blob: e61dc20fedbd337b907e875c7a0dd41ef93f8868 [file] [log] [blame]
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001Secure Partition Manager
2************************
3
4.. contents::
5
Olivier Deprez3de57e32022-04-28 18:18:36 +02006.. toctree::
7 ffa-manifest-binding
8
Olivier Deprezecb2fe52020-04-02 15:38:02 +02009Acronyms
10========
11
Olivier Deprez2b0be752021-09-01 10:25:21 +020012+--------+--------------------------------------+
13| CoT | Chain of Trust |
14+--------+--------------------------------------+
15| DMA | Direct Memory Access |
16+--------+--------------------------------------+
17| DTB | Device Tree Blob |
18+--------+--------------------------------------+
19| DTS | Device Tree Source |
20+--------+--------------------------------------+
21| EC | Execution Context |
22+--------+--------------------------------------+
23| FIP | Firmware Image Package |
24+--------+--------------------------------------+
25| FF-A | Firmware Framework for Arm A-profile |
26+--------+--------------------------------------+
27| IPA | Intermediate Physical Address |
28+--------+--------------------------------------+
Olivier Deprez3de57e32022-04-28 18:18:36 +020029| JOP | Jump-Oriented Programming |
30+--------+--------------------------------------+
Olivier Deprez2b0be752021-09-01 10:25:21 +020031| NWd | Normal World |
32+--------+--------------------------------------+
33| ODM | Original Design Manufacturer |
34+--------+--------------------------------------+
35| OEM | Original Equipment Manufacturer |
36+--------+--------------------------------------+
37| PA | Physical Address |
38+--------+--------------------------------------+
39| PE | Processing Element |
40+--------+--------------------------------------+
41| PM | Power Management |
42+--------+--------------------------------------+
43| PVM | Primary VM |
44+--------+--------------------------------------+
Olivier Deprez3de57e32022-04-28 18:18:36 +020045| ROP | Return-Oriented Programming |
46+--------+--------------------------------------+
Olivier Deprez2b0be752021-09-01 10:25:21 +020047| SMMU | System Memory Management Unit |
48+--------+--------------------------------------+
49| SP | Secure Partition |
50+--------+--------------------------------------+
51| SPD | Secure Payload Dispatcher |
52+--------+--------------------------------------+
53| SPM | Secure Partition Manager |
54+--------+--------------------------------------+
55| SPMC | SPM Core |
56+--------+--------------------------------------+
57| SPMD | SPM Dispatcher |
58+--------+--------------------------------------+
59| SiP | Silicon Provider |
60+--------+--------------------------------------+
61| SWd | Secure World |
62+--------+--------------------------------------+
63| TLV | Tag-Length-Value |
64+--------+--------------------------------------+
65| TOS | Trusted Operating System |
66+--------+--------------------------------------+
67| VM | Virtual Machine |
68+--------+--------------------------------------+
Olivier Deprezecb2fe52020-04-02 15:38:02 +020069
70Foreword
71========
72
Olivier Deprez3de57e32022-04-28 18:18:36 +020073Three implementations of a Secure Partition Manager co-exist in the TF-A
74codebase:
Olivier Deprezecb2fe52020-04-02 15:38:02 +020075
Olivier Deprez3de57e32022-04-28 18:18:36 +020076#. S-EL2 SPMC based on the FF-A specification `[1]`_, enabling virtualization in
77 the secure world, managing multiple S-EL1 or S-EL0 partitions.
78#. EL3 SPMC based on the FF-A specification, managing a single S-EL1 partition
79 without virtualization in the secure world.
80#. EL3 SPM based on the MM specification, legacy implementation managing a
81 single S-EL0 partition `[2]`_.
Olivier Deprezecb2fe52020-04-02 15:38:02 +020082
Olivier Deprez3de57e32022-04-28 18:18:36 +020083These implementations differ in their respective SW architecture and only one
84can be selected at build time. This document:
Olivier Deprezecb2fe52020-04-02 15:38:02 +020085
Olivier Deprez3de57e32022-04-28 18:18:36 +020086- describes the implementation from bullet 1. when the SPMC resides at S-EL2.
Olivier Deprez5e0a73f2021-04-30 14:42:24 +020087- is not an architecture specification and it might provide assumptions
88 on sections mandated as implementation-defined in the specification.
Olivier Deprez3de57e32022-04-28 18:18:36 +020089- covers the implications to TF-A used as a bootloader, and Hafnium used as a
90 reference code base for an S-EL2/SPMC secure firmware on platforms
91 implementing the FEAT_SEL2 architecture extension.
Olivier Deprezecb2fe52020-04-02 15:38:02 +020092
93Terminology
94-----------
95
Olivier Deprez5e0a73f2021-04-30 14:42:24 +020096- The term Hypervisor refers to the NS-EL2 component managing Virtual Machines
97 (or partitions) in the normal world.
98- The term SPMC refers to the S-EL2 component managing secure partitions in
99 the secure world when the FEAT_SEL2 architecture extension is implemented.
100- Alternatively, SPMC can refer to an S-EL1 component, itself being a secure
101 partition and implementing the FF-A ABI on platforms not implementing the
102 FEAT_SEL2 architecture extension.
103- The term VM refers to a normal world Virtual Machine managed by an Hypervisor.
104- The term SP refers to a secure world "Virtual Machine" managed by an SPMC.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200105
106Support for legacy platforms
107----------------------------
108
Olivier Deprez3de57e32022-04-28 18:18:36 +0200109The SPM is split into a dispatcher and a core component (respectively SPMD and
110SPMC) residing at different exception levels. To permit the FF-A specification
111adoption and a smooth migration, the SPMD supports an SPMC residing either at
112S-EL1 or S-EL2:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200113
Olivier Deprez3de57e32022-04-28 18:18:36 +0200114- The SPMD is located at EL3 and mainly relays the FF-A protocol from NWd
115 (Hypervisor or OS kernel) to the SPMC.
116- The same SPMD component is used for both S-EL1 and S-EL2 SPMC configurations.
117- The SPMC exception level is a build time choice.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200118
Olivier Deprez3de57e32022-04-28 18:18:36 +0200119TF-A supports both cases:
120
121- S-EL1 SPMC for platforms not supporting the FEAT_SEL2 architecture
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200122 extension. The SPMD relays the FF-A protocol from EL3 to S-EL1.
Olivier Deprez3de57e32022-04-28 18:18:36 +0200123- S-EL2 SPMC for platforms implementing the FEAT_SEL2 architecture
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200124 extension. The SPMD relays the FF-A protocol from EL3 to S-EL2.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200125
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200126Sample reference stack
127======================
128
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200129The following diagram illustrates a possible configuration when the
130FEAT_SEL2 architecture extension is implemented, showing the SPMD
131and SPMC, one or multiple secure partitions, with an optional
132Hypervisor:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200133
134.. image:: ../resources/diagrams/ff-a-spm-sel2.png
135
136TF-A build options
137==================
138
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200139This section explains the TF-A build options involved in building with
140support for an FF-A based SPM where the SPMD is located at EL3 and the
Marc Bonniciabaac162021-12-01 18:00:40 +0000141SPMC located at S-EL1, S-EL2 or EL3:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200142
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200143- **SPD=spmd**: this option selects the SPMD component to relay the FF-A
144 protocol from NWd to SWd back and forth. It is not possible to
145 enable another Secure Payload Dispatcher when this option is chosen.
146- **SPMD_SPM_AT_SEL2**: this option adjusts the SPMC exception
Marc Bonniciabaac162021-12-01 18:00:40 +0000147 level to being at S-EL2. It defaults to enabled (value 1) when
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200148 SPD=spmd is chosen.
Marc Bonniciabaac162021-12-01 18:00:40 +0000149- **SPMC_AT_EL3**: this option adjusts the SPMC exception level to being
150 at EL3.
Olivier Deprez3de57e32022-04-28 18:18:36 +0200151- If neither ``SPMD_SPM_AT_SEL2`` or ``SPMC_AT_EL3`` are enabled the SPMC
Marc Bonniciabaac162021-12-01 18:00:40 +0000152 exception level is set to S-EL1.
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200153 ``SPMD_SPM_AT_SEL2`` is enabled. The context save/restore routine
154 and exhaustive list of registers is visible at `[4]`_.
155- **SP_LAYOUT_FILE**: this option specifies a text description file
156 providing paths to SP binary images and manifests in DTS format
157 (see `Describing secure partitions`_). It
158 is required when ``SPMD_SPM_AT_SEL2`` is enabled hence when multiple
Olivier Deprez3de57e32022-04-28 18:18:36 +0200159 secure partitions are to be loaded by BL2 on behalf of the SPMC.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200160
Govindraj Raja0264d6c2022-11-21 13:10:40 +0000161+---------------+------------------+-------------+-------------------------+
162| | SPMD_SPM_AT_SEL2 | SPMC_AT_EL3 | CTX_INCLUDE_EL2_REGS(*) |
163+---------------+------------------+-------------+-------------------------+
164| SPMC at S-EL1 | 0 | 0 | 0 |
165+---------------+------------------+-------------+-------------------------+
166| SPMC at S-EL2 | 1 (default when | 0 | 1 |
167| | SPD=spmd) | | |
168+---------------+------------------+-------------+-------------------------+
169| SPMC at EL3 | 0 | 1 | 0 |
170+---------------+------------------+-------------+-------------------------+
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200171
172Other combinations of such build options either break the build or are not
173supported.
174
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200175Notes:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200176
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200177- Only Arm's FVP platform is supported to use with the TF-A reference software
178 stack.
Olivier Deprez3de57e32022-04-28 18:18:36 +0200179- When ``SPMD_SPM_AT_SEL2=1``, the reference software stack assumes enablement
180 of FEAT_PAuth, FEAT_BTI and FEAT_MTE architecture extensions.
Govindraj Raja0264d6c2022-11-21 13:10:40 +0000181- ``(*) CTX_INCLUDE_EL2_REGS``, this flag is |TF-A| internal and informational
182 in this table. When set, it provides the generic support for saving/restoring
183 EL2 registers required when S-EL2 firmware is present.
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200184- BL32 option is re-purposed to specify the SPMC image. It can specify either
185 the Hafnium binary path (built for the secure world) or the path to a TEE
186 binary implementing FF-A interfaces.
187- BL33 option can specify the TFTF binary or a normal world loader
Olivier Deprez3de57e32022-04-28 18:18:36 +0200188 such as U-Boot or the UEFI framework payload.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200189
Olivier Deprez3de57e32022-04-28 18:18:36 +0200190Sample TF-A build command line when the SPMC is located at S-EL1
191(e.g. when the FEAT_SEL2 architecture extension is not implemented):
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200192
193.. code:: shell
194
195 make \
196 CROSS_COMPILE=aarch64-none-elf- \
197 SPD=spmd \
198 SPMD_SPM_AT_SEL2=0 \
199 BL32=<path-to-tee-binary> \
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200200 BL33=<path-to-bl33-binary> \
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200201 PLAT=fvp \
202 all fip
203
Olivier Deprez3de57e32022-04-28 18:18:36 +0200204Sample TF-A build command line when FEAT_SEL2 architecture extension is
205implemented and the SPMC is located at S-EL2:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200206.. code:: shell
207
208 make \
209 CROSS_COMPILE=aarch64-none-elf- \
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200210 PLAT=fvp \
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200211 SPD=spmd \
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200212 ARM_ARCH_MINOR=5 \
213 BRANCH_PROTECTION=1 \
214 CTX_INCLUDE_PAUTH_REGS=1 \
Olivier Deprez3de57e32022-04-28 18:18:36 +0200215 CTX_INCLUDE_MTE_REGS=1 \
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200216 BL32=<path-to-hafnium-binary> \
217 BL33=<path-to-bl33-binary> \
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200218 SP_LAYOUT_FILE=sp_layout.json \
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200219 all fip
220
Olivier Deprez3de57e32022-04-28 18:18:36 +0200221Sample TF-A build command line when FEAT_SEL2 architecture extension is
222implemented, the SPMC is located at S-EL2, and enabling secure boot:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200223.. code:: shell
224
225 make \
226 CROSS_COMPILE=aarch64-none-elf- \
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200227 PLAT=fvp \
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200228 SPD=spmd \
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200229 ARM_ARCH_MINOR=5 \
230 BRANCH_PROTECTION=1 \
231 CTX_INCLUDE_PAUTH_REGS=1 \
Olivier Deprez3de57e32022-04-28 18:18:36 +0200232 CTX_INCLUDE_MTE_REGS=1 \
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200233 BL32=<path-to-hafnium-binary> \
234 BL33=<path-to-bl33-binary> \
235 SP_LAYOUT_FILE=sp_layout.json \
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200236 MBEDTLS_DIR=<path-to-mbedtls-lib> \
237 TRUSTED_BOARD_BOOT=1 \
238 COT=dualroot \
239 ARM_ROTPK_LOCATION=devel_rsa \
240 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
241 GENERATE_COT=1 \
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200242 all fip
243
Olivier Deprez3de57e32022-04-28 18:18:36 +0200244Sample TF-A build command line when the SPMC is located at EL3:
Marc Bonniciabaac162021-12-01 18:00:40 +0000245
246.. code:: shell
247
248 make \
249 CROSS_COMPILE=aarch64-none-elf- \
250 SPD=spmd \
251 SPMD_SPM_AT_SEL2=0 \
252 SPMC_AT_EL3=1 \
253 BL32=<path-to-tee-binary> \
254 BL33=<path-to-bl33-binary> \
255 PLAT=fvp \
256 all fip
257
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200258FVP model invocation
259====================
260
261The FVP command line needs the following options to exercise the S-EL2 SPMC:
262
263+---------------------------------------------------+------------------------------------+
264| - cluster0.has_arm_v8-5=1 | Implements FEAT_SEL2, FEAT_PAuth, |
265| - cluster1.has_arm_v8-5=1 | and FEAT_BTI. |
266+---------------------------------------------------+------------------------------------+
267| - pci.pci_smmuv3.mmu.SMMU_AIDR=2 | Parameters required for the |
268| - pci.pci_smmuv3.mmu.SMMU_IDR0=0x0046123B | SMMUv3.2 modeling. |
269| - pci.pci_smmuv3.mmu.SMMU_IDR1=0x00600002 | |
270| - pci.pci_smmuv3.mmu.SMMU_IDR3=0x1714 | |
271| - pci.pci_smmuv3.mmu.SMMU_IDR5=0xFFFF0472 | |
272| - pci.pci_smmuv3.mmu.SMMU_S_IDR1=0xA0000002 | |
273| - pci.pci_smmuv3.mmu.SMMU_S_IDR2=0 | |
274| - pci.pci_smmuv3.mmu.SMMU_S_IDR3=0 | |
275+---------------------------------------------------+------------------------------------+
276| - cluster0.has_branch_target_exception=1 | Implements FEAT_BTI. |
277| - cluster1.has_branch_target_exception=1 | |
278+---------------------------------------------------+------------------------------------+
Olivier Deprez3de57e32022-04-28 18:18:36 +0200279| - cluster0.has_pointer_authentication=2 | Implements FEAT_PAuth |
280| - cluster1.has_pointer_authentication=2 | |
281+---------------------------------------------------+------------------------------------+
282| - cluster0.memory_tagging_support_level=2 | Implements FEAT_MTE2 |
283| - cluster1.memory_tagging_support_level=2 | |
284| - bp.dram_metadata.is_enabled=1 | |
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200285+---------------------------------------------------+------------------------------------+
286
287Sample FVP command line invocation:
288
289.. code:: shell
290
Olivier Deprez3de57e32022-04-28 18:18:36 +0200291 <path-to-fvp-model>/FVP_Base_RevC-2xAEMvA -C pctl.startup=0.0.0.0 \
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200292 -C cluster0.NUM_CORES=4 -C cluster1.NUM_CORES=4 -C bp.secure_memory=1 \
293 -C bp.secureflashloader.fname=trusted-firmware-a/build/fvp/debug/bl1.bin \
294 -C bp.flashloader0.fname=trusted-firmware-a/build/fvp/debug/fip.bin \
295 -C bp.pl011_uart0.out_file=fvp-uart0.log -C bp.pl011_uart1.out_file=fvp-uart1.log \
296 -C bp.pl011_uart2.out_file=fvp-uart2.log \
Olivier Deprez3de57e32022-04-28 18:18:36 +0200297 -C cluster0.has_arm_v8-5=1 -C cluster1.has_arm_v8-5=1 \
298 -C cluster0.has_pointer_authentication=2 -C cluster1.has_pointer_authentication=2 \
299 -C cluster0.has_branch_target_exception=1 -C cluster1.has_branch_target_exception=1 \
300 -C cluster0.memory_tagging_support_level=2 -C cluster1.memory_tagging_support_level=2 \
301 -C bp.dram_metadata.is_enabled=1 \
302 -C pci.pci_smmuv3.mmu.SMMU_AIDR=2 -C pci.pci_smmuv3.mmu.SMMU_IDR0=0x0046123B \
303 -C pci.pci_smmuv3.mmu.SMMU_IDR1=0x00600002 -C pci.pci_smmuv3.mmu.SMMU_IDR3=0x1714 \
304 -C pci.pci_smmuv3.mmu.SMMU_IDR5=0xFFFF0472 -C pci.pci_smmuv3.mmu.SMMU_S_IDR1=0xA0000002 \
305 -C pci.pci_smmuv3.mmu.SMMU_S_IDR2=0 -C pci.pci_smmuv3.mmu.SMMU_S_IDR3=0
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200306
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200307Boot process
308============
309
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200310Loading Hafnium and secure partitions in the secure world
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200311---------------------------------------------------------
312
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200313TF-A BL2 is the bootlader for the SPMC and SPs in the secure world.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200314
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200315SPs may be signed by different parties (SiP, OEM/ODM, TOS vendor, etc.).
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200316Thus they are supplied as distinct signed entities within the FIP flash
317image. The FIP image itself is not signed hence this provides the ability
318to upgrade SPs in the field.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200319
320Booting through TF-A
321--------------------
322
323SP manifests
324~~~~~~~~~~~~
325
326An SP manifest describes SP attributes as defined in `[1]`_
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200327(partition manifest at virtual FF-A instance) in DTS format. It is
328represented as a single file associated with the SP. A sample is
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200329provided by `[5]`_. A binding document is provided by `[6]`_.
330
331Secure Partition packages
332~~~~~~~~~~~~~~~~~~~~~~~~~
333
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200334Secure partitions are bundled as independent package files consisting
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200335of:
336
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200337- a header
338- a DTB
339- an image payload
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200340
341The header starts with a magic value and offset values to SP DTB and
342image payload. Each SP package is loaded independently by BL2 loader
343and verified for authenticity and integrity.
344
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200345The SP package identified by its UUID (matching FF-A uuid property) is
346inserted as a single entry into the FIP at end of the TF-A build flow
347as shown:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200348
349.. code:: shell
350
351 Trusted Boot Firmware BL2: offset=0x1F0, size=0x8AE1, cmdline="--tb-fw"
352 EL3 Runtime Firmware BL31: offset=0x8CD1, size=0x13000, cmdline="--soc-fw"
353 Secure Payload BL32 (Trusted OS): offset=0x1BCD1, size=0x15270, cmdline="--tos-fw"
354 Non-Trusted Firmware BL33: offset=0x30F41, size=0x92E0, cmdline="--nt-fw"
355 HW_CONFIG: offset=0x3A221, size=0x2348, cmdline="--hw-config"
356 TB_FW_CONFIG: offset=0x3C569, size=0x37A, cmdline="--tb-fw-config"
357 SOC_FW_CONFIG: offset=0x3C8E3, size=0x48, cmdline="--soc-fw-config"
358 TOS_FW_CONFIG: offset=0x3C92B, size=0x427, cmdline="--tos-fw-config"
359 NT_FW_CONFIG: offset=0x3CD52, size=0x48, cmdline="--nt-fw-config"
360 B4B5671E-4A90-4FE1-B81F-FB13DAE1DACB: offset=0x3CD9A, size=0xC168, cmdline="--blob"
361 D1582309-F023-47B9-827C-4464F5578FC8: offset=0x48F02, size=0xC168, cmdline="--blob"
362
363.. uml:: ../resources/diagrams/plantuml/fip-secure-partitions.puml
364
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200365Describing secure partitions
366~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200367
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200368A json-formatted description file is passed to the build flow specifying paths
369to the SP binary image and associated DTS partition manifest file. The latter
370is processed by the dtc compiler to generate a DTB fed into the SP package.
J-Alvescfc6e232022-05-24 12:13:08 +0100371Optionally, the partition's json description can contain offsets for both
372the image and partition manifest within the SP package. Both offsets need to be
3734KB aligned, because it is the translation granule supported by Hafnium SPMC.
374These fields can be leveraged to support SPs with S1 translation granules that
375differ from 4KB, and to configure the regions allocated within the SP package,
376as well as to comply with the requirements for the implementation of the boot
377information protocol (see `Passing boot data to the SP`_ for more details). In
378case the offsets are absent in their json node, they default to 0x1000 and
3790x4000 for the manifest offset and image offset respectively.
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200380This file also specifies the SP owner (as an optional field) identifying the
381signing domain in case of dual root CoT.
382The SP owner can either be the silicon or the platform provider. The
383corresponding "owner" field value can either take the value of "SiP" or "Plat".
384In absence of "owner" field, it defaults to "SiP" owner.
Imre Kis3f370fd2022-02-08 18:06:18 +0100385The UUID of the partition can be specified as a field in the description file or
386if it does not exist there the UUID is extracted from the DTS partition
387manifest.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200388
389.. code:: shell
390
391 {
392 "tee1" : {
393 "image": "tee1.bin",
Manish Pandey77870962020-08-12 17:06:25 +0100394 "pm": "tee1.dts",
Imre Kis3f370fd2022-02-08 18:06:18 +0100395 "owner": "SiP",
396 "uuid": "1b1820fe-48f7-4175-8999-d51da00b7c9f"
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200397 },
398
399 "tee2" : {
400 "image": "tee2.bin",
Manish Pandey77870962020-08-12 17:06:25 +0100401 "pm": "tee2.dts",
402 "owner": "Plat"
J-Alvescfc6e232022-05-24 12:13:08 +0100403 },
404
405 "tee3" : {
406 "image": {
407 "file": "tee3.bin",
408 "offset":"0x2000"
409 },
410 "pm": {
411 "file": "tee3.dts",
412 "offset":"0x6000"
413 },
414 "owner": "Plat"
415 },
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200416 }
417
418SPMC manifest
419~~~~~~~~~~~~~
420
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200421This manifest contains the SPMC *attribute* node consumed by the SPMD at boot
422time. It implements `[1]`_ (SP manifest at physical FF-A instance) and serves
423two different cases:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200424
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200425- The SPMC resides at S-EL1: the SPMC manifest is used by the SPMD to setup a
426 SP that co-resides with the SPMC and executes at S-EL1 or Secure Supervisor
427 mode.
428- The SPMC resides at S-EL2: the SPMC manifest is used by the SPMD to setup
429 the environment required by the SPMC to run at S-EL2. SPs run at S-EL1 or
430 S-EL0.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200431
432.. code:: shell
433
434 attribute {
435 spmc_id = <0x8000>;
436 maj_ver = <0x1>;
Olivier Deprez3de57e32022-04-28 18:18:36 +0200437 min_ver = <0x1>;
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200438 exec_state = <0x0>;
439 load_address = <0x0 0x6000000>;
440 entrypoint = <0x0 0x6000000>;
441 binary_size = <0x60000>;
442 };
443
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200444- *spmc_id* defines the endpoint ID value that SPMC can query through
445 ``FFA_ID_GET``.
446- *maj_ver/min_ver*. SPMD checks provided version versus its internal
447 version and aborts if not matching.
448- *exec_state* defines the SPMC execution state (AArch64 or AArch32).
449 Notice Hafnium used as a SPMC only supports AArch64.
450- *load_address* and *binary_size* are mostly used to verify secondary
451 entry points fit into the loaded binary image.
452- *entrypoint* defines the cold boot primary core entry point used by
453 SPMD (currently matches ``BL32_BASE``) to enter the SPMC.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200454
455Other nodes in the manifest are consumed by Hafnium in the secure world.
Olivier Deprez3de57e32022-04-28 18:18:36 +0200456A sample can be found at `[7]`_:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200457
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200458- The *hypervisor* node describes SPs. *is_ffa_partition* boolean attribute
459 indicates a FF-A compliant SP. The *load_address* field specifies the load
Olivier Deprez3de57e32022-04-28 18:18:36 +0200460 address at which BL2 loaded the SP package.
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200461- *cpus* node provide the platform topology and allows MPIDR to VMPIDR mapping.
Olivier Deprez3de57e32022-04-28 18:18:36 +0200462 Note the primary core is declared first, then secondary cores are declared
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200463 in reverse order.
J-Alves79d3a022023-05-15 16:50:58 +0100464- The *memory* nodes provide platform information on the ranges of memory
465 available for use by SPs at runtime. These ranges relate to either
466 secure or non-secure memory, depending on the *device_type* field.
467 If the field specifies "memory" the range is secure, else if it specifies
468 "ns-memory" the memory is non-secure. The system integrator must exclude
469 the memory used by other components that are not SPs, such as the monitor,
470 or the SPMC itself, the OS Kernel/Hypervisor, or other NWd VMs. The SPMC
471 limits the SP's address space such that they do not access memory outside
472 of those ranges.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200473
474SPMC boot
475~~~~~~~~~
476
477The SPMC is loaded by BL2 as the BL32 image.
478
Olivier Deprez4ab7a4a2021-06-21 09:47:13 +0200479The SPMC manifest is loaded by BL2 as the ``TOS_FW_CONFIG`` image `[9]`_.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200480
481BL2 passes the SPMC manifest address to BL31 through a register.
482
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200483At boot time, the SPMD in BL31 runs from the primary core, initializes the core
Olivier Deprez4ab7a4a2021-06-21 09:47:13 +0200484contexts and launches the SPMC (BL32) passing the following information through
485registers:
486
487- X0 holds the ``TOS_FW_CONFIG`` physical address (or SPMC manifest blob).
488- X1 holds the ``HW_CONFIG`` physical address.
489- X4 holds the currently running core linear id.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200490
491Loading of SPs
492~~~~~~~~~~~~~~
493
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200494At boot time, BL2 loads SPs sequentially in addition to the SPMC as depicted
495below:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200496
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200497.. uml:: ../resources/diagrams/plantuml/bl2-loading-sp.puml
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200498
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200499Note this boot flow is an implementation sample on Arm's FVP platform.
500Platforms not using TF-A's *Firmware CONFiguration* framework would adjust to a
Olivier Deprez3de57e32022-04-28 18:18:36 +0200501different boot flow. The flow restricts to a maximum of 8 secure partitions.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200502
503Secure boot
504~~~~~~~~~~~
505
506The SP content certificate is inserted as a separate FIP item so that BL2 loads SPMC,
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200507SPMC manifest, secure partitions and verifies them for authenticity and integrity.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200508Refer to TBBR specification `[3]`_.
509
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200510The multiple-signing domain feature (in current state dual signing domain `[8]`_) allows
511the use of two root keys namely S-ROTPK and NS-ROTPK:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200512
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200513- SPMC (BL32) and SPMC manifest are signed by the SiP using the S-ROTPK.
514- BL33 may be signed by the OEM using NS-ROTPK.
515- An SP may be signed either by SiP (using S-ROTPK) or by OEM (using NS-ROTPK).
Olivier Deprez3de57e32022-04-28 18:18:36 +0200516- A maximum of 4 partitions can be signed with the S-ROTPK key and 4 partitions
517 signed with the NS-ROTPK key.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200518
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200519Also refer to `Describing secure partitions`_ and `TF-A build options`_ sections.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200520
521Hafnium in the secure world
522===========================
523
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200524General considerations
525----------------------
526
527Build platform for the secure world
528~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
529
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200530In the Hafnium reference implementation specific code parts are only relevant to
531the secure world. Such portions are isolated in architecture specific files
532and/or enclosed by a ``SECURE_WORLD`` macro.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200533
Olivier Deprez3de57e32022-04-28 18:18:36 +0200534Secure partitions scheduling
535~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200536
Olivier Deprez3de57e32022-04-28 18:18:36 +0200537The FF-A specification `[1]`_ provides two ways to relinquinsh CPU time to
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200538secure partitions. For this a VM (Hypervisor or OS kernel), or SP invokes one of:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200539
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200540- the FFA_MSG_SEND_DIRECT_REQ interface.
541- the FFA_RUN interface.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200542
Olivier Deprez3de57e32022-04-28 18:18:36 +0200543Additionally a secure interrupt can pre-empt the normal world execution and give
544CPU cycles by transitioning to EL3 and S-EL2.
545
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200546Platform topology
547~~~~~~~~~~~~~~~~~
548
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200549The *execution-ctx-count* SP manifest field can take the value of one or the
Olivier Deprez3de57e32022-04-28 18:18:36 +0200550total number of PEs. The FF-A specification `[1]`_ recommends the
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200551following SP types:
552
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200553- Pinned MP SPs: an execution context matches a physical PE. MP SPs must
554 implement the same number of ECs as the number of PEs in the platform.
555- Migratable UP SPs: a single execution context can run and be migrated on any
556 physical PE. Such SP declares a single EC in its SP manifest. An UP SP can
557 receive a direct message request originating from any physical core targeting
558 the single execution context.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200559
560Parsing SP partition manifests
561------------------------------
562
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200563Hafnium consumes SP manifests as defined in `[1]`_ and `SP manifests`_.
564Note the current implementation may not implement all optional fields.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200565
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200566The SP manifest may contain memory and device regions nodes. In case of
567an S-EL2 SPMC:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200568
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200569- Memory regions are mapped in the SP EL1&0 Stage-2 translation regime at
570 load time (or EL1&0 Stage-1 for an S-EL1 SPMC). A memory region node can
571 specify RX/TX buffer regions in which case it is not necessary for an SP
J-Alves79d3a022023-05-15 16:50:58 +0100572 to explicitly invoke the ``FFA_RXTX_MAP`` interface. The memory referred
573 shall be contained within the memory ranges defined in SPMC manifest. The
574 NS bit in the attributes field should be consistent with the security
575 state of the range that it relates to. I.e. non-secure memory shall be
576 part of a non-secure memory range, and secure memory shall be contained
577 in a secure memory range of a given platform.
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200578- Device regions are mapped in the SP EL1&0 Stage-2 translation regime (or
579 EL1&0 Stage-1 for an S-EL1 SPMC) as peripherals and possibly allocate
580 additional resources (e.g. interrupts).
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200581
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200582For the S-EL2 SPMC, base addresses for memory and device region nodes are IPAs
583provided the SPMC identity maps IPAs to PAs within SP EL1&0 Stage-2 translation
584regime.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200585
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200586Note: in the current implementation both VTTBR_EL2 and VSTTBR_EL2 point to the
587same set of page tables. It is still open whether two sets of page tables shall
588be provided per SP. The memory region node as defined in the specification
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200589provides a memory security attribute hinting to map either to the secure or
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200590non-secure EL1&0 Stage-2 table if it exists.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200591
592Passing boot data to the SP
593---------------------------
594
J-Alvescfc6e232022-05-24 12:13:08 +0100595In `[1]`_ , the section "Boot information protocol" defines a method for passing
596data to the SPs at boot time. It specifies the format for the boot information
597descriptor and boot information header structures, which describe the data to be
598exchanged between SPMC and SP.
599The specification also defines the types of data that can be passed.
600The aggregate of both the boot info structures and the data itself is designated
601the boot information blob, and is passed to a Partition as a contiguous memory
602region.
603
604Currently, the SPM implementation supports the FDT type which is used to pass the
605partition's DTB manifest.
606
607The region for the boot information blob is allocated through the SP package.
608
609.. image:: ../resources/diagrams/partition-package.png
610
611To adjust the space allocated for the boot information blob, the json description
612of the SP (see section `Describing secure partitions`_) shall be updated to contain
613the manifest offset. If no offset is provided the manifest offset defaults to 0x1000,
614which is the page size in the Hafnium SPMC.
615
616The configuration of the boot protocol is done in the SPs manifest. As defined by
617the specification, the manifest field 'gp-register-num' configures the GP register
618which shall be used to pass the address to the partitions boot information blob when
619booting the partition.
620In addition, the Hafnium SPMC implementation requires the boot information arguments
621to be listed in a designated DT node:
622
623.. code:: shell
624
625 boot-info {
626 compatible = "arm,ffa-manifest-boot-info";
627 ffa_manifest;
628 };
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200629
J-Alvescfc6e232022-05-24 12:13:08 +0100630The whole secure partition package image (see `Secure Partition packages`_) is
631mapped to the SP secure EL1&0 Stage-2 translation regime. As such, the SP can
632retrieve the address for the boot information blob in the designated GP register,
633process the boot information header and descriptors, access its own manifest
634DTB blob and extract its partition manifest properties.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200635
636SP Boot order
637-------------
638
639SP manifests provide an optional boot order attribute meant to resolve
640dependencies such as an SP providing a service required to properly boot
J-Alves855fc882021-12-14 16:02:27 +0000641another SP. SPMC boots the SPs in accordance to the boot order attribute,
642lowest to the highest value. If the boot order attribute is absent from the FF-A
643manifest, the SP is treated as if it had the highest boot order value
644(i.e. lowest booting priority).
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200645
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200646It is possible for an SP to call into another SP through a direct request
647provided the latter SP has already been booted.
648
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200649Boot phases
650-----------
651
652Primary core boot-up
653~~~~~~~~~~~~~~~~~~~~
654
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200655Upon boot-up, BL31 hands over to the SPMC (BL32) on the primary boot physical
656core. The SPMC performs its platform initializations and registers the SPMC
657secondary physical core entry point physical address by the use of the
J-Alvesc9ca31c2021-10-04 14:33:51 +0100658`FFA_SECONDARY_EP_REGISTER`_ interface (SMC invocation from the SPMC to the SPMD
659at secure physical FF-A instance).
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200660
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200661The SPMC then creates secure partitions based on SP packages and manifests. Each
662secure partition is launched in sequence (`SP Boot order`_) on their "primary"
663execution context. If the primary boot physical core linear id is N, an MP SP is
664started using EC[N] on PE[N] (see `Platform topology`_). If the partition is a
665UP SP, it is started using its unique EC0 on PE[N].
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200666
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200667The SP primary EC (or the EC used when the partition is booted as described
668above):
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200669
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200670- Performs the overall SP boot time initialization, and in case of a MP SP,
671 prepares the SP environment for other execution contexts.
672- In the case of a MP SP, it invokes the FFA_SECONDARY_EP_REGISTER at secure
673 virtual FF-A instance (SMC invocation from SP to SPMC) to provide the IPA
674 entry point for other execution contexts.
675- Exits through ``FFA_MSG_WAIT`` to indicate successful initialization or
676 ``FFA_ERROR`` in case of failure.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200677
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200678Secondary cores boot-up
679~~~~~~~~~~~~~~~~~~~~~~~
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200680
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200681Once the system is started and NWd brought up, a secondary physical core is
682woken up by the ``PSCI_CPU_ON`` service invocation. The TF-A SPD hook mechanism
683calls into the SPMD on the newly woken up physical core. Then the SPMC is
684entered at the secondary physical core entry point.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200685
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200686In the current implementation, the first SP is resumed on the coresponding EC
687(the virtual CPU which matches the physical core). The implication is that the
688first SP must be a MP SP.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200689
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200690In a linux based system, once secure and normal worlds are booted but prior to
691a NWd FF-A driver has been loaded:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200692
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200693- The first SP has initialized all its ECs in response to primary core boot up
694 (at system initialization) and secondary core boot up (as a result of linux
695 invoking PSCI_CPU_ON for all secondary cores).
696- Other SPs have their first execution context initialized as a result of secure
697 world initialization on the primary boot core. Other ECs for those SPs have to
698 be run first through ffa_run to complete their initialization (which results
699 in the EC completing with FFA_MSG_WAIT).
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200700
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200701Refer to `Power management`_ for further details.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200702
J-Alvesc9ca31c2021-10-04 14:33:51 +0100703Notifications
704-------------
705
706The FF-A v1.1 specification `[1]`_ defines notifications as an asynchronous
707communication mechanism with non-blocking semantics. It allows for one FF-A
708endpoint to signal another for service provision, without hindering its current
709progress.
710
711Hafnium currently supports 64 notifications. The IDs of each notification define
712a position in a 64-bit bitmap.
713
714The signaling of notifications can interchangeably happen between NWd and SWd
715FF-A endpoints.
716
717The SPMC is in charge of managing notifications from SPs to SPs, from SPs to
718VMs, and from VMs to SPs. An hypervisor component would only manage
719notifications from VMs to VMs. Given the SPMC has no visibility of the endpoints
720deployed in NWd, the Hypervisor or OS kernel must invoke the interface
721FFA_NOTIFICATION_BITMAP_CREATE to allocate the notifications bitmap per FF-A
722endpoint in the NWd that supports it.
723
724A sender can signal notifications once the receiver has provided it with
725permissions. Permissions are provided by invoking the interface
726FFA_NOTIFICATION_BIND.
727
728Notifications are signaled by invoking FFA_NOTIFICATION_SET. Henceforth
729they are considered to be in a pending sate. The receiver can retrieve its
730pending notifications invoking FFA_NOTIFICATION_GET, which, from that moment,
731are considered to be handled.
732
733Per the FF-A v1.1 spec, each FF-A endpoint must be associated with a scheduler
734that is in charge of donating CPU cycles for notifications handling. The
735FF-A driver calls FFA_NOTIFICATION_INFO_GET to retrieve the information about
736which FF-A endpoints have pending notifications. The receiver scheduler is
737called and informed by the FF-A driver, and it should allocate CPU cycles to the
738receiver.
739
740There are two types of notifications supported:
Olivier Deprez3de57e32022-04-28 18:18:36 +0200741
J-Alvesc9ca31c2021-10-04 14:33:51 +0100742- Global, which are targeted to a FF-A endpoint and can be handled within any of
Olivier Deprez3de57e32022-04-28 18:18:36 +0200743 its execution contexts, as determined by the scheduler of the system.
J-Alvesc9ca31c2021-10-04 14:33:51 +0100744- Per-vCPU, which are targeted to a FF-A endpoint and to be handled within a
Olivier Deprez3de57e32022-04-28 18:18:36 +0200745 a specific execution context, as determined by the sender.
J-Alvesc9ca31c2021-10-04 14:33:51 +0100746
747The type of a notification is set when invoking FFA_NOTIFICATION_BIND to give
748permissions to the sender.
749
750Notification signaling resorts to two interrupts:
J-Alvesc9ca31c2021-10-04 14:33:51 +0100751
Olivier Deprez3de57e32022-04-28 18:18:36 +0200752- Schedule Receiver Interrupt: non-secure physical interrupt to be handled by
753 the FF-A driver within the receiver scheduler. At initialization the SPMC
754 donates a SGI ID chosen from the secure SGI IDs range and configures it as
755 non-secure. The SPMC triggers this SGI on the currently running core when
756 there are pending notifications, and the respective receivers need CPU cycles
757 to handle them.
758- Notifications Pending Interrupt: virtual interrupt to be handled by the
759 receiver of the notification. Set when there are pending notifications for the
760 given secure partition. The NPI is pended when the NWd relinquishes CPU cycles
761 to an SP.
J-Alvesc9ca31c2021-10-04 14:33:51 +0100762
Olivier Deprez3de57e32022-04-28 18:18:36 +0200763The notifications receipt support is enabled in the partition FF-A manifest.
J-Alvesc9ca31c2021-10-04 14:33:51 +0100764
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200765Mandatory interfaces
766--------------------
767
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200768The following interfaces are exposed to SPs:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200769
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200770- ``FFA_VERSION``
771- ``FFA_FEATURES``
772- ``FFA_RX_RELEASE``
773- ``FFA_RXTX_MAP``
J-Alvesc9ca31c2021-10-04 14:33:51 +0100774- ``FFA_RXTX_UNMAP``
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200775- ``FFA_PARTITION_INFO_GET``
776- ``FFA_ID_GET``
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200777- ``FFA_MSG_WAIT``
778- ``FFA_MSG_SEND_DIRECT_REQ``
779- ``FFA_MSG_SEND_DIRECT_RESP``
780- ``FFA_MEM_DONATE``
781- ``FFA_MEM_LEND``
782- ``FFA_MEM_SHARE``
783- ``FFA_MEM_RETRIEVE_REQ``
784- ``FFA_MEM_RETRIEVE_RESP``
785- ``FFA_MEM_RELINQUISH``
Olivier Deprez3de57e32022-04-28 18:18:36 +0200786- ``FFA_MEM_FRAG_RX``
787- ``FFA_MEM_FRAG_TX``
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200788- ``FFA_MEM_RECLAIM``
Olivier Deprez3de57e32022-04-28 18:18:36 +0200789- ``FFA_RUN``
J-Alvesc9ca31c2021-10-04 14:33:51 +0100790
Olivier Deprez3de57e32022-04-28 18:18:36 +0200791As part of the FF-A v1.1 support, the following interfaces were added:
J-Alvesc9ca31c2021-10-04 14:33:51 +0100792
793 - ``FFA_NOTIFICATION_BITMAP_CREATE``
794 - ``FFA_NOTIFICATION_BITMAP_DESTROY``
795 - ``FFA_NOTIFICATION_BIND``
796 - ``FFA_NOTIFICATION_UNBIND``
797 - ``FFA_NOTIFICATION_SET``
798 - ``FFA_NOTIFICATION_GET``
799 - ``FFA_NOTIFICATION_INFO_GET``
800 - ``FFA_SPM_ID_GET``
801 - ``FFA_SECONDARY_EP_REGISTER``
Olivier Deprez3de57e32022-04-28 18:18:36 +0200802 - ``FFA_MEM_PERM_GET``
803 - ``FFA_MEM_PERM_SET``
J-Alves4256a272022-10-26 13:46:37 +0100804 - ``FFA_MSG_SEND2``
805 - ``FFA_RX_ACQUIRE``
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200806
807FFA_VERSION
808~~~~~~~~~~~
809
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200810``FFA_VERSION`` requires a *requested_version* parameter from the caller.
811The returned value depends on the caller:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200812
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200813- Hypervisor or OS kernel in NS-EL1/EL2: the SPMD returns the SPMC version
814 specified in the SPMC manifest.
815- SP: the SPMC returns its own implemented version.
816- SPMC at S-EL1/S-EL2: the SPMD returns its own implemented version.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200817
818FFA_FEATURES
819~~~~~~~~~~~~
820
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200821FF-A features supported by the SPMC may be discovered by secure partitions at
822boot (that is prior to NWd is booted) or run-time.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200823
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200824The SPMC calling FFA_FEATURES at secure physical FF-A instance always get
825FFA_SUCCESS from the SPMD.
826
827The request made by an Hypervisor or OS kernel is forwarded to the SPMC and
828the response relayed back to the NWd.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200829
830FFA_RXTX_MAP/FFA_RXTX_UNMAP
831~~~~~~~~~~~~~~~~~~~~~~~~~~~
832
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200833When invoked from a secure partition FFA_RXTX_MAP maps the provided send and
834receive buffers described by their IPAs to the SP EL1&0 Stage-2 translation
835regime as secure buffers in the MMU descriptors.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200836
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200837When invoked from the Hypervisor or OS kernel, the buffers are mapped into the
838SPMC EL2 Stage-1 translation regime and marked as NS buffers in the MMU
J-Alves4256a272022-10-26 13:46:37 +0100839descriptors. The provided addresses may be owned by a VM in the normal world,
840which is expected to receive messages from the secure world. The SPMC will in
841this case allocate internal state structures to facilitate RX buffer access
842synchronization (through FFA_RX_ACQUIRE interface), and to permit SPs to send
843messages.
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200844
J-Alvesc9ca31c2021-10-04 14:33:51 +0100845The FFA_RXTX_UNMAP unmaps the RX/TX pair from the translation regime of the
846caller, either it being the Hypervisor or OS kernel, as well as a secure
847partition.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200848
849FFA_PARTITION_INFO_GET
850~~~~~~~~~~~~~~~~~~~~~~
851
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200852Partition info get call can originate:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200853
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200854- from SP to SPMC
855- from Hypervisor or OS kernel to SPMC. The request is relayed by the SPMD.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200856
857FFA_ID_GET
858~~~~~~~~~~
859
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200860The FF-A id space is split into a non-secure space and secure space:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200861
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200862- FF-A ID with bit 15 clear relates to VMs.
863- FF-A ID with bit 15 set related to SPs.
864- FF-A IDs 0, 0xffff, 0x8000 are assigned respectively to the Hypervisor, SPMD
865 and SPMC.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200866
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200867The SPMD returns:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200868
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200869- The default zero value on invocation from the Hypervisor.
870- The ``spmc_id`` value specified in the SPMC manifest on invocation from
871 the SPMC (see `SPMC manifest`_)
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200872
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200873This convention helps the SPMC to determine the origin and destination worlds in
874an FF-A ABI invocation. In particular the SPMC shall filter unauthorized
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200875transactions in its world switch routine. It must not be permitted for a VM to
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200876use a secure FF-A ID as origin world by spoofing:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200877
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200878- A VM-to-SP direct request/response shall set the origin world to be non-secure
879 (FF-A ID bit 15 clear) and destination world to be secure (FF-A ID bit 15
880 set).
881- Similarly, an SP-to-SP direct request/response shall set the FF-A ID bit 15
882 for both origin and destination IDs.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200883
884An incoming direct message request arriving at SPMD from NWd is forwarded to
885SPMC without a specific check. The SPMC is resumed through eret and "knows" the
886message is coming from normal world in this specific code path. Thus the origin
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200887endpoint ID must be checked by SPMC for being a normal world ID.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200888
889An SP sending a direct message request must have bit 15 set in its origin
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200890endpoint ID and this can be checked by the SPMC when the SP invokes the ABI.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200891
892The SPMC shall reject the direct message if the claimed world in origin endpoint
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200893ID is not consistent:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200894
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200895- It is either forwarded by SPMD and thus origin endpoint ID must be a "normal
896 world ID",
897- or initiated by an SP and thus origin endpoint ID must be a "secure world ID".
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200898
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200899
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200900FFA_MSG_SEND_DIRECT_REQ/FFA_MSG_SEND_DIRECT_RESP
901~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200902
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200903This is a mandatory interface for secure partitions consisting in direct request
904and responses with the following rules:
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200905
Olivier Deprez5e0a73f2021-04-30 14:42:24 +0200906- An SP can send a direct request to another SP.
907- An SP can receive a direct request from another SP.
908- An SP can send a direct response to another SP.
909- An SP cannot send a direct request to an Hypervisor or OS kernel.
910- An Hypervisor or OS kernel can send a direct request to an SP.
911- An SP can send a direct response to an Hypervisor or OS kernel.
Olivier Deprezecb2fe52020-04-02 15:38:02 +0200912
J-Alvesc9ca31c2021-10-04 14:33:51 +0100913FFA_NOTIFICATION_BITMAP_CREATE/FFA_NOTIFICATION_BITMAP_DESTROY
914~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
915
916The secure partitions notifications bitmap are statically allocated by the SPMC.
917Hence, this interface is not to be issued by secure partitions.
918
919At initialization, the SPMC is not aware of VMs/partitions deployed in the
920normal world. Hence, the Hypervisor or OS kernel must use both ABIs for SPMC
921to be prepared to handle notifications for the provided VM ID.
922
923FFA_NOTIFICATION_BIND/FFA_NOTIFICATION_UNBIND
924~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
925
926Pair of interfaces to manage permissions to signal notifications. Prior to
927handling notifications, an FF-A endpoint must allow a given sender to signal a
928bitmap of notifications.
929
930If the receiver doesn't have notification support enabled in its FF-A manifest,
931it won't be able to bind notifications, hence forbidding it to receive any
932notifications.
933
934FFA_NOTIFICATION_SET/FFA_NOTIFICATION_GET
935~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
936
Olivier Deprez3de57e32022-04-28 18:18:36 +0200937FFA_NOTIFICATION_GET retrieves all pending global notifications and
938per-vCPU notifications targeted to the current vCPU.
J-Alvesc9ca31c2021-10-04 14:33:51 +0100939
Olivier Deprez3de57e32022-04-28 18:18:36 +0200940Hafnium maintains a global count of pending notifications which gets incremented
941and decremented when handling FFA_NOTIFICATION_SET and FFA_NOTIFICATION_GET
942respectively. A delayed SRI is triggered if the counter is non-zero when the
943SPMC returns to normal world.
J-Alvesc9ca31c2021-10-04 14:33:51 +0100944
945FFA_NOTIFICATION_INFO_GET
946~~~~~~~~~~~~~~~~~~~~~~~~~
947
Olivier Deprez3de57e32022-04-28 18:18:36 +0200948Hafnium maintains a global count of pending notifications whose information
949has been retrieved by this interface. The count is incremented and decremented
950when handling FFA_NOTIFICATION_INFO_GET and FFA_NOTIFICATION_GET respectively.
951It also tracks notifications whose information has been retrieved individually,
J-Alvesc9ca31c2021-10-04 14:33:51 +0100952such that it avoids duplicating returned information for subsequent calls to
953FFA_NOTIFICATION_INFO_GET. For each notification, this state information is
954reset when receiver called FFA_NOTIFICATION_GET to retrieve them.
955
956FFA_SPM_ID_GET
957~~~~~~~~~~~~~~
958
Olivier Deprez3de57e32022-04-28 18:18:36 +0200959Returns the FF-A ID allocated to an SPM component which can be one of SPMD
960or SPMC.
J-Alvesc9ca31c2021-10-04 14:33:51 +0100961
Olivier Deprez3de57e32022-04-28 18:18:36 +0200962At initialization, the SPMC queries the SPMD for the SPMC ID, using the
963FFA_ID_GET interface, and records it. The SPMC can also query the SPMD ID using
964the FFA_SPM_ID_GET interface at the secure physical FF-A instance.
J-Alvesc9ca31c2021-10-04 14:33:51 +0100965
Olivier Deprez3de57e32022-04-28 18:18:36 +0200966Secure partitions call this interface at the virtual FF-A instance, to which
967the SPMC returns the priorly retrieved SPMC ID.
J-Alvesc9ca31c2021-10-04 14:33:51 +0100968
Olivier Deprez3de57e32022-04-28 18:18:36 +0200969The Hypervisor or OS kernel can issue the FFA_SPM_ID_GET call handled by the
970SPMD, which returns the SPMC ID.
J-Alvesc9ca31c2021-10-04 14:33:51 +0100971
972FFA_SECONDARY_EP_REGISTER
973~~~~~~~~~~~~~~~~~~~~~~~~~
974
975When the SPMC boots, all secure partitions are initialized on their primary
976Execution Context.
977
Olivier Deprez3de57e32022-04-28 18:18:36 +0200978The FFA_SECONDARY_EP_REGISTER interface is to be used by a secure partition
J-Alvesc9ca31c2021-10-04 14:33:51 +0100979from its first execution context, to provide the entry point address for
980secondary execution contexts.
981
982A secondary EC is first resumed either upon invocation of PSCI_CPU_ON from
983the NWd or by invocation of FFA_RUN.
984
J-Alves4256a272022-10-26 13:46:37 +0100985FFA_RX_ACQUIRE/FFA_RX_RELEASE
986~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
987
988The RX buffers can be used to pass information to an FF-A endpoint in the
989following scenarios:
990
991 - When it was targetted by a FFA_MSG_SEND2 invokation from another endpoint.
992 - Return the result of calling ``FFA_PARTITION_INFO_GET``.
993 - In a memory share operation, as part of the ``FFA_MEM_RETRIEVE_RESP``,
994 with the memory descriptor of the shared memory.
995
996If a normal world VM is expected to exchange messages with secure world,
997its RX/TX buffer addresses are forwarded to the SPMC via FFA_RXTX_MAP ABI,
998and are from this moment owned by the SPMC.
999The hypervisor must call the FFA_RX_ACQUIRE interface before attempting
1000to use the RX buffer, in any of the aforementioned scenarios. A successful
1001call to FFA_RX_ACQUIRE transfers ownership of RX buffer to hypervisor, such
1002that it can be safely used.
1003
1004The FFA_RX_RELEASE interface is used after the FF-A endpoint is done with
1005processing the data received in its RX buffer. If the RX buffer has been
1006acquired by the hypervisor, the FFA_RX_RELEASE call must be forwarded to
1007the SPMC to reestablish SPMC's RX ownership.
1008
1009An attempt from an SP to send a message to a normal world VM whose RX buffer
1010was acquired by the hypervisor fails with error code FFA_BUSY, to preserve
1011the RX buffer integrity.
1012The operation could then be conducted after FFA_RX_RELEASE.
1013
1014FFA_MSG_SEND2
1015~~~~~~~~~~~~~
1016
1017Hafnium copies a message from the sender TX buffer into receiver's RX buffer.
1018For messages from SPs to VMs, operation is only possible if the SPMC owns
1019the receiver's RX buffer.
1020
1021Both receiver and sender need to enable support for indirect messaging,
1022in their respective partition manifest. The discovery of support
1023of such feature can be done via FFA_PARTITION_INFO_GET.
1024
1025On a successful message send, Hafnium pends an RX buffer full framework
1026notification for the receiver, to inform it about a message in the RX buffer.
1027
1028The handling of framework notifications is similar to that of
1029global notifications. Binding of these is not necessary, as these are
1030reserved to be used by the hypervisor or SPMC.
1031
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001032SPMC-SPMD direct requests/responses
1033-----------------------------------
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001034
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001035Implementation-defined FF-A IDs are allocated to the SPMC and SPMD.
1036Using those IDs in source/destination fields of a direct request/response
1037permits SPMD to SPMC communication and either way.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001038
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001039- SPMC to SPMD direct request/response uses SMC conduit.
1040- SPMD to SPMC direct request/response uses ERET conduit.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001041
Olivier Deprez3de57e32022-04-28 18:18:36 +02001042This is used in particular to convey power management messages.
1043
J-Alves743161d2022-10-26 15:28:51 +01001044Memory Sharing
1045--------------
1046
1047Hafnium implements the following memory sharing interfaces:
1048
1049 - ``FFA_MEM_SHARE`` - for shared access between lender and borrower.
1050 - ``FFA_MEM_LEND`` - borrower to obtain exclusive access, though lender
1051 retains ownership of the memory.
1052 - ``FFA_MEM_DONATE`` - lender permanently relinquishes ownership of memory
1053 to the borrower.
1054
1055The ``FFA_MEM_RETRIEVE_REQ`` interface is for the borrower to request the
1056memory to be mapped into its address space: for S-EL1 partitions the SPM updates
1057their stage 2 translation regime; for S-EL0 partitions the SPM updates their
1058stage 1 translation regime. On a successful call, the SPMC responds back with
1059``FFA_MEM_RETRIEVE_RESP``.
1060
1061The ``FFA_MEM_RELINQUISH`` interface is for when the borrower is done with using
1062a memory region.
1063
1064The ``FFA_MEM_RECLAIM`` interface is for the owner of the memory to reestablish
1065its ownership and exclusive access to the memory shared.
1066
1067The memory transaction descriptors are transmitted via RX/TX buffers. In
1068situations where the size of the memory transaction descriptor exceeds the
1069size of the RX/TX buffers, Hafnium provides support for fragmented transmission
1070of the full transaction descriptor. The ``FFA_MEM_FRAG_RX`` and ``FFA_MEM_FRAG_TX``
1071interfaces are for receiving and transmitting the next fragment, respectively.
1072
1073If lender and borrower(s) are SPs, all memory sharing operations are supported.
1074
1075Hafnium also supports memory sharing operations between the normal world and the
1076secure world. If there is an SP involved, the SPMC allocates data to track the
1077state of the operation.
1078
1079The SPMC is also the designated allocator for the memory handle. The hypervisor
1080or OS kernel has the possibility to rely on the SPMC to maintain the state
1081of the operation, thus saving memory.
1082A lender SP can only donate NS memory to a borrower from the normal world.
1083
1084The SPMC supports the hypervisor retrieve request, as defined by the FF-A
1085v1.1 EAC0 specification, in section 16.4.3. The intent is to aid with operations
1086that the hypervisor must do for a VM retriever. For example, when handling
1087an FFA_MEM_RECLAIM, if the hypervisor relies on SPMC to keep the state
1088of the operation, the hypervisor retrieve request can be used to obtain
1089that state information, do the necessary validations, and update stage 2
1090memory translation.
1091
1092Hafnium also supports memory lend and share targetting multiple borrowers.
1093This is the case for a lender SP to multiple SPs, and for a lender VM to
1094multiple endpoints (from both secure world and normal world). If there is
1095at least one borrower VM, the hypervisor is in charge of managing its
1096stage 2 translation on a successful memory retrieve.
1097The semantics of ``FFA_MEM_DONATE`` implies ownership transmission,
1098which should target only one partition.
1099
1100The memory share interfaces are backwards compatible with memory transaction
1101descriptors from FF-A v1.0. These get translated to FF-A v1.1 descriptors for
1102Hafnium's internal processing of the operation. If the FF-A version of a
1103borrower is v1.0, Hafnium provides FF-A v1.0 compliant memory transaction
1104descriptors on memory retrieve response.
1105
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001106PE MMU configuration
1107--------------------
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001108
Olivier Deprez3de57e32022-04-28 18:18:36 +02001109With secure virtualization enabled (``HCR_EL2.VM = 1``) and for S-EL1
1110partitions, two IPA spaces (secure and non-secure) are output from the
1111secure EL1&0 Stage-1 translation.
1112The EL1&0 Stage-2 translation hardware is fed by:
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001113
Olivier Deprez3de57e32022-04-28 18:18:36 +02001114- A secure IPA when the SP EL1&0 Stage-1 MMU is disabled.
1115- One of secure or non-secure IPA when the secure EL1&0 Stage-1 MMU is enabled.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001116
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001117``VTCR_EL2`` and ``VSTCR_EL2`` provide configuration bits for controlling the
Olivier Deprez3de57e32022-04-28 18:18:36 +02001118NS/S IPA translations. The following controls are set up:
1119``VSTCR_EL2.SW = 0`` , ``VSTCR_EL2.SA = 0``, ``VTCR_EL2.NSW = 0``,
1120``VTCR_EL2.NSA = 1``:
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001121
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001122- Stage-2 translations for the NS IPA space access the NS PA space.
1123- Stage-2 translation table walks for the NS IPA space are to the secure PA space.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001124
Olivier Deprez3de57e32022-04-28 18:18:36 +02001125Secure and non-secure IPA regions (rooted to by ``VTTBR_EL2`` and ``VSTTBR_EL2``)
1126use the same set of Stage-2 page tables within a SP.
1127
1128The ``VTCR_EL2/VSTCR_EL2/VTTBR_EL2/VSTTBR_EL2`` virtual address space
1129configuration is made part of a vCPU context.
1130
1131For S-EL0 partitions with VHE enabled, a single secure EL2&0 Stage-1 translation
1132regime is used for both Hafnium and the partition.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001133
Madhukar Pappireddyd0889a32022-10-03 14:26:48 -05001134Schedule modes and SP Call chains
1135---------------------------------
1136
1137An SP execution context is said to be in SPMC scheduled mode if CPU cycles are
1138allocated to it by SPMC. Correspondingly, an SP execution context is said to be
1139in Normal world scheduled mode if CPU cycles are allocated by the normal world.
1140
1141A call chain represents all SPs in a sequence of invocations of a direct message
1142request. When execution on a PE is in the secure state, only a single call chain
1143that runs in the Normal World scheduled mode can exist. FF-A v1.1 spec allows
1144any number of call chains to run in the SPMC scheduled mode but the Hafnium
1145SPMC restricts the number of call chains in SPMC scheduled mode to only one for
1146keeping the implementation simple.
1147
1148Partition runtime models
1149------------------------
1150
1151The runtime model of an endpoint describes the transitions permitted for an
1152execution context between various states. These are the four partition runtime
1153models supported (refer to `[1]`_ section 7):
1154
1155 - RTM_FFA_RUN: runtime model presented to an execution context that is
1156 allocated CPU cycles through FFA_RUN interface.
1157 - RTM_FFA_DIR_REQ: runtime model presented to an execution context that is
1158 allocated CPU cycles through FFA_MSG_SEND_DIRECT_REQ interface.
1159 - RTM_SEC_INTERRUPT: runtime model presented to an execution context that is
1160 allocated CPU cycles by SPMC to handle a secure interrupt.
1161 - RTM_SP_INIT: runtime model presented to an execution context that is
1162 allocated CPU cycles by SPMC to initialize its state.
1163
1164If an endpoint execution context attempts to make an invalid transition or a
1165valid transition that could lead to a loop in the call chain, SPMC denies the
1166transition with the help of above runtime models.
1167
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001168Interrupt management
1169--------------------
1170
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001171GIC ownership
1172~~~~~~~~~~~~~
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001173
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001174The SPMC owns the GIC configuration. Secure and non-secure interrupts are
1175trapped at S-EL2. The SPMC manages interrupt resources and allocates interrupt
1176IDs based on SP manifests. The SPMC acknowledges physical interrupts and injects
1177virtual interrupts by setting the use of vIRQ/vFIQ bits before resuming a SP.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001178
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001179Abbreviations:
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001180
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001181 - NS-Int: A non-secure physical interrupt. It requires a switch to the normal
1182 world to be handled if it triggers while execution is in secure world.
1183 - Other S-Int: A secure physical interrupt targeted to an SP different from
1184 the one that is currently running.
1185 - Self S-Int: A secure physical interrupt targeted to the SP that is currently
1186 running.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001187
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001188Non-secure interrupt handling
1189~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001190
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001191This section documents the actions supported in SPMC in response to a non-secure
1192interrupt as per the guidance provided by FF-A v1.1 EAC0 specification.
1193An SP specifies one of the following actions in its partition manifest:
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001194
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001195 - Non-secure interrupt is signaled.
1196 - Non-secure interrupt is signaled after a managed exit.
1197 - Non-secure interrupt is queued.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001198
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001199An SP execution context in a call chain could specify a less permissive action
1200than subsequent SP execution contexts in the same call chain. The less
1201permissive action takes precedence over the more permissive actions specified
1202by the subsequent execution contexts. Please refer to FF-A v1.1 EAC0 section
12038.3.1 for further explanation.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001204
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001205Secure interrupt handling
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001206~~~~~~~~~~~~~~~~~~~~~~~~~
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001207
1208This section documents the support implemented for secure interrupt handling in
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001209SPMC as per the guidance provided by FF-A v1.1 EAC0 specification.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001210The following assumptions are made about the system configuration:
1211
1212 - In the current implementation, S-EL1 SPs are expected to use the para
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001213 virtualized ABIs for interrupt management rather than accessing the virtual
1214 GIC interface.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001215 - Unless explicitly stated otherwise, this support is applicable only for
1216 S-EL1 SPs managed by SPMC.
1217 - Secure interrupts are configured as G1S or G0 interrupts.
1218 - All physical interrupts are routed to SPMC when running a secure partition
1219 execution context.
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001220 - All endpoints with multiple execution contexts have their contexts pinned
1221 to corresponding CPUs. Hence, a secure virtual interrupt cannot be signaled
1222 to a target vCPU that is currently running or blocked on a different
1223 physical CPU.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001224
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001225A physical secure interrupt could trigger while CPU is executing in normal world
1226or secure world.
1227The action of SPMC for a secure interrupt depends on: the state of the target
1228execution context of the SP that is responsible for handling the interrupt;
1229whether the interrupt triggered while execution was in normal world or secure
1230world.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001231
1232Secure interrupt signaling mechanisms
1233~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1234
1235Signaling refers to the mechanisms used by SPMC to indicate to the SP execution
1236context that it has a pending virtual interrupt and to further run the SP
1237execution context, such that it can handle the virtual interrupt. SPMC uses
1238either the FFA_INTERRUPT interface with ERET conduit or vIRQ signal for signaling
1239to S-EL1 SPs. When normal world execution is preempted by a secure interrupt,
1240the SPMD uses the FFA_INTERRUPT ABI with ERET conduit to signal interrupt to SPMC
1241running in S-EL2.
1242
1243+-----------+---------+---------------+---------------------------------------+
1244| SP State | Conduit | Interface and | Description |
1245| | | parameters | |
1246+-----------+---------+---------------+---------------------------------------+
1247| WAITING | ERET, | FFA_INTERRUPT,| SPMC signals to SP the ID of pending |
1248| | vIRQ | Interrupt ID | interrupt. It pends vIRQ signal and |
1249| | | | resumes execution context of SP |
1250| | | | through ERET. |
1251+-----------+---------+---------------+---------------------------------------+
1252| BLOCKED | ERET, | FFA_INTERRUPT | SPMC signals to SP that an interrupt |
1253| | vIRQ | | is pending. It pends vIRQ signal and |
1254| | | | resumes execution context of SP |
1255| | | | through ERET. |
1256+-----------+---------+---------------+---------------------------------------+
1257| PREEMPTED | vIRQ | NA | SPMC pends the vIRQ signal but does |
1258| | | | not resume execution context of SP. |
1259+-----------+---------+---------------+---------------------------------------+
1260| RUNNING | ERET, | NA | SPMC pends the vIRQ signal and resumes|
1261| | vIRQ | | execution context of SP through ERET. |
1262+-----------+---------+---------------+---------------------------------------+
1263
1264Secure interrupt completion mechanisms
1265~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1266
1267A SP signals secure interrupt handling completion to the SPMC through the
1268following mechanisms:
1269
1270 - ``FFA_MSG_WAIT`` ABI if it was in WAITING state.
1271 - ``FFA_RUN`` ABI if its was in BLOCKED state.
1272
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001273This is a remnant of SPMC implementation based on the FF-A v1.0 specification.
1274In the current implementation, S-EL1 SPs use the para-virtualized HVC interface
1275implemented by SPMC to perform priority drop and interrupt deactivation (SPMC
1276configures EOImode = 0, i.e. priority drop and deactivation are done together).
1277The SPMC performs checks to deny the state transition upon invocation of
1278either FFA_MSG_WAIT or FFA_RUN interface if the SP didn't perform the
1279deactivation of the secure virtual interrupt.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001280
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001281If the current SP execution context was preempted by a secure interrupt to be
1282handled by execution context of target SP, SPMC resumes current SP after signal
1283completion by target SP execution context.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001284
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001285Actions for a secure interrupt triggered while execution is in normal world
1286~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001287
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001288+-------------------+----------+-----------------------------------------------+
1289| State of target | Action | Description |
1290| execution context | | |
1291+-------------------+----------+-----------------------------------------------+
1292| WAITING | Signaled | This starts a new call chain in SPMC scheduled|
1293| | | mode. |
1294+-------------------+----------+-----------------------------------------------+
1295| PREEMPTED | Queued | The target execution must have been preempted |
1296| | | by a non-secure interrupt. SPMC queues the |
1297| | | secure virtual interrupt now. It is signaled |
1298| | | when the target execution context next enters |
1299| | | the RUNNING state. |
1300+-------------------+----------+-----------------------------------------------+
1301| BLOCKED, RUNNING | NA | The target execution context is blocked or |
1302| | | running on a different CPU. This is not |
1303| | | supported by current SPMC implementation and |
1304| | | execution hits panic. |
1305+-------------------+----------+-----------------------------------------------+
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001306
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001307If normal world execution was preempted by a secure interrupt, SPMC uses
1308FFA_NORMAL_WORLD_RESUME ABI to indicate completion of secure interrupt handling
1309and further returns execution to normal world.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001310
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001311The following figure describes interrupt handling flow when a secure interrupt
1312triggers while execution is in normal world:
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001313
1314.. image:: ../resources/diagrams/ffa-secure-interrupt-handling-nwd.png
1315
1316A brief description of the events:
1317
1318 - 1) Secure interrupt triggers while normal world is running.
1319 - 2) FIQ gets trapped to EL3.
1320 - 3) SPMD signals secure interrupt to SPMC at S-EL2 using FFA_INTERRUPT ABI.
1321 - 4) SPMC identifies target vCPU of SP and injects virtual interrupt (pends
1322 vIRQ).
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001323 - 5) Assuming SP1 vCPU is in WAITING state, SPMC signals virtual interrupt
1324 using FFA_INTERRUPT with interrupt id as an argument and resumes the SP1
1325 vCPU using ERET in SPMC scheduled mode.
1326 - 6) Execution traps to vIRQ handler in SP1 provided that the virtual
1327 interrupt is not masked i.e., PSTATE.I = 0
1328 - 7) SP1 queries for the pending virtual interrupt id using a paravirtualized
1329 HVC call. SPMC clears the pending virtual interrupt state management
1330 and returns the pending virtual interrupt id.
1331 - 8) SP1 services the virtual interrupt and invokes the paravirtualized
1332 de-activation HVC call. SPMC de-activates the physical interrupt,
1333 clears the fields tracking the secure interrupt and resumes SP1 vCPU.
1334 - 9) SP1 performs secure interrupt completion through FFA_MSG_WAIT ABI.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001335 - 10) SPMC returns control to EL3 using FFA_NORMAL_WORLD_RESUME.
1336 - 11) EL3 resumes normal world execution.
1337
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001338Actions for a secure interrupt triggered while execution is in secure world
1339~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1340
1341+-------------------+----------+------------------------------------------------+
1342| State of target | Action | Description |
1343| execution context | | |
1344+-------------------+----------+------------------------------------------------+
1345| WAITING | Signaled | This starts a new call chain in SPMC scheduled |
1346| | | mode. |
1347+-------------------+----------+------------------------------------------------+
1348| PREEMPTED by Self | Signaled | The target execution context reenters the |
1349| S-Int | | RUNNING state to handle the secure virtual |
1350| | | interrupt. |
1351+-------------------+----------+------------------------------------------------+
1352| PREEMPTED by | Queued | SPMC queues the secure virtual interrupt now. |
1353| NS-Int | | It is signaled when the target execution |
1354| | | context next enters the RUNNING state. |
1355+-------------------+----------+------------------------------------------------+
1356| BLOCKED | Signaled | Both preempted and target execution contexts |
1357| | | must have been part of the Normal world |
1358| | | scheduled call chain. Refer scenario 1 of |
1359| | | Table 8.4 in the FF-A v1.1 EAC0 spec. |
1360+-------------------+----------+------------------------------------------------+
1361| RUNNING | NA | The target execution context is running on a |
1362| | | different CPU. This scenario is not supported |
1363| | | by current SPMC implementation and execution |
1364| | | hits panic. |
1365+-------------------+----------+------------------------------------------------+
1366
1367The following figure describes interrupt handling flow when a secure interrupt
1368triggers while execution is in secure world. We assume OS kernel sends a direct
1369request message to SP1. Further, SP1 sends a direct request message to SP2. SP1
1370enters BLOCKED state and SPMC resumes SP2.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001371
1372.. image:: ../resources/diagrams/ffa-secure-interrupt-handling-swd.png
1373
1374A brief description of the events:
1375
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001376 - 1) Secure interrupt triggers while SP2 is running.
1377 - 2) SP2 gets preempted and execution traps to SPMC as IRQ.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001378 - 3) SPMC finds the target vCPU of secure partition responsible for handling
1379 this secure interrupt. In this scenario, it is SP1.
1380 - 4) SPMC pends vIRQ for SP1 and signals through FFA_INTERRUPT interface.
Madhukar Pappireddy262d7b12022-10-03 18:09:32 -05001381 SPMC further resumes SP1 through ERET conduit. Note that SP1 remains in
1382 Normal world schedule mode.
1383 - 6) Execution traps to vIRQ handler in SP1 provided that the virtual
1384 interrupt is not masked i.e., PSTATE.I = 0
1385 - 7) SP1 queries for the pending virtual interrupt id using a paravirtualized
1386 HVC call. SPMC clears the pending virtual interrupt state management
1387 and returns the pending virtual interrupt id.
1388 - 8) SP1 services the virtual interrupt and invokes the paravirtualized
1389 de-activation HVC call. SPMC de-activates the physical interrupt and
1390 clears the fields tracking the secure interrupt and resumes SP1 vCPU.
1391 - 9) Since SP1 direct request completed with FFA_INTERRUPT, it resumes the
1392 direct request to SP2 by invoking FFA_RUN.
Madhukar Pappireddyb3d37b12021-09-23 14:29:05 -05001393 - 9) SPMC resumes the pre-empted vCPU of SP2.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001394
Madhukar Pappireddy383d6c92023-03-03 14:24:24 -06001395EL3 interrupt handling
1396~~~~~~~~~~~~~~~~~~~~~~
1397
1398In GICv3 based systems, EL3 interrupts are configured as Group0 secure
1399interrupts. Execution traps to SPMC when a Group0 interrupt triggers while an
1400SP is running. Further, SPMC running at S-EL2 uses FFA_EL3_INTR_HANDLE ABI to
1401request EL3 platform firmware to handle a pending Group0 interrupt.
1402Similarly, SPMD registers a handler with interrupt management framework to
1403delegate handling of Group0 interrupt to the platform if the interrupt triggers
1404in normal world.
1405
1406 - Platform hook
1407
1408 - plat_spmd_handle_group0_interrupt
1409
1410 SPMD provides platform hook to handle Group0 secure interrupts. In the
1411 current design, SPMD expects the platform not to delegate handling to the
1412 NWd (such as through SDEI) while processing Group0 interrupts.
1413
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001414Power management
1415----------------
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001416
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001417In platforms with or without secure virtualization:
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001418
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001419- The NWd owns the platform PM policy.
1420- The Hypervisor or OS kernel is the component initiating PSCI service calls.
1421- The EL3 PSCI library is in charge of the PM coordination and control
1422 (eventually writing to platform registers).
1423- While coordinating PM events, the PSCI library calls backs into the Secure
1424 Payload Dispatcher for events the latter has statically registered to.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001425
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001426When using the SPMD as a Secure Payload Dispatcher:
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001427
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001428- A power management event is relayed through the SPD hook to the SPMC.
1429- In the current implementation only cpu on (svc_on_finish) and cpu off
1430 (svc_off) hooks are registered.
1431- The behavior for the cpu on event is described in `Secondary cores boot-up`_.
1432 The SPMC is entered through its secondary physical core entry point.
Olivier Deprez3de57e32022-04-28 18:18:36 +02001433- The cpu off event occurs when the NWd calls PSCI_CPU_OFF. The PM event is
1434 signaled to the SPMC through a power management framework message.
1435 It consists in a SPMD-to-SPMC direct request/response (`SPMC-SPMD direct
1436 requests/responses`_) conveying the event details and SPMC response.
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001437 The SPMD performs a synchronous entry into the SPMC. The SPMC is entered and
1438 updates its internal state to reflect the physical core is being turned off.
1439 In the current implementation no SP is resumed as a consequence. This behavior
1440 ensures a minimal support for CPU hotplug e.g. when initiated by the NWd linux
1441 userspace.
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001442
Olivier Deprez3de57e32022-04-28 18:18:36 +02001443Arm architecture extensions for security hardening
1444==================================================
1445
1446Hafnium supports the following architecture extensions for security hardening:
1447
1448- Pointer authentication (FEAT_PAuth): the extension permits detection of forged
1449 pointers used by ROP type of attacks through the signing of the pointer
1450 value. Hafnium is built with the compiler branch protection option to permit
1451 generation of a pointer authentication code for return addresses (pointer
1452 authentication for instructions). The APIA key is used while Hafnium runs.
1453 A random key is generated at boot time and restored upon entry into Hafnium
1454 at run-time. APIA and other keys (APIB, APDA, APDB, APGA) are saved/restored
1455 in vCPU contexts permitting to enable pointer authentication in VMs/SPs.
1456- Branch Target Identification (FEAT_BTI): the extension permits detection of
1457 unexpected indirect branches used by JOP type of attacks. Hafnium is built
1458 with the compiler branch protection option, inserting land pads at function
1459 prologues that are reached by indirect branch instructions (BR/BLR).
1460 Hafnium code pages are marked as guarded in the EL2 Stage-1 MMU descriptors
1461 such that an indirect branch must always target a landpad. A fault is
1462 triggered otherwise. VMs/SPs can (independently) mark their code pages as
1463 guarded in the EL1&0 Stage-1 translation regime.
1464- Memory Tagging Extension (FEAT_MTE): the option permits detection of out of
1465 bound memory array accesses or re-use of an already freed memory region.
1466 Hafnium enables the compiler option permitting to leverage MTE stack tagging
1467 applied to core stacks. Core stacks are marked as normal tagged memory in the
1468 EL2 Stage-1 translation regime. A synchronous data abort is generated upon tag
1469 check failure on load/stores. A random seed is generated at boot time and
1470 restored upon entry into Hafnium. MTE system registers are saved/restored in
1471 vCPU contexts permitting MTE usage from VMs/SPs.
1472
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001473SMMUv3 support in Hafnium
1474=========================
Madhukar Pappireddya9859062021-02-28 14:01:34 -06001475
1476An SMMU is analogous to an MMU in a CPU. It performs address translations for
1477Direct Memory Access (DMA) requests from system I/O devices.
1478The responsibilities of an SMMU include:
1479
1480- Translation: Incoming DMA requests are translated from bus address space to
1481 system physical address space using translation tables compliant to
1482 Armv8/Armv7 VMSA descriptor format.
1483- Protection: An I/O device can be prohibited from read, write access to a
1484 memory region or allowed.
1485- Isolation: Traffic from each individial device can be independently managed.
1486 The devices are differentiated from each other using unique translation
1487 tables.
1488
1489The following diagram illustrates a typical SMMU IP integrated in a SoC with
1490several I/O devices along with Interconnect and Memory system.
1491
1492.. image:: ../resources/diagrams/MMU-600.png
1493
1494SMMU has several versions including SMMUv1, SMMUv2 and SMMUv3. Hafnium provides
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001495support for SMMUv3 driver in both normal and secure world. A brief introduction
Madhukar Pappireddya9859062021-02-28 14:01:34 -06001496of SMMUv3 functionality and the corresponding software support in Hafnium is
1497provided here.
1498
1499SMMUv3 features
1500---------------
1501
1502- SMMUv3 provides Stage1, Stage2 translation as well as nested (Stage1 + Stage2)
1503 translation support. It can either bypass or abort incoming translations as
1504 well.
1505- Traffic (memory transactions) from each upstream I/O peripheral device,
1506 referred to as Stream, can be independently managed using a combination of
1507 several memory based configuration structures. This allows the SMMUv3 to
1508 support a large number of streams with each stream assigned to a unique
1509 translation context.
1510- Support for Armv8.1 VMSA where the SMMU shares the translation tables with
1511 a Processing Element. AArch32(LPAE) and AArch64 translation table format
1512 are supported by SMMUv3.
1513- SMMUv3 offers non-secure stream support with secure stream support being
1514 optional. Logically, SMMUv3 behaves as if there is an indepdendent SMMU
1515 instance for secure and non-secure stream support.
1516- It also supports sub-streams to differentiate traffic from a virtualized
1517 peripheral associated with a VM/SP.
1518- Additionally, SMMUv3.2 provides support for PEs implementing Armv8.4-A
1519 extensions. Consequently, SPM depends on Secure EL2 support in SMMUv3.2
1520 for providing Secure Stage2 translation support to upstream peripheral
1521 devices.
1522
1523SMMUv3 Programming Interfaces
1524-----------------------------
1525
1526SMMUv3 has three software interfaces that are used by the Hafnium driver to
1527configure the behaviour of SMMUv3 and manage the streams.
1528
1529- Memory based data strutures that provide unique translation context for
1530 each stream.
1531- Memory based circular buffers for command queue and event queue.
1532- A large number of SMMU configuration registers that are memory mapped during
1533 boot time by Hafnium driver. Except a few registers, all configuration
1534 registers have independent secure and non-secure versions to configure the
1535 behaviour of SMMUv3 for translation of secure and non-secure streams
1536 respectively.
1537
1538Peripheral device manifest
1539--------------------------
1540
1541Currently, SMMUv3 driver in Hafnium only supports dependent peripheral devices.
1542These devices are dependent on PE endpoint to initiate and receive memory
1543management transactions on their behalf. The acccess to the MMIO regions of
1544any such device is assigned to the endpoint during boot. Moreover, SMMUv3 driver
1545uses the same stage 2 translations for the device as those used by partition
1546manager on behalf of the PE endpoint. This ensures that the peripheral device
1547has the same visibility of the physical address space as the endpoint. The
1548device node of the corresponding partition manifest (refer to `[1]`_ section 3.2
1549) must specify these additional properties for each peripheral device in the
1550system :
1551
1552- smmu-id: This field helps to identify the SMMU instance that this device is
1553 upstream of.
1554- stream-ids: List of stream IDs assigned to this device.
1555
1556.. code:: shell
1557
1558 smmuv3-testengine {
1559 base-address = <0x00000000 0x2bfe0000>;
1560 pages-count = <32>;
1561 attributes = <0x3>;
1562 smmu-id = <0>;
1563 stream-ids = <0x0 0x1>;
1564 interrupts = <0x2 0x3>, <0x4 0x5>;
1565 exclusive-access;
1566 };
1567
1568SMMUv3 driver limitations
1569-------------------------
1570
1571The primary design goal for the Hafnium SMMU driver is to support secure
1572streams.
1573
1574- Currently, the driver only supports Stage2 translations. No support for
1575 Stage1 or nested translations.
1576- Supports only AArch64 translation format.
1577- No support for features such as PCI Express (PASIDs, ATS, PRI), MSI, RAS,
1578 Fault handling, Performance Monitor Extensions, Event Handling, MPAM.
1579- No support for independent peripheral devices.
1580
Raghu Krishnamurthy7f3f7ce2021-10-17 16:48:29 -07001581S-EL0 Partition support
Olivier Deprez3de57e32022-04-28 18:18:36 +02001582=======================
Raghu Krishnamurthy7f3f7ce2021-10-17 16:48:29 -07001583The SPMC (Hafnium) has limited capability to run S-EL0 FF-A partitions using
1584FEAT_VHE (mandatory with ARMv8.1 in non-secure state, and in secure world
1585with ARMv8.4 and FEAT_SEL2).
1586
1587S-EL0 partitions are useful for simple partitions that don't require full
1588Trusted OS functionality. It is also useful to reduce jitter and cycle
1589stealing from normal world since they are more lightweight than VMs.
1590
1591S-EL0 partitions are presented, loaded and initialized the same as S-EL1 VMs by
1592the SPMC. They are differentiated primarily by the 'exception-level' property
1593and the 'execution-ctx-count' property in the SP manifest. They are host apps
1594under the single EL2&0 Stage-1 translation regime controlled by the SPMC and
1595call into the SPMC through SVCs as opposed to HVCs and SMCs. These partitions
1596can use FF-A defined services (FFA_MEM_PERM_*) to update or change permissions
1597for memory regions.
1598
1599S-EL0 partitions are required by the FF-A specification to be UP endpoints,
1600capable of migrating, and the SPMC enforces this requirement. The SPMC allows
1601a S-EL0 partition to accept a direct message from secure world and normal world,
1602and generate direct responses to them.
J-Alves56ac0972022-10-26 11:00:28 +01001603All S-EL0 partitions must use AArch64. AArch32 S-EL0 partitions are not supported.
Raghu Krishnamurthy7f3f7ce2021-10-17 16:48:29 -07001604
J-Alves56ac0972022-10-26 11:00:28 +01001605Memory sharing, indirect messaging, and notifications functionality with S-EL0
1606partitions is supported.
Raghu Krishnamurthy7f3f7ce2021-10-17 16:48:29 -07001607
J-Alves56ac0972022-10-26 11:00:28 +01001608Interrupt handling is not supported with S-EL0 partitions and is work in
1609progress.
Raghu Krishnamurthy7f3f7ce2021-10-17 16:48:29 -07001610
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001611References
1612==========
1613
1614.. _[1]:
1615
Olivier Deprez2b0be752021-09-01 10:25:21 +02001616[1] `Arm Firmware Framework for Arm A-profile <https://developer.arm.com/docs/den0077/latest>`__
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001617
1618.. _[2]:
1619
Madhukar Pappireddy86350ae2020-07-29 09:37:25 -05001620[2] :ref:`Secure Partition Manager using MM interface<Secure Partition Manager (MM)>`
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001621
1622.. _[3]:
1623
1624[3] `Trusted Boot Board Requirements
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001625Client <https://developer.arm.com/documentation/den0006/d/>`__
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001626
1627.. _[4]:
1628
1629[4] https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/lib/el3_runtime/aarch64/context.S#n45
1630
1631.. _[5]:
1632
Olivier Deprez5e0a73f2021-04-30 14:42:24 +02001633[5] https://git.trustedfirmware.org/TF-A/tf-a-tests.git/tree/spm/cactus/plat/arm/fvp/fdts/cactus.dts
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001634
1635.. _[6]:
1636
Olivier Deprez9938c132021-04-21 11:22:23 +02001637[6] https://trustedfirmware-a.readthedocs.io/en/latest/components/ffa-manifest-binding.html
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001638
1639.. _[7]:
1640
1641[7] https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_spmc_manifest.dts
1642
1643.. _[8]:
1644
Sandrine Bailleux1a4efb12022-04-21 10:17:22 +02001645[8] https://lists.trustedfirmware.org/archives/list/tf-a@lists.trustedfirmware.org/thread/CFQFGU6H2D5GZYMUYGTGUSXIU3OYZP6U/
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001646
Olivier Deprez4ab7a4a2021-06-21 09:47:13 +02001647.. _[9]:
1648
1649[9] https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html#dynamic-configuration-during-cold-boot
1650
Olivier Deprezecb2fe52020-04-02 15:38:02 +02001651--------------
1652
Madhukar Pappireddy383d6c92023-03-03 14:24:24 -06001653*Copyright (c) 2020-2023, Arm Limited and Contributors. All rights reserved.*