blob: 55307ff263da80edc571515629994aacdc38bd8a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/interrupt.h>
#include <linux/pinctrl/devinfo.h>
#include <linux/phylink.h>
#include <linux/gpio/consumer.h>
#include <net/dsa.h>
#include "mtk_eth_soc.h"
#include "mtk_eth_dbg.h"
#include "mtk_eth_reset.h"
#if defined(CONFIG_NET_MEDIATEK_HNAT) || defined(CONFIG_NET_MEDIATEK_HNAT_MODULE)
#include "mtk_hnat/nf_hnat_mtk.h"
#endif
#if defined(CONFIG_XFRM_OFFLOAD)
#include <crypto/sha.h>
#include <net/xfrm.h>
#include "mtk_ipsec.h"
#endif
static int mtk_msg_level = -1;
atomic_t reset_lock = ATOMIC_INIT(0);
atomic_t force = ATOMIC_INIT(0);
atomic_t reset_pending = ATOMIC_INIT(0);
module_param_named(msg_level, mtk_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
DECLARE_COMPLETION(wait_ser_done);
#define MTK_ETHTOOL_STAT(x) { #x, \
offsetof(struct mtk_hw_stats, x) / sizeof(u64) }
static const struct mtk_reg_map mtk_reg_map = {
.tx_irq_mask = 0x1a1c,
.tx_irq_status = 0x1a18,
.pdma = {
.rx_ptr = 0x0900,
.rx_cnt_cfg = 0x0904,
.pcrx_ptr = 0x0908,
.glo_cfg = 0x0a04,
.rst_idx = 0x0a08,
.delay_irq = 0x0a0c,
.irq_status = 0x0a20,
.irq_mask = 0x0a28,
.int_grp = 0x0a50,
.int_grp2 = 0x0a54,
},
.qdma = {
.qtx_cfg = 0x1800,
.qtx_sch = 0x1804,
.rx_ptr = 0x1900,
.rx_cnt_cfg = 0x1904,
.qcrx_ptr = 0x1908,
.glo_cfg = 0x1a04,
.rst_idx = 0x1a08,
.delay_irq = 0x1a0c,
.fc_th = 0x1a10,
.tx_sch_rate = 0x1a14,
.int_grp = 0x1a20,
.int_grp2 = 0x1a24,
.hred2 = 0x1a44,
.ctx_ptr = 0x1b00,
.dtx_ptr = 0x1b04,
.crx_ptr = 0x1b10,
.drx_ptr = 0x1b14,
.fq_head = 0x1b20,
.fq_tail = 0x1b24,
.fq_count = 0x1b28,
.fq_blen = 0x1b2c,
},
.gdm1_cnt = 0x2400,
.gdma_to_ppe0 = 0x4444,
.ppe_base = {
[0] = 0x0c00,
},
.wdma_base = {
[0] = 0x2800,
[1] = 0x2c00,
},
};
static const struct mtk_reg_map mt7628_reg_map = {
.tx_irq_mask = 0x0a28,
.tx_irq_status = 0x0a20,
.pdma = {
.rx_ptr = 0x0900,
.rx_cnt_cfg = 0x0904,
.pcrx_ptr = 0x0908,
.glo_cfg = 0x0a04,
.rst_idx = 0x0a08,
.delay_irq = 0x0a0c,
.irq_status = 0x0a20,
.irq_mask = 0x0a28,
.int_grp = 0x0a50,
.int_grp2 = 0x0a54,
},
};
static const struct mtk_reg_map mt7986_reg_map = {
.tx_irq_mask = 0x461c,
.tx_irq_status = 0x4618,
.pdma = {
.rx_ptr = 0x4100,
.rx_cnt_cfg = 0x4104,
.pcrx_ptr = 0x4108,
.glo_cfg = 0x4204,
.rst_idx = 0x4208,
.delay_irq = 0x420c,
.irq_status = 0x4220,
.irq_mask = 0x4228,
.int_grp = 0x4250,
.int_grp2 = 0x4254,
},
.qdma = {
.qtx_cfg = 0x4400,
.qtx_sch = 0x4404,
.rx_ptr = 0x4500,
.rx_cnt_cfg = 0x4504,
.qcrx_ptr = 0x4508,
.glo_cfg = 0x4604,
.rst_idx = 0x4608,
.delay_irq = 0x460c,
.fc_th = 0x4610,
.int_grp = 0x4620,
.int_grp2 = 0x4624,
.hred2 = 0x4644,
.ctx_ptr = 0x4700,
.dtx_ptr = 0x4704,
.crx_ptr = 0x4710,
.drx_ptr = 0x4714,
.fq_head = 0x4720,
.fq_tail = 0x4724,
.fq_count = 0x4728,
.fq_blen = 0x472c,
.tx_sch_rate = 0x4798,
},
.gdm1_cnt = 0x1c00,
.gdma_to_ppe0 = 0x3333,
.ppe_base = {
[0] = 0x2000,
[1] = 0x2400,
},
.wdma_base = {
[0] = 0x4800,
[1] = 0x4c00,
},
};
static const struct mtk_reg_map mt7988_reg_map = {
.tx_irq_mask = 0x461c,
.tx_irq_status = 0x4618,
.pdma = {
.rx_ptr = 0x6900,
.rx_cnt_cfg = 0x6904,
.pcrx_ptr = 0x6908,
.glo_cfg = 0x6a04,
.rst_idx = 0x6a08,
.delay_irq = 0x6a0c,
.irq_status = 0x6a20,
.irq_mask = 0x6a28,
.int_grp = 0x6a50,
.int_grp2 = 0x6a54,
},
.qdma = {
.qtx_cfg = 0x4400,
.qtx_sch = 0x4404,
.rx_ptr = 0x4500,
.rx_cnt_cfg = 0x4504,
.qcrx_ptr = 0x4508,
.glo_cfg = 0x4604,
.rst_idx = 0x4608,
.delay_irq = 0x460c,
.fc_th = 0x4610,
.int_grp = 0x4620,
.int_grp2 = 0x4624,
.hred2 = 0x4644,
.ctx_ptr = 0x4700,
.dtx_ptr = 0x4704,
.crx_ptr = 0x4710,
.drx_ptr = 0x4714,
.fq_head = 0x4720,
.fq_tail = 0x4724,
.fq_count = 0x4728,
.fq_blen = 0x472c,
.tx_sch_rate = 0x4798,
},
.gdm1_cnt = 0x1c00,
.gdma_to_ppe0 = 0x3333,
.ppe_base = {
[0] = 0x2000,
[1] = 0x2400,
[2] = 0x2c00,
},
.wdma_base = {
[0] = 0x4800,
[1] = 0x4c00,
[2] = 0x5000,
},
};
/* strings used by ethtool */
static const struct mtk_ethtool_stats {
char str[ETH_GSTRING_LEN];
u32 offset;
} mtk_ethtool_stats[] = {
MTK_ETHTOOL_STAT(tx_bytes),
MTK_ETHTOOL_STAT(tx_packets),
MTK_ETHTOOL_STAT(tx_skip),
MTK_ETHTOOL_STAT(tx_collisions),
MTK_ETHTOOL_STAT(rx_bytes),
MTK_ETHTOOL_STAT(rx_packets),
MTK_ETHTOOL_STAT(rx_overflow),
MTK_ETHTOOL_STAT(rx_fcs_errors),
MTK_ETHTOOL_STAT(rx_short_errors),
MTK_ETHTOOL_STAT(rx_long_errors),
MTK_ETHTOOL_STAT(rx_checksum_errors),
MTK_ETHTOOL_STAT(rx_flow_control_packets),
};
static const char * const mtk_clks_source_name[] = {
"ethif", "sgmiitop", "esw", "gp0", "gp1", "gp2", "gp3",
"xgp1", "xgp2", "xgp3", "crypto", "fe", "trgpll",
"sgmii_tx250m", "sgmii_rx250m", "sgmii_cdr_ref", "sgmii_cdr_fb",
"sgmii2_tx250m", "sgmii2_rx250m", "sgmii2_cdr_ref", "sgmii2_cdr_fb",
"sgmii_ck", "eth2pll", "wocpu0", "wocpu1",
"ethwarp_wocpu2", "ethwarp_wocpu1", "ethwarp_wocpu0",
"top_usxgmii0_sel", "top_usxgmii1_sel", "top_sgm0_sel", "top_sgm1_sel",
"top_xfi_phy0_xtal_sel", "top_xfi_phy1_xtal_sel", "top_eth_gmii_sel",
"top_eth_refck_50m_sel", "top_eth_sys_200m_sel", "top_eth_sys_sel",
"top_eth_xgmii_sel", "top_eth_mii_sel", "top_netsys_sel",
"top_netsys_500m_sel", "top_netsys_pao_2x_sel",
"top_netsys_sync_250m_sel", "top_netsys_ppefb_250m_sel",
"top_netsys_warp_sel",
};
void mtk_w32(struct mtk_eth *eth, u32 val, unsigned reg)
{
__raw_writel(val, eth->base + reg);
}
u32 mtk_r32(struct mtk_eth *eth, unsigned reg)
{
return __raw_readl(eth->base + reg);
}
u32 mtk_m32(struct mtk_eth *eth, u32 mask, u32 set, unsigned reg)
{
u32 val;
val = mtk_r32(eth, reg);
val &= ~mask;
val |= set;
mtk_w32(eth, val, reg);
return reg;
}
static int mtk_mdio_busy_wait(struct mtk_eth *eth)
{
unsigned long t_start = jiffies;
while (1) {
if (!(mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_ACCESS))
return 0;
if (time_after(jiffies, t_start + PHY_IAC_TIMEOUT))
break;
cond_resched();
}
dev_err(eth->dev, "mdio: MDIO timeout\n");
return -1;
}
u32 _mtk_mdio_write(struct mtk_eth *eth, int phy_addr,
int phy_reg, u16 write_data)
{
if (mtk_mdio_busy_wait(eth))
return -1;
write_data &= 0xffff;
if (phy_reg & MII_ADDR_C45) {
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_ADDR_C45 |
((mdiobus_c45_devad(phy_reg) & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT) | mdiobus_c45_regad(phy_reg),
MTK_PHY_IAC);
if (mtk_mdio_busy_wait(eth))
return -1;
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_WRITE |
((mdiobus_c45_devad(phy_reg) & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT) | write_data,
MTK_PHY_IAC);
} else {
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_WRITE |
((phy_reg & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT) | write_data,
MTK_PHY_IAC);
}
if (mtk_mdio_busy_wait(eth))
return -1;
return 0;
}
u32 _mtk_mdio_read(struct mtk_eth *eth, int phy_addr, int phy_reg)
{
u32 d;
if (mtk_mdio_busy_wait(eth))
return 0xffff;
if (phy_reg & MII_ADDR_C45) {
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_ADDR_C45 |
((mdiobus_c45_devad(phy_reg) & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT) | mdiobus_c45_regad(phy_reg),
MTK_PHY_IAC);
if (mtk_mdio_busy_wait(eth))
return 0xffff;
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_READ_C45 |
((mdiobus_c45_devad(phy_reg) & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT),
MTK_PHY_IAC);
} else {
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_READ |
((phy_reg & 0x1f) << PHY_IAC_REG_SHIFT) |
((phy_addr & 0x1f) << PHY_IAC_ADDR_SHIFT),
MTK_PHY_IAC);
}
if (mtk_mdio_busy_wait(eth))
return 0xffff;
d = mtk_r32(eth, MTK_PHY_IAC) & 0xffff;
return d;
}
static int mtk_mdio_write(struct mii_bus *bus, int phy_addr,
int phy_reg, u16 val)
{
struct mtk_eth *eth = bus->priv;
return _mtk_mdio_write(eth, phy_addr, phy_reg, val);
}
static int mtk_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg)
{
struct mtk_eth *eth = bus->priv;
return _mtk_mdio_read(eth, phy_addr, phy_reg);
}
static int mtk_mdio_reset(struct mii_bus *bus)
{
/* The mdiobus_register will trigger a reset pulse when enabling Bus reset,
* we just need to wait until device ready.
*/
mdelay(20);
return 0;
}
static int mt7621_gmac0_rgmii_adjust(struct mtk_eth *eth,
phy_interface_t interface)
{
u32 val = 0;
/* Check DDR memory type.
* Currently TRGMII mode with DDR2 memory is not supported.
*/
regmap_read(eth->ethsys, ETHSYS_SYSCFG, &val);
if (interface == PHY_INTERFACE_MODE_TRGMII &&
val & SYSCFG_DRAM_TYPE_DDR2) {
dev_err(eth->dev,
"TRGMII mode with DDR2 memory is not supported!\n");
return -EOPNOTSUPP;
}
val = (interface == PHY_INTERFACE_MODE_TRGMII) ?
ETHSYS_TRGMII_MT7621_DDR_PLL : 0;
regmap_update_bits(eth->ethsys, ETHSYS_CLKCFG0,
ETHSYS_TRGMII_MT7621_MASK, val);
return 0;
}
static void mtk_gmac0_rgmii_adjust(struct mtk_eth *eth,
phy_interface_t interface, int speed)
{
u32 val;
int ret;
if (interface == PHY_INTERFACE_MODE_TRGMII) {
mtk_w32(eth, TRGMII_MODE, INTF_MODE);
val = 500000000;
ret = clk_set_rate(eth->clks[MTK_CLK_TRGPLL], val);
if (ret)
dev_err(eth->dev, "Failed to set trgmii pll: %d\n", ret);
return;
}
val = (speed == SPEED_1000) ?
INTF_MODE_RGMII_1000 : INTF_MODE_RGMII_10_100;
mtk_w32(eth, val, INTF_MODE);
regmap_update_bits(eth->ethsys, ETHSYS_CLKCFG0,
ETHSYS_TRGMII_CLK_SEL362_5,
ETHSYS_TRGMII_CLK_SEL362_5);
val = (speed == SPEED_1000) ? 250000000 : 500000000;
ret = clk_set_rate(eth->clks[MTK_CLK_TRGPLL], val);
if (ret)
dev_err(eth->dev, "Failed to set trgmii pll: %d\n", ret);
val = (speed == SPEED_1000) ?
RCK_CTRL_RGMII_1000 : RCK_CTRL_RGMII_10_100;
mtk_w32(eth, val, TRGMII_RCK_CTRL);
val = (speed == SPEED_1000) ?
TCK_CTRL_RGMII_1000 : TCK_CTRL_RGMII_10_100;
mtk_w32(eth, val, TRGMII_TCK_CTRL);
}
static void mtk_setup_bridge_switch(struct mtk_eth *eth)
{
int val;
/* Force Port1 XGMAC Link Up */
val = mtk_r32(eth, MTK_XGMAC_STS(MTK_GMAC1_ID));
mtk_w32(eth, val | MTK_XGMAC_FORCE_LINK(MTK_GMAC1_ID),
MTK_XGMAC_STS(MTK_GMAC1_ID));
/* Adjust GSW bridge IPG to 11*/
val = mtk_r32(eth, MTK_GSW_CFG);
val &= ~(GSWTX_IPG_MASK | GSWRX_IPG_MASK);
val |= (GSW_IPG_11 << GSWTX_IPG_SHIFT) |
(GSW_IPG_11 << GSWRX_IPG_SHIFT);
mtk_w32(eth, val, MTK_GSW_CFG);
}
static void mtk_setup_eee(struct mtk_mac *mac, bool enable)
{
struct mtk_eth *eth = mac->hw;
u32 mcr, mcr_cur;
u32 val;
mcr = mcr_cur = mtk_r32(eth, MTK_MAC_MCR(mac->id));
mcr &= ~(MAC_MCR_FORCE_EEE100 | MAC_MCR_FORCE_EEE1000);
if (enable) {
mac->tx_lpi_enabled = 1;
val = FIELD_PREP(MAC_EEE_WAKEUP_TIME_1000, 19) |
FIELD_PREP(MAC_EEE_WAKEUP_TIME_100, 33) |
FIELD_PREP(MAC_EEE_LPI_TXIDLE_THD,
mac->tx_lpi_timer) |
FIELD_PREP(MAC_EEE_RESV0, 14);
mtk_w32(eth, val, MTK_MAC_EEE(mac->id));
switch (mac->speed) {
case SPEED_1000:
mcr |= MAC_MCR_FORCE_EEE1000;
break;
case SPEED_100:
mcr |= MAC_MCR_FORCE_EEE100;
break;
};
} else {
mac->tx_lpi_enabled = 0;
mtk_w32(eth, 0x00000002, MTK_MAC_EEE(mac->id));
}
/* Only update control register when needed! */
if (mcr != mcr_cur)
mtk_w32(eth, mcr, MTK_MAC_MCR(mac->id));
}
static int mtk_get_hwver(struct mtk_eth *eth)
{
struct device_node *np;
struct regmap *hwver;
u32 info = 0;
eth->hwver = MTK_HWID_V1;
np = of_parse_phandle(eth->dev->of_node, "mediatek,hwver", 0);
if (!np)
return -EINVAL;
hwver = syscon_node_to_regmap(np);
if (IS_ERR(hwver))
return PTR_ERR(hwver);
regmap_read(hwver, 0x8, &info);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3))
eth->hwver = FIELD_GET(HWVER_BIT_NETSYS_3, info);
else
eth->hwver = FIELD_GET(HWVER_BIT_NETSYS_1_2, info);
of_node_put(np);
return 0;
}
static struct phylink_pcs *mtk_mac_select_pcs(struct phylink_config *config,
phy_interface_t interface)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
struct mtk_eth *eth = mac->hw;
unsigned int sid;
if (interface == PHY_INTERFACE_MODE_SGMII ||
phy_interface_mode_is_8023z(interface)) {
sid = (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_SGMII)) ?
0 : mtk_mac2xgmii_id(eth, mac->id);
return mtk_sgmii_select_pcs(eth->sgmii, sid);
} else if (interface == PHY_INTERFACE_MODE_USXGMII ||
interface == PHY_INTERFACE_MODE_10GKR ||
interface == PHY_INTERFACE_MODE_5GBASER) {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3) &&
mac->id != MTK_GMAC1_ID) {
sid = mtk_mac2xgmii_id(eth, mac->id);
return mtk_usxgmii_select_pcs(eth->usxgmii, sid);
}
}
return NULL;
}
static void mtk_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
struct mtk_eth *eth = mac->hw;
u32 sid, i;
int val = 0, ge_mode, force_link, err = 0;
unsigned int mac_type = mac->type;
/* MT76x8 has no hardware settings between for the MAC */
if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628) &&
mac->interface != state->interface) {
/* Setup soc pin functions */
switch (state->interface) {
case PHY_INTERFACE_MODE_TRGMII:
if (mac->id)
goto err_phy;
if (!MTK_HAS_CAPS(mac->hw->soc->caps,
MTK_GMAC1_TRGMII))
goto err_phy;
/* fall through */
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_REVMII:
case PHY_INTERFACE_MODE_RMII:
mac->type = MTK_GDM_TYPE;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RGMII)) {
err = mtk_gmac_rgmii_path_setup(eth, mac->id);
if (err)
goto init_err;
}
break;
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
case PHY_INTERFACE_MODE_SGMII:
mac->type = MTK_GDM_TYPE;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII)) {
err = mtk_gmac_sgmii_path_setup(eth, mac->id);
if (err)
goto init_err;
}
break;
case PHY_INTERFACE_MODE_GMII:
mac->type = MTK_GDM_TYPE;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_GEPHY)) {
err = mtk_gmac_gephy_path_setup(eth, mac->id);
if (err)
goto init_err;
}
break;
case PHY_INTERFACE_MODE_XGMII:
mac->type = MTK_XGDM_TYPE;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_XGMII)) {
err = mtk_gmac_xgmii_path_setup(eth, mac->id);
if (err)
goto init_err;
}
break;
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_10GKR:
case PHY_INTERFACE_MODE_5GBASER:
mac->type = MTK_XGDM_TYPE;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_USXGMII)) {
err = mtk_gmac_usxgmii_path_setup(eth, mac->id);
if (err)
goto init_err;
}
break;
default:
goto err_phy;
}
/* Setup clock for 1st gmac */
if (!mac->id && state->interface != PHY_INTERFACE_MODE_SGMII &&
!phy_interface_mode_is_8023z(state->interface) &&
MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GMAC1_TRGMII)) {
if (MTK_HAS_CAPS(mac->hw->soc->caps,
MTK_TRGMII_MT7621_CLK)) {
if (mt7621_gmac0_rgmii_adjust(mac->hw,
state->interface))
goto err_phy;
} else {
mtk_gmac0_rgmii_adjust(mac->hw,
state->interface,
state->speed);
/* mt7623_pad_clk_setup */
for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
mtk_w32(mac->hw,
TD_DM_DRVP(8) | TD_DM_DRVN(8),
TRGMII_TD_ODT(i));
/* Assert/release MT7623 RXC reset */
mtk_m32(mac->hw, 0, RXC_RST | RXC_DQSISEL,
TRGMII_RCK_CTRL);
mtk_m32(mac->hw, RXC_RST, 0, TRGMII_RCK_CTRL);
}
}
ge_mode = 0;
switch (state->interface) {
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_GMII:
ge_mode = 1;
break;
case PHY_INTERFACE_MODE_REVMII:
ge_mode = 2;
break;
case PHY_INTERFACE_MODE_RMII:
if (mac->id)
goto err_phy;
ge_mode = 3;
break;
default:
break;
}
/* put the gmac into the right mode */
spin_lock(&eth->syscfg0_lock);
regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, mac->id);
val |= SYSCFG0_GE_MODE(ge_mode, mac->id);
regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val);
spin_unlock(&eth->syscfg0_lock);
mac->interface = state->interface;
}
/* SGMII */
if (state->interface == PHY_INTERFACE_MODE_SGMII ||
phy_interface_mode_is_8023z(state->interface)) {
/* The path GMAC to SGMII will be enabled once the SGMIISYS is
* being setup done.
*/
spin_lock(&eth->syscfg0_lock);
regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
regmap_update_bits(eth->ethsys, ETHSYS_SYSCFG0,
SYSCFG0_SGMII_MASK,
~(u32)SYSCFG0_SGMII_MASK);
/* Decide how GMAC and SGMIISYS be mapped */
sid = (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_SGMII)) ?
0 : mac->id;
/* Save the syscfg0 value for mac_finish */
mac->syscfg0 = val;
spin_unlock(&eth->syscfg0_lock);
} else if (state->interface == PHY_INTERFACE_MODE_USXGMII ||
state->interface == PHY_INTERFACE_MODE_10GKR ||
state->interface == PHY_INTERFACE_MODE_5GBASER) {
/* Nothing to do */
} else if (phylink_autoneg_inband(mode)) {
dev_err(eth->dev,
"In-band mode not supported in non SGMII mode!\n");
return;
}
/* Setup gmac */
if (mac->type == MTK_XGDM_TYPE) {
mtk_w32(mac->hw, MTK_GDMA_XGDM_SEL, MTK_GDMA_EG_CTRL(mac->id));
mtk_w32(mac->hw, MAC_MCR_FORCE_LINK_DOWN, MTK_MAC_MCR(mac->id));
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
switch (mac->id) {
case MTK_GMAC1_ID:
mtk_setup_bridge_switch(eth);
break;
case MTK_GMAC2_ID:
force_link = (mac->interface ==
PHY_INTERFACE_MODE_XGMII) ?
MTK_XGMAC_FORCE_LINK(mac->id) : 0;
val = mtk_r32(eth, MTK_XGMAC_STS(mac->id));
mtk_w32(eth, val | force_link,
MTK_XGMAC_STS(mac->id));
break;
case MTK_GMAC3_ID:
val = mtk_r32(eth, MTK_XGMAC_STS(mac->id));
mtk_w32(eth,
val | MTK_XGMAC_FORCE_LINK(mac->id),
MTK_XGMAC_STS(mac->id));
break;
}
}
} else if (mac->type == MTK_GDM_TYPE) {
val = mtk_r32(eth, MTK_GDMA_EG_CTRL(mac->id));
mtk_w32(eth, val & ~MTK_GDMA_XGDM_SEL,
MTK_GDMA_EG_CTRL(mac->id));
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
switch (mac->id) {
case MTK_GMAC2_ID:
case MTK_GMAC3_ID:
val = mtk_r32(eth, MTK_XGMAC_STS(mac->id));
mtk_w32(eth,
val & ~MTK_XGMAC_FORCE_LINK(mac->id),
MTK_XGMAC_STS(mac->id));
break;
}
}
/* FIXME: In current hardware design, we have to reset FE
* when swtiching XGDM to GDM. Therefore, here trigger an SER
* to let GDM go back to the initial state.
*/
if (mac->type != mac_type) {
if (atomic_read(&reset_pending) == 0) {
atomic_inc(&force);
schedule_work(&eth->pending_work);
atomic_inc(&reset_pending);
} else
atomic_dec(&reset_pending);
}
}
return;
err_phy:
dev_err(eth->dev, "%s: GMAC%d mode %s not supported!\n", __func__,
mac->id, phy_modes(state->interface));
return;
init_err:
dev_err(eth->dev, "%s: GMAC%d mode %s err: %d!\n", __func__,
mac->id, phy_modes(state->interface), err);
}
static int mtk_mac_finish(struct phylink_config *config, unsigned int mode,
phy_interface_t interface)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
struct mtk_eth *eth = mac->hw;
/* Enable SGMII */
if (interface == PHY_INTERFACE_MODE_SGMII ||
phy_interface_mode_is_8023z(interface))
regmap_update_bits(eth->ethsys, ETHSYS_SYSCFG0,
SYSCFG0_SGMII_MASK, mac->syscfg0);
return 0;
}
static int mtk_mac_pcs_get_state(struct phylink_config *config,
struct phylink_link_state *state)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
if (mac->type == MTK_XGDM_TYPE) {
u32 sts = mtk_r32(mac->hw, MTK_XGMAC_STS(mac->id));
if (mac->id == MTK_GMAC2_ID)
sts = sts >> 16;
state->duplex = DUPLEX_FULL;
switch (FIELD_GET(MTK_USXGMII_PCS_MODE, sts)) {
case 0:
state->speed = SPEED_10000;
break;
case 1:
state->speed = SPEED_5000;
break;
case 2:
state->speed = SPEED_2500;
break;
case 3:
state->speed = SPEED_1000;
break;
}
state->interface = mac->interface;
state->link = FIELD_GET(MTK_USXGMII_PCS_LINK, sts);
} else if (mac->type == MTK_GDM_TYPE) {
struct mtk_eth *eth = mac->hw;
struct mtk_sgmii *ss = eth->sgmii;
u32 id = mtk_mac2xgmii_id(eth, mac->id);
u32 pmsr = mtk_r32(mac->hw, MTK_MAC_MSR(mac->id));
u32 bm, adv, rgc3, sgm_mode;
state->interface = mac->interface;
regmap_read(ss->pcs[id].regmap, SGMSYS_PCS_CONTROL_1, &bm);
if (bm & SGMII_AN_ENABLE) {
regmap_read(ss->pcs[id].regmap,
SGMSYS_PCS_ADVERTISE, &adv);
phylink_mii_c22_pcs_decode_state(
state,
FIELD_GET(SGMII_BMSR, bm),
FIELD_GET(SGMII_LPA, adv));
} else {
state->link = !!(bm & SGMII_LINK_STATYS);
regmap_read(ss->pcs[id].regmap,
SGMSYS_SGMII_MODE, &sgm_mode);
switch (sgm_mode & SGMII_SPEED_MASK) {
case SGMII_SPEED_10:
state->speed = SPEED_10;
break;
case SGMII_SPEED_100:
state->speed = SPEED_100;
break;
case SGMII_SPEED_1000:
regmap_read(ss->pcs[id].regmap,
ss->pcs[id].ana_rgc3, &rgc3);
rgc3 = FIELD_GET(RG_PHY_SPEED_3_125G, rgc3);
state->speed = rgc3 ? SPEED_2500 : SPEED_1000;
break;
}
if (sgm_mode & SGMII_DUPLEX_HALF)
state->duplex = DUPLEX_HALF;
else
state->duplex = DUPLEX_FULL;
}
state->pause &= (MLO_PAUSE_RX | MLO_PAUSE_TX);
if (pmsr & MAC_MSR_RX_FC)
state->pause |= MLO_PAUSE_RX;
if (pmsr & MAC_MSR_TX_FC)
state->pause |= MLO_PAUSE_TX;
}
return 1;
}
static void mtk_mac_link_down(struct phylink_config *config, unsigned int mode,
phy_interface_t interface)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
u32 mcr;
if (mac->type == MTK_GDM_TYPE) {
mcr = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id));
mcr &= ~(MAC_MCR_TX_EN | MAC_MCR_RX_EN);
mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id));
} else if (mac->type == MTK_XGDM_TYPE && mac->id != MTK_GMAC1_ID) {
mcr = mtk_r32(mac->hw, MTK_XMAC_MCR(mac->id));
mcr &= 0xfffffff0;
mcr |= XMAC_MCR_TRX_DISABLE;
mtk_w32(mac->hw, mcr, MTK_XMAC_MCR(mac->id));
}
}
static void mtk_mac_link_up(struct phylink_config *config, unsigned int mode,
phy_interface_t interface,
struct phy_device *phy)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
u32 mcr, mcr_cur;
mac->speed = speed;
if (mac->type == MTK_GDM_TYPE) {
mcr_cur = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id));
mcr = mcr_cur;
mcr &= ~(MAC_MCR_SPEED_100 | MAC_MCR_SPEED_1000 |
MAC_MCR_FORCE_DPX | MAC_MCR_FORCE_TX_FC |
MAC_MCR_FORCE_RX_FC);
mcr |= MAC_MCR_MAX_RX_1536 | MAC_MCR_IPG_CFG | MAC_MCR_FORCE_MODE |
MAC_MCR_BACKOFF_EN | MAC_MCR_BACKPR_EN | MAC_MCR_FORCE_LINK;
/* Configure speed */
switch (speed) {
case SPEED_2500:
case SPEED_1000:
mcr |= MAC_MCR_SPEED_1000;
break;
case SPEED_100:
mcr |= MAC_MCR_SPEED_100;
break;
}
/* Configure duplex */
if (duplex == DUPLEX_FULL)
mcr |= MAC_MCR_FORCE_DPX;
/* Configure pause modes -
* phylink will avoid these for half duplex
*/
if (tx_pause)
mcr |= MAC_MCR_FORCE_TX_FC;
if (rx_pause)
mcr |= MAC_MCR_FORCE_RX_FC;
mcr |= MAC_MCR_TX_EN | MAC_MCR_RX_EN;
/* Only update control register when needed! */
if (mcr != mcr_cur)
mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id));
if (mode == MLO_AN_PHY && phy)
mtk_setup_eee(mac, phy_init_eee(phy, false) >= 0);
} else if (mac->type == MTK_XGDM_TYPE && mac->id != MTK_GMAC1_ID) {
mcr = mtk_r32(mac->hw, MTK_XMAC_MCR(mac->id));
mcr &= ~(XMAC_MCR_FORCE_TX_FC | XMAC_MCR_FORCE_RX_FC);
/* Configure pause modes -
* phylink will avoid these for half duplex
*/
if (tx_pause)
mcr |= XMAC_MCR_FORCE_TX_FC;
if (rx_pause)
mcr |= XMAC_MCR_FORCE_RX_FC;
mcr &= ~(XMAC_MCR_TRX_DISABLE);
mtk_w32(mac->hw, mcr, MTK_XMAC_MCR(mac->id));
}
}
static void mtk_validate(struct phylink_config *config,
unsigned long *supported,
struct phylink_link_state *state)
{
struct mtk_mac *mac = container_of(config, struct mtk_mac,
phylink_config);
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
if (state->interface != PHY_INTERFACE_MODE_NA &&
state->interface != PHY_INTERFACE_MODE_MII &&
state->interface != PHY_INTERFACE_MODE_GMII &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_RGMII) &&
phy_interface_mode_is_rgmii(state->interface)) &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_TRGMII) &&
!mac->id && state->interface == PHY_INTERFACE_MODE_TRGMII) &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_SGMII) &&
(state->interface == PHY_INTERFACE_MODE_SGMII ||
phy_interface_mode_is_8023z(state->interface))) &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_XGMII) &&
(state->interface == PHY_INTERFACE_MODE_XGMII)) &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_USXGMII) &&
(state->interface == PHY_INTERFACE_MODE_USXGMII)) &&
!(MTK_HAS_CAPS(mac->hw->soc->caps, MTK_USXGMII) &&
(state->interface == PHY_INTERFACE_MODE_10GKR))) {
linkmode_zero(supported);
return;
}
phylink_set_port_modes(mask);
phylink_set(mask, Autoneg);
switch (state->interface) {
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_10GKR:
phylink_set(mask, 10000baseKR_Full);
phylink_set(mask, 10000baseT_Full);
phylink_set(mask, 10000baseCR_Full);
phylink_set(mask, 10000baseSR_Full);
phylink_set(mask, 10000baseLR_Full);
phylink_set(mask, 10000baseLRM_Full);
phylink_set(mask, 10000baseER_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
phylink_set(mask, 1000baseT_Half);
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseX_Full);
phylink_set(mask, 2500baseT_Full);
phylink_set(mask, 5000baseT_Full);
break;
case PHY_INTERFACE_MODE_TRGMII:
phylink_set(mask, 1000baseT_Full);
break;
case PHY_INTERFACE_MODE_XGMII:
/* fall through */
case PHY_INTERFACE_MODE_1000BASEX:
phylink_set(mask, 1000baseX_Full);
/* fall through; */
case PHY_INTERFACE_MODE_2500BASEX:
phylink_set(mask, 2500baseX_Full);
phylink_set(mask, 2500baseT_Full);
/* fall through; */
case PHY_INTERFACE_MODE_GMII:
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
phylink_set(mask, 1000baseT_Half);
/* fall through */
case PHY_INTERFACE_MODE_SGMII:
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseX_Full);
/* fall through */
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_RMII:
case PHY_INTERFACE_MODE_REVMII:
case PHY_INTERFACE_MODE_NA:
default:
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
phylink_set(mask, 100baseT_Full);
break;
}
if (state->interface == PHY_INTERFACE_MODE_NA) {
if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_USXGMII)) {
phylink_set(mask, 10000baseKR_Full);
phylink_set(mask, 10000baseT_Full);
phylink_set(mask, 10000baseSR_Full);
phylink_set(mask, 10000baseLR_Full);
phylink_set(mask, 10000baseLRM_Full);
phylink_set(mask, 10000baseER_Full);
phylink_set(mask, 1000baseKX_Full);
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseX_Full);
phylink_set(mask, 2500baseX_Full);
phylink_set(mask, 2500baseT_Full);
phylink_set(mask, 5000baseT_Full);
}
if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_SGMII)) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseX_Full);
phylink_set(mask, 2500baseX_Full);
}
if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_RGMII)) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseT_Half);
phylink_set(mask, 1000baseX_Full);
}
if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GEPHY)) {
phylink_set(mask, 1000baseT_Full);
phylink_set(mask, 1000baseT_Half);
}
}
if (mac->type == MTK_XGDM_TYPE) {
phylink_clear(mask, 10baseT_Half);
phylink_clear(mask, 100baseT_Half);
phylink_clear(mask, 1000baseT_Half);
}
phylink_set(mask, Pause);
phylink_set(mask, Asym_Pause);
linkmode_and(supported, supported, mask);
linkmode_and(state->advertising, state->advertising, mask);
/* We can only operate at 2500BaseX or 1000BaseX. If requested
* to advertise both, only report advertising at 2500BaseX.
*/
phylink_helper_basex_speed(state);
}
static const struct phylink_mac_ops mtk_phylink_ops = {
.validate = mtk_validate,
.mac_select_pcs = mtk_mac_select_pcs,
.mac_link_state = mtk_mac_pcs_get_state,
.mac_config = mtk_mac_config,
.mac_finish = mtk_mac_finish,
.mac_link_down = mtk_mac_link_down,
.mac_link_up = mtk_mac_link_up,
};
static int mtk_mdc_init(struct mtk_eth *eth)
{
struct device_node *mii_np;
int max_clk = 2500000, divider;
int ret = 0;
u32 val;
mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus");
if (!mii_np) {
dev_err(eth->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
ret = -ENODEV;
goto err_put_node;
}
if (!of_property_read_u32(mii_np, "clock-frequency", &val)) {
if (val > MDC_MAX_FREQ ||
val < MDC_MAX_FREQ / MDC_MAX_DIVIDER) {
dev_err(eth->dev, "MDIO clock frequency out of range");
ret = -EINVAL;
goto err_put_node;
}
max_clk = val;
}
divider = min_t(unsigned int, DIV_ROUND_UP(MDC_MAX_FREQ, max_clk), 63);
/* Configure MDC Turbo Mode */
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
val = mtk_r32(eth, MTK_MAC_MISC);
val |= MISC_MDC_TURBO;
mtk_w32(eth, val, MTK_MAC_MISC);
} else {
val = mtk_r32(eth, MTK_PPSC);
val |= PPSC_MDC_TURBO;
mtk_w32(eth, val, MTK_PPSC);
}
/* Configure MDC Divider */
val = mtk_r32(eth, MTK_PPSC);
val &= ~PPSC_MDC_CFG;
val |= FIELD_PREP(PPSC_MDC_CFG, divider);
mtk_w32(eth, val, MTK_PPSC);
dev_info(eth->dev, "MDC is running on %d Hz\n", MDC_MAX_FREQ / divider);
err_put_node:
of_node_put(mii_np);
return ret;
}
static int mtk_mdio_init(struct mtk_eth *eth)
{
struct device_node *mii_np;
int ret;
mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus");
if (!mii_np) {
dev_err(eth->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
ret = -ENODEV;
goto err_put_node;
}
eth->mii_bus = devm_mdiobus_alloc(eth->dev);
if (!eth->mii_bus) {
ret = -ENOMEM;
goto err_put_node;
}
eth->mii_bus->name = "mdio";
eth->mii_bus->read = mtk_mdio_read;
eth->mii_bus->write = mtk_mdio_write;
eth->mii_bus->reset = mtk_mdio_reset;
eth->mii_bus->priv = eth;
eth->mii_bus->parent = eth->dev;
if (snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%pOFn", mii_np) < 0) {
ret = -ENOMEM;
goto err_put_node;
}
ret = of_mdiobus_register(eth->mii_bus, mii_np);
err_put_node:
of_node_put(mii_np);
return ret;
}
static void mtk_mdio_cleanup(struct mtk_eth *eth)
{
if (!eth->mii_bus)
return;
mdiobus_unregister(eth->mii_bus);
}
static inline void mtk_tx_irq_disable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->tx_irq_lock, flags);
val = mtk_r32(eth, eth->soc->reg_map->tx_irq_mask);
mtk_w32(eth, val & ~mask, eth->soc->reg_map->tx_irq_mask);
spin_unlock_irqrestore(&eth->tx_irq_lock, flags);
}
static inline void mtk_tx_irq_enable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->tx_irq_lock, flags);
val = mtk_r32(eth, eth->soc->reg_map->tx_irq_mask);
mtk_w32(eth, val | mask, eth->soc->reg_map->tx_irq_mask);
spin_unlock_irqrestore(&eth->tx_irq_lock, flags);
}
static inline void mtk_rx_irq_disable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->rx_irq_lock, flags);
val = mtk_r32(eth, eth->soc->reg_map->pdma.irq_mask);
mtk_w32(eth, val & ~mask, eth->soc->reg_map->pdma.irq_mask);
spin_unlock_irqrestore(&eth->rx_irq_lock, flags);
}
static inline void mtk_rx_irq_enable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->rx_irq_lock, flags);
val = mtk_r32(eth, eth->soc->reg_map->pdma.irq_mask);
mtk_w32(eth, val | mask, eth->soc->reg_map->pdma.irq_mask);
spin_unlock_irqrestore(&eth->rx_irq_lock, flags);
}
static int mtk_set_mac_address(struct net_device *dev, void *p)
{
int ret = eth_mac_addr(dev, p);
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
const char *macaddr = dev->dev_addr;
if (ret)
return ret;
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return -EBUSY;
spin_lock_bh(&mac->hw->page_lock);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) {
mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1],
MT7628_SDM_MAC_ADRH);
mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
(macaddr[4] << 8) | macaddr[5],
MT7628_SDM_MAC_ADRL);
} else {
mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1],
MTK_GDMA_MAC_ADRH(mac->id));
mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
(macaddr[4] << 8) | macaddr[5],
MTK_GDMA_MAC_ADRL(mac->id));
}
spin_unlock_bh(&mac->hw->page_lock);
return 0;
}
void mtk_stats_update_mac(struct mtk_mac *mac)
{
struct mtk_eth *eth = mac->hw;
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int offs = hw_stats->reg_offset;
u64 stats;
u64_stats_update_begin(&hw_stats->syncp);
hw_stats->rx_bytes += mtk_r32(mac->hw, reg_map->gdm1_cnt + offs);
stats = mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x4 + offs);
if (stats)
hw_stats->rx_bytes += (stats << 32);
hw_stats->rx_packets +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x08 + offs);
hw_stats->rx_overflow +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x10 + offs);
hw_stats->rx_fcs_errors +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x14 + offs);
hw_stats->rx_short_errors +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x18 + offs);
hw_stats->rx_long_errors +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x1c + offs);
hw_stats->rx_checksum_errors +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x20 + offs);
hw_stats->rx_flow_control_packets +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x24 + offs);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
hw_stats->tx_skip +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x50 + offs);
hw_stats->tx_collisions +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x54 + offs);
hw_stats->tx_bytes +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x40 + offs);
stats = mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x44 + offs);
if (stats)
hw_stats->tx_bytes += (stats << 32);
hw_stats->tx_packets +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x48 + offs);
} else {
hw_stats->tx_skip +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x28 + offs);
hw_stats->tx_collisions +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x2c + offs);
hw_stats->tx_bytes +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x30 + offs);
stats = mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x34 + offs);
if (stats)
hw_stats->tx_bytes += (stats << 32);
hw_stats->tx_packets +=
mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x38 + offs);
}
u64_stats_update_end(&hw_stats->syncp);
}
static void mtk_stats_update(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->mac[i] || !eth->mac[i]->hw_stats)
continue;
if (spin_trylock(&eth->mac[i]->hw_stats->stats_lock)) {
mtk_stats_update_mac(eth->mac[i]);
spin_unlock(&eth->mac[i]->hw_stats->stats_lock);
}
}
}
static void mtk_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int start;
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock_bh(&hw_stats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock_bh(&hw_stats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_irq(&hw_stats->syncp);
storage->rx_packets = hw_stats->rx_packets;
storage->tx_packets = hw_stats->tx_packets;
storage->rx_bytes = hw_stats->rx_bytes;
storage->tx_bytes = hw_stats->tx_bytes;
storage->collisions = hw_stats->tx_collisions;
storage->rx_length_errors = hw_stats->rx_short_errors +
hw_stats->rx_long_errors;
storage->rx_over_errors = hw_stats->rx_overflow;
storage->rx_crc_errors = hw_stats->rx_fcs_errors;
storage->rx_errors = hw_stats->rx_checksum_errors;
storage->tx_aborted_errors = hw_stats->tx_skip;
} while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start));
storage->tx_errors = dev->stats.tx_errors;
storage->rx_dropped = dev->stats.rx_dropped;
storage->tx_dropped = dev->stats.tx_dropped;
}
static inline int mtk_max_frag_size(int mtu)
{
/* make sure buf_size will be at least MTK_MAX_RX_LENGTH */
if (mtu + MTK_RX_ETH_HLEN < MTK_MAX_RX_LENGTH)
mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN;
return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static inline int mtk_max_buf_size(int frag_size)
{
int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
WARN_ON(buf_size < MTK_MAX_RX_LENGTH);
return buf_size;
}
static bool mtk_rx_get_desc(struct mtk_eth *eth, struct mtk_rx_dma_v2 *rxd,
struct mtk_rx_dma_v2 *dma_rxd)
{
rxd->rxd2 = READ_ONCE(dma_rxd->rxd2);
if (!(rxd->rxd2 & RX_DMA_DONE))
return false;
rxd->rxd1 = READ_ONCE(dma_rxd->rxd1);
rxd->rxd3 = READ_ONCE(dma_rxd->rxd3);
rxd->rxd4 = READ_ONCE(dma_rxd->rxd4);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
rxd->rxd5 = READ_ONCE(dma_rxd->rxd5);
rxd->rxd6 = READ_ONCE(dma_rxd->rxd6);
rxd->rxd7 = READ_ONCE(dma_rxd->rxd7);
}
return true;
}
/* the qdma core needs scratch memory to be setup */
static int mtk_init_fq_dma(struct mtk_eth *eth)
{
const struct mtk_soc_data *soc = eth->soc;
dma_addr_t phy_ring_tail;
int cnt = MTK_DMA_SIZE;
dma_addr_t dma_addr;
int i;
if (!eth->soc->has_sram) {
eth->scratch_ring = dma_alloc_coherent(eth->dma_dev,
cnt * soc->txrx.txd_size,
&eth->phy_scratch_ring,
GFP_KERNEL);
} else {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3))
eth->scratch_ring = eth->sram_base;
else if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V2))
eth->scratch_ring = eth->base + MTK_ETH_SRAM_OFFSET;
}
if (unlikely(!eth->scratch_ring))
return -ENOMEM;
eth->scratch_head = kcalloc(cnt, MTK_QDMA_PAGE_SIZE, GFP_KERNEL);
if (unlikely(!eth->scratch_head))
return -ENOMEM;
dma_addr = dma_map_single(eth->dma_dev,
eth->scratch_head, cnt * MTK_QDMA_PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr)))
return -ENOMEM;
phy_ring_tail = eth->phy_scratch_ring +
(dma_addr_t)soc->txrx.txd_size * (cnt - 1);
for (i = 0; i < cnt; i++) {
struct mtk_tx_dma_v2 *txd;
txd = eth->scratch_ring + i * soc->txrx.txd_size;
txd->txd1 = dma_addr + i * MTK_QDMA_PAGE_SIZE;
if (i < cnt - 1)
txd->txd2 = eth->phy_scratch_ring +
(i + 1) * soc->txrx.txd_size;
txd->txd3 = TX_DMA_PLEN0(MTK_QDMA_PAGE_SIZE);
txd->txd4 = 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V2) ||
MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
txd->txd5 = 0;
txd->txd6 = 0;
txd->txd7 = 0;
txd->txd8 = 0;
}
}
mtk_w32(eth, eth->phy_scratch_ring, soc->reg_map->qdma.fq_head);
mtk_w32(eth, phy_ring_tail, soc->reg_map->qdma.fq_tail);
mtk_w32(eth, (cnt << 16) | cnt, soc->reg_map->qdma.fq_count);
mtk_w32(eth, MTK_QDMA_PAGE_SIZE << 16, soc->reg_map->qdma.fq_blen);
return 0;
}
static inline void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc)
{
return ring->dma + (desc - ring->phys);
}
static inline struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring,
void *txd, u32 txd_size)
{
int idx = (txd - ring->dma) / txd_size;
return &ring->buf[idx];
}
static struct mtk_tx_dma *qdma_to_pdma(struct mtk_tx_ring *ring,
void *dma)
{
return ring->dma_pdma - ring->dma + dma;
}
static int txd_to_idx(struct mtk_tx_ring *ring, void *dma, u32 txd_size)
{
return (dma - ring->dma) / txd_size;
}
static void mtk_tx_unmap(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf,
bool napi)
{
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) {
dma_unmap_single(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
} else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) {
dma_unmap_page(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
} else {
if (dma_unmap_len(tx_buf, dma_len0)) {
dma_unmap_page(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
if (dma_unmap_len(tx_buf, dma_len1)) {
dma_unmap_page(eth->dma_dev,
dma_unmap_addr(tx_buf, dma_addr1),
dma_unmap_len(tx_buf, dma_len1),
DMA_TO_DEVICE);
}
}
tx_buf->flags = 0;
if (tx_buf->skb &&
(tx_buf->skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC)) {
if (napi)
napi_consume_skb(tx_buf->skb, napi);
else
dev_kfree_skb_any(tx_buf->skb);
}
tx_buf->skb = NULL;
}
static void setup_tx_buf(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf,
struct mtk_tx_dma *txd, dma_addr_t mapped_addr,
size_t size, int idx)
{
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, size);
} else {
if (idx & 1) {
txd->txd3 = mapped_addr;
txd->txd2 |= TX_DMA_PLEN1(size);
dma_unmap_addr_set(tx_buf, dma_addr1, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len1, size);
} else {
tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC;
txd->txd1 = mapped_addr;
txd->txd2 = TX_DMA_PLEN0(size);
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, size);
}
}
}
static void mtk_tx_set_dma_desc_v1(struct sk_buff *skb, struct net_device *dev, void *txd,
struct mtk_tx_dma_desc_info *info)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma *desc = txd;
u32 data;
WRITE_ONCE(desc->txd1, info->addr);
data = TX_DMA_SWC | QID_LOW_BITS(info->qid) | TX_DMA_PLEN0(info->size);
if (info->last)
data |= TX_DMA_LS0;
WRITE_ONCE(desc->txd3, data);
data = (mac->id + 1) << TX_DMA_FPORT_SHIFT; /* forward port */
data |= QID_HIGH_BITS(info->qid);
if (info->first) {
if (info->gso)
data |= TX_DMA_TSO;
/* tx checksum offload */
if (info->csum)
data |= TX_DMA_CHKSUM;
/* vlan header offload */
if (info->vlan)
data |= TX_DMA_INS_VLAN | info->vlan_tci;
}
#if defined(CONFIG_NET_MEDIATEK_HNAT) || defined(CONFIG_NET_MEDIATEK_HNAT_MODULE)
if (HNAT_SKB_CB2(skb)->magic == 0x78681415) {
data &= ~(0x7 << TX_DMA_FPORT_SHIFT);
data |= 0x4 << TX_DMA_FPORT_SHIFT;
}
trace_printk("[%s] skb_shinfo(skb)->nr_frags=%x HNAT_SKB_CB2(skb)->magic=%x txd4=%x<-----\n",
__func__, skb_shinfo(skb)->nr_frags, HNAT_SKB_CB2(skb)->magic, data);
#endif
WRITE_ONCE(desc->txd4, data);
}
static void mtk_tx_set_dma_desc_v2(struct sk_buff *skb, struct net_device *dev, void *txd,
struct mtk_tx_dma_desc_info *info)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma_v2 *desc = txd;
u32 data = 0;
if (!info->qid && mac->id)
info->qid = MTK_QDMA_GMAC2_QID;
WRITE_ONCE(desc->txd1, info->addr);
data = TX_DMA_PLEN0(info->size);
if (info->last)
data |= TX_DMA_LS0;
WRITE_ONCE(desc->txd3, data);
data = ((mac->id == MTK_GMAC3_ID) ?
PSE_GDM3_PORT : (mac->id + 1)) << TX_DMA_FPORT_SHIFT_V2; /* forward port */
data |= TX_DMA_SWC_V2 | QID_BITS_V2(info->qid);
#if defined(CONFIG_NET_MEDIATEK_HNAT) || defined(CONFIG_NET_MEDIATEK_HNAT_MODULE)
if (HNAT_SKB_CB2(skb)->magic == 0x78681415) {
data &= ~(0xf << TX_DMA_FPORT_SHIFT_V2);
data |= 0x4 << TX_DMA_FPORT_SHIFT_V2;
}
trace_printk("[%s] skb_shinfo(skb)->nr_frags=%x HNAT_SKB_CB2(skb)->magic=%x txd4=%x<-----\n",
__func__, skb_shinfo(skb)->nr_frags, HNAT_SKB_CB2(skb)->magic, data);
#endif
WRITE_ONCE(desc->txd4, data);
data = 0;
if (info->first) {
if (info->gso)
data |= TX_DMA_TSO_V2;
/* tx checksum offload */
if (info->csum)
data |= TX_DMA_CHKSUM_V2;
}
WRITE_ONCE(desc->txd5, data);
data = 0;
if (info->first && info->vlan)
data |= TX_DMA_INS_VLAN_V2 | info->vlan_tci;
WRITE_ONCE(desc->txd6, data);
WRITE_ONCE(desc->txd7, 0);
WRITE_ONCE(desc->txd8, 0);
}
static void mtk_tx_set_dma_desc_v3(struct sk_buff *skb, struct net_device *dev, void *txd,
struct mtk_tx_dma_desc_info *info)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma_v2 *desc = txd;
u64 addr64 = 0;
u32 data = 0;
if (!info->qid && mac->id)
info->qid = MTK_QDMA_GMAC2_QID;
addr64 = (MTK_HAS_CAPS(eth->soc->caps, MTK_8GB_ADDRESSING)) ?
TX_DMA_SDP1(info->addr) : 0;
WRITE_ONCE(desc->txd1, info->addr);
data = TX_DMA_PLEN0(info->size);
if (info->last)
data |= TX_DMA_LS0;
WRITE_ONCE(desc->txd3, data | addr64);
data = ((mac->id == MTK_GMAC3_ID) ?
PSE_GDM3_PORT : (mac->id + 1)) << TX_DMA_FPORT_SHIFT_V2; /* forward port */
data |= TX_DMA_SWC_V2 | QID_BITS_V2(info->qid);
#if defined(CONFIG_NET_MEDIATEK_HNAT) || defined(CONFIG_NET_MEDIATEK_HNAT_MODULE)
if (HNAT_SKB_CB2(skb)->magic == 0x78681415) {
data &= ~(0xf << TX_DMA_FPORT_SHIFT_V2);
data |= 0x4 << TX_DMA_FPORT_SHIFT_V2;
}
trace_printk("[%s] skb_shinfo(skb)->nr_frags=%x HNAT_SKB_CB2(skb)->magic=%x txd4=%x<-----\n",
__func__, skb_shinfo(skb)->nr_frags, HNAT_SKB_CB2(skb)->magic, data);
#endif
WRITE_ONCE(desc->txd4, data);
data = 0;
if (info->first) {
if (info->gso)
data |= TX_DMA_TSO_V2;
/* tx checksum offload */
if (info->csum)
data |= TX_DMA_CHKSUM_V2;
if (netdev_uses_dsa(dev))
data |= TX_DMA_SPTAG_V3;
}
WRITE_ONCE(desc->txd5, data);
data = 0;
if (info->first && info->vlan)
data |= TX_DMA_INS_VLAN_V2 | info->vlan_tci;
WRITE_ONCE(desc->txd6, data);
WRITE_ONCE(desc->txd7, 0);
WRITE_ONCE(desc->txd8, 0);
}
static void mtk_tx_set_dma_desc(struct sk_buff *skb, struct net_device *dev, void *txd,
struct mtk_tx_dma_desc_info *info)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3))
mtk_tx_set_dma_desc_v3(skb, dev, txd, info);
else if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V2))
mtk_tx_set_dma_desc_v2(skb, dev, txd, info);
else
mtk_tx_set_dma_desc_v1(skb, dev, txd, info);
}
static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct mtk_tx_ring *ring, bool gso)
{
struct mtk_tx_dma_desc_info txd_info = {
.size = skb_headlen(skb),
.qid = skb->mark & MTK_QDMA_TX_MASK,
.gso = gso,
.csum = skb->ip_summed == CHECKSUM_PARTIAL,
.vlan = skb_vlan_tag_present(skb),
.vlan_tci = skb_vlan_tag_get(skb),
.first = true,
.last = !skb_is_nonlinear(skb),
};
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
const struct mtk_soc_data *soc = eth->soc;
struct mtk_tx_dma *itxd, *txd;
struct mtk_tx_dma *itxd_pdma, *txd_pdma;
struct mtk_tx_buf *itx_buf, *tx_buf;
int i, n_desc = 1;
int k = 0;
if (skb->len < 32) {
if (skb_put_padto(skb, MTK_MIN_TX_LENGTH))
return -ENOMEM;
txd_info.size = skb_headlen(skb);
}
itxd = ring->next_free;
itxd_pdma = qdma_to_pdma(ring, itxd);
if (itxd == ring->last_free)
return -ENOMEM;
itx_buf = mtk_desc_to_tx_buf(ring, itxd, soc->txrx.txd_size);
memset(itx_buf, 0, sizeof(*itx_buf));
txd_info.addr = dma_map_single(eth->dma_dev, skb->data, txd_info.size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(eth->dma_dev, txd_info.addr)))
return -ENOMEM;
mtk_tx_set_dma_desc(skb, dev, itxd, &txd_info);
itx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
itx_buf->flags |= (mac->id == MTK_GMAC1_ID) ? MTK_TX_FLAGS_FPORT0 :
(mac->id == MTK_GMAC2_ID) ? MTK_TX_FLAGS_FPORT1 :
MTK_TX_FLAGS_FPORT2;
setup_tx_buf(eth, itx_buf, itxd_pdma, txd_info.addr, txd_info.size,
k++);
/* TX SG offload */
txd = itxd;
txd_pdma = qdma_to_pdma(ring, txd);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
unsigned int offset = 0;
int frag_size = skb_frag_size(frag);
while (frag_size) {
bool new_desc = true;
if (MTK_HAS_CAPS(soc->caps, MTK_QDMA) ||
(i & 0x1)) {
txd = mtk_qdma_phys_to_virt(ring, txd->txd2);
txd_pdma = qdma_to_pdma(ring, txd);
if (txd == ring->last_free)
goto err_dma;
n_desc++;
} else {
new_desc = false;
}
memset(&txd_info, 0, sizeof(struct mtk_tx_dma_desc_info));
txd_info.size = min(frag_size, MTK_TX_DMA_BUF_LEN);
txd_info.qid = skb->mark & MTK_QDMA_TX_MASK;
txd_info.last = i == skb_shinfo(skb)->nr_frags - 1 &&
!(frag_size - txd_info.size);
txd_info.addr = skb_frag_dma_map(eth->dma_dev, frag,
offset, txd_info.size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(eth->dma_dev,
txd_info.addr)))
goto err_dma;
mtk_tx_set_dma_desc(skb, dev, txd, &txd_info);
tx_buf = mtk_desc_to_tx_buf(ring, txd, soc->txrx.txd_size);
if (new_desc)
memset(tx_buf, 0, sizeof(*tx_buf));
tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC;
tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
tx_buf->flags |=
(mac->id == MTK_GMAC1_ID) ? MTK_TX_FLAGS_FPORT0 :
(mac->id == MTK_GMAC2_ID) ? MTK_TX_FLAGS_FPORT1 :
MTK_TX_FLAGS_FPORT2;
setup_tx_buf(eth, tx_buf, txd_pdma, txd_info.addr,
txd_info.size, k++);
frag_size -= txd_info.size;
offset += txd_info.size;
}
}
/* store skb to cleanup */
itx_buf->skb = skb;
if (!MTK_HAS_CAPS(soc->caps, MTK_QDMA)) {
if (k & 0x1)
txd_pdma->txd2 |= TX_DMA_LS0;
else
txd_pdma->txd2 |= TX_DMA_LS1;
}
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2);
atomic_sub(n_desc, &ring->free_count);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (MTK_HAS_CAPS(soc->caps, MTK_QDMA)) {
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) ||
!netdev_xmit_more())
mtk_w32(eth, txd->txd2, soc->reg_map->qdma.ctx_ptr);
} else {
int next_idx = NEXT_DESP_IDX(txd_to_idx(ring, txd, soc->txrx.txd_size),
ring->dma_size);
mtk_w32(eth, next_idx, MT7628_TX_CTX_IDX0);
}
return 0;
err_dma:
do {
tx_buf = mtk_desc_to_tx_buf(ring, itxd, soc->txrx.txd_size);
/* unmap dma */
mtk_tx_unmap(eth, tx_buf, false);
itxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
if (!MTK_HAS_CAPS(soc->caps, MTK_QDMA))
itxd_pdma->txd2 = TX_DMA_DESP2_DEF;
itxd = mtk_qdma_phys_to_virt(ring, itxd->txd2);
itxd_pdma = qdma_to_pdma(ring, itxd);
} while (itxd != txd);
return -ENOMEM;
}
static inline int mtk_cal_txd_req(struct sk_buff *skb)
{
int i, nfrags;
skb_frag_t *frag;
nfrags = 1;
if (skb_is_gso(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
nfrags += DIV_ROUND_UP(skb_frag_size(frag),
MTK_TX_DMA_BUF_LEN);
}
} else {
nfrags += skb_shinfo(skb)->nr_frags;
}
return nfrags;
}
static int mtk_queue_stopped(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
if (netif_queue_stopped(eth->netdev[i]))
return 1;
}
return 0;
}
static void mtk_wake_queue(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
netif_wake_queue(eth->netdev[i]);
}
}
static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_ring *ring = &eth->tx_ring;
struct net_device_stats *stats = &dev->stats;
bool gso = false;
int tx_num;
/* normally we can rely on the stack not calling this more than once,
* however we have 2 queues running on the same ring so we need to lock
* the ring access
*/
spin_lock(&eth->page_lock);
if (unlikely(test_bit(MTK_RESETTING, &eth->state)))
goto drop;
tx_num = mtk_cal_txd_req(skb);
if (unlikely(atomic_read(&ring->free_count) <= tx_num)) {
netif_stop_queue(dev);
netif_err(eth, tx_queued, dev,
"Tx Ring full when queue awake!\n");
spin_unlock(&eth->page_lock);
return NETDEV_TX_BUSY;
}
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0)) {
netif_warn(eth, tx_err, dev,
"GSO expand head fail.\n");
goto drop;
}
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
gso = true;
tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
}
}
if (mtk_tx_map(skb, dev, tx_num, ring, gso) < 0)
goto drop;
if (unlikely(atomic_read(&ring->free_count) <= ring->thresh))
netif_stop_queue(dev);
spin_unlock(&eth->page_lock);
return NETDEV_TX_OK;
drop:
spin_unlock(&eth->page_lock);
stats->tx_dropped++;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static struct mtk_rx_ring *mtk_get_rx_ring(struct mtk_eth *eth)
{
int i;
struct mtk_rx_ring *ring;
int idx;
for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) {
struct mtk_rx_dma *rxd;
if (!IS_NORMAL_RING(i) && !IS_HW_LRO_RING(i))
continue;
ring = &eth->rx_ring[i];
idx = NEXT_DESP_IDX(ring->calc_idx, ring->dma_size);
rxd = ring->dma + idx * eth->soc->txrx.rxd_size;
if (rxd->rxd2 & RX_DMA_DONE) {
ring->calc_idx_update = true;
return ring;
}
}
return NULL;
}
static void mtk_update_rx_cpu_idx(struct mtk_eth *eth, struct mtk_rx_ring *ring)
{
int i;
if (!eth->hwlro)
mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg);
else {
for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) {
ring = &eth->rx_ring[i];
if (ring->calc_idx_update) {
ring->calc_idx_update = false;
mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg);
}
}
}
}
static int mtk_poll_rx(struct napi_struct *napi, int budget,
struct mtk_eth *eth)
{
struct mtk_napi *rx_napi = container_of(napi, struct mtk_napi, napi);
struct mtk_rx_ring *ring = rx_napi->rx_ring;
int idx;
struct sk_buff *skb;
u64 addr64 = 0;
u8 *data, *new_data;
struct mtk_rx_dma_v2 *rxd, trxd;
int done = 0;
if (unlikely(!ring))
goto rx_done;
while (done < budget) {
unsigned int pktlen, *rxdcsum;
struct net_device *netdev = NULL;
dma_addr_t dma_addr = 0;
int mac = 0;
if (eth->hwlro)
ring = mtk_get_rx_ring(eth);
if (unlikely(!ring))
goto rx_done;
idx = NEXT_DESP_IDX(ring->calc_idx, ring->dma_size);
rxd = ring->dma + idx * eth->soc->txrx.rxd_size;
data = ring->data[idx];
if (!mtk_rx_get_desc(eth, &trxd, rxd))
break;
/* find out which mac the packet come from. values start at 1 */
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) {
mac = 0;
} else {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
switch (RX_DMA_GET_SPORT_V2(trxd.rxd5)) {
case PSE_GDM1_PORT:
case PSE_GDM2_PORT:
mac = RX_DMA_GET_SPORT_V2(trxd.rxd5) - 1;
break;
case PSE_GDM3_PORT:
mac = MTK_GMAC3_ID;
break;
}
} else
mac = (trxd.rxd4 & RX_DMA_SPECIAL_TAG) ?
0 : RX_DMA_GET_SPORT(trxd.rxd4) - 1;
}
if (unlikely(mac < 0 || mac >= MTK_MAC_COUNT ||
!eth->netdev[mac]))
goto release_desc;
netdev = eth->netdev[mac];
if (unlikely(test_bit(MTK_RESETTING, &eth->state)))
goto release_desc;
/* alloc new buffer */
new_data = napi_alloc_frag(ring->frag_size);
if (unlikely(!new_data)) {
netdev->stats.rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(eth->dma_dev,
new_data + NET_SKB_PAD +
eth->ip_align,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr))) {
skb_free_frag(new_data);
netdev->stats.rx_dropped++;
goto release_desc;
}
addr64 = (MTK_HAS_CAPS(eth->soc->caps, MTK_8GB_ADDRESSING)) ?
((u64)(trxd.rxd2 & 0xf)) << 32 : 0;
dma_unmap_single(eth->dma_dev,
(u64)(trxd.rxd1 | addr64),
ring->buf_size, DMA_FROM_DEVICE);
/* receive data */
skb = build_skb(data, ring->frag_size);
if (unlikely(!skb)) {
skb_free_frag(data);
netdev->stats.rx_dropped++;
goto skip_rx;
}
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
skb->dev = netdev;
skb_put(skb, pktlen);
if ((MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)))
rxdcsum = &trxd.rxd3;
else
rxdcsum = &trxd.rxd4;
if (*rxdcsum & eth->soc->txrx.rx_dma_l4_valid)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, netdev);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
if (trxd.rxd3 & RX_DMA_VTAG_V2)
__vlan_hwaccel_put_tag(skb,
htons(RX_DMA_VPID_V2(trxd.rxd4)),
RX_DMA_VID_V2(trxd.rxd4));
} else {
if (trxd.rxd2 & RX_DMA_VTAG)
__vlan_hwaccel_put_tag(skb,
htons(RX_DMA_VPID(trxd.rxd3)),
RX_DMA_VID(trxd.rxd3));
}
/* If netdev is attached to dsa switch, the special
* tag inserted in VLAN field by switch hardware can
* be offload by RX HW VLAN offload. Clears the VLAN
* information from @skb to avoid unexpected 8021d
* handler before packet enter dsa framework.
*/
if (netdev_uses_dsa(netdev))
__vlan_hwaccel_clear_tag(skb);
}
#if defined(CONFIG_NET_MEDIATEK_HNAT) || defined(CONFIG_NET_MEDIATEK_HNAT_MODULE)
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2))
*(u32 *)(skb->head) = trxd.rxd5;
else
*(u32 *)(skb->head) = trxd.rxd4;
skb_hnat_alg(skb) = 0;
skb_hnat_filled(skb) = 0;
skb_hnat_magic_tag(skb) = HNAT_MAGIC_TAG;
if (skb_hnat_reason(skb) == HIT_BIND_FORCE_TO_CPU) {
trace_printk("[%s] reason=0x%x(force to CPU) from WAN to Ext\n",
__func__, skb_hnat_reason(skb));
skb->pkt_type = PACKET_HOST;
}
trace_printk("[%s] rxd:(entry=%x,sport=%x,reason=%x,alg=%x\n",
__func__, skb_hnat_entry(skb), skb_hnat_sport(skb),
skb_hnat_reason(skb), skb_hnat_alg(skb));
#endif
if (mtk_hwlro_stats_ebl &&
IS_HW_LRO_RING(ring->ring_no) && eth->hwlro) {
hw_lro_stats_update(ring->ring_no, &trxd);
hw_lro_flush_stats_update(ring->ring_no, &trxd);
}
skb_record_rx_queue(skb, 0);
napi_gro_receive(napi, skb);
skip_rx:
ring->data[idx] = new_data;
rxd->rxd1 = (unsigned int)dma_addr;
release_desc:
addr64 = (MTK_HAS_CAPS(eth->soc->caps, MTK_8GB_ADDRESSING)) ?
RX_DMA_SDP1(dma_addr) : 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628))
rxd->rxd2 = RX_DMA_LSO;
else
rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size) | addr64;
ring->calc_idx = idx;
done++;
}
rx_done:
if (done) {
/* make sure that all changes to the dma ring are flushed before
* we continue
*/
wmb();
mtk_update_rx_cpu_idx(eth, ring);
}
return done;
}
static void mtk_poll_tx_qdma(struct mtk_eth *eth, int budget,
unsigned int *done, unsigned int *bytes)
{
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
const struct mtk_soc_data *soc = eth->soc;
struct mtk_tx_ring *ring = &eth->tx_ring;
struct mtk_tx_dma *desc;
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
u32 cpu, dma;
cpu = ring->last_free_ptr;
dma = mtk_r32(eth, reg_map->qdma.drx_ptr);
desc = mtk_qdma_phys_to_virt(ring, cpu);
while ((cpu != dma) && budget) {
u32 next_cpu = desc->txd2;
int mac = 0;
if ((desc->txd3 & TX_DMA_OWNER_CPU) == 0)
break;
desc = mtk_qdma_phys_to_virt(ring, desc->txd2);
tx_buf = mtk_desc_to_tx_buf(ring, desc, soc->txrx.txd_size);
if (tx_buf->flags & MTK_TX_FLAGS_FPORT1)
mac = MTK_GMAC2_ID;
else if (tx_buf->flags & MTK_TX_FLAGS_FPORT2)
mac = MTK_GMAC3_ID;
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) {
bytes[mac] += skb->len;
done[mac]++;
budget--;
}
mtk_tx_unmap(eth, tx_buf, true);
ring->last_free = desc;
atomic_inc(&ring->free_count);
cpu = next_cpu;
}
ring->last_free_ptr = cpu;
mtk_w32(eth, cpu, reg_map->qdma.crx_ptr);
}
static void mtk_poll_tx_pdma(struct mtk_eth *eth, int budget,
unsigned int *done, unsigned int *bytes)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
struct mtk_tx_dma *desc;
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
u32 cpu, dma;
cpu = ring->cpu_idx;
dma = mtk_r32(eth, MT7628_TX_DTX_IDX0);
while ((cpu != dma) && budget) {
tx_buf = &ring->buf[cpu];
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) {
bytes[0] += skb->len;
done[0]++;
budget--;
}
mtk_tx_unmap(eth, tx_buf, true);
desc = ring->dma + cpu * eth->soc->txrx.txd_size;
ring->last_free = desc;
atomic_inc(&ring->free_count);
cpu = NEXT_DESP_IDX(cpu, ring->dma_size);
}
ring->cpu_idx = cpu;
}
static int mtk_poll_tx(struct mtk_eth *eth, int budget)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
unsigned int done[MTK_MAX_DEVS];
unsigned int bytes[MTK_MAX_DEVS];
int total = 0, i;
memset(done, 0, sizeof(done));
memset(bytes, 0, sizeof(bytes));
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA))
mtk_poll_tx_qdma(eth, budget, done, bytes);
else
mtk_poll_tx_pdma(eth, budget, done, bytes);
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i] || !done[i])
continue;
netdev_completed_queue(eth->netdev[i], done[i], bytes[i]);
total += done[i];
}
if (mtk_queue_stopped(eth) &&
(atomic_read(&ring->free_count) > ring->thresh))
mtk_wake_queue(eth);
return total;
}
static void mtk_handle_status_irq(struct mtk_eth *eth)
{
u32 status2 = mtk_r32(eth, MTK_FE_INT_STATUS);
if (unlikely(status2 & (MTK_GDM1_AF | MTK_GDM2_AF))) {
mtk_stats_update(eth);
mtk_w32(eth, (MTK_GDM1_AF | MTK_GDM2_AF),
MTK_FE_INT_STATUS);
}
}
static int mtk_napi_tx(struct napi_struct *napi, int budget)
{
struct mtk_eth *eth = container_of(napi, struct mtk_eth, tx_napi);
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
u32 status, mask;
int tx_done = 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA))
mtk_handle_status_irq(eth);
mtk_w32(eth, MTK_TX_DONE_INT, reg_map->tx_irq_status);
tx_done = mtk_poll_tx(eth, budget);
if (unlikely(netif_msg_intr(eth))) {
status = mtk_r32(eth, reg_map->tx_irq_status);
mask = mtk_r32(eth, reg_map->tx_irq_mask);
dev_info(eth->dev,
"done tx %d, intr 0x%08x/0x%x\n",
tx_done, status, mask);
}
if (tx_done == budget)
return budget;
status = mtk_r32(eth, reg_map->tx_irq_status);
if (status & MTK_TX_DONE_INT)
return budget;
if (napi_complete(napi))
mtk_tx_irq_enable(eth, MTK_TX_DONE_INT);
return tx_done;
}
static int mtk_napi_rx(struct napi_struct *napi, int budget)
{
struct mtk_napi *rx_napi = container_of(napi, struct mtk_napi, napi);
struct mtk_eth *eth = rx_napi->eth;
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
struct mtk_rx_ring *ring = rx_napi->rx_ring;
u32 status, mask;
int rx_done = 0;
int remain_budget = budget;
mtk_handle_status_irq(eth);
poll_again:
mtk_w32(eth, MTK_RX_DONE_INT(ring->ring_no), reg_map->pdma.irq_status);
rx_done = mtk_poll_rx(napi, remain_budget, eth);
if (unlikely(netif_msg_intr(eth))) {
status = mtk_r32(eth, reg_map->pdma.irq_status);
mask = mtk_r32(eth, reg_map->pdma.irq_mask);
dev_info(eth->dev,
"done rx %d, intr 0x%08x/0x%x\n",
rx_done, status, mask);
}
if (rx_done == remain_budget)
return budget;
status = mtk_r32(eth, reg_map->pdma.irq_status);
if (status & MTK_RX_DONE_INT(ring->ring_no)) {
remain_budget -= rx_done;
goto poll_again;
}
if (napi_complete(napi))
mtk_rx_irq_enable(eth, MTK_RX_DONE_INT(ring->ring_no));
return rx_done + budget - remain_budget;
}
static int mtk_tx_alloc(struct mtk_eth *eth)
{
const struct mtk_soc_data *soc = eth->soc;
struct mtk_tx_ring *ring = &eth->tx_ring;
int i, sz = soc->txrx.txd_size;
struct mtk_tx_dma_v2 *txd, *pdma_txd;
ring->buf = kcalloc(MTK_DMA_SIZE, sizeof(*ring->buf),
GFP_KERNEL);
if (!ring->buf)
goto no_tx_mem;
if (!eth->soc->has_sram)
ring->dma = dma_alloc_coherent(eth->dma_dev, MTK_DMA_SIZE * sz,
&ring->phys, GFP_KERNEL);
else {
ring->dma = eth->scratch_ring + MTK_DMA_SIZE * sz;
ring->phys = eth->phy_scratch_ring +
MTK_DMA_SIZE * (dma_addr_t)sz;
}
if (!ring->dma)
goto no_tx_mem;
for (i = 0; i < MTK_DMA_SIZE; i++) {
int next = (i + 1) % MTK_DMA_SIZE;
u32 next_ptr = ring->phys + next * sz;
txd = ring->dma + i * sz;
txd->txd2 = next_ptr;
txd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
txd->txd4 = 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V2) ||
MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
txd->txd5 = 0;
txd->txd6 = 0;
txd->txd7 = 0;
txd->txd8 = 0;
}
}
/* On MT7688 (PDMA only) this driver uses the ring->dma structs
* only as the framework. The real HW descriptors are the PDMA
* descriptors in ring->dma_pdma.
*/
if (!MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
ring->dma_pdma = dma_alloc_coherent(eth->dma_dev,
MTK_DMA_SIZE * sz,
&ring->phys_pdma, GFP_KERNEL);
if (!ring->dma_pdma)
goto no_tx_mem;
for (i = 0; i < MTK_DMA_SIZE; i++) {
pdma_txd = ring->dma_pdma + i *sz;
pdma_txd->txd2 = TX_DMA_DESP2_DEF;
pdma_txd->txd4 = 0;
}
}
ring->dma_size = MTK_DMA_SIZE;
atomic_set(&ring->free_count, MTK_DMA_SIZE - 2);
ring->next_free = ring->dma;
ring->last_free = (void *)txd;
ring->last_free_ptr = (u32)(ring->phys + ((MTK_DMA_SIZE - 1) * sz));
ring->thresh = MAX_SKB_FRAGS;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
mtk_w32(eth, ring->phys, soc->reg_map->qdma.ctx_ptr);
mtk_w32(eth, ring->phys, soc->reg_map->qdma.dtx_ptr);
mtk_w32(eth,
ring->phys + ((MTK_DMA_SIZE - 1) * sz),
soc->reg_map->qdma.crx_ptr);
mtk_w32(eth, ring->last_free_ptr, soc->reg_map->qdma.drx_ptr);
mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES,
soc->reg_map->qdma.qtx_cfg);
} else {
mtk_w32(eth, ring->phys_pdma, MT7628_TX_BASE_PTR0);
mtk_w32(eth, MTK_DMA_SIZE, MT7628_TX_MAX_CNT0);
mtk_w32(eth, 0, MT7628_TX_CTX_IDX0);
mtk_w32(eth, MT7628_PST_DTX_IDX0, soc->reg_map->pdma.rst_idx);
}
return 0;
no_tx_mem:
return -ENOMEM;
}
static void mtk_tx_clean(struct mtk_eth *eth)
{
const struct mtk_soc_data *soc = eth->soc;
struct mtk_tx_ring *ring = &eth->tx_ring;
int i;
if (ring->buf) {
for (i = 0; i < MTK_DMA_SIZE; i++)
mtk_tx_unmap(eth, &ring->buf[i], false);
kfree(ring->buf);
ring->buf = NULL;
}
if (!eth->soc->has_sram && ring->dma) {
dma_free_coherent(eth->dma_dev,
MTK_DMA_SIZE * soc->txrx.txd_size,
ring->dma, ring->phys);
ring->dma = NULL;
}
if (ring->dma_pdma) {
dma_free_coherent(eth->dma_dev,
MTK_DMA_SIZE * soc->txrx.txd_size,
ring->dma_pdma, ring->phys_pdma);
ring->dma_pdma = NULL;
}
}
static int mtk_rx_alloc(struct mtk_eth *eth, int ring_no, int rx_flag)
{
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
struct mtk_rx_ring *ring;
int rx_data_len, rx_dma_size;
int i;
u64 addr64 = 0;
if (rx_flag == MTK_RX_FLAGS_QDMA) {
if (ring_no)
return -EINVAL;
ring = &eth->rx_ring_qdma;
} else {
ring = &eth->rx_ring[ring_no];
}
if (rx_flag == MTK_RX_FLAGS_HWLRO) {
rx_data_len = MTK_MAX_LRO_RX_LENGTH;
rx_dma_size = MTK_HW_LRO_DMA_SIZE;
} else {
rx_data_len = ETH_DATA_LEN;
rx_dma_size = MTK_DMA_SIZE;
}
ring->frag_size = mtk_max_frag_size(rx_data_len);
ring->buf_size = mtk_max_buf_size(ring->frag_size);
ring->data = kcalloc(rx_dma_size, sizeof(*ring->data),
GFP_KERNEL);
if (!ring->data)
return -ENOMEM;
for (i = 0; i < rx_dma_size; i++) {
ring->data[i] = netdev_alloc_frag(ring->frag_size);
if (!ring->data[i])
return -ENOMEM;
}
if ((!eth->soc->has_sram) || (eth->soc->has_sram
&& (rx_flag != MTK_RX_FLAGS_NORMAL)))
ring->dma = dma_alloc_coherent(eth->dma_dev,
rx_dma_size * eth->soc->txrx.rxd_size,
&ring->phys, GFP_KERNEL);
else {
struct mtk_tx_ring *tx_ring = &eth->tx_ring;
ring->dma = tx_ring->dma + MTK_DMA_SIZE *
eth->soc->txrx.txd_size * (ring_no + 1);
ring->phys = tx_ring->phys + MTK_DMA_SIZE *
eth->soc->txrx.txd_size * (ring_no + 1);
}
if (!ring->dma)
return -ENOMEM;
for (i = 0; i < rx_dma_size; i++) {
struct mtk_rx_dma_v2 *rxd;
dma_addr_t dma_addr = dma_map_single(eth->dma_dev,
ring->data[i] + NET_SKB_PAD + eth->ip_align,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr)))
return -ENOMEM;
rxd = ring->dma + i * eth->soc->txrx.rxd_size;
rxd->rxd1 = (unsigned int)dma_addr;
addr64 = (MTK_HAS_CAPS(eth->soc->caps, MTK_8GB_ADDRESSING)) ?
RX_DMA_SDP1(dma_addr) : 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628))
rxd->rxd2 = RX_DMA_LSO;
else
rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size) | addr64;
rxd->rxd3 = 0;
rxd->rxd4 = 0;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
rxd->rxd5 = 0;
rxd->rxd6 = 0;
rxd->rxd7 = 0;
rxd->rxd8 = 0;
}
}
ring->dma_size = rx_dma_size;
ring->calc_idx_update = false;
ring->calc_idx = rx_dma_size - 1;
ring->crx_idx_reg = (rx_flag == MTK_RX_FLAGS_QDMA) ?
MTK_QRX_CRX_IDX_CFG(ring_no) :
MTK_PRX_CRX_IDX_CFG(ring_no);
ring->ring_no = ring_no;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (rx_flag == MTK_RX_FLAGS_QDMA) {
mtk_w32(eth, ring->phys,
reg_map->qdma.rx_ptr + ring_no * MTK_QRX_OFFSET);
mtk_w32(eth, rx_dma_size,
reg_map->qdma.rx_cnt_cfg + ring_no * MTK_QRX_OFFSET);
mtk_w32(eth, ring->calc_idx,
ring->crx_idx_reg);
mtk_w32(eth, MTK_PST_DRX_IDX_CFG(ring_no),
reg_map->qdma.rst_idx);
} else {
mtk_w32(eth, ring->phys,
reg_map->pdma.rx_ptr + ring_no * MTK_QRX_OFFSET);
mtk_w32(eth, rx_dma_size,
reg_map->pdma.rx_cnt_cfg + ring_no * MTK_QRX_OFFSET);
mtk_w32(eth, ring->calc_idx,
ring->crx_idx_reg);
mtk_w32(eth, MTK_PST_DRX_IDX_CFG(ring_no),
reg_map->pdma.rst_idx);
}
return 0;
}
static void mtk_rx_clean(struct mtk_eth *eth, struct mtk_rx_ring *ring, int in_sram)
{
int i;
u64 addr64 = 0;
if (ring->data && ring->dma) {
for (i = 0; i < ring->dma_size; i++) {
struct mtk_rx_dma *rxd;
if (!ring->data[i])
continue;
rxd = ring->dma + i * eth->soc->txrx.rxd_size;
if (!rxd->rxd1)
continue;
addr64 = (MTK_HAS_CAPS(eth->soc->caps,
MTK_8GB_ADDRESSING)) ?
((u64)(rxd->rxd2 & 0xf)) << 32 : 0;
dma_unmap_single(eth->dma_dev,
(u64)(rxd->rxd1 | addr64),
ring->buf_size,
DMA_FROM_DEVICE);
skb_free_frag(ring->data[i]);
}
kfree(ring->data);
ring->data = NULL;
}
if(in_sram)
return;
if (ring->dma) {
dma_free_coherent(eth->dma_dev,
ring->dma_size * eth->soc->txrx.rxd_size,
ring->dma,
ring->phys);
ring->dma = NULL;
}
}
static int mtk_hwlro_rx_init(struct mtk_eth *eth)
{
int i;
u32 val;
u32 ring_ctrl_dw1 = 0, ring_ctrl_dw2 = 0, ring_ctrl_dw3 = 0;
u32 lro_ctrl_dw0 = 0, lro_ctrl_dw3 = 0;
/* set LRO rings to auto-learn modes */
ring_ctrl_dw2 |= MTK_RING_AUTO_LERAN_MODE;
/* validate LRO ring */
ring_ctrl_dw2 |= MTK_RING_VLD;
/* set AGE timer (unit: 20us) */
ring_ctrl_dw2 |= MTK_RING_AGE_TIME_H;
ring_ctrl_dw1 |= MTK_RING_AGE_TIME_L;
/* set max AGG timer (unit: 20us) */
ring_ctrl_dw2 |= MTK_RING_MAX_AGG_TIME;
/* set max LRO AGG count */
ring_ctrl_dw2 |= MTK_RING_MAX_AGG_CNT_L;
ring_ctrl_dw3 |= MTK_RING_MAX_AGG_CNT_H;
for (i = 1; i <= MTK_HW_LRO_RING_NUM; i++) {
mtk_w32(eth, ring_ctrl_dw1, MTK_LRO_CTRL_DW1_CFG(i));
mtk_w32(eth, ring_ctrl_dw2, MTK_LRO_CTRL_DW2_CFG(i));
mtk_w32(eth, ring_ctrl_dw3, MTK_LRO_CTRL_DW3_CFG(i));
}
/* IPv4 checksum update enable */
lro_ctrl_dw0 |= MTK_L3_CKS_UPD_EN;
/* switch priority comparison to packet count mode */
lro_ctrl_dw0 |= MTK_LRO_ALT_PKT_CNT_MODE;
/* bandwidth threshold setting */
mtk_w32(eth, MTK_HW_LRO_BW_THRE, MTK_PDMA_LRO_CTRL_DW2);
/* auto-learn score delta setting */
mtk_w32(eth, MTK_HW_LRO_REPLACE_DELTA, MTK_LRO_ALT_SCORE_DELTA);
/* set refresh timer for altering flows to 1 sec. (unit: 20us) */
mtk_w32(eth, (MTK_HW_LRO_TIMER_UNIT << 16) | MTK_HW_LRO_REFRESH_TIME,
MTK_PDMA_LRO_ALT_REFRESH_TIMER);
/* the minimal remaining room of SDL0 in RXD for lro aggregation */
lro_ctrl_dw3 |= MTK_LRO_MIN_RXD_SDL;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
val = mtk_r32(eth, MTK_PDMA_RX_CFG);
mtk_w32(eth, val | (MTK_PDMA_LRO_SDL << MTK_RX_CFG_SDL_OFFSET),
MTK_PDMA_RX_CFG);
lro_ctrl_dw0 |= MTK_PDMA_LRO_SDL << MTK_CTRL_DW0_SDL_OFFSET;
} else {
/* set HW LRO mode & the max aggregation count for rx packets */
lro_ctrl_dw3 |= MTK_ADMA_MODE | (MTK_HW_LRO_MAX_AGG_CNT & 0xff);
}
/* enable HW LRO */
lro_ctrl_dw0 |= MTK_LRO_EN;
/* enable cpu reason black list */
lro_ctrl_dw0 |= MTK_LRO_CRSN_BNW;
mtk_w32(eth, lro_ctrl_dw3, MTK_PDMA_LRO_CTRL_DW3);
mtk_w32(eth, lro_ctrl_dw0, MTK_PDMA_LRO_CTRL_DW0);
/* no use PPE cpu reason */
mtk_w32(eth, 0xffffffff, MTK_PDMA_LRO_CTRL_DW1);
return 0;
}
static void mtk_hwlro_rx_uninit(struct mtk_eth *eth)
{
int i;
u32 val;
/* relinquish lro rings, flush aggregated packets */
mtk_w32(eth, MTK_LRO_RING_RELINGUISH_REQ, MTK_PDMA_LRO_CTRL_DW0);
/* wait for relinquishments done */
for (i = 0; i < 10; i++) {
val = mtk_r32(eth, MTK_PDMA_LRO_CTRL_DW0);
if (val & MTK_LRO_RING_RELINGUISH_DONE) {
mdelay(20);
continue;
}
break;
}
/* invalidate lro rings */
for (i = 1; i <= MTK_HW_LRO_RING_NUM; i++)
mtk_w32(eth, 0, MTK_LRO_CTRL_DW2_CFG(i));
/* disable HW LRO */
mtk_w32(eth, 0, MTK_PDMA_LRO_CTRL_DW0);
}
static void mtk_hwlro_val_ipaddr(struct mtk_eth *eth, int idx, __be32 ip)
{
u32 reg_val;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2))
idx += 1;
reg_val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(idx));
/* invalidate the IP setting */
mtk_w32(eth, (reg_val & ~MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx));
mtk_w32(eth, ip, MTK_LRO_DIP_DW0_CFG(idx));
/* validate the IP setting */
mtk_w32(eth, (reg_val | MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx));
}
static void mtk_hwlro_inval_ipaddr(struct mtk_eth *eth, int idx)
{
u32 reg_val;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2))
idx += 1;
reg_val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(idx));
/* invalidate the IP setting */
mtk_w32(eth, (reg_val & ~MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx));
mtk_w32(eth, 0, MTK_LRO_DIP_DW0_CFG(idx));
}
static int mtk_hwlro_get_ip_cnt(struct mtk_mac *mac)
{
int cnt = 0;
int i;
for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) {
if (mac->hwlro_ip[i])
cnt++;
}
return cnt;
}
static int mtk_hwlro_add_ipaddr(struct net_device *dev,
struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec *fsp =
(struct ethtool_rx_flow_spec *)&cmd->fs;
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
int hwlro_idx;
if ((fsp->flow_type != TCP_V4_FLOW) ||
(!fsp->h_u.tcp_ip4_spec.ip4dst) ||
(fsp->location > 1))
return -EINVAL;
mac->hwlro_ip[fsp->location] = htonl(fsp->h_u.tcp_ip4_spec.ip4dst);
hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + fsp->location;
mac->hwlro_ip_cnt = mtk_hwlro_get_ip_cnt(mac);
mtk_hwlro_val_ipaddr(eth, hwlro_idx, mac->hwlro_ip[fsp->location]);
return 0;
}
static int mtk_hwlro_del_ipaddr(struct net_device *dev,
struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec *fsp =
(struct ethtool_rx_flow_spec *)&cmd->fs;
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
int hwlro_idx;
if (fsp->location > 1)
return -EINVAL;
mac->hwlro_ip[fsp->location] = 0;
hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + fsp->location;
mac->hwlro_ip_cnt = mtk_hwlro_get_ip_cnt(mac);
mtk_hwlro_inval_ipaddr(eth, hwlro_idx);
return 0;
}
static void mtk_hwlro_netdev_disable(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
int i, hwlro_idx;
for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) {
mac->hwlro_ip[i] = 0;
hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + i;
mtk_hwlro_inval_ipaddr(eth, hwlro_idx);
}
mac->hwlro_ip_cnt = 0;
}
static int mtk_hwlro_get_fdir_entry(struct net_device *dev,
struct ethtool_rxnfc *cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
struct ethtool_rx_flow_spec *fsp =
(struct ethtool_rx_flow_spec *)&cmd->fs;
/* only tcp dst ipv4 is meaningful, others are meaningless */
fsp->flow_type = TCP_V4_FLOW;
fsp->h_u.tcp_ip4_spec.ip4dst = ntohl(mac->hwlro_ip[fsp->location]);
fsp->m_u.tcp_ip4_spec.ip4dst = 0;
fsp->h_u.tcp_ip4_spec.ip4src = 0;
fsp->m_u.tcp_ip4_spec.ip4src = 0xffffffff;
fsp->h_u.tcp_ip4_spec.psrc = 0;
fsp->m_u.tcp_ip4_spec.psrc = 0xffff;
fsp->h_u.tcp_ip4_spec.pdst = 0;
fsp->m_u.tcp_ip4_spec.pdst = 0xffff;
fsp->h_u.tcp_ip4_spec.tos = 0;
fsp->m_u.tcp_ip4_spec.tos = 0xff;
return 0;
}
static int mtk_hwlro_get_fdir_all(struct net_device *dev,
struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
struct mtk_mac *mac = netdev_priv(dev);
int cnt = 0;
int i;
for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) {
if (mac->hwlro_ip[i]) {
rule_locs[cnt] = i;
cnt++;
}
}
cmd->rule_cnt = cnt;
return 0;
}
static int mtk_rss_init(struct mtk_eth *eth)
{
u32 val;
if (!MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
/* Set RSS rings to PSE modes */
val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(1));
val |= MTK_RING_PSE_MODE;
mtk_w32(eth, val, MTK_LRO_CTRL_DW2_CFG(1));
/* Enable non-lro multiple rx */
val = mtk_r32(eth, MTK_PDMA_LRO_CTRL_DW0);
val |= MTK_NON_LRO_MULTI_EN;
mtk_w32(eth, val, MTK_PDMA_LRO_CTRL_DW0);
/* Enable RSS dly int supoort */
val |= MTK_LRO_DLY_INT_EN;
mtk_w32(eth, val, MTK_PDMA_LRO_CTRL_DW0);
/* Set RSS delay config int ring1 */
mtk_w32(eth, MTK_MAX_DELAY_INT, MTK_LRO_RX1_DLY_INT);
}
/* Hash Type */
val = mtk_r32(eth, MTK_PDMA_RSS_GLO_CFG);
val |= MTK_RSS_IPV4_STATIC_HASH;
val |= MTK_RSS_IPV6_STATIC_HASH;
mtk_w32(eth, val, MTK_PDMA_RSS_GLO_CFG);
/* Select the size of indirection table */
mtk_w32(eth, MTK_RSS_INDR_TABLE_SIZE4, MTK_RSS_INDR_TABLE_DW0);
mtk_w32(eth, MTK_RSS_INDR_TABLE_SIZE4, MTK_RSS_INDR_TABLE_DW1);
mtk_w32(eth, MTK_RSS_INDR_TABLE_SIZE4, MTK_RSS_INDR_TABLE_DW2);
mtk_w32(eth, MTK_RSS_INDR_TABLE_SIZE4, MTK_RSS_INDR_TABLE_DW3);
mtk_w32(eth, MTK_RSS_INDR_TABLE_SIZE4, MTK_RSS_INDR_TABLE_DW4);
mtk_w32(eth, MTK_RSS_INDR_TABLE_SIZE4, MTK_RSS_INDR_TABLE_DW5);
mtk_w32(eth, MTK_RSS_INDR_TABLE_SIZE4, MTK_RSS_INDR_TABLE_DW6);
mtk_w32(eth, MTK_RSS_INDR_TABLE_SIZE4, MTK_RSS_INDR_TABLE_DW7);
/* Pause */
val |= MTK_RSS_CFG_REQ;
mtk_w32(eth, val, MTK_PDMA_RSS_GLO_CFG);
/* Enable RSS*/
val |= MTK_RSS_EN;
mtk_w32(eth, val, MTK_PDMA_RSS_GLO_CFG);
/* Release pause */
val &= ~(MTK_RSS_CFG_REQ);
mtk_w32(eth, val, MTK_PDMA_RSS_GLO_CFG);
/* Set perRSS GRP INT */
mtk_w32(eth, MTK_RX_DONE_INT(MTK_RSS_RING1), MTK_PDMA_INT_GRP3);
/* Set GRP INT */
mtk_w32(eth, 0x21021030, MTK_FE_INT_GRP);
/* Enable RSS delay interrupt */
mtk_w32(eth, 0x8f0f8f0f, MTK_PDMA_RSS_DELAY_INT);
return 0;
}
static void mtk_rss_uninit(struct mtk_eth *eth)
{
u32 val;
/* Pause */
val = mtk_r32(eth, MTK_PDMA_RSS_GLO_CFG);
val |= MTK_RSS_CFG_REQ;
mtk_w32(eth, val, MTK_PDMA_RSS_GLO_CFG);
/* Disable RSS*/
val &= ~(MTK_RSS_EN);
mtk_w32(eth, val, MTK_PDMA_RSS_GLO_CFG);
/* Release pause */
val &= ~(MTK_RSS_CFG_REQ);
mtk_w32(eth, val, MTK_PDMA_RSS_GLO_CFG);
}
static netdev_features_t mtk_fix_features(struct net_device *dev,
netdev_features_t features)
{
if (!(features & NETIF_F_LRO)) {
struct mtk_mac *mac = netdev_priv(dev);
int ip_cnt = mtk_hwlro_get_ip_cnt(mac);
if (ip_cnt) {
netdev_info(dev, "RX flow is programmed, LRO should keep on\n");
features |= NETIF_F_LRO;
}
}
if ((features & NETIF_F_HW_VLAN_CTAG_TX) && netdev_uses_dsa(dev)) {
netdev_info(dev, "TX vlan offload cannot be enabled when dsa is attached.\n");
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
}
return features;
}
static int mtk_set_features(struct net_device *dev, netdev_features_t features)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
int err = 0;
if (!((dev->features ^ features) & MTK_SET_FEATURES))
return 0;
if (!(features & NETIF_F_LRO))
mtk_hwlro_netdev_disable(dev);
if (!(features & NETIF_F_HW_VLAN_CTAG_RX))
mtk_w32(eth, 0, MTK_CDMP_EG_CTRL);
else
mtk_w32(eth, 1, MTK_CDMP_EG_CTRL);
return err;
}
/* wait for DMA to finish whatever it is doing before we start using it again */
static int mtk_dma_busy_wait(struct mtk_eth *eth)
{
unsigned long t_start = jiffies;
while (1) {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
if (!(mtk_r32(eth, MTK_QDMA_GLO_CFG) &
(MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY)))
return 0;
} else {
if (!(mtk_r32(eth, MTK_PDMA_GLO_CFG) &
(MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY)))
return 0;
}
if (time_after(jiffies, t_start + MTK_DMA_BUSY_TIMEOUT))
break;
}
dev_err(eth->dev, "DMA init timeout\n");
return -1;
}
static int mtk_dma_init(struct mtk_eth *eth)
{
int err;
u32 i;
if (mtk_dma_busy_wait(eth))
return -EBUSY;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
/* QDMA needs scratch memory for internal reordering of the
* descriptors
*/
err = mtk_init_fq_dma(eth);
if (err)
return err;
}
err = mtk_tx_alloc(eth);
if (err)
return err;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
err = mtk_rx_alloc(eth, 0, MTK_RX_FLAGS_QDMA);
if (err)
return err;
}
err = mtk_rx_alloc(eth, 0, MTK_RX_FLAGS_NORMAL);
if (err)
return err;
if (eth->hwlro) {
i = (!MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) ? 1 : 4;
for (; i < MTK_MAX_RX_RING_NUM; i++) {
err = mtk_rx_alloc(eth, i, MTK_RX_FLAGS_HWLRO);
if (err)
return err;
}
err = mtk_hwlro_rx_init(eth);
if (err)
return err;
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSS)) {
for (i = 1; i < MTK_RX_NAPI_NUM; i++) {
err = mtk_rx_alloc(eth, i, MTK_RX_FLAGS_NORMAL);
if (err)
return err;
}
err = mtk_rss_init(eth);
if (err)
return err;
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
/* Enable random early drop and set drop threshold
* automatically
*/
mtk_w32(eth, FC_THRES_DROP_MODE | FC_THRES_DROP_EN |
FC_THRES_MIN, eth->soc->reg_map->qdma.fc_th);
mtk_w32(eth, 0x0, eth->soc->reg_map->qdma.hred2);
}
return 0;
}
static void mtk_dma_free(struct mtk_eth *eth)
{
const struct mtk_soc_data *soc = eth->soc;
int i;
for (i = 0; i < MTK_MAC_COUNT; i++)
if (eth->netdev[i])
netdev_reset_queue(eth->netdev[i]);
if ( !eth->soc->has_sram && eth->scratch_ring) {
dma_free_coherent(eth->dma_dev,
MTK_DMA_SIZE * soc->txrx.txd_size,
eth->scratch_ring, eth->phy_scratch_ring);
eth->scratch_ring = NULL;
eth->phy_scratch_ring = 0;
}
mtk_tx_clean(eth);
mtk_rx_clean(eth, &eth->rx_ring[0],eth->soc->has_sram);
mtk_rx_clean(eth, &eth->rx_ring_qdma,0);
if (eth->hwlro) {
mtk_hwlro_rx_uninit(eth);
i = (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V1)) ? 1 : 4;
for (; i < MTK_MAX_RX_RING_NUM; i++)
mtk_rx_clean(eth, &eth->rx_ring[i], 0);
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSS)) {
mtk_rss_uninit(eth);
for (i = 1; i < MTK_RX_NAPI_NUM; i++)
mtk_rx_clean(eth, &eth->rx_ring[i], 1);
}
if (eth->scratch_head) {
kfree(eth->scratch_head);
eth->scratch_head = NULL;
}
}
static void mtk_tx_timeout(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
eth->netdev[mac->id]->stats.tx_errors++;
netif_err(eth, tx_err, dev,
"transmit timed out\n");
if (atomic_read(&reset_lock) == 0)
schedule_work(&eth->pending_work);
}
static irqreturn_t mtk_handle_irq_rx(int irq, void *priv)
{
struct mtk_napi *rx_napi = priv;
struct mtk_eth *eth = rx_napi->eth;
struct mtk_rx_ring *ring = rx_napi->rx_ring;
if (likely(napi_schedule_prep(&rx_napi->napi))) {
mtk_rx_irq_disable(eth, MTK_RX_DONE_INT(ring->ring_no));
__napi_schedule(&rx_napi->napi);
}
return IRQ_HANDLED;
}
static irqreturn_t mtk_handle_irq_tx(int irq, void *_eth)
{
struct mtk_eth *eth = _eth;
if (likely(napi_schedule_prep(&eth->tx_napi))) {
mtk_tx_irq_disable(eth, MTK_TX_DONE_INT);
__napi_schedule(&eth->tx_napi);
}
return IRQ_HANDLED;
}
static irqreturn_t mtk_handle_irq(int irq, void *_eth)
{
struct mtk_eth *eth = _eth;
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
if (mtk_r32(eth, reg_map->pdma.irq_mask) & MTK_RX_DONE_INT(0)) {
if (mtk_r32(eth, reg_map->pdma.irq_status) & MTK_RX_DONE_INT(0))
mtk_handle_irq_rx(irq, &eth->rx_napi[0]);
}
if (mtk_r32(eth, reg_map->tx_irq_mask) & MTK_TX_DONE_INT) {
if (mtk_r32(eth, reg_map->tx_irq_status) & MTK_TX_DONE_INT)
mtk_handle_irq_tx(irq, _eth);
}
return IRQ_HANDLED;
}
static irqreturn_t mtk_handle_irq_fixed_link(int irq, void *_mac)
{
struct mtk_mac *mac = _mac;
struct mtk_eth *eth = mac->hw;
struct mtk_phylink_priv *phylink_priv = &mac->phylink_priv;
struct net_device *dev = phylink_priv->dev;
int link_old, link_new;
// clear interrupt status for gpy211
_mtk_mdio_read(eth, phylink_priv->phyaddr, 0x1A);
link_old = phylink_priv->link;
link_new = _mtk_mdio_read(eth, phylink_priv->phyaddr, MII_BMSR) & BMSR_LSTATUS;
if (link_old != link_new) {
phylink_priv->link = link_new;
if (link_new) {
printk("phylink.%d %s: Link is Up\n", phylink_priv->id, dev->name);
if (dev)
netif_carrier_on(dev);
} else {
printk("phylink.%d %s: Link is Down\n", phylink_priv->id, dev->name);
if (dev)
netif_carrier_off(dev);
}
}
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void mtk_poll_controller(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
mtk_tx_irq_disable(eth, MTK_TX_DONE_INT);
mtk_rx_irq_disable(eth, MTK_RX_DONE_INT(0));
mtk_handle_irq_rx(eth->irq[2], &eth->rx_napi[0]);
mtk_tx_irq_enable(eth, MTK_TX_DONE_INT);
mtk_rx_irq_enable(eth, MTK_RX_DONE_INT(0));
}
#endif
static int mtk_start_dma(struct mtk_eth *eth)
{
u32 rx_2b_offset = (NET_IP_ALIGN == 2) ? MTK_RX_2B_OFFSET : 0;
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
int val, err;
err = mtk_dma_init(eth);
if (err) {
mtk_dma_free(eth);
return err;
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) {
val = mtk_r32(eth, reg_map->qdma.glo_cfg);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V2) ||
MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
val &= ~MTK_RESV_BUF_MASK;
mtk_w32(eth,
val | MTK_TX_DMA_EN | MTK_RX_DMA_EN |
MTK_DMA_SIZE_32DWORDS | MTK_TX_WB_DDONE |
MTK_NDP_CO_PRO | MTK_MUTLI_CNT |
MTK_RESV_BUF | MTK_WCOMP_EN |
MTK_DMAD_WR_WDONE | MTK_CHK_DDONE_EN |
MTK_RX_2B_OFFSET, reg_map->qdma.glo_cfg);
}
else
mtk_w32(eth,
val | MTK_TX_DMA_EN |
MTK_DMA_SIZE_32DWORDS | MTK_NDP_CO_PRO |
MTK_RX_DMA_EN | MTK_RX_2B_OFFSET |
MTK_RX_BT_32DWORDS,
reg_map->qdma.glo_cfg);
val = mtk_r32(eth, reg_map->pdma.glo_cfg);
mtk_w32(eth,
val | MTK_RX_DMA_EN | rx_2b_offset |
MTK_RX_BT_32DWORDS | MTK_MULTI_EN,
reg_map->pdma.glo_cfg);
} else {
mtk_w32(eth, MTK_TX_WB_DDONE | MTK_TX_DMA_EN | MTK_RX_DMA_EN |
MTK_MULTI_EN | MTK_PDMA_SIZE_8DWORDS,
reg_map->pdma.glo_cfg);
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2) && eth->hwlro) {
val = mtk_r32(eth, MTK_PDMA_GLO_CFG);
mtk_w32(eth, val | MTK_RX_DMA_LRO_EN, MTK_PDMA_GLO_CFG);
}
return 0;
}
void mtk_gdm_config(struct mtk_eth *eth, u32 id, u32 config)
{
u32 val;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628))
return;
val = mtk_r32(eth, MTK_GDMA_FWD_CFG(id));
/* default setup the forward port to send frame to PDMA */
val &= ~0xffff;
/* Enable RX checksum */
val |= MTK_GDMA_ICS_EN | MTK_GDMA_TCS_EN | MTK_GDMA_UCS_EN;
val |= config;
if (eth->netdev[id] && netdev_uses_dsa(eth->netdev[id]))
val |= MTK_GDMA_SPECIAL_TAG;
mtk_w32(eth, val, MTK_GDMA_FWD_CFG(id));
}
void mtk_set_pse_drop(u32 config)
{
struct mtk_eth *eth = g_eth;
if (eth)
mtk_w32(eth, config, PSE_PPE0_DROP);
}
EXPORT_SYMBOL(mtk_set_pse_drop);
static int mtk_open(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_phylink_priv *phylink_priv = &mac->phylink_priv;
u32 id = mtk_mac2xgmii_id(eth, mac->id);
int err, i;
struct device_node *phy_node;
err = phylink_of_phy_connect(mac->phylink, mac->of_node, 0);
if (err) {
netdev_err(dev, "%s: could not attach PHY: %d\n", __func__,
err);
return err;
}
/* we run 2 netdevs on the same dma ring so we only bring it up once */
if (!refcount_read(&eth->dma_refcnt)) {
int err = mtk_start_dma(eth);
if (err)
return err;
/* Indicates CDM to parse the MTK special tag from CPU */
if (netdev_uses_dsa(dev)) {
u32 val;
val = mtk_r32(eth, MTK_CDMQ_IG_CTRL);
mtk_w32(eth, val | MTK_CDMQ_STAG_EN, MTK_CDMQ_IG_CTRL);
val = mtk_r32(eth, MTK_CDMP_IG_CTRL);
mtk_w32(eth, val | MTK_CDMP_STAG_EN, MTK_CDMP_IG_CTRL);
}
napi_enable(&eth->tx_napi);
napi_enable(&eth->rx_napi[0].napi);
mtk_tx_irq_enable(eth, MTK_TX_DONE_INT);
mtk_rx_irq_enable(eth, MTK_RX_DONE_INT(0));
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSS)) {
for (i = 1; i < MTK_RX_NAPI_NUM; i++) {
napi_enable(&eth->rx_napi[i].napi);
mtk_rx_irq_enable(eth, MTK_RX_DONE_INT(i));
}
}
refcount_set(&eth->dma_refcnt, 1);
}
else
refcount_inc(&eth->dma_refcnt);
if (phylink_priv->desc) {
/*Notice: This programming sequence is only for GPY211 single PHY chip.
If single PHY chip is not GPY211, the following step you should do:
1. Contact your Single PHY chip vendor and get the details of
- how to enables link status change interrupt
- how to clears interrupt source
*/
// clear interrupt source for gpy211
_mtk_mdio_read(eth, phylink_priv->phyaddr, 0x1A);
// enable link status change interrupt for gpy211
_mtk_mdio_write(eth, phylink_priv->phyaddr, 0x19, 0x0001);
phylink_priv->dev = dev;
// override dev pointer for single PHY chip 0
if (phylink_priv->id == 0) {
struct net_device *tmp;
tmp = __dev_get_by_name(&init_net, phylink_priv->label);
if (tmp)
phylink_priv->dev = tmp;
else
phylink_priv->dev = NULL;
}
}
phylink_start(mac->phylink);
netif_start_queue(dev);
phy_node = of_parse_phandle(mac->of_node, "phy-handle", 0);
if (!phy_node && eth->sgmii->pcs[id].regmap)
regmap_write(eth->sgmii->pcs[id].regmap,
SGMSYS_QPHY_PWR_STATE_CTRL, 0);
mtk_gdm_config(eth, mac->id, MTK_GDMA_TO_PDMA);
return 0;
}
static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg)
{
u32 val;
int i;
/* stop the dma engine */
spin_lock_bh(&eth->page_lock);
val = mtk_r32(eth, glo_cfg);
mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN),
glo_cfg);
spin_unlock_bh(&eth->page_lock);
/* wait for dma stop */
for (i = 0; i < 10; i++) {
val = mtk_r32(eth, glo_cfg);
if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) {
mdelay(20);
continue;
}
break;
}
}
static int mtk_stop(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
int i;
u32 id = mtk_mac2xgmii_id(eth, mac->id);
u32 val = 0;
struct device_node *phy_node;
mtk_gdm_config(eth, mac->id, MTK_GDMA_DROP_ALL);
netif_tx_disable(dev);
phy_node = of_parse_phandle(mac->of_node, "phy-handle", 0);
if (!phy_node && eth->sgmii->pcs[id].regmap) {
regmap_read(eth->sgmii->pcs[id].regmap,
SGMSYS_QPHY_PWR_STATE_CTRL, &val);
val |= SGMII_PHYA_PWD;
regmap_write(eth->sgmii->pcs[id].regmap,
SGMSYS_QPHY_PWR_STATE_CTRL, val);
}
//GMAC RX disable
val = mtk_r32(eth, MTK_MAC_MCR(mac->id));
mtk_w32(eth, val & ~(MAC_MCR_RX_EN), MTK_MAC_MCR(mac->id));
phylink_stop(mac->phylink);
phylink_disconnect_phy(mac->phylink);
/* only shutdown DMA if this is the last user */
if (!refcount_dec_and_test(&eth->dma_refcnt))
return 0;
mtk_tx_irq_disable(eth, MTK_TX_DONE_INT);
mtk_rx_irq_disable(eth, MTK_RX_DONE_INT(0));
napi_disable(&eth->tx_napi);
napi_disable(&eth->rx_napi[0].napi);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSS)) {
for (i = 1; i < MTK_RX_NAPI_NUM; i++) {
mtk_rx_irq_disable(eth, MTK_RX_DONE_INT(i));
napi_disable(&eth->rx_napi[i].napi);
}
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA))
mtk_stop_dma(eth, eth->soc->reg_map->qdma.glo_cfg);
mtk_stop_dma(eth, eth->soc->reg_map->pdma.glo_cfg);
mtk_dma_free(eth);
return 0;
}
void ethsys_reset(struct mtk_eth *eth, u32 reset_bits)
{
u32 val = 0, i = 0;
regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL,
reset_bits, reset_bits);
while (i++ < 5000) {
mdelay(1);
regmap_read(eth->ethsys, ETHSYS_RSTCTRL, &val);
if ((val & reset_bits) == reset_bits) {
mtk_reset_event_update(eth, MTK_EVENT_COLD_CNT);
regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL,
reset_bits, ~reset_bits);
break;
}
}
mdelay(10);
}
static void mtk_clk_disable(struct mtk_eth *eth)
{
int clk;
for (clk = MTK_CLK_MAX - 1; clk >= 0; clk--)
clk_disable_unprepare(eth->clks[clk]);
}
static int mtk_clk_enable(struct mtk_eth *eth)
{
int clk, ret;
for (clk = 0; clk < MTK_CLK_MAX ; clk++) {
ret = clk_prepare_enable(eth->clks[clk]);
if (ret)
goto err_disable_clks;
}
return 0;
err_disable_clks:
while (--clk >= 0)
clk_disable_unprepare(eth->clks[clk]);
return ret;
}
static int mtk_napi_init(struct mtk_eth *eth)
{
struct mtk_napi *rx_napi = &eth->rx_napi[0];
int i;
rx_napi->eth = eth;
rx_napi->rx_ring = &eth->rx_ring[0];
rx_napi->irq_grp_no = 2;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSS)) {
for (i = 1; i < MTK_RX_NAPI_NUM; i++) {
rx_napi = &eth->rx_napi[i];
rx_napi->eth = eth;
rx_napi->rx_ring = &eth->rx_ring[i];
rx_napi->irq_grp_no = 2 + i;
}
}
return 0;
}
static int mtk_hw_init(struct mtk_eth *eth, u32 type)
{
u32 dma_mask = ETHSYS_DMA_AG_MAP_PDMA | ETHSYS_DMA_AG_MAP_QDMA |
ETHSYS_DMA_AG_MAP_PPE;
const struct mtk_reg_map *reg_map = eth->soc->reg_map;
int i, ret = 0;
u32 val;
pr_info("[%s] reset_lock:%d, force:%d\n", __func__,
atomic_read(&reset_lock), atomic_read(&force));
if (atomic_read(&reset_lock) == 0) {
if (test_and_set_bit(MTK_HW_INIT, &eth->state))
return 0;
pm_runtime_enable(eth->dev);
pm_runtime_get_sync(eth->dev);
ret = mtk_clk_enable(eth);
if (ret)
goto err_disable_pm;
}
if (eth->ethsys)
regmap_update_bits(eth->ethsys, ETHSYS_DMA_AG_MAP, dma_mask,
of_dma_is_coherent(eth->dma_dev->of_node) *
dma_mask);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) {
ret = device_reset(eth->dev);
if (ret) {
dev_err(eth->dev, "MAC reset failed!\n");
goto err_disable_pm;
}
/* enable interrupt delay for RX */
mtk_w32(eth, MTK_PDMA_DELAY_RX_DELAY, MTK_PDMA_DELAY_INT);
/* disable delay and normal interrupt */
mtk_tx_irq_disable(eth, ~0);
mtk_rx_irq_disable(eth, ~0);
return 0;
}
pr_info("[%s] execute fe %s reset\n", __func__,
(type == MTK_TYPE_WARM_RESET) ? "warm" : "cold");
if (type == MTK_TYPE_WARM_RESET)
mtk_eth_warm_reset(eth);
else
mtk_eth_cold_reset(eth);
if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628))
mtk_mdc_init(eth);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_RX_V2)) {
/* Set FE to PDMAv2 if necessary */
mtk_w32(eth, mtk_r32(eth, MTK_FE_GLO_MISC) | MTK_PDMA_V2, MTK_FE_GLO_MISC);
}
if (eth->pctl) {
/* Set GE2 driving and slew rate */
regmap_write(eth->pctl, GPIO_DRV_SEL10, 0xa00);
/* set GE2 TDSEL */
regmap_write(eth->pctl, GPIO_OD33_CTRL8, 0x5);
/* set GE2 TUNE */
regmap_write(eth->pctl, GPIO_BIAS_CTRL, 0x0);
}
/* Set linkdown as the default for each GMAC. Its own MCR would be set
* up with the more appropriate value when mtk_mac_config call is being
* invoked.
*/
for (i = 0; i < MTK_MAC_COUNT; i++)
mtk_w32(eth, MAC_MCR_FORCE_LINK_DOWN, MTK_MAC_MCR(i));
/* Enable RX VLan Offloading */
if (eth->soc->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
mtk_w32(eth, 1, MTK_CDMP_EG_CTRL);
else
mtk_w32(eth, 0, MTK_CDMP_EG_CTRL);
/* enable interrupt delay for RX/TX */
mtk_w32(eth, 0x8f0f8f0f, MTK_PDMA_DELAY_INT);
mtk_w32(eth, 0x8f0f8f0f, MTK_QDMA_DELAY_INT);
mtk_tx_irq_disable(eth, ~0);
mtk_rx_irq_disable(eth, ~0);
/* FE int grouping */
mtk_w32(eth, MTK_TX_DONE_INT, reg_map->pdma.int_grp);
mtk_w32(eth, MTK_RX_DONE_INT(0), reg_map->pdma.int_grp2);
mtk_w32(eth, MTK_TX_DONE_INT, reg_map->qdma.int_grp);
mtk_w32(eth, MTK_RX_DONE_INT(0), reg_map->qdma.int_grp2);
mtk_w32(eth, 0x21021003, MTK_FE_INT_GRP);
mtk_w32(eth, MTK_FE_INT_TSO_FAIL |
MTK_FE_INT_TSO_ILLEGAL | MTK_FE_INT_TSO_ALIGN |
MTK_FE_INT_RFIFO_OV | MTK_FE_INT_RFIFO_UF, MTK_FE_INT_ENABLE);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
/* PSE dummy page mechanism */
if (eth->soc->caps != MT7988_CAPS || eth->hwver != MTK_HWID_V1)
mtk_w32(eth, PSE_DUMMY_WORK_GDM(1) |
PSE_DUMMY_WORK_GDM(2) | PSE_DUMMY_WORK_GDM(3) |
DUMMY_PAGE_THR, PSE_DUMY_REQ);
/* PSE should not drop port1, port8 and port9 packets */
mtk_w32(eth, 0x00000302, PSE_NO_DROP_CFG);
/* PSE should drop p8 and p9 packets when WDMA Rx ring full*/
mtk_w32(eth, 0x00000300, PSE_PPE0_DROP);
/* PSE free buffer drop threshold */
mtk_w32(eth, 0x00600009, PSE_IQ_REV(8));
/* GDM and CDM Threshold */
mtk_w32(eth, 0x00000707, MTK_CDMW0_THRES);
mtk_w32(eth, 0x00000077, MTK_CDMW1_THRES);
/* Disable GDM1 RX CRC stripping */
val = mtk_r32(eth, MTK_GDMA_FWD_CFG(0));
val &= ~MTK_GDMA_STRP_CRC;
mtk_w32(eth, val, MTK_GDMA_FWD_CFG(0));
/* PSE GDM3 MIB counter has incorrect hw default values,
* so the driver ought to read clear the values beforehand
* in case ethtool retrieve wrong mib values.
*/
for (i = 0; i < MTK_STAT_OFFSET; i += 0x4)
mtk_r32(eth,
MTK_GDM1_TX_GBCNT + MTK_STAT_OFFSET * 2 + i);
} else if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V2)) {
/* PSE Free Queue Flow Control */
mtk_w32(eth, 0x01fa01f4, PSE_FQFC_CFG2);
/* PSE should not drop port8 and port9 packets from WDMA Tx */
mtk_w32(eth, 0x00000300, PSE_NO_DROP_CFG);
/* PSE should drop p8 and p9 packets when WDMA Rx ring full*/
mtk_w32(eth, 0x00000300, PSE_PPE0_DROP);
/* PSE config input queue threshold */
mtk_w32(eth, 0x001a000e, PSE_IQ_REV(1));
mtk_w32(eth, 0x01ff001a, PSE_IQ_REV(2));
mtk_w32(eth, 0x000e01ff, PSE_IQ_REV(3));
mtk_w32(eth, 0x000e000e, PSE_IQ_REV(4));
mtk_w32(eth, 0x000e000e, PSE_IQ_REV(5));
mtk_w32(eth, 0x000e000e, PSE_IQ_REV(6));
mtk_w32(eth, 0x000e000e, PSE_IQ_REV(7));
mtk_w32(eth, 0x002a000e, PSE_IQ_REV(8));
/* PSE config output queue threshold */
mtk_w32(eth, 0x000f000a, PSE_OQ_TH(1));
mtk_w32(eth, 0x001a000f, PSE_OQ_TH(2));
mtk_w32(eth, 0x000f001a, PSE_OQ_TH(3));
mtk_w32(eth, 0x01ff000f, PSE_OQ_TH(4));
mtk_w32(eth, 0x000f000f, PSE_OQ_TH(5));
mtk_w32(eth, 0x0006000f, PSE_OQ_TH(6));
mtk_w32(eth, 0x00060006, PSE_OQ_TH(7));
mtk_w32(eth, 0x00060006, PSE_OQ_TH(8));
/* GDM and CDM Threshold */
mtk_w32(eth, 0x00000004, MTK_GDM2_THRES);
mtk_w32(eth, 0x00000004, MTK_CDMW0_THRES);
mtk_w32(eth, 0x00000004, MTK_CDMW1_THRES);
mtk_w32(eth, 0x00000004, MTK_CDME0_THRES);
mtk_w32(eth, 0x00000004, MTK_CDME1_THRES);
mtk_w32(eth, 0x00000004, MTK_CDMM_THRES);
}
return 0;
err_disable_pm:
pm_runtime_put_sync(eth->dev);
pm_runtime_disable(eth->dev);
return ret;
}
static int mtk_hw_deinit(struct mtk_eth *eth)
{
if (!test_and_clear_bit(MTK_HW_INIT, &eth->state))
return 0;
mtk_clk_disable(eth);
pm_runtime_put_sync(eth->dev);
pm_runtime_disable(eth->dev);
return 0;
}
static int __init mtk_init(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
const char *mac_addr;
mac_addr = of_get_mac_address(mac->of_node);
if (!IS_ERR(mac_addr))
ether_addr_copy(dev->dev_addr, mac_addr);
/* If the mac address is invalid, use random mac address */
if (!is_valid_ether_addr(dev->dev_addr)) {
eth_hw_addr_random(dev);
dev_err(eth->dev, "generated random MAC address %pM\n",
dev->dev_addr);
}
return 0;
}
static void mtk_uninit(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
phylink_disconnect_phy(mac->phylink);
mtk_tx_irq_disable(eth, ~0);
mtk_rx_irq_disable(eth, ~0);
}
static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return phylink_mii_ioctl(mac->phylink, ifr, cmd);
default:
/* default invoke the mtk_eth_dbg handler */
return mtk_do_priv_ioctl(dev, ifr, cmd);
break;
}
return -EOPNOTSUPP;
}
int mtk_phy_config(struct mtk_eth *eth, int enable)
{
struct device_node *mii_np = NULL;
struct device_node *child = NULL;
int addr = 0;
u32 val = 0;
mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus");
if (!mii_np) {
dev_err(eth->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
dev_err(eth->dev, "device is not available\n");
return -ENODEV;
}
for_each_available_child_of_node(mii_np, child) {
addr = of_mdio_parse_addr(&eth->mii_bus->dev, child);
if (addr < 0)
continue;
pr_info("%s %d addr:%d name:%s\n",
__func__, __LINE__, addr, child->name);
val = _mtk_mdio_read(eth, addr, mdiobus_c45_addr(0x1e, 0));
if (enable)
val &= ~BMCR_PDOWN;
else
val |= BMCR_PDOWN;
_mtk_mdio_write(eth, addr, mdiobus_c45_addr(0x1e, 0), val);
}
return 0;
}
static void mtk_pending_work(struct work_struct *work)
{
struct mtk_eth *eth = container_of(work, struct mtk_eth, pending_work);
struct device_node *phy_node = NULL;
struct mtk_mac *mac = NULL;
int err, i = 0;
unsigned long restart = 0;
u32 val = 0;
atomic_inc(&reset_lock);
val = mtk_r32(eth, MTK_FE_INT_STATUS);
if (!mtk_check_reset_event(eth, val)) {
atomic_dec(&reset_lock);
pr_info("[%s] No need to do FE reset !\n", __func__);
return;
}
rtnl_lock();
while (test_and_set_bit_lock(MTK_RESETTING, &eth->state))
cpu_relax();
mtk_phy_config(eth, 0);
/* Adjust PPE configurations to prepare for reset */
mtk_prepare_reset_ppe(eth, 0);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE1))
mtk_prepare_reset_ppe(eth, 1);
/* Adjust FE configurations to prepare for reset */
mtk_prepare_reset_fe(eth);
/* Trigger Wifi SER reset */
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
if (mtk_reset_flag == MTK_FE_STOP_TRAFFIC) {
pr_info("send MTK_FE_STOP_TRAFFIC event\n");
call_netdevice_notifiers(MTK_FE_STOP_TRAFFIC,
eth->netdev[i]);
} else {
pr_info("send MTK_FE_START_RESET event\n");
call_netdevice_notifiers(MTK_FE_START_RESET,
eth->netdev[i]);
}
rtnl_unlock();
if (!wait_for_completion_timeout(&wait_ser_done, 3000)) {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3) &&
(mtk_stop_fail)) {
pr_info("send MTK_FE_START_RESET stop\n");
rtnl_lock();
call_netdevice_notifiers(MTK_FE_START_RESET,
eth->netdev[i]);
rtnl_unlock();
if (!wait_for_completion_timeout(&wait_ser_done,
3000))
pr_warn("wait for MTK_FE_START_RESET\n");
}
pr_warn("wait for MTK_FE_START_RESET\n");
}
rtnl_lock();
break;
}
del_timer_sync(&eth->mtk_dma_monitor_timer);
pr_info("[%s] mtk_stop starts !\n", __func__);
/* stop all devices to make sure that dma is properly shut down */
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
mtk_stop(eth->netdev[i]);
__set_bit(i, &restart);
}
pr_info("[%s] mtk_stop ends !\n", __func__);
mdelay(15);
if (eth->dev->pins)
pinctrl_select_state(eth->dev->pins->p,
eth->dev->pins->default_state);
pr_info("[%s] mtk_hw_init starts !\n", __func__);
mtk_hw_init(eth, MTK_TYPE_WARM_RESET);
pr_info("[%s] mtk_hw_init ends !\n", __func__);
/* restart DMA and enable IRQs */
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!test_bit(i, &restart) || !eth->netdev[i])
continue;
err = mtk_open(eth->netdev[i]);
if (err) {
netif_alert(eth, ifup, eth->netdev[i],
"Driver up/down cycle failed, closing device.\n");
dev_close(eth->netdev[i]);
}
}
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
if (mtk_reset_flag == MTK_FE_STOP_TRAFFIC) {
pr_info("send MTK_FE_START_TRAFFIC event\n");
call_netdevice_notifiers(MTK_FE_START_TRAFFIC,
eth->netdev[i]);
} else {
pr_info("send MTK_FE_RESET_DONE event\n");
call_netdevice_notifiers(MTK_FE_RESET_DONE,
eth->netdev[i]);
}
call_netdevice_notifiers(MTK_FE_RESET_NAT_DONE,
eth->netdev[i]);
break;
}
atomic_dec(&reset_lock);
timer_setup(&eth->mtk_dma_monitor_timer, mtk_dma_monitor, 0);
eth->mtk_dma_monitor_timer.expires = jiffies;
add_timer(&eth->mtk_dma_monitor_timer);
mtk_phy_config(eth, 1);
mtk_reset_flag = 0;
clear_bit_unlock(MTK_RESETTING, &eth->state);
rtnl_unlock();
}
static int mtk_free_dev(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
free_netdev(eth->netdev[i]);
}
return 0;
}
static int mtk_unreg_dev(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
unregister_netdev(eth->netdev[i]);
}
return 0;
}
static int mtk_cleanup(struct mtk_eth *eth)
{
mtk_unreg_dev(eth);
mtk_free_dev(eth);
cancel_work_sync(&eth->pending_work);
return 0;
}
static int mtk_get_link_ksettings(struct net_device *ndev,
struct ethtool_link_ksettings *cmd)
{
struct mtk_mac *mac = netdev_priv(ndev);
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return -EBUSY;
return phylink_ethtool_ksettings_get(mac->phylink, cmd);
}
static int mtk_set_link_ksettings(struct net_device *ndev,
const struct ethtool_link_ksettings *cmd)
{
struct mtk_mac *mac = netdev_priv(ndev);
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return -EBUSY;
return phylink_ethtool_ksettings_set(mac->phylink, cmd);
}
static void mtk_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct mtk_mac *mac = netdev_priv(dev);
strlcpy(info->driver, mac->hw->dev->driver->name, sizeof(info->driver));
strlcpy(info->bus_info, dev_name(mac->hw->dev), sizeof(info->bus_info));
info->n_stats = ARRAY_SIZE(mtk_ethtool_stats);
}
static u32 mtk_get_msglevel(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
return mac->hw->msg_enable;
}
static void mtk_set_msglevel(struct net_device *dev, u32 value)
{
struct mtk_mac *mac = netdev_priv(dev);
mac->hw->msg_enable = value;
}
static int mtk_nway_reset(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return -EBUSY;
if (!mac->phylink)
return -ENOTSUPP;
return phylink_ethtool_nway_reset(mac->phylink);
}
static void mtk_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) {
memcpy(data, mtk_ethtool_stats[i].str, ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
break;
}
}
static int mtk_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(mtk_ethtool_stats);
default:
return -EOPNOTSUPP;
}
}
static void mtk_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hwstats = mac->hw_stats;
u64 *data_src, *data_dst;
unsigned int start;
int i;
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return;
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock_bh(&hwstats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock_bh(&hwstats->stats_lock);
}
}
data_src = (u64 *)hwstats;
do {
data_dst = data;
start = u64_stats_fetch_begin_irq(&hwstats->syncp);
for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++)
*data_dst++ = *(data_src + mtk_ethtool_stats[i].offset);
} while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
}
static int mtk_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
int ret = -EOPNOTSUPP;
switch (cmd->cmd) {
case ETHTOOL_GRXRINGS:
if (dev->hw_features & NETIF_F_LRO) {
cmd->data = MTK_MAX_RX_RING_NUM;
ret = 0;
}
break;
case ETHTOOL_GRXCLSRLCNT:
if (dev->hw_features & NETIF_F_LRO) {
struct mtk_mac *mac = netdev_priv(dev);
cmd->rule_cnt = mac->hwlro_ip_cnt;
ret = 0;
}
break;
case ETHTOOL_GRXCLSRULE:
if (dev->hw_features & NETIF_F_LRO)
ret = mtk_hwlro_get_fdir_entry(dev, cmd);
break;
case ETHTOOL_GRXCLSRLALL:
if (dev->hw_features & NETIF_F_LRO)
ret = mtk_hwlro_get_fdir_all(dev, cmd,
rule_locs);
break;
default:
break;
}
return ret;
}
static int mtk_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
int ret = -EOPNOTSUPP;
switch (cmd->cmd) {
case ETHTOOL_SRXCLSRLINS:
if (dev->hw_features & NETIF_F_LRO)
ret = mtk_hwlro_add_ipaddr(dev, cmd);
break;
case ETHTOOL_SRXCLSRLDEL:
if (dev->hw_features & NETIF_F_LRO)
ret = mtk_hwlro_del_ipaddr(dev, cmd);
break;
default:
break;
}
return ret;
}
static void mtk_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pause)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
u32 val;
pause->autoneg = 0;
if (mac->type == MTK_GDM_TYPE) {
val = mtk_r32(eth, MTK_MAC_MCR(mac->id));
pause->rx_pause = !!(val & MAC_MCR_FORCE_RX_FC);
pause->tx_pause = !!(val & MAC_MCR_FORCE_TX_FC);
} else if (mac->type == MTK_XGDM_TYPE) {
val = mtk_r32(eth, MTK_XMAC_MCR(mac->id));
pause->rx_pause = !!(val & XMAC_MCR_FORCE_RX_FC);
pause->tx_pause = !!(val & XMAC_MCR_FORCE_TX_FC);
}
}
static int mtk_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pause)
{
struct mtk_mac *mac = netdev_priv(dev);
return phylink_ethtool_set_pauseparam(mac->phylink, pause);
}
static int mtk_get_eee(struct net_device *dev, struct ethtool_eee *eee)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
u32 val;
if (mac->type == MTK_GDM_TYPE) {
val = mtk_r32(eth, MTK_MAC_EEE(mac->id));
eee->tx_lpi_enabled = mac->tx_lpi_enabled;
eee->tx_lpi_timer = FIELD_GET(MAC_EEE_LPI_TXIDLE_THD, val);
}
return phylink_ethtool_get_eee(mac->phylink, eee);
}
static int mtk_set_eee(struct net_device *dev, struct ethtool_eee *eee)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
if (mac->type == MTK_GDM_TYPE) {
if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
return -EINVAL;
mac->tx_lpi_timer = eee->tx_lpi_timer;
mtk_setup_eee(mac, eee->eee_enabled && eee->tx_lpi_timer);
}
return phylink_ethtool_set_eee(mac->phylink, eee);
}
static const struct ethtool_ops mtk_ethtool_ops = {
.get_link_ksettings = mtk_get_link_ksettings,
.set_link_ksettings = mtk_set_link_ksettings,
.get_drvinfo = mtk_get_drvinfo,
.get_msglevel = mtk_get_msglevel,
.set_msglevel = mtk_set_msglevel,
.nway_reset = mtk_nway_reset,
.get_link = ethtool_op_get_link,
.get_strings = mtk_get_strings,
.get_sset_count = mtk_get_sset_count,
.get_ethtool_stats = mtk_get_ethtool_stats,
.get_rxnfc = mtk_get_rxnfc,
.set_rxnfc = mtk_set_rxnfc,
.get_pauseparam = mtk_get_pauseparam,
.set_pauseparam = mtk_set_pauseparam,
.get_eee = mtk_get_eee,
.set_eee = mtk_set_eee,
};
static const struct net_device_ops mtk_netdev_ops = {
.ndo_init = mtk_init,
.ndo_uninit = mtk_uninit,
.ndo_open = mtk_open,
.ndo_stop = mtk_stop,
.ndo_start_xmit = mtk_start_xmit,
.ndo_set_mac_address = mtk_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = mtk_do_ioctl,
.ndo_tx_timeout = mtk_tx_timeout,
.ndo_get_stats64 = mtk_get_stats64,
.ndo_fix_features = mtk_fix_features,
.ndo_set_features = mtk_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = mtk_poll_controller,
#endif
};
static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np)
{
const __be32 *_id = of_get_property(np, "reg", NULL);
const char *label;
struct phylink *phylink;
int mac_type, phy_mode, id, err;
struct mtk_mac *mac;
struct mtk_phylink_priv *phylink_priv;
struct fwnode_handle *fixed_node;
struct gpio_desc *desc;
if (!_id) {
dev_err(eth->dev, "missing mac id\n");
return -EINVAL;
}
id = be32_to_cpup(_id);
if (id < 0 || id >= MTK_MAC_COUNT) {
dev_err(eth->dev, "%d is not a valid mac id\n", id);
return -EINVAL;
}
if (eth->netdev[id]) {
dev_err(eth->dev, "duplicate mac id found: %d\n", id);
return -EINVAL;
}
eth->netdev[id] = alloc_etherdev(sizeof(*mac));
if (!eth->netdev[id]) {
dev_err(eth->dev, "alloc_etherdev failed\n");
return -ENOMEM;
}
mac = netdev_priv(eth->netdev[id]);
eth->mac[id] = mac;
mac->id = id;
mac->hw = eth;
mac->of_node = np;
memset(mac->hwlro_ip, 0, sizeof(mac->hwlro_ip));
mac->hwlro_ip_cnt = 0;
mac->hw_stats = devm_kzalloc(eth->dev,
sizeof(*mac->hw_stats),
GFP_KERNEL);
if (!mac->hw_stats) {
dev_err(eth->dev, "failed to allocate counter memory\n");
err = -ENOMEM;
goto free_netdev;
}
spin_lock_init(&mac->hw_stats->stats_lock);
u64_stats_init(&mac->hw_stats->syncp);
mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET;
/* phylink create */
phy_mode = of_get_phy_mode(np);
if (phy_mode < 0) {
dev_err(eth->dev, "incorrect phy-mode\n");
err = -EINVAL;
goto free_netdev;
}
/* mac config is not set */
mac->interface = PHY_INTERFACE_MODE_NA;
mac->mode = MLO_AN_PHY;
mac->speed = SPEED_UNKNOWN;
mac->tx_lpi_timer = 1;
mac->phylink_config.dev = &eth->netdev[id]->dev;
mac->phylink_config.type = PHYLINK_NETDEV;
mac->type = 0;
if (!of_property_read_string(np, "mac-type", &label)) {
for (mac_type = 0; mac_type < MTK_GDM_TYPE_MAX; mac_type++) {
if (!strcasecmp(label, gdm_type(mac_type)))
break;
}
switch (mac_type) {
case 0:
mac->type = MTK_GDM_TYPE;
break;
case 1:
mac->type = MTK_XGDM_TYPE;
break;
default:
dev_warn(eth->dev, "incorrect mac-type\n");
break;
};
}
phylink = phylink_create(&mac->phylink_config,
of_fwnode_handle(mac->of_node),
phy_mode, &mtk_phylink_ops);
if (IS_ERR(phylink)) {
err = PTR_ERR(phylink);
goto free_netdev;
}
mac->phylink = phylink;
fixed_node = fwnode_get_named_child_node(of_fwnode_handle(mac->of_node),
"fixed-link");
if (fixed_node) {
desc = fwnode_get_named_gpiod(fixed_node, "link-gpio",
0, GPIOD_IN, "?");
if (!IS_ERR(desc)) {
struct device_node *phy_np;
const char *label;
int irq, phyaddr;
phylink_priv = &mac->phylink_priv;
phylink_priv->desc = desc;
phylink_priv->id = id;
phylink_priv->link = -1;
irq = gpiod_to_irq(desc);
if (irq > 0) {
devm_request_irq(eth->dev, irq, mtk_handle_irq_fixed_link,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"ethernet:fixed link", mac);
}
if (!of_property_read_string(to_of_node(fixed_node),
"label", &label)) {
if (strlen(label) < 16) {
strncpy(phylink_priv->label, label,
strlen(label));
} else
dev_err(eth->dev, "insufficient space for label!\n");
}
phy_np = of_parse_phandle(to_of_node(fixed_node), "phy-handle", 0);
if (phy_np) {
if (!of_property_read_u32(phy_np, "reg", &phyaddr))
phylink_priv->phyaddr = phyaddr;
}
}
fwnode_handle_put(fixed_node);
}
SET_NETDEV_DEV(eth->netdev[id], eth->dev);
eth->netdev[id]->watchdog_timeo = 5 * HZ;
eth->netdev[id]->netdev_ops = &mtk_netdev_ops;
eth->netdev[id]->base_addr = (unsigned long)eth->base;
eth->netdev[id]->hw_features = eth->soc->hw_features;
if (eth->hwlro)
eth->netdev[id]->hw_features |= NETIF_F_LRO;
eth->netdev[id]->vlan_features = eth->soc->hw_features &
~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
eth->netdev[id]->features |= eth->soc->hw_features;
eth->netdev[id]->ethtool_ops = &mtk_ethtool_ops;
eth->netdev[id]->irq = eth->irq[0];
eth->netdev[id]->dev.of_node = np;
return 0;
free_netdev:
free_netdev(eth->netdev[id]);
return err;
}
void mtk_eth_set_dma_device(struct mtk_eth *eth, struct device *dma_dev)
{
struct net_device *dev, *tmp;
LIST_HEAD(dev_list);
int i;
rtnl_lock();
for (i = 0; i < MTK_MAC_COUNT; i++) {
dev = eth->netdev[i];
if (!dev || !(dev->flags & IFF_UP))
continue;
list_add_tail(&dev->close_list, &dev_list);
}
dev_close_many(&dev_list, false);
eth->dma_dev = dma_dev;
list_for_each_entry_safe(dev, tmp, &dev_list, close_list) {
list_del_init(&dev->close_list);
dev_open(dev, NULL);
}
rtnl_unlock();
}
static int mtk_probe(struct platform_device *pdev)
{
struct device_node *mac_np;
struct mtk_eth *eth;
int err, i;
eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL);
if (!eth)
return -ENOMEM;
eth->soc = of_device_get_match_data(&pdev->dev);
eth->dev = &pdev->dev;
eth->dma_dev = &pdev->dev;
eth->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(eth->base))
return PTR_ERR(eth->base);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_NETSYS_V3)) {
eth->sram_base = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(eth->sram_base))
return PTR_ERR(eth->sram_base);
}
if(eth->soc->has_sram) {
struct resource *res;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!res))
return -EINVAL;
eth->phy_scratch_ring = res->start + MTK_ETH_SRAM_OFFSET;
}
mtk_get_hwver(eth);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628))
eth->ip_align = NET_IP_ALIGN;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_8GB_ADDRESSING)) {
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(36));
if (!err) {
err = dma_set_coherent_mask(&pdev->dev,
DMA_BIT_MASK(36));
if (err) {
dev_err(&pdev->dev, "Wrong DMA config\n");
return -EINVAL;
}
}
}
spin_lock_init(&eth->page_lock);
spin_lock_init(&eth->tx_irq_lock);
spin_lock_init(&eth->rx_irq_lock);
spin_lock_init(&eth->syscfg0_lock);
if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) {
eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,ethsys");
if (IS_ERR(eth->ethsys)) {
dev_err(&pdev->dev, "no ethsys regmap found\n");
return PTR_ERR(eth->ethsys);
}
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_INFRA)) {
eth->infra = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,infracfg");
if (IS_ERR(eth->infra)) {
dev_err(&pdev->dev, "no infracfg regmap found\n");
return PTR_ERR(eth->infra);
}
}
if (of_dma_is_coherent(pdev->dev.of_node)) {
struct regmap *cci;
cci = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"cci-control-port");
/* enable CPU/bus coherency */
if (!IS_ERR(cci))
regmap_write(cci, 0, 3);
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII)) {
eth->sgmii = devm_kzalloc(eth->dev, sizeof(*eth->sgmii),
GFP_KERNEL);
if (!eth->sgmii)
return -ENOMEM;
err = mtk_sgmii_init(eth, pdev->dev.of_node,
eth->soc->ana_rgc3);
if (err)
return err;
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_USXGMII)) {
eth->usxgmii = devm_kzalloc(eth->dev, sizeof(*eth->usxgmii),
GFP_KERNEL);
if (!eth->usxgmii)
return -ENOMEM;
err = mtk_usxgmii_init(eth, pdev->dev.of_node);
if (err)
return err;
err = mtk_toprgu_init(eth, pdev->dev.of_node);
if (err)
return err;
}
if (eth->soc->required_pctl) {
eth->pctl = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,pctl");
if (IS_ERR(eth->pctl)) {
dev_err(&pdev->dev, "no pctl regmap found\n");
return PTR_ERR(eth->pctl);
}
}
for (i = 0; i < MTK_MAX_IRQ_NUM; i++) {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_INT) && i > 0)
eth->irq[i] = eth->irq[0];
else
eth->irq[i] = platform_get_irq(pdev, i);
if (eth->irq[i] < 0) {
dev_err(&pdev->dev, "no IRQ%d resource found\n", i);
return -ENXIO;
}
}
for (i = 0; i < ARRAY_SIZE(eth->clks); i++) {
eth->clks[i] = devm_clk_get(eth->dev,
mtk_clks_source_name[i]);
if (IS_ERR(eth->clks[i])) {
if (PTR_ERR(eth->clks[i]) == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (eth->soc->required_clks & BIT(i)) {
dev_err(&pdev->dev, "clock %s not found\n",
mtk_clks_source_name[i]);
return -EINVAL;
}
eth->clks[i] = NULL;
}
}
eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE);
INIT_WORK(&eth->pending_work, mtk_pending_work);
err = mtk_hw_init(eth, MTK_TYPE_COLD_RESET);
if (err)
return err;
eth->hwlro = MTK_HAS_CAPS(eth->soc->caps, MTK_HWLRO);
for_each_child_of_node(pdev->dev.of_node, mac_np) {
if (!of_device_is_compatible(mac_np,
"mediatek,eth-mac"))
continue;
if (!of_device_is_available(mac_np))
continue;
err = mtk_add_mac(eth, mac_np);
if (err) {
of_node_put(mac_np);
goto err_deinit_hw;
}
}
err = mtk_napi_init(eth);
if (err)
goto err_free_dev;
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_INT)) {
err = devm_request_irq(eth->dev, eth->irq[0],
mtk_handle_irq, 0,
dev_name(eth->dev), eth);
} else {
err = devm_request_irq(eth->dev, eth->irq[1],
mtk_handle_irq_tx, 0,
dev_name(eth->dev), eth);
if (err)
goto err_free_dev;
err = devm_request_irq(eth->dev, eth->irq[2],
mtk_handle_irq_rx, 0,
dev_name(eth->dev), &eth->rx_napi[0]);
if (err)
goto err_free_dev;
if (MTK_MAX_IRQ_NUM > 3) {
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSS)) {
for (i = 1; i < MTK_RX_NAPI_NUM; i++) {
err = devm_request_irq(eth->dev,
eth->irq[2 + i],
mtk_handle_irq_rx, 0,
dev_name(eth->dev),
&eth->rx_napi[i]);
if (err)
goto err_free_dev;
}
} else {
err = devm_request_irq(eth->dev, eth->irq[3],
mtk_handle_fe_irq, 0,
dev_name(eth->dev), eth);
if (err)
goto err_free_dev;
}
}
}
if (err)
goto err_free_dev;
/* No MT7628/88 support yet */
if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) {
err = mtk_mdio_init(eth);
if (err)
goto err_free_dev;
}
for (i = 0; i < MTK_MAX_DEVS; i++) {
if (!eth->netdev[i])
continue;
err = register_netdev(eth->netdev[i]);
if (err) {
dev_err(eth->dev, "error bringing up device\n");
goto err_deinit_mdio;
} else
netif_info(eth, probe, eth->netdev[i],
"mediatek frame engine at 0x%08lx, irq %d\n",
eth->netdev[i]->base_addr, eth->irq[0]);
}
/* we run 2 devices on the same DMA ring so we need a dummy device
* for NAPI to work
*/
init_dummy_netdev(&eth->dummy_dev);
netif_napi_add(&eth->dummy_dev, &eth->tx_napi, mtk_napi_tx,
MTK_NAPI_WEIGHT);
netif_napi_add(&eth->dummy_dev, &eth->rx_napi[0].napi, mtk_napi_rx,
MTK_NAPI_WEIGHT);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSS)) {
for (i = 1; i < MTK_RX_NAPI_NUM; i++)
netif_napi_add(&eth->dummy_dev, &eth->rx_napi[i].napi,
mtk_napi_rx, MTK_NAPI_WEIGHT);
}
#if defined(CONFIG_XFRM_OFFLOAD)
mtk_ipsec_offload_init(eth);
#endif
mtketh_debugfs_init(eth);
debug_proc_init(eth);
platform_set_drvdata(pdev, eth);
register_netdevice_notifier(&mtk_eth_netdevice_nb);
#if defined(CONFIG_MEDIATEK_NETSYS_V2) || defined(CONFIG_MEDIATEK_NETSYS_V3)
timer_setup(&eth->mtk_dma_monitor_timer, mtk_dma_monitor, 0);
eth->mtk_dma_monitor_timer.expires = jiffies;
add_timer(&eth->mtk_dma_monitor_timer);
#endif
return 0;
err_deinit_mdio:
mtk_mdio_cleanup(eth);
err_free_dev:
mtk_free_dev(eth);
err_deinit_hw:
mtk_hw_deinit(eth);
return err;
}
static int mtk_remove(struct platform_device *pdev)
{
struct mtk_eth *eth = platform_get_drvdata(pdev);
struct mtk_mac *mac;
int i;
/* stop all devices to make sure that dma is properly shut down */
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
mtk_stop(eth->netdev[i]);
mac = netdev_priv(eth->netdev[i]);
phylink_disconnect_phy(mac->phylink);
}
mtk_hw_deinit(eth);
netif_napi_del(&eth->tx_napi);
netif_napi_del(&eth->rx_napi[0].napi);
if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSS)) {
for (i = 1; i < MTK_RX_NAPI_NUM; i++)
netif_napi_del(&eth->rx_napi[i].napi);
}
mtk_cleanup(eth);
mtk_mdio_cleanup(eth);
unregister_netdevice_notifier(&mtk_eth_netdevice_nb);
del_timer_sync(&eth->mtk_dma_monitor_timer);
return 0;
}
static const struct mtk_soc_data mt2701_data = {
.reg_map = &mtk_reg_map,
.caps = MT7623_CAPS | MTK_HWLRO,
.hw_features = MTK_HW_FEATURES,
.required_clks = MT7623_CLKS_BITMAP,
.required_pctl = true,
.has_sram = false,
.txrx = {
.txd_size = sizeof(struct mtk_tx_dma),
.rxd_size = sizeof(struct mtk_rx_dma),
.rx_dma_l4_valid = RX_DMA_L4_VALID,
.dma_max_len = MTK_TX_DMA_BUF_LEN,
.dma_len_offset = MTK_TX_DMA_BUF_SHIFT,
},
};
static const struct mtk_soc_data mt7621_data = {
.reg_map = &mtk_reg_map,
.caps = MT7621_CAPS,
.hw_features = MTK_HW_FEATURES,
.required_clks = MT7621_CLKS_BITMAP,
.required_pctl = false,
.has_sram = false,
.txrx = {
.txd_size = sizeof(struct mtk_tx_dma),
.rx_dma_l4_valid = RX_DMA_L4_VALID,
.rxd_size = sizeof(struct mtk_rx_dma),
.dma_max_len = MTK_TX_DMA_BUF_LEN,
.dma_len_offset = MTK_TX_DMA_BUF_SHIFT,
},
};
static const struct mtk_soc_data mt7622_data = {
.reg_map = &mtk_reg_map,
.ana_rgc3 = 0x2028,
.caps = MT7622_CAPS | MTK_HWLRO,
.hw_features = MTK_HW_FEATURES,
.required_clks = MT7622_CLKS_BITMAP,
.required_pctl = false,
.has_sram = false,
.txrx = {
.txd_size = sizeof(struct mtk_tx_dma),
.rxd_size = sizeof(struct mtk_rx_dma),
.rx_dma_l4_valid = RX_DMA_L4_VALID,
.dma_max_len = MTK_TX_DMA_BUF_LEN,
.dma_len_offset = MTK_TX_DMA_BUF_SHIFT,
},
};
static const struct mtk_soc_data mt7623_data = {
.reg_map = &mtk_reg_map,
.caps = MT7623_CAPS | MTK_HWLRO,
.hw_features = MTK_HW_FEATURES,
.required_clks = MT7623_CLKS_BITMAP,
.required_pctl = true,
.has_sram = false,
.txrx = {
.txd_size = sizeof(struct mtk_tx_dma),
.rxd_size = sizeof(struct mtk_rx_dma),
.rx_dma_l4_valid = RX_DMA_L4_VALID,
.dma_max_len = MTK_TX_DMA_BUF_LEN,
.dma_len_offset = MTK_TX_DMA_BUF_SHIFT,
},
};
static const struct mtk_soc_data mt7629_data = {
.reg_map = &mtk_reg_map,
.ana_rgc3 = 0x128,
.caps = MT7629_CAPS | MTK_HWLRO,
.hw_features = MTK_HW_FEATURES,
.required_clks = MT7629_CLKS_BITMAP,
.required_pctl = false,
.has_sram = false,
.txrx = {
.txd_size = sizeof(struct mtk_tx_dma),
.rxd_size = sizeof(struct mtk_rx_dma),
.rx_dma_l4_valid = RX_DMA_L4_VALID,
.dma_max_len = MTK_TX_DMA_BUF_LEN,
.dma_len_offset = MTK_TX_DMA_BUF_SHIFT,
},
};
static const struct mtk_soc_data mt7986_data = {
.reg_map = &mt7986_reg_map,
.ana_rgc3 = 0x128,
.caps = MT7986_CAPS,
.hw_features = MTK_HW_FEATURES,
.required_clks = MT7986_CLKS_BITMAP,
.required_pctl = false,
.has_sram = true,
.txrx = {
.txd_size = sizeof(struct mtk_tx_dma_v2),
.rxd_size = sizeof(struct mtk_rx_dma),
.rx_dma_l4_valid = RX_DMA_L4_VALID_V2,
.dma_max_len = MTK_TX_DMA_BUF_LEN_V2,
.dma_len_offset = MTK_TX_DMA_BUF_SHIFT_V2,
},
};
static const struct mtk_soc_data mt7981_data = {
.reg_map = &mt7986_reg_map,
.ana_rgc3 = 0x128,
.caps = MT7981_CAPS,
.hw_features = MTK_HW_FEATURES,
.required_clks = MT7981_CLKS_BITMAP,
.required_pctl = false,
.has_sram = true,
.txrx = {
.txd_size = sizeof(struct mtk_tx_dma_v2),
.rxd_size = sizeof(struct mtk_rx_dma),
.rx_dma_l4_valid = RX_DMA_L4_VALID_V2,
.dma_max_len = MTK_TX_DMA_BUF_LEN_V2,
.dma_len_offset = MTK_TX_DMA_BUF_SHIFT_V2,
},
};
static const struct mtk_soc_data mt7988_data = {
.reg_map = &mt7988_reg_map,
.ana_rgc3 = 0x128,
.caps = MT7988_CAPS,
.hw_features = MTK_HW_FEATURES,
.required_clks = MT7988_CLKS_BITMAP,
.required_pctl = false,
.has_sram = true,
.txrx = {
.txd_size = sizeof(struct mtk_tx_dma_v2),
.rxd_size = sizeof(struct mtk_rx_dma_v2),
.rx_dma_l4_valid = RX_DMA_L4_VALID_V2,
.dma_max_len = MTK_TX_DMA_BUF_LEN_V2,
.dma_len_offset = MTK_TX_DMA_BUF_SHIFT_V2,
},
};
static const struct mtk_soc_data rt5350_data = {
.reg_map = &mt7628_reg_map,
.caps = MT7628_CAPS,
.hw_features = MTK_HW_FEATURES_MT7628,
.required_clks = MT7628_CLKS_BITMAP,
.required_pctl = false,
.has_sram = false,
.txrx = {
.txd_size = sizeof(struct mtk_tx_dma),
.rxd_size = sizeof(struct mtk_rx_dma),
.rx_dma_l4_valid = RX_DMA_L4_VALID_PDMA,
.dma_max_len = MTK_TX_DMA_BUF_LEN,
.dma_len_offset = MTK_TX_DMA_BUF_SHIFT,
},
};
const struct of_device_id of_mtk_match[] = {
{ .compatible = "mediatek,mt2701-eth", .data = &mt2701_data},
{ .compatible = "mediatek,mt7621-eth", .data = &mt7621_data},
{ .compatible = "mediatek,mt7622-eth", .data = &mt7622_data},
{ .compatible = "mediatek,mt7623-eth", .data = &mt7623_data},
{ .compatible = "mediatek,mt7629-eth", .data = &mt7629_data},
{ .compatible = "mediatek,mt7986-eth", .data = &mt7986_data},
{ .compatible = "mediatek,mt7981-eth", .data = &mt7981_data},
{ .compatible = "mediatek,mt7988-eth", .data = &mt7988_data},
{ .compatible = "ralink,rt5350-eth", .data = &rt5350_data},
{},
};
MODULE_DEVICE_TABLE(of, of_mtk_match);
static struct platform_driver mtk_driver = {
.probe = mtk_probe,
.remove = mtk_remove,
.driver = {
.name = "mtk_soc_eth",
.of_match_table = of_mtk_match,
},
};
module_platform_driver(mtk_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");