blob: 3d96c31d092b07c2debf4f05037372f90e2a1a29 [file] [log] [blame]
Willy Tarreau55542642021-10-08 09:33:24 +02001/*
2 * General time-keeping code and variables
3 *
4 * Copyright 2000-2021 Willy Tarreau <w@1wt.eu>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 */
12
13#include <sys/time.h>
Willy Tarreau6cb0c392021-10-08 14:48:30 +020014#include <signal.h>
Willy Tarreau55542642021-10-08 09:33:24 +020015#include <time.h>
16
Willy Tarreau44c58da2021-10-08 12:27:54 +020017#ifdef USE_THREAD
18#include <pthread.h>
19#endif
20
Willy Tarreau55542642021-10-08 09:33:24 +020021#include <haproxy/api.h>
Willy Tarreauf9d5e102021-10-08 10:43:59 +020022#include <haproxy/activity.h>
Willy Tarreau55542642021-10-08 09:33:24 +020023#include <haproxy/clock.h>
Willy Tarreau6cb0c392021-10-08 14:48:30 +020024#include <haproxy/signal-t.h>
Willy Tarreau55542642021-10-08 09:33:24 +020025#include <haproxy/time.h>
26#include <haproxy/tinfo-t.h>
27#include <haproxy/tools.h>
28
29struct timeval start_date; /* the process's start date in wall-clock time */
30volatile ullong global_now; /* common monotonic date between all threads (32:32) */
31volatile uint global_now_ms; /* common monotonic date in milliseconds (may wrap) */
32
33THREAD_ALIGNED(64) static ullong now_offset; /* global offset between system time and global time */
34
35THREAD_LOCAL uint now_ms; /* internal monotonic date in milliseconds (may wrap) */
36THREAD_LOCAL struct timeval now; /* internal monotonic date derived from real clock */
37THREAD_LOCAL struct timeval date; /* the real current date (wall-clock time) */
Willy Tarreau55542642021-10-08 09:33:24 +020038
Willy Tarreau2c6a9982021-10-08 11:38:30 +020039static THREAD_LOCAL struct timeval before_poll; /* system date before calling poll() */
40static THREAD_LOCAL struct timeval after_poll; /* system date after leaving poll() */
Willy Tarreauf9d5e102021-10-08 10:43:59 +020041static THREAD_LOCAL unsigned int samp_time; /* total elapsed time over current sample */
42static THREAD_LOCAL unsigned int idle_time; /* total idle time over current sample */
Willy Tarreau55542642021-10-08 09:33:24 +020043static THREAD_LOCAL unsigned int iso_time_sec; /* last iso time value for this thread */
44static THREAD_LOCAL char iso_time_str[34]; /* ISO time representation of gettimeofday() */
45
Willy Tarreau21694982021-10-08 15:09:17 +020046#if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0) && defined(_POSIX_THREAD_CPUTIME)
47static clockid_t per_thread_clock_id[MAX_THREADS];
48#endif
49
Willy Tarreau55542642021-10-08 09:33:24 +020050/* returns the system's monotonic time in nanoseconds if supported, otherwise zero */
51uint64_t now_mono_time(void)
52{
53 uint64_t ret = 0;
Willy Tarreau6cb0c392021-10-08 14:48:30 +020054#if defined(_POSIX_TIMERS) && defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0) && defined(_POSIX_MONOTONIC_CLOCK)
Willy Tarreau55542642021-10-08 09:33:24 +020055 struct timespec ts;
56 clock_gettime(CLOCK_MONOTONIC, &ts);
57 ret = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
58#endif
59 return ret;
60}
61
62/* returns the current thread's cumulated CPU time in nanoseconds if supported, otherwise zero */
63uint64_t now_cpu_time(void)
64{
65 uint64_t ret = 0;
66#if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0) && defined(_POSIX_THREAD_CPUTIME)
67 struct timespec ts;
68 clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts);
69 ret = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
70#endif
71 return ret;
72}
73
74/* returns another thread's cumulated CPU time in nanoseconds if supported, otherwise zero */
Willy Tarreau21694982021-10-08 15:09:17 +020075uint64_t now_cpu_time_thread(int thr)
Willy Tarreau55542642021-10-08 09:33:24 +020076{
77 uint64_t ret = 0;
78#if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0) && defined(_POSIX_THREAD_CPUTIME)
79 struct timespec ts;
Willy Tarreau21694982021-10-08 15:09:17 +020080 clock_gettime(per_thread_clock_id[thr], &ts);
Willy Tarreau55542642021-10-08 09:33:24 +020081 ret = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
82#endif
83 return ret;
84}
85
Willy Tarreau44c58da2021-10-08 12:27:54 +020086/* set the clock source for the local thread */
87void clock_set_local_source(void)
88{
89#if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0) && defined(_POSIX_THREAD_CPUTIME)
90#ifdef USE_THREAD
Willy Tarreau21694982021-10-08 15:09:17 +020091 pthread_getcpuclockid(pthread_self(), &per_thread_clock_id[tid]);
Willy Tarreau44c58da2021-10-08 12:27:54 +020092#else
Willy Tarreau21694982021-10-08 15:09:17 +020093 per_thread_clock_id[tid] = CLOCK_THREAD_CPUTIME_ID;
Willy Tarreau44c58da2021-10-08 12:27:54 +020094#endif
95#endif
96}
97
Willy Tarreau6cb0c392021-10-08 14:48:30 +020098/* registers a timer <tmr> of type timer_t delivering signal <sig> with value
99 * <val>. It tries on the current thread's clock ID first and falls back to
100 * CLOCK_REALTIME. Returns non-zero on success, 1 on failure.
101 */
102int clock_setup_signal_timer(void *tmr, int sig, int val)
103{
104 int ret = 0;
105
106#if defined(USE_RT) && (_POSIX_TIMERS > 0) && defined(_POSIX_THREAD_CPUTIME)
107 struct sigevent sev = { };
108 timer_t *timer = tmr;
109 sigset_t set;
110
111 /* unblock the WDTSIG signal we intend to use */
112 sigemptyset(&set);
113 sigaddset(&set, WDTSIG);
114 ha_sigmask(SIG_UNBLOCK, &set, NULL);
115
116 /* this timer will signal WDTSIG when it fires, with tid in the si_int
117 * field (important since any thread will receive the signal).
118 */
119 sev.sigev_notify = SIGEV_SIGNAL;
120 sev.sigev_signo = sig;
121 sev.sigev_value.sival_int = val;
Willy Tarreau21694982021-10-08 15:09:17 +0200122 if (timer_create(per_thread_clock_id[tid], &sev, timer) != -1 ||
Willy Tarreau6cb0c392021-10-08 14:48:30 +0200123 timer_create(CLOCK_REALTIME, &sev, timer) != -1)
124 ret = 1;
125#endif
126 return ret;
127}
128
Willy Tarreau55542642021-10-08 09:33:24 +0200129/* clock_update_date: sets <date> to system time, and sets <now> to something as
130 * close as possible to real time, following a monotonic function. The main
131 * principle consists in detecting backwards and forwards time jumps and adjust
132 * an offset to correct them. This function should be called once after each
133 * poll, and never farther apart than MAX_DELAY_MS*2. The poll's timeout should
134 * be passed in <max_wait>, and the return value in <interrupted> (a non-zero
135 * value means that we have not expired the timeout).
136 *
137 * clock_init_process_date() must have been called once first, and
138 * clock_init_thread_date() must also have been called once for each thread.
139 *
140 * An offset is used to adjust the current time (date), to figure a monotonic
141 * local time (now). The offset is not critical, as it is only updated after a
142 * clock jump is detected. From this point all threads will apply it to their
143 * locally measured time, and will then agree around a common monotonic
144 * global_now value that serves to further refine their local time. As it is
145 * not possible to atomically update a timeval, both global_now and the
146 * now_offset values are instead stored as 64-bit integers made of two 32 bit
147 * values for the tv_sec and tv_usec parts. The offset is made of two signed
148 * ints so that the clock can be adjusted in the two directions.
149 */
Willy Tarreaua7004202022-09-21 07:37:27 +0200150void clock_update_local_date(int max_wait, int interrupted)
Willy Tarreau55542642021-10-08 09:33:24 +0200151{
Willy Tarreaua7004202022-09-21 07:37:27 +0200152 struct timeval min_deadline, max_deadline;
153 ullong ofs;
Willy Tarreau55542642021-10-08 09:33:24 +0200154
155 gettimeofday(&date, NULL);
156
157 /* compute the minimum and maximum local date we may have reached based
158 * on our past date and the associated timeout. There are three possible
159 * extremities:
160 * - the new date cannot be older than before_poll
161 * - if not interrupted, the new date cannot be older than
162 * before_poll+max_wait
163 * - in any case the new date cannot be newer than
164 * before_poll+max_wait+some margin (100ms used here).
165 * In case of violation, we'll ignore the current date and instead
166 * restart from the last date we knew.
167 */
168 _tv_ms_add(&min_deadline, &before_poll, max_wait);
169 _tv_ms_add(&max_deadline, &before_poll, max_wait + 100);
170
171 ofs = HA_ATOMIC_LOAD(&now_offset);
172
173 if (unlikely(__tv_islt(&date, &before_poll) || // big jump backwards
174 (!interrupted && __tv_islt(&date, &min_deadline)) || // small jump backwards
175 __tv_islt(&max_deadline, &date))) { // big jump forwards
176 if (!interrupted)
177 _tv_ms_add(&now, &now, max_wait);
178 } else {
179 /* The date is still within expectations. Let's apply the
180 * now_offset to the system date. Note: ofs if made of two
181 * independent signed ints.
182 */
183 now.tv_sec = date.tv_sec + (int)(ofs >> 32); // note: may be positive or negative
184 now.tv_usec = date.tv_usec + (int)ofs; // note: may be positive or negative
185 if ((int)now.tv_usec < 0) {
186 now.tv_usec += 1000000;
187 now.tv_sec -= 1;
188 } else if (now.tv_usec >= 1000000) {
189 now.tv_usec -= 1000000;
190 now.tv_sec += 1;
191 }
192 }
Willy Tarreaua7004202022-09-21 07:37:27 +0200193 now_ms = __tv_to_ms(&now);
194}
195
196void clock_update_global_date()
197{
198 struct timeval tmp_now;
199 uint old_now_ms;
200 ullong old_now;
201 ullong new_now;
Willy Tarreau4eaf85f2022-09-21 08:21:45 +0200202 ullong ofs_new;
Willy Tarreaua7004202022-09-21 07:37:27 +0200203 uint sec_ofs, usec_ofs;
204
Willy Tarreau55542642021-10-08 09:33:24 +0200205 /* now that we have bounded the local time, let's check if it's
206 * realistic regarding the global date, which only moves forward,
207 * otherwise catch up.
208 */
209 old_now = global_now;
210 old_now_ms = global_now_ms;
211
212 do {
213 tmp_now.tv_sec = (unsigned int)(old_now >> 32);
214 tmp_now.tv_usec = old_now & 0xFFFFFFFFU;
215
216 if (__tv_islt(&now, &tmp_now))
217 now = tmp_now;
218
219 /* now <now> is expected to be the most accurate date,
Willy Tarreau4eaf85f2022-09-21 08:21:45 +0200220 * equal to <global_now> or newer. Updating the global
221 * date too often causes extreme contention and is not
222 * needed: it's only used to help threads run at the
223 * same date in case of local drift, and the global date,
224 * which changes, is only used by freq counters (a choice
225 * which is debatable by the way since it changes under us).
226 * Tests have seen that the contention can be reduced from
227 * 37% in this function to almost 0% when keeping clocks
228 * synchronized no better than 32 microseconds, so that's
229 * what we're doing here.
Willy Tarreau55542642021-10-08 09:33:24 +0200230 */
Willy Tarreau4eaf85f2022-09-21 08:21:45 +0200231
Willy Tarreau55542642021-10-08 09:33:24 +0200232 new_now = ((ullong)now.tv_sec << 32) + (uint)now.tv_usec;
233 now_ms = __tv_to_ms(&now);
234
Willy Tarreau4eaf85f2022-09-21 08:21:45 +0200235 if (!((new_now ^ old_now) & ~0x1FULL))
236 return;
237
Willy Tarreau55542642021-10-08 09:33:24 +0200238 /* let's try to update the global <now> (both in timeval
239 * and ms forms) or loop again.
240 */
Willy Tarreau4eaf85f2022-09-21 08:21:45 +0200241 } while ((!_HA_ATOMIC_CAS(&global_now, &old_now, new_now) ||
Willy Tarreau55542642021-10-08 09:33:24 +0200242 (now_ms != old_now_ms && !_HA_ATOMIC_CAS(&global_now_ms, &old_now_ms, now_ms))) &&
243 __ha_cpu_relax());
244
245 /* <now> and <now_ms> are now updated to the last value of global_now
246 * and global_now_ms, which were also monotonically updated. We can
247 * compute the latest offset, we don't care who writes it last, the
248 * variations will not break the monotonic property.
249 */
250
251 sec_ofs = now.tv_sec - date.tv_sec;
252 usec_ofs = now.tv_usec - date.tv_usec;
253 if ((int)usec_ofs < 0) {
254 usec_ofs += 1000000;
255 sec_ofs -= 1;
256 }
257 ofs_new = ((ullong)sec_ofs << 32) + usec_ofs;
Willy Tarreau4eaf85f2022-09-21 08:21:45 +0200258 HA_ATOMIC_STORE(&now_offset, ofs_new);
Willy Tarreau55542642021-10-08 09:33:24 +0200259}
260
261/* must be called once at boot to initialize some global variables */
262void clock_init_process_date(void)
263{
264 now_offset = 0;
265 gettimeofday(&date, NULL);
266 now = after_poll = before_poll = date;
267 global_now = ((ullong)date.tv_sec << 32) + (uint)date.tv_usec;
268 global_now_ms = now.tv_sec * 1000 + now.tv_usec / 1000;
Willy Tarreau45c38e22021-09-30 18:28:49 +0200269 th_ctx->idle_pct = 100;
Willy Tarreau55542642021-10-08 09:33:24 +0200270 clock_update_date(0, 1);
271}
272
273/* must be called once per thread to initialize their thread-local variables.
274 * Note that other threads might also be initializing and running in parallel.
275 */
276void clock_init_thread_date(void)
277{
278 ullong old_now;
279
280 gettimeofday(&date, NULL);
281 after_poll = before_poll = date;
282
283 old_now = _HA_ATOMIC_LOAD(&global_now);
284 now.tv_sec = old_now >> 32;
285 now.tv_usec = (uint)old_now;
Willy Tarreau45c38e22021-09-30 18:28:49 +0200286 th_ctx->idle_pct = 100;
Aurelien DARRAGON16d6c0c2022-11-10 11:47:47 +0100287 th_ctx->prev_cpu_time = now_cpu_time();
Willy Tarreau55542642021-10-08 09:33:24 +0200288 clock_update_date(0, 1);
289}
290
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200291/* report the average CPU idle percentage over all running threads, between 0 and 100 */
292uint clock_report_idle(void)
293{
294 uint total = 0;
295 uint rthr = 0;
296 uint thr;
297
298 for (thr = 0; thr < MAX_THREADS; thr++) {
Willy Tarreau1e7f0d62022-06-27 16:22:22 +0200299 if (!ha_thread_info[thr].tg ||
300 !(ha_thread_info[thr].tg->threads_enabled & ha_thread_info[thr].ltid_bit))
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200301 continue;
Willy Tarreau45c38e22021-09-30 18:28:49 +0200302 total += HA_ATOMIC_LOAD(&ha_thread_ctx[thr].idle_pct);
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200303 rthr++;
304 }
305 return rthr ? total / rthr : 0;
306}
307
308/* Update the idle time value twice a second, to be called after
309 * clock_update_date() when called after poll(), and currently called only by
310 * clock_leaving_poll() below. It relies on <before_poll> to be updated to
311 * the system time before calling poll().
312 */
313static inline void clock_measure_idle(void)
314{
315 /* Let's compute the idle to work ratio. We worked between after_poll
316 * and before_poll, and slept between before_poll and date. The idle_pct
317 * is updated at most twice every second. Note that the current second
318 * rarely changes so we avoid a multiply when not needed.
319 */
320 int delta;
321
322 if ((delta = date.tv_sec - before_poll.tv_sec))
323 delta *= 1000000;
324 idle_time += delta + (date.tv_usec - before_poll.tv_usec);
325
326 if ((delta = date.tv_sec - after_poll.tv_sec))
327 delta *= 1000000;
328 samp_time += delta + (date.tv_usec - after_poll.tv_usec);
329
330 after_poll.tv_sec = date.tv_sec; after_poll.tv_usec = date.tv_usec;
331 if (samp_time < 500000)
332 return;
333
Willy Tarreau45c38e22021-09-30 18:28:49 +0200334 HA_ATOMIC_STORE(&th_ctx->idle_pct, (100ULL * idle_time + samp_time / 2) / samp_time);
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200335 idle_time = samp_time = 0;
336}
337
338/* Collect date and time information after leaving poll(). <timeout> must be
339 * set to the maximum sleep time passed to poll (in milliseconds), and
340 * <interrupted> must be zero if the poller reached the timeout or non-zero
341 * otherwise, which generally is provided by the poller's return value.
342 */
343void clock_leaving_poll(int timeout, int interrupted)
344{
345 clock_measure_idle();
Willy Tarreau45c38e22021-09-30 18:28:49 +0200346 th_ctx->prev_cpu_time = now_cpu_time();
347 th_ctx->prev_mono_time = now_mono_time();
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200348}
349
350/* Collect date and time information before calling poll(). This will be used
351 * to count the run time of the past loop and the sleep time of the next poll.
Ilya Shipitsin4a689da2022-10-29 09:34:32 +0500352 * It also compares the elapsed and cpu times during the activity period to
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200353 * estimate the amount of stolen time, which is reported if higher than half
354 * a millisecond.
355 */
356void clock_entering_poll(void)
357{
358 uint64_t new_mono_time;
359 uint64_t new_cpu_time;
Willy Tarreau20adfde2021-10-08 11:34:46 +0200360 uint32_t run_time;
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200361 int64_t stolen;
362
363 gettimeofday(&before_poll, NULL);
364
Willy Tarreau20adfde2021-10-08 11:34:46 +0200365 run_time = (before_poll.tv_sec - after_poll.tv_sec) * 1000000U + (before_poll.tv_usec - after_poll.tv_usec);
366
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200367 new_cpu_time = now_cpu_time();
368 new_mono_time = now_mono_time();
369
Willy Tarreau45c38e22021-09-30 18:28:49 +0200370 if (th_ctx->prev_cpu_time && th_ctx->prev_mono_time) {
371 new_cpu_time -= th_ctx->prev_cpu_time;
372 new_mono_time -= th_ctx->prev_mono_time;
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200373 stolen = new_mono_time - new_cpu_time;
374 if (unlikely(stolen >= 500000)) {
375 stolen /= 500000;
376 /* more than half a millisecond difference might
377 * indicate an undesired preemption.
378 */
379 report_stolen_time(stolen);
380 }
381 }
Willy Tarreau20adfde2021-10-08 11:34:46 +0200382
383 /* update the average runtime */
384 activity_count_runtime(run_time);
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200385}
386
Willy Tarreau55542642021-10-08 09:33:24 +0200387/* returns the current date as returned by gettimeofday() in ISO+microsecond
388 * format. It uses a thread-local static variable that the reader can consume
389 * for as long as it wants until next call. Thus, do not call it from a signal
390 * handler. If <pad> is non-0, a trailing space will be added. It will always
391 * return exactly 32 or 33 characters (depending on padding) and will always be
392 * zero-terminated, thus it will always fit into a 34 bytes buffer.
393 * This also always include the local timezone (in +/-HH:mm format) .
394 */
395char *timeofday_as_iso_us(int pad)
396{
397 struct timeval new_date;
398 struct tm tm;
399 const char *offset;
400 char c;
401
402 gettimeofday(&new_date, NULL);
403 if (new_date.tv_sec != iso_time_sec || !new_date.tv_sec) {
404 get_localtime(new_date.tv_sec, &tm);
405 offset = get_gmt_offset(new_date.tv_sec, &tm);
406 if (unlikely(strftime(iso_time_str, sizeof(iso_time_str), "%Y-%m-%dT%H:%M:%S.000000+00:00", &tm) != 32))
407 strcpy(iso_time_str, "YYYY-mm-ddTHH:MM:SS.000000-00:00"); // make the failure visible but respect format.
408 iso_time_str[26] = offset[0];
409 iso_time_str[27] = offset[1];
410 iso_time_str[28] = offset[2];
411 iso_time_str[30] = offset[3];
412 iso_time_str[31] = offset[4];
413 iso_time_sec = new_date.tv_sec;
414 }
415
416 /* utoa_pad adds a trailing 0 so we save the char for restore */
417 c = iso_time_str[26];
418 utoa_pad(new_date.tv_usec, iso_time_str + 20, 7);
419 iso_time_str[26] = c;
420 if (pad) {
421 iso_time_str[32] = ' ';
422 iso_time_str[33] = 0;
423 }
424 return iso_time_str;
425}