MASK << TRAINING_TRIGGER_OFFS, |
| TRAINING_TRIGGER_ENA << TRAINING_TRIGGER_OFFS); |
| } |
| |
| #define DRAM_INIT_CTRL_STATUS_REG 0x18488 |
| #define TRAINING_TRIGGER_OFFS 0 |
| #define TRAINING_TRIGGER_MASK 0x1 |
| #define TRAINING_TRIGGER_ENA 1 |
| #define TRAINING_DONE_OFFS 1 |
| #define TRAINING_DONE_MASK 0x1 |
| #define TRAINING_DONE_DONE 1 |
| #define TRAINING_DONE_NOT_DONE 0 |
| #define TRAINING_RESULT_OFFS 2 |
| #define TRAINING_RESULT_MASK 0x1 |
| #define TRAINING_RESULT_PASS 0 |
| #define TRAINING_RESULT_FAIL 1 |
| int mv_ddr_is_training_done(u32 count, u32 *result) |
| { |
| u32 i, data; |
| |
| if (result == NULL) { |
| printf("%s: NULL result pointer found\n", __func__); |
| return MV_FAIL; |
| } |
| |
| for (i = 0; i < count; i++) { |
| dunit_read(DRAM_INIT_CTRL_STATUS_REG, MASK_ALL_BITS, &data); |
| if (((data >> TRAINING_DONE_OFFS) & TRAINING_DONE_MASK) == |
| TRAINING_DONE_DONE) |
| break; |
| } |
| |
| if (i >= count) { |
| printf("%s: timeout\n", __func__); |
| return MV_FAIL; |
| } |
| |
| *result = (data >> TRAINING_RESULT_OFFS) & TRAINING_RESULT_MASK; |
| |
| return MV_OK; |
| } |
| |
| #define DM_PAD 10 |
| u32 mv_ddr_dm_pad_get(void) |
| { |
| return DM_PAD; |
| } |
| |
| /* |
| * Name: ddr3_tip_a38x_select_ddr_controller. |
| * Desc: Enable/Disable access to Marvell's server. |
| * Args: dev_num - device number |
| * enable - whether to enable or disable the server |
| * Notes: |
| * Returns: MV_OK if success, other error code if fail. |
| */ |
| static int ddr3_tip_a38x_select_ddr_controller(u8 dev_num, int enable) |
| { |
| u32 reg; |
| |
| reg = reg_read(DUAL_DUNIT_CFG_REG); |
| |
| if (enable) |
| reg |= (1 << 6); |
| else |
| reg &= ~(1 << 6); |
| |
| reg_write(DUAL_DUNIT_CFG_REG, reg); |
| |
| return MV_OK; |
| } |
| |
| static u8 ddr3_tip_clock_mode(u32 frequency) |
| { |
| if ((frequency == MV_DDR_FREQ_LOW_FREQ) || (mv_ddr_freq_get(frequency) <= 400)) |
| return 1; |
| |
| return 2; |
| } |
| |
| static int mv_ddr_sar_freq_get(int dev_num, enum mv_ddr_freq *freq) |
| { |
| u32 reg, ref_clk_satr; |
| |
| /* Read sample at reset setting */ |
| reg = (reg_read(REG_DEVICE_SAR1_ADDR) >> |
| RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) & |
| RST2_CPU_DDR_CLOCK_SELECT_IN_MASK; |
| |
| ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG); |
| if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) == |
| DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) { |
| switch (reg) { |
| case 0x1: |
| DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, |
| ("Warning: Unsupported freq mode for 333Mhz configured(%d)\n", |
| reg)); |
| /* fallthrough */ |
| case 0x0: |
| *freq = MV_DDR_FREQ_333; |
| break; |
| case 0x3: |
| DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, |
| ("Warning: Unsupported freq mode for 400Mhz configured(%d)\n", |
| reg)); |
| /* fallthrough */ |
| case 0x2: |
| *freq = MV_DDR_FREQ_400; |
| break; |
| case 0xd: |
| DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, |
| ("Warning: Unsupported freq mode for 533Mhz configured(%d)\n", |
| reg)); |
| /* fallthrough */ |
| case 0x4: |
| *freq = MV_DDR_FREQ_533; |
| break; |
| case 0x6: |
| *freq = MV_DDR_FREQ_600; |
| break; |
| case 0x11: |
| case 0x14: |
| DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, |
| ("Warning: Unsupported freq mode for 667Mhz configured(%d)\n", |
| reg)); |
| /* fallthrough */ |
| case 0x8: |
| *freq = MV_DDR_FREQ_667; |
| break; |
| case 0x15: |
| case 0x1b: |
| DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, |
| ("Warning: Unsupported freq mode for 800Mhz configured(%d)\n", |
| reg)); |
| /* fallthrough */ |
| case 0xc: |
| *freq = MV_DDR_FREQ_800; |
| break; |
| case 0x10: |
| *freq = MV_DDR_FREQ_933; |
| break; |
| case 0x12: |
| *freq = MV_DDR_FREQ_900; |
| break; |
| case 0x13: |
| *freq = MV_DDR_FREQ_933; |
| break; |
| default: |
| *freq = 0; |
| return MV_NOT_SUPPORTED; |
| } |
| } else { /* REFCLK 40MHz case */ |
| switch (reg) { |
| case 0x3: |
| *freq = MV_DDR_FREQ_400; |
| break; |
| case 0x5: |
| *freq = MV_DDR_FREQ_533; |
| break; |
| case 0xb: |
| *freq = MV_DDR_FREQ_800; |
| break; |
| case 0x1e: |
| *freq = MV_DDR_FREQ_900; |
| break; |
| default: |
| *freq = 0; |
| return MV_NOT_SUPPORTED; |
| } |
| } |
| |
| return MV_OK; |
| } |
| |
| static int ddr3_tip_a38x_get_medium_freq(int dev_num, enum mv_ddr_freq *freq) |
| { |
| u32 reg, ref_clk_satr; |
| |
| /* Read sample at reset setting */ |
| reg = (reg_read(REG_DEVICE_SAR1_ADDR) >> |
| RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) & |
| RST2_CPU_DDR_CLOCK_SELECT_IN_MASK; |
| |
| ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG); |
| if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) == |
| DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) { |
| switch (reg) { |
| case 0x0: |
| case 0x1: |
| /* Medium is same as TF to run PBS in this freq */ |
| *freq = MV_DDR_FREQ_333; |
| break; |
| case 0x2: |
| case 0x3: |
| /* Medium is same as TF to run PBS in this freq */ |
| *freq = MV_DDR_FREQ_400; |
| break; |
| case 0x4: |
| case 0xd: |
| /* Medium is same as TF to run PBS in this freq */ |
| *freq = MV_DDR_FREQ_533; |
| break; |
| case 0x8: |
| case 0x10: |
| case 0x11: |
| case 0x14: |
| *freq = MV_DDR_FREQ_333; |
| break; |
| case 0xc: |
| case 0x15: |
| case 0x1b: |
| *freq = MV_DDR_FREQ_400; |
| break; |
| case 0x6: |
| *freq = MV_DDR_FREQ_300; |
| break; |
| case 0x12: |
| *freq = MV_DDR_FREQ_360; |
| break; |
| case 0x13: |
| *freq = MV_DDR_FREQ_400; |
| break; |
| default: |
| *freq = 0; |
| return MV_NOT_SUPPORTED; |
| } |
| } else { /* REFCLK 40MHz case */ |
| switch (reg) { |
| case 0x3: |
| /* Medium is same as TF to run PBS in this freq */ |
| *freq = MV_DDR_FREQ_400; |
| break; |
| case 0x5: |
| /* Medium is same as TF to run PBS in this freq */ |
| *freq = MV_DDR_FREQ_533; |
| break; |
| case 0xb: |
| *freq = MV_DDR_FREQ_400; |
| break; |
| case 0x1e: |
| *freq = MV_DDR_FREQ_360; |
| break; |
| default: |
| *freq = 0; |
| return MV_NOT_SUPPORTED; |
| } |
| } |
| |
| return MV_OK; |
| } |
| |
| static int ddr3_tip_a38x_get_device_info(u8 dev_num, struct ddr3_device_info *info_ptr) |
| { |
| #if defined(CONFIG_ARMADA_39X) |
| info_ptr->device_id = 0x6900; |
| #else |
| info_ptr->device_id = 0x6800; |
| #endif |
| info_ptr->ck_delay = ck_delay; |
| |
| return MV_OK; |
| } |
| |
| /* check indirect access to phy register file completed */ |
| static int is_prfa_done(void) |
| { |
| u32 reg_val; |
| u32 iter = 0; |
| |
| do { |
| if (iter++ > MAX_POLLING_ITERATIONS) { |
| printf("error: %s: polling timeout\n", __func__); |
| return MV_FAIL; |
| } |
| dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val); |
| reg_val >>= PRFA_REQ_OFFS; |
| reg_val &= PRFA_REQ_MASK; |
| } while (reg_val == PRFA_REQ_ENA); /* request pending */ |
| |
| return MV_OK; |
| } |
| |
| /* write to phy register thru indirect access */ |
| static int prfa_write(enum hws_access_type phy_access, u32 phy, |
| enum hws_ddr_phy phy_type, u32 addr, |
| u32 data, enum hws_operation op_type) |
| { |
| u32 reg_val = ((data & PRFA_DATA_MASK) << PRFA_DATA_OFFS) | |
| ((addr & PRFA_REG_NUM_MASK) << PRFA_REG_NUM_OFFS) | |
| ((phy & PRFA_PUP_NUM_MASK) << PRFA_PUP_NUM_OFFS) | |
| ((phy_type & PRFA_PUP_CTRL_DATA_MASK) << PRFA_PUP_CTRL_DATA_OFFS) | |
| ((phy_access & PRFA_PUP_BCAST_WR_ENA_MASK) << PRFA_PUP_BCAST_WR_ENA_OFFS) | |
| (((addr >> 6) & PRFA_REG_NUM_HI_MASK) << PRFA_REG_NUM_HI_OFFS) | |
| ((op_type & PRFA_TYPE_MASK) << PRFA_TYPE_OFFS); |
| dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val); |
| reg_val |= (PRFA_REQ_ENA << PRFA_REQ_OFFS); |
| dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val); |
| |
| /* polling for prfa request completion */ |
| if (is_prfa_done() != MV_OK) |
| return MV_FAIL; |
| |
| return MV_OK; |
| } |
| |
| /* read from phy register thru indirect access */ |
| static int prfa_read(enum hws_access_type phy_access, u32 phy, |
| enum hws_ddr_phy phy_type, u32 addr, u32 *data) |
| { |
| struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); |
| u32 max_phy = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE); |
| u32 i, reg_val; |
| |
| if (phy_access == ACCESS_TYPE_MULTICAST) { |
| for (i = 0; i < max_phy; i++) { |
| VALIDATE_BUS_ACTIVE(tm->bus_act_mask, i); |
| if (prfa_write(ACCESS_TYPE_UNICAST, i, phy_type, addr, 0, OPERATION_READ) != MV_OK) |
| return MV_FAIL; |
| dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val); |
| data[i] = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK; |
| } |
| } else { |
| if (prfa_write(phy_access, phy, phy_type, addr, 0, OPERATION_READ) != MV_OK) |
| return MV_FAIL; |
| dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val); |
| *data = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK; |
| } |
| |
| return MV_OK; |
| } |
| |
| static int mv_ddr_sw_db_init(u32 dev_num, u32 board_id) |
| { |
| struct hws_tip_config_func_db config_func; |
| |
| /* new read leveling version */ |
| config_func.mv_ddr_dunit_read = dunit_read; |
| config_func.mv_ddr_dunit_write = dunit_write; |
| config_func.tip_dunit_mux_select_func = |
| ddr3_tip_a38x_select_ddr_controller; |
| config_func.tip_get_freq_config_info_func = |
| ddr3_tip_a38x_get_freq_config; |
| config_func.tip_set_freq_divider_func = ddr3_tip_a38x_set_divider; |
| config_func.tip_get_device_info_func = ddr3_tip_a38x_get_device_info; |
| config_func.tip_get_temperature = ddr3_ctrl_get_junc_temp; |
| config_func.tip_get_clock_ratio = ddr3_tip_clock_mode; |
| config_func.tip_external_read = ddr3_tip_ext_read; |
| config_func.tip_external_write = ddr3_tip_ext_write; |
| config_func.mv_ddr_phy_read = prfa_read; |
| config_func.mv_ddr_phy_write = prfa_write; |
| |
| ddr3_tip_init_config_func(dev_num, &config_func); |
| |
| ddr3_tip_register_dq_table(dev_num, dq_bit_map_2_phy_pin); |
| |
| /* set device attributes*/ |
| ddr3_tip_dev_attr_init(dev_num); |
| ddr3_tip_dev_attr_set(dev_num, MV_ATTR_TIP_REV, MV_TIP_REV_4); |
| ddr3_tip_dev_attr_set(dev_num, MV_ATTR_PHY_EDGE, MV_DDR_PHY_EDGE_POSITIVE); |
| ddr3_tip_dev_attr_set(dev_num, MV_ATTR_OCTET_PER_INTERFACE, DDR_INTERFACE_OCTETS_NUM); |
| #ifdef CONFIG_ARMADA_39X |
| ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 1); |
| #else |
| ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 0); |
| #endif |
| |
| ca_delay = 0; |
| delay_enable = 1; |
| dfs_low_freq = DFS_LOW_FREQ_VALUE; |
| calibration_update_control = 1; |
| |
| ddr3_tip_a38x_get_medium_freq(dev_num, &medium_freq); |
| |
| return MV_OK; |
| } |
| |
| static int mv_ddr_training_mask_set(void) |
| { |
| struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); |
| enum mv_ddr_freq ddr_freq = tm->interface_params[0].memory_freq; |
| |
| mask_tune_func = (SET_LOW_FREQ_MASK_BIT | |
| LOAD_PATTERN_MASK_BIT | |
| SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT | |
| WRITE_LEVELING_SUPP_MASK_BIT | |
| READ_LEVELING_MASK_BIT | |
| PBS_RX_MASK_BIT | |
| PBS_TX_MASK_BIT | |
| SET_TARGET_FREQ_MASK_BIT | |
| WRITE_LEVELING_TF_MASK_BIT | |
| WRITE_LEVELING_SUPP_TF_MASK_BIT | |
| READ_LEVELING_TF_MASK_BIT | |
| CENTRALIZATION_RX_MASK_BIT | |
| CENTRALIZATION_TX_MASK_BIT); |
| rl_mid_freq_wa = 1; |
| |
| if ((ddr_freq == MV_DDR_FREQ_333) || (ddr_freq == MV_DDR_FREQ_400)) { |
| mask_tune_func = (WRITE_LEVELING_MASK_BIT | |
| LOAD_PATTERN_2_MASK_BIT | |
| WRITE_LEVELING_SUPP_MASK_BIT | |
| READ_LEVELING_MASK_BIT | |
| PBS_RX_MASK_BIT | |
| PBS_TX_MASK_BIT | |
| CENTRALIZATION_RX_MASK_BIT | |
| CENTRALIZATION_TX_MASK_BIT); |
| rl_mid_freq_wa = 0; /* WA not needed if 333/400 is TF */ |
| } |
| |
| /* Supplementary not supported for ECC modes */ |
| if (mv_ddr_is_ecc_ena()) { |
| mask_tune_func &= ~WRITE_LEVELING_SUPP_TF_MASK_BIT; |
| mask_tune_func &= ~WRITE_LEVELING_SUPP_MASK_BIT; |
| mask_tune_func &= ~PBS_TX_MASK_BIT; |
| mask_tune_func &= ~PBS_RX_MASK_BIT; |
| } |
| |
| return MV_OK; |
| } |
| |
| /* function: mv_ddr_set_calib_controller |
| * this function sets the controller which will control |
| * the calibration cycle in the end of the training. |
| * 1 - internal controller |
| * 2 - external controller |
| */ |
| void mv_ddr_set_calib_controller(void) |
| { |
| calibration_update_control = CAL_UPDATE_CTRL_INT; |
| } |
| |
| static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id, |
| enum mv_ddr_freq frequency) |
| { |
| u32 divider = 0; |
| u32 sar_val, ref_clk_satr; |
| u32 async_val; |
| u32 freq = mv_ddr_freq_get(frequency); |
| |
| if (if_id != 0) { |
| DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR, |
| ("A38x does not support interface 0x%x\n", |
| if_id)); |
| return MV_BAD_PARAM; |
| } |
| |
| /* get VCO freq index */ |
| sar_val = (reg_read(REG_DEVICE_SAR1_ADDR) >> |
| RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) & |
| RST2_CPU_DDR_CLOCK_SELECT_IN_MASK; |
| |
| ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG); |
| if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) == |
| DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) |
| divider = a38x_vco_freq_per_sar_ref_clk_25_mhz[sar_val] / freq; |
| else |
| divider = a38x_vco_freq_per_sar_ref_clk_40_mhz[sar_val] / freq; |
| |
| if ((async_mode_at_tf == 1) && (freq > 400)) { |
| /* Set async mode */ |
| dunit_write(0x20220, 0x1000, 0x1000); |
| dunit_write(0xe42f4, 0x200, 0x200); |
| |
| /* Wait for async mode setup */ |
| mdelay(5); |
| |
| /* Set KNL values */ |
| switch (frequency) { |
| case MV_DDR_FREQ_467: |
| async_val = 0x806f012; |
| break; |
| case MV_DDR_FREQ_533: |
| async_val = 0x807f012; |
| break; |
| case MV_DDR_FREQ_600: |
| async_val = 0x805f00a; |
| break; |
| case MV_DDR_FREQ_667: |
| async_val = 0x809f012; |
| break; |
| case MV_DDR_FREQ_800: |
| async_val = 0x807f00a; |
| break; |
| case MV_DDR_FREQ_850: |
| async_val = 0x80cb012; |
| break; |
| case MV_DDR_FREQ_900: |
| async_val = 0x80d7012; |
| break; |
| case MV_DDR_FREQ_933: |
| async_val = 0x80df012; |
| break; |
| case MV_DDR_FREQ_1000: |
| async_val = 0x80ef012; |
| break; |
| case MV_DDR_FREQ_1066: |
| async_val = 0x80ff012; |
| break; |
| default: |
| /* set MV_DDR_FREQ_667 as default */ |
| async_val = 0x809f012; |
| } |
| dunit_write(0xe42f0, 0xffffffff, async_val); |
| } else { |
| /* Set sync mode */ |
| dunit_write(0x20220, 0x1000, 0x0); |
| dunit_write(0xe42f4, 0x200, 0x0); |
| |
| /* cpupll_clkdiv_reset_mask */ |
| dunit_write(0xe4264, 0xff, 0x1f); |
| |
| /* cpupll_clkdiv_reload_smooth */ |
| dunit_write(0xe4260, (0xff << 8), (0x2 << 8)); |
| |
| /* cpupll_clkdiv_relax_en */ |
| dunit_write(0xe4260, (0xff << 24), (0x2 << 24)); |
| |
| /* write the divider */ |
| dunit_write(0xe4268, (0x3f << 8), (divider << 8)); |
| |
| /* set cpupll_clkdiv_reload_ratio */ |
| dunit_write(0xe4264, (1 << 8), (1 << 8)); |
| |
| /* undet cpupll_clkdiv_reload_ratio */ |
| dunit_write(0xe4264, (1 << 8), 0x0); |
| |
| /* clear cpupll_clkdiv_reload_force */ |
| dunit_write(0xe4260, (0xff << 8), 0x0); |
| |
| /* clear cpupll_clkdiv_relax_en */ |
| dunit_write(0xe4260, (0xff << 24), 0x0); |
| |
| /* clear cpupll_clkdiv_reset_mask */ |
| dunit_write(0xe4264, 0xff, 0x0); |
| } |
| |
| /* Dunit training clock + 1:1/2:1 mode */ |
| dunit_write(0x18488, (1 << 16), ((ddr3_tip_clock_mode(frequency) & 0x1) << 16)); |
| dunit_write(0x1524, (1 << 15), ((ddr3_tip_clock_mode(frequency) - 1) << 15)); |
| |
| return MV_OK; |
| } |
| |
| /* |
| * external read from memory |
| */ |
| int ddr3_tip_ext_read(u32 dev_num, u32 if_id, u32 reg_addr, |
| u32 num_of_bursts, u32 *data) |
| { |
| u32 burst_num; |
| |
| for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++) |
| data[burst_num] = readl(reg_addr + 4 * burst_num); |
| |
| return MV_OK; |
| } |
| |
| /* |
| * external write to memory |
| */ |
| int ddr3_tip_ext_write(u32 dev_num, u32 if_id, u32 reg_addr, |
| u32 num_of_bursts, u32 *data) { |
| u32 burst_num; |
| |
| for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++) |
| writel(data[burst_num], reg_addr + 4 * burst_num); |
| |
| return MV_OK; |
| } |
| |
| int mv_ddr_early_init(void) |
| { |
| struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); |
| |
| /* FIXME: change this configuration per ddr type |
| * configure a380 and a390 to work with receiver odt timing |
| * the odt_config is defined: |
| * '1' in ddr4 |
| * '0' in ddr3 |
| * here the parameter is run over in ddr4 and ddr3 to '1' (in ddr4 the default is '1') |
| * to configure the odt to work with timing restrictions |
| */ |
| |
| mv_ddr_sw_db_init(0, 0); |
| |
| if (tm->interface_params[0].memory_freq != MV_DDR_FREQ_SAR) |
| async_mode_at_tf = 1; |
| |
| return MV_OK; |
| } |
| |
| int mv_ddr_early_init2(void) |
| { |
| mv_ddr_training_mask_set(); |
| |
| return MV_OK; |
| } |
| |
| int mv_ddr_pre_training_fixup(void) |
| { |
| return 0; |
| } |
| |
| int mv_ddr_post_training_fixup(void) |
| { |
| return 0; |
| } |
| |
| int ddr3_post_run_alg(void) |
| { |
| return MV_OK; |
| } |
| |
| int ddr3_silicon_post_init(void) |
| { |
| struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); |
| |
| /* Set half bus width */ |
| if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask)) { |
| CHECK_STATUS(ddr3_tip_if_write |
| (0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE, |
| SDRAM_CFG_REG, 0x0, 0x8000)); |
| } |
| |
| return MV_OK; |
| } |
| |
| u32 mv_ddr_init_freq_get(void) |
| { |
| enum mv_ddr_freq freq; |
| |
| mv_ddr_sar_freq_get(0, &freq); |
| |
| return freq; |
| } |
| |
| static u32 ddr3_get_bus_width(void) |
| { |
| u32 bus_width; |
| |
| bus_width = (reg_read(SDRAM_CFG_REG) & 0x8000) >> |
| BUS_IN_USE_OFFS; |
| |
| return (bus_width == 0) ? 16 : 32; |
| } |
| |
| static u32 ddr3_get_device_width(u32 cs) |
| { |
| u32 device_width; |
| |
| device_width = (reg_read(SDRAM_ADDR_CTRL_REG) & |
| (CS_STRUCT_MASK << CS_STRUCT_OFFS(cs))) >> |
| CS_STRUCT_OFFS(cs); |
| |
| return (device_width == 0) ? 8 : 16; |
| } |
| |
| static u32 ddr3_get_device_size(u32 cs) |
| { |
| u32 device_size_low, device_size_high, device_size; |
| u32 data, cs_low_offset, cs_high_offset; |
| |
| cs_low_offset = CS_SIZE_OFFS(cs); |
| cs_high_offset = CS_SIZE_HIGH_OFFS(cs); |
| |
| data = reg_read(SDRAM_ADDR_CTRL_REG); |
| device_size_low = (data >> cs_low_offset) & 0x3; |
| device_size_high = (data >> cs_high_offset) & 0x1; |
| |
| device_size = device_size_low | (device_size_high << 2); |
| |
| switch (device_size) { |
| case 0: |
| return 2048; |
| case 2: |
| return 512; |
| case 3: |
| return 1024; |
| case 4: |
| return 4096; |
| case 5: |
| return 8192; |
| case 1: |
| default: |
| DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1); |
| /* zeroes mem size in ddr3_calc_mem_cs_size */ |
| return 0; |
| } |
| } |
| |
| int ddr3_calc_mem_cs_size(u32 cs, uint64_t *cs_size) |
| { |
| u32 cs_mem_size; |
| |
| /* Calculate in MiB */ |
| cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) * |
| ddr3_get_device_size(cs)) / 8; |
| |
| /* |
| * Multiple controller bus width, 2x for 64 bit |
| * (SoC controller may be 32 or 64 bit, |
| * so bit 15 in 0x1400, that means if whole bus used or only half, |
| * have a differnt meaning |
| */ |
| cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER; |
| |
| if ((cs_mem_size < 128) || (cs_mem_size > 4096)) { |
| DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1); |
| return MV_BAD_VALUE; |
| } |
| |
| *cs_size = cs_mem_size; |
| |
| return MV_OK; |
| } |
| |
| static int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena) |
| { |
| u32 reg, cs; |
| uint64_t mem_total_size = 0; |
| uint64_t cs_mem_size_mb = 0; |
| uint64_t cs_mem_size = 0; |
| uint64_t mem_total_size_c, cs_mem_size_c; |
| |
| |
| #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE |
| u32 physical_mem_size; |
| u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE; |
| struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); |
| #endif |
| |
| /* Open fast path windows */ |
| for (cs = 0; cs < MAX_CS_NUM; cs++) { |
| if (cs_ena & (1 << cs)) { |
| /* get CS size */ |
| if (ddr3_calc_mem_cs_size(cs, &cs_mem_size_mb) != MV_OK) |
| return MV_FAIL; |
| cs_mem_size = cs_mem_size_mb * _1M; |
| |
| #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE |
| /* |
| * if number of address pins doesn't allow to use max |
| * mem size that is defined in topology |
| * mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE |
| */ |
| physical_mem_size = mem_size |
| [tm->interface_params[0].memory_size]; |
| |
| if (ddr3_get_device_width(cs) == 16) { |
| /* |
| * 16bit mem device can be twice more - no need |
| * in less significant pin |
| */ |
| max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2; |
| } |
| |
| if (physical_mem_size > max_mem_size) { |
| cs_mem_size = max_mem_size * |
| (ddr3_get_bus_width() / |
| ddr3_get_device_width(cs)); |
| printf("Updated Physical Mem size is from 0x%x to %x\n", |
| physical_mem_size, |
| DEVICE_MAX_DRAM_ADDRESS_SIZE); |
| } |
| #endif |
| |
| /* set fast path window control for the cs */ |
| reg = 0xffffe1; |
| reg |= (cs << 2); |
| reg |= (cs_mem_size - 1) & 0xffff0000; |
| /*Open fast path Window */ |
| reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg); |
| |
| /* Set fast path window base address for the cs */ |
| reg = ((cs_mem_size) * cs) & 0xffff0000; |
| /* Set base address */ |
| reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg); |
| |
| /* |
| * Since memory size may be bigger than 4G the summ may |
| * be more than 32 bit word, |
| * so to estimate the result divide mem_total_size and |
| * cs_mem_size by 0x10000 (it is equal to >> 16) |
| */ |
| mem_total_size_c = (mem_total_size >> 16) & 0xffffffffffff; |
| cs_mem_size_c = (cs_mem_size >> 16) & 0xffffffffffff; |
| |
| /* if the sum less than 2 G - calculate the value */ |
| if (mem_total_size_c + cs_mem_size_c < 0x10000) |
| mem_total_size += cs_mem_size; |
| else /* put max possible size */ |
| mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE; |
| } |
| } |
| |
| /* Set L2 filtering to Max Memory size */ |
| reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size); |
| |
| return MV_OK; |
| } |
| |
| static int ddr3_restore_and_set_final_windows(u32 *win, const char *ddr_type) |
| { |
| u32 win_ctrl_reg, num_of_win_regs; |
| u32 cs_ena = mv_ddr_sys_env_get_cs_ena_from_reg(); |
| u32 ui; |
| |
| win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR; |
| num_of_win_regs = 16; |
| |
| /* Return XBAR windows 4-7 or 16-19 init configuration */ |
| for (ui = 0; ui < num_of_win_regs; ui++) |
| reg_write((win_ctrl_reg + 0x4 * ui), win[ui]); |
| |
| printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n", |
| ddr_type); |
| |
| #if defined DYNAMIC_CS_SIZE_CONFIG |
| if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK) |
| printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n"); |
| #else |
| u32 reg, cs; |
| reg = 0x1fffffe1; |
| for (cs = 0; cs < MAX_CS_NUM; cs++) { |
| if (cs_ena & (1 << cs)) { |
| reg |= (cs << 2); |
| break; |
| } |
| } |
| /* Open fast path Window to - 0.5G */ |
| reg_write(REG_FASTPATH_WIN_CTRL_ADDR(0), reg); |
| #endif |
| |
| return MV_OK; |
| } |
| |
| static int ddr3_save_and_set_training_windows(u32 *win) |
| { |
| u32 cs_ena; |
| u32 reg, tmp_count, cs, ui; |
| u32 win_ctrl_reg, win_base_reg, win_remap_reg; |
| u32 num_of_win_regs, win_jump_index; |
| win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR; |
| win_base_reg = REG_XBAR_WIN_4_BASE_ADDR; |
| win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR; |
| win_jump_index = 0x10; |
| num_of_win_regs = 16; |
| struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); |
| |
| #ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING |
| /* |
| * Disable L2 filtering during DDR training |
| * (when Cross Bar window is open) |
| */ |
| reg_write(ADDRESS_FILTERING_END_REGISTER, 0); |
| #endif |
| |
| cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask; |
| |
| /* Close XBAR Window 19 - Not needed */ |
| /* {0x000200e8} - Open Mbus Window - 2G */ |
| reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0); |
| |
| /* Save XBAR Windows 4-19 init configurations */ |
| for (ui = 0; ui < num_of_win_regs; ui++) |
| win[ui] = reg_read(win_ctrl_reg + 0x4 * ui); |
| |
| /* Open XBAR Windows 4-7 or 16-19 for other CS */ |
| reg = 0; |
| tmp_count = 0; |
| for (cs = 0; cs < MAX_CS_NUM; cs++) { |
| if (cs_ena & (1 << cs)) { |
| switch (cs) { |
| case 0: |
| reg = 0x0e00; |
| break; |
| case 1: |
| reg = 0x0d00; |
| break; |
| case 2: |
| reg = 0x0b00; |
| break; |
| case 3: |
| reg = 0x0700; |
| break; |
| } |
| reg |= (1 << 0); |
| reg |= (SDRAM_CS_SIZE & 0xffff0000); |
| |
| reg_write(win_ctrl_reg + win_jump_index * tmp_count, |
| reg); |
| reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) & |
| 0xffff0000); |
| reg_write(win_base_reg + win_jump_index * tmp_count, |
| reg); |
| |
| if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR) |
| reg_write(win_remap_reg + |
| win_jump_index * tmp_count, 0); |
| |
| tmp_count++; |
| } |
| } |
| |
| return MV_OK; |
| } |
| |
| static u32 win[16]; |
| |
| int mv_ddr_pre_training_soc_config(const char *ddr_type) |
| { |
| u32 soc_num; |
| u32 reg_val; |
| |
| /* Switching CPU to MRVL ID */ |
| soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >> |
| SAR1_CPU_CORE_OFFSET; |
| switch (soc_num) { |
| case 0x3: |
| reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET); |
| reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET); |
| /* fallthrough */ |
| case 0x1: |
| reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET); |
| /* fallthrough */ |
| case 0x0: |
| reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET); |
| /* fallthrough */ |
| default: |
| break; |
| } |
| |
| /* |
| * Set DRAM Reset Mask in case detected GPIO indication of wakeup from |
| * suspend i.e the DRAM values will not be overwritten / reset when |
| * waking from suspend |
| */ |
| if (mv_ddr_sys_env_suspend_wakeup_check() == |
| SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) { |
| reg_bit_set(SDRAM_INIT_CTRL_REG, |
| DRAM_RESET_MASK_MASKED << DRAM_RESET_MASK_OFFS); |
| } |
| |
| /* Check if DRAM is already initialized */ |
| if (reg_read(REG_BOOTROM_ROUTINE_ADDR) & |
| (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) { |
| printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type); |
| return MV_OK; |
| } |
| |
| /* Fix read ready phases for all SOC in reg 0x15c8 */ |
| reg_val = reg_read(TRAINING_DBG_3_REG); |
| |
| reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0)); |
| reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0)); /* phase 0 */ |
| |
| reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1)); |
| reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1)); /* phase 1 */ |
| |
| reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3)); |
| reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3)); /* phase 3 */ |
| |
| reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4)); |
| reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4)); /* phase 4 */ |
| |
| reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5)); |
| reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5)); /* phase 5 */ |
| |
| reg_write(TRAINING_DBG_3_REG, reg_val); |
| |
| /* |
| * Axi_bresp_mode[8] = Compliant, |
| * Axi_addr_decode_cntrl[11] = Internal, |
| * Axi_data_bus_width[0] = 128bit |
| * */ |
| /* 0x14a8 - AXI Control Register */ |
| reg_write(AXI_CTRL_REG, 0); |
| |
| /* |
| * Stage 2 - Training Values Setup |
| */ |
| /* Set X-BAR windows for the training sequence */ |
| ddr3_save_and_set_training_windows(win); |
| |
| return MV_OK; |
| } |
| |
| static int ddr3_new_tip_dlb_config(void) |
| { |
| u32 reg, i = 0; |
| struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get(); |
| |
| /* Write the configuration */ |
| while (config_table_ptr[i].reg_addr != 0) { |
| reg_write(config_table_ptr[i].reg_addr, |
| config_table_ptr[i].reg_data); |
| i++; |
| } |
| |
| |
| /* Enable DLB */ |
| reg = reg_read(DLB_CTRL_REG); |
| reg &= ~(DLB_EN_MASK << DLB_EN_OFFS) & |
| ~(WR_COALESCE_EN_MASK << WR_COALESCE_EN_OFFS) & |
| ~(AXI_PREFETCH_EN_MASK << AXI_PREFETCH_EN_OFFS) & |
| ~(MBUS_PREFETCH_EN_MASK << MBUS_PREFETCH_EN_OFFS) & |
| ~(PREFETCH_NXT_LN_SZ_TRIG_MASK << PREFETCH_NXT_LN_SZ_TRIG_OFFS); |
| |
| reg |= (DLB_EN_ENA << DLB_EN_OFFS) | |
| (WR_COALESCE_EN_ENA << WR_COALESCE_EN_OFFS) | |
| (AXI_PREFETCH_EN_ENA << AXI_PREFETCH_EN_OFFS) | |
| (MBUS_PREFETCH_EN_ENA << MBUS_PREFETCH_EN_OFFS) | |
| (PREFETCH_NXT_LN_SZ_TRIG_ENA << PREFETCH_NXT_LN_SZ_TRIG_OFFS); |
| |
| reg_write(DLB_CTRL_REG, reg); |
| |
| return MV_OK; |
| } |
| |
| int mv_ddr_post_training_soc_config(const char *ddr_type) |
| { |
| u32 reg_val; |
| |
| /* Restore and set windows */ |
| ddr3_restore_and_set_final_windows(win, ddr_type); |
| |
| /* Update DRAM init indication in bootROM register */ |
| reg_val = reg_read(REG_BOOTROM_ROUTINE_ADDR); |
| reg_write(REG_BOOTROM_ROUTINE_ADDR, |
| reg_val | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)); |
| |
| /* DLB config */ |
| ddr3_new_tip_dlb_config(); |
| |
| return MV_OK; |
| } |
| |
| void mv_ddr_mc_config(void) |
| { |
| /* Memory controller initializations */ |
| struct init_cntr_param init_param; |
| int status; |
| |
| init_param.do_mrs_phy = 1; |
| init_param.is_ctrl64_bit = 0; |
| init_param.init_phy = 1; |
| init_param.msys_init = 1; |
| status = hws_ddr3_tip_init_controller(0, &init_param); |
| if (status != MV_OK) |
| printf("DDR3 init controller - FAILED 0x%x\n", status); |
| |
| status = mv_ddr_mc_init(); |
| if (status != MV_OK) |
| printf("DDR3 init_sequence - FAILED 0x%x\n", status); |
| } |
| /* function: mv_ddr_mc_init |
| * this function enables the dunit after init controller configuration |
| */ |
| int mv_ddr_mc_init(void) |
| { |
| CHECK_STATUS(ddr3_tip_enable_init_sequence(0)); |
| |
| return MV_OK; |
| } |
| |
| /* function: ddr3_tip_configure_phy |
| * configures phy and electrical parameters |
| */ |
| int ddr3_tip_configure_phy(u32 dev_num) |
| { |
| u32 if_id, phy_id; |
| u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE); |
| struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get(); |
| |
| CHECK_STATUS(ddr3_tip_bus_write |
| (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, |
| ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA, |
| PAD_ZRI_CAL_PHY_REG, |
| ((0x7f & g_zpri_data) << 7 | (0x7f & g_znri_data)))); |
| CHECK_STATUS(ddr3_tip_bus_write |
| (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, |
| ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL, |
| PAD_ZRI_CAL_PHY_REG, |
| ((0x7f & g_zpri_ctrl) << 7 | (0x7f & g_znri_ctrl)))); |
| CHECK_STATUS(ddr3_tip_bus_write |
| (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, |
| ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA, |
| PAD_ODT_CAL_PHY_REG, |
| ((0x3f & g_zpodt_data) << 6 | (0x3f & g_znodt_data)))); |
| CHECK_STATUS(ddr3_tip_bus_write |
| (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, |
| ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL, |
| PAD_ODT_CAL_PHY_REG, |
| ((0x3f & g_zpodt_ctrl) << 6 | (0x3f & g_znodt_ctrl)))); |
| |
| CHECK_STATUS(ddr3_tip_bus_write |
| (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, |
| ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA, |
| PAD_PRE_DISABLE_PHY_REG, 0)); |
| CHECK_STATUS(ddr3_tip_bus_write |
| (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, |
| ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA, |
| CMOS_CONFIG_PHY_REG, 0)); |
| CHECK_STATUS(ddr3_tip_bus_write |
| (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, |
| ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL, |
| CMOS_CONFIG_PHY_REG, 0)); |
| |
| for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) { |
| /* check if the interface is enabled */ |
| VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id); |
| |
| for (phy_id = 0; |
| phy_id < octets_per_if_num; |
| phy_id++) { |
| VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id); |
| /* Vref & clamp */ |
| CHECK_STATUS(ddr3_tip_bus_read_modify_write |
| (dev_num, ACCESS_TYPE_UNICAST, |
| if_id, phy_id, DDR_PHY_DATA, |
| PAD_CFG_PHY_REG, |
| ((clamp_tbl[if_id] << 4) | vref_init_val), |
| ((0x7 << 4) | 0x7))); |
| /* clamp not relevant for control */ |
| CHECK_STATUS(ddr3_tip_bus_read_modify_write |
| (dev_num, ACCESS_TYPE_UNICAST, |
| if_id, phy_id, DDR_PHY_CONTROL, |
| PAD_CFG_PHY_REG, 0x4, 0x7)); |
| } |
| } |
| |
| if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_PHY_EDGE) == |
| MV_DDR_PHY_EDGE_POSITIVE) |
| CHECK_STATUS(ddr3_tip_bus_write |
| (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, |
| ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, |
| DDR_PHY_DATA, 0x90, 0x6002)); |
| |
| |
| return MV_OK; |
| } |
| |
| |
| int mv_ddr_manual_cal_do(void) |
| { |
| return 0; |
| } |