blob: 21968d9bf755db8285691f743293ee6b71acb6d0 [file] [log] [blame]
/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <runtime_svc.h>
#include <debug.h>
#include "psci_private.h"
/*******************************************************************************
* PSCI frontend api for servicing SMCs. Described in the PSCI spec.
******************************************************************************/
int psci_cpu_on(unsigned long target_cpu,
unsigned long entrypoint,
unsigned long context_id)
{
int rc;
unsigned int start_afflvl, end_afflvl;
/* Determine if the cpu exists of not */
rc = psci_validate_mpidr(target_cpu, MPIDR_AFFLVL0);
if (rc != PSCI_E_SUCCESS) {
goto exit;
}
/*
* To turn this cpu on, specify which affinity
* levels need to be turned on
*/
start_afflvl = MPIDR_AFFLVL0;
end_afflvl = get_max_afflvl();
rc = psci_afflvl_on(target_cpu,
entrypoint,
context_id,
start_afflvl,
end_afflvl);
exit:
return rc;
}
unsigned int psci_version(void)
{
return PSCI_MAJOR_VER | PSCI_MINOR_VER;
}
int psci_cpu_suspend(unsigned int power_state,
unsigned long entrypoint,
unsigned long context_id)
{
int rc;
unsigned int target_afflvl, pstate_type;
/* Check SBZ bits in power state are zero */
if (psci_validate_power_state(power_state))
return PSCI_E_INVALID_PARAMS;
/* Sanity check the requested state */
target_afflvl = psci_get_pstate_afflvl(power_state);
if (target_afflvl > MPIDR_MAX_AFFLVL)
return PSCI_E_INVALID_PARAMS;
/* Determine the 'state type' in the 'power_state' parameter */
pstate_type = psci_get_pstate_type(power_state);
/*
* Ensure that we have a platform specific handler for entering
* a standby state.
*/
if (pstate_type == PSTATE_TYPE_STANDBY) {
if (!psci_plat_pm_ops->affinst_standby)
return PSCI_E_INVALID_PARAMS;
rc = psci_plat_pm_ops->affinst_standby(power_state);
assert(rc == PSCI_E_INVALID_PARAMS || rc == PSCI_E_SUCCESS);
return rc;
}
/*
* Do what is needed to enter the power down state. Upon success,
* enter the final wfi which will power down this cpu else return
* an error.
*/
rc = psci_afflvl_suspend(entrypoint,
context_id,
power_state,
MPIDR_AFFLVL0,
target_afflvl);
if (rc == PSCI_E_SUCCESS)
psci_power_down_wfi();
assert(rc == PSCI_E_INVALID_PARAMS);
return rc;
}
int psci_cpu_off(void)
{
int rc;
int target_afflvl = get_max_afflvl();
/*
* Traverse from the highest to the lowest affinity level. When the
* lowest affinity level is hit, all the locks are acquired. State
* management is done immediately followed by cpu, cluster ...
* ..target_afflvl specific actions as this function unwinds back.
*/
rc = psci_afflvl_off(MPIDR_AFFLVL0, target_afflvl);
/*
* Check if all actions needed to safely power down this cpu have
* successfully completed. Enter a wfi loop which will allow the
* power controller to physically power down this cpu.
*/
if (rc == PSCI_E_SUCCESS)
psci_power_down_wfi();
/*
* The only error cpu_off can return is E_DENIED. So check if that's
* indeed the case.
*/
assert (rc == PSCI_E_DENIED);
return rc;
}
int psci_affinity_info(unsigned long target_affinity,
unsigned int lowest_affinity_level)
{
int rc = PSCI_E_INVALID_PARAMS;
unsigned int aff_state;
aff_map_node_t *node;
if (lowest_affinity_level > get_max_afflvl())
return rc;
node = psci_get_aff_map_node(target_affinity, lowest_affinity_level);
if (node && (node->state & PSCI_AFF_PRESENT)) {
/*
* TODO: For affinity levels higher than 0 i.e. cpu, the
* state will always be either ON or OFF. Need to investigate
* how critical is it to support ON_PENDING here.
*/
aff_state = psci_get_state(node);
/* A suspended cpu is available & on for the OS */
if (aff_state == PSCI_STATE_SUSPEND) {
aff_state = PSCI_STATE_ON;
}
rc = aff_state;
}
return rc;
}
/* Unimplemented */
int psci_migrate(unsigned int target_cpu)
{
return PSCI_E_NOT_SUPPORTED;
}
/* Unimplemented */
unsigned int psci_migrate_info_type(void)
{
return PSCI_TOS_NOT_PRESENT_MP;
}
unsigned long psci_migrate_info_up_cpu(void)
{
/*
* Return value of this currently unsupported call depends upon
* what psci_migrate_info_type() returns.
*/
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* PSCI top level handler for servicing SMCs.
******************************************************************************/
uint64_t psci_smc_handler(uint32_t smc_fid,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags)
{
if (is_caller_secure(flags))
SMC_RET1(handle, SMC_UNK);
if (((smc_fid >> FUNCID_CC_SHIFT) & FUNCID_CC_MASK) == SMC_32) {
/* 32-bit PSCI function, clear top parameter bits */
x1 = (uint32_t)x1;
x2 = (uint32_t)x2;
x3 = (uint32_t)x3;
switch (smc_fid) {
case PSCI_VERSION:
SMC_RET1(handle, psci_version());
case PSCI_CPU_OFF:
SMC_RET1(handle, psci_cpu_off());
case PSCI_CPU_SUSPEND_AARCH32:
SMC_RET1(handle, psci_cpu_suspend(x1, x2, x3));
case PSCI_CPU_ON_AARCH32:
SMC_RET1(handle, psci_cpu_on(x1, x2, x3));
case PSCI_AFFINITY_INFO_AARCH32:
SMC_RET1(handle, psci_affinity_info(x1, x2));
case PSCI_MIG_AARCH32:
SMC_RET1(handle, psci_migrate(x1));
case PSCI_MIG_INFO_TYPE:
SMC_RET1(handle, psci_migrate_info_type());
case PSCI_MIG_INFO_UP_CPU_AARCH32:
SMC_RET1(handle, psci_migrate_info_up_cpu());
default:
break;
}
} else {
/* 64-bit PSCI function */
switch (smc_fid) {
case PSCI_CPU_SUSPEND_AARCH64:
SMC_RET1(handle, psci_cpu_suspend(x1, x2, x3));
case PSCI_CPU_ON_AARCH64:
SMC_RET1(handle, psci_cpu_on(x1, x2, x3));
case PSCI_AFFINITY_INFO_AARCH64:
SMC_RET1(handle, psci_affinity_info(x1, x2));
case PSCI_MIG_AARCH64:
SMC_RET1(handle, psci_migrate(x1));
case PSCI_MIG_INFO_UP_CPU_AARCH64:
SMC_RET1(handle, psci_migrate_info_up_cpu());
default:
break;
}
}
WARN("Unimplemented PSCI Call: 0x%x \n", smc_fid);
SMC_RET1(handle, SMC_UNK);
}