blob: cd5ead7b44ddaab1dbcc99fe32fa64b1aeb6c8a1 [file] [log] [blame]
Willy Tarreau55542642021-10-08 09:33:24 +02001/*
2 * General time-keeping code and variables
3 *
4 * Copyright 2000-2021 Willy Tarreau <w@1wt.eu>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 */
12
13#include <sys/time.h>
14#include <time.h>
15
16#include <haproxy/api.h>
Willy Tarreauf9d5e102021-10-08 10:43:59 +020017#include <haproxy/activity.h>
Willy Tarreau55542642021-10-08 09:33:24 +020018#include <haproxy/clock.h>
19#include <haproxy/time.h>
20#include <haproxy/tinfo-t.h>
21#include <haproxy/tools.h>
22
23struct timeval start_date; /* the process's start date in wall-clock time */
24volatile ullong global_now; /* common monotonic date between all threads (32:32) */
25volatile uint global_now_ms; /* common monotonic date in milliseconds (may wrap) */
26
27THREAD_ALIGNED(64) static ullong now_offset; /* global offset between system time and global time */
28
29THREAD_LOCAL uint now_ms; /* internal monotonic date in milliseconds (may wrap) */
30THREAD_LOCAL struct timeval now; /* internal monotonic date derived from real clock */
31THREAD_LOCAL struct timeval date; /* the real current date (wall-clock time) */
32THREAD_LOCAL struct timeval before_poll; /* system date before calling poll() */
33THREAD_LOCAL struct timeval after_poll; /* system date after leaving poll() */
34
Willy Tarreauf9d5e102021-10-08 10:43:59 +020035static THREAD_LOCAL unsigned int samp_time; /* total elapsed time over current sample */
36static THREAD_LOCAL unsigned int idle_time; /* total idle time over current sample */
Willy Tarreau55542642021-10-08 09:33:24 +020037static THREAD_LOCAL unsigned int iso_time_sec; /* last iso time value for this thread */
38static THREAD_LOCAL char iso_time_str[34]; /* ISO time representation of gettimeofday() */
39
40/* returns the system's monotonic time in nanoseconds if supported, otherwise zero */
41uint64_t now_mono_time(void)
42{
43 uint64_t ret = 0;
44#if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0) && defined(_POSIX_MONOTONIC_CLOCK)
45 struct timespec ts;
46 clock_gettime(CLOCK_MONOTONIC, &ts);
47 ret = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
48#endif
49 return ret;
50}
51
52/* returns the current thread's cumulated CPU time in nanoseconds if supported, otherwise zero */
53uint64_t now_cpu_time(void)
54{
55 uint64_t ret = 0;
56#if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0) && defined(_POSIX_THREAD_CPUTIME)
57 struct timespec ts;
58 clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts);
59 ret = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
60#endif
61 return ret;
62}
63
64/* returns another thread's cumulated CPU time in nanoseconds if supported, otherwise zero */
65uint64_t now_cpu_time_thread(const struct thread_info *thr)
66{
67 uint64_t ret = 0;
68#if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0) && defined(_POSIX_THREAD_CPUTIME)
69 struct timespec ts;
70 clock_gettime(thr->clock_id, &ts);
71 ret = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
72#endif
73 return ret;
74}
75
76/* clock_update_date: sets <date> to system time, and sets <now> to something as
77 * close as possible to real time, following a monotonic function. The main
78 * principle consists in detecting backwards and forwards time jumps and adjust
79 * an offset to correct them. This function should be called once after each
80 * poll, and never farther apart than MAX_DELAY_MS*2. The poll's timeout should
81 * be passed in <max_wait>, and the return value in <interrupted> (a non-zero
82 * value means that we have not expired the timeout).
83 *
84 * clock_init_process_date() must have been called once first, and
85 * clock_init_thread_date() must also have been called once for each thread.
86 *
87 * An offset is used to adjust the current time (date), to figure a monotonic
88 * local time (now). The offset is not critical, as it is only updated after a
89 * clock jump is detected. From this point all threads will apply it to their
90 * locally measured time, and will then agree around a common monotonic
91 * global_now value that serves to further refine their local time. As it is
92 * not possible to atomically update a timeval, both global_now and the
93 * now_offset values are instead stored as 64-bit integers made of two 32 bit
94 * values for the tv_sec and tv_usec parts. The offset is made of two signed
95 * ints so that the clock can be adjusted in the two directions.
96 */
97void clock_update_date(int max_wait, int interrupted)
98{
99 struct timeval min_deadline, max_deadline, tmp_now;
100 uint old_now_ms;
101 ullong old_now;
102 ullong new_now;
103 ullong ofs, ofs_new;
104 uint sec_ofs, usec_ofs;
105
106 gettimeofday(&date, NULL);
107
108 /* compute the minimum and maximum local date we may have reached based
109 * on our past date and the associated timeout. There are three possible
110 * extremities:
111 * - the new date cannot be older than before_poll
112 * - if not interrupted, the new date cannot be older than
113 * before_poll+max_wait
114 * - in any case the new date cannot be newer than
115 * before_poll+max_wait+some margin (100ms used here).
116 * In case of violation, we'll ignore the current date and instead
117 * restart from the last date we knew.
118 */
119 _tv_ms_add(&min_deadline, &before_poll, max_wait);
120 _tv_ms_add(&max_deadline, &before_poll, max_wait + 100);
121
122 ofs = HA_ATOMIC_LOAD(&now_offset);
123
124 if (unlikely(__tv_islt(&date, &before_poll) || // big jump backwards
125 (!interrupted && __tv_islt(&date, &min_deadline)) || // small jump backwards
126 __tv_islt(&max_deadline, &date))) { // big jump forwards
127 if (!interrupted)
128 _tv_ms_add(&now, &now, max_wait);
129 } else {
130 /* The date is still within expectations. Let's apply the
131 * now_offset to the system date. Note: ofs if made of two
132 * independent signed ints.
133 */
134 now.tv_sec = date.tv_sec + (int)(ofs >> 32); // note: may be positive or negative
135 now.tv_usec = date.tv_usec + (int)ofs; // note: may be positive or negative
136 if ((int)now.tv_usec < 0) {
137 now.tv_usec += 1000000;
138 now.tv_sec -= 1;
139 } else if (now.tv_usec >= 1000000) {
140 now.tv_usec -= 1000000;
141 now.tv_sec += 1;
142 }
143 }
144
145 /* now that we have bounded the local time, let's check if it's
146 * realistic regarding the global date, which only moves forward,
147 * otherwise catch up.
148 */
149 old_now = global_now;
150 old_now_ms = global_now_ms;
151
152 do {
153 tmp_now.tv_sec = (unsigned int)(old_now >> 32);
154 tmp_now.tv_usec = old_now & 0xFFFFFFFFU;
155
156 if (__tv_islt(&now, &tmp_now))
157 now = tmp_now;
158
159 /* now <now> is expected to be the most accurate date,
160 * equal to <global_now> or newer.
161 */
162 new_now = ((ullong)now.tv_sec << 32) + (uint)now.tv_usec;
163 now_ms = __tv_to_ms(&now);
164
165 /* let's try to update the global <now> (both in timeval
166 * and ms forms) or loop again.
167 */
168 } while (((new_now != old_now && !_HA_ATOMIC_CAS(&global_now, &old_now, new_now)) ||
169 (now_ms != old_now_ms && !_HA_ATOMIC_CAS(&global_now_ms, &old_now_ms, now_ms))) &&
170 __ha_cpu_relax());
171
172 /* <now> and <now_ms> are now updated to the last value of global_now
173 * and global_now_ms, which were also monotonically updated. We can
174 * compute the latest offset, we don't care who writes it last, the
175 * variations will not break the monotonic property.
176 */
177
178 sec_ofs = now.tv_sec - date.tv_sec;
179 usec_ofs = now.tv_usec - date.tv_usec;
180 if ((int)usec_ofs < 0) {
181 usec_ofs += 1000000;
182 sec_ofs -= 1;
183 }
184 ofs_new = ((ullong)sec_ofs << 32) + usec_ofs;
185 if (ofs_new != ofs)
186 HA_ATOMIC_STORE(&now_offset, ofs_new);
187}
188
189/* must be called once at boot to initialize some global variables */
190void clock_init_process_date(void)
191{
192 now_offset = 0;
193 gettimeofday(&date, NULL);
194 now = after_poll = before_poll = date;
195 global_now = ((ullong)date.tv_sec << 32) + (uint)date.tv_usec;
196 global_now_ms = now.tv_sec * 1000 + now.tv_usec / 1000;
197 ti->idle_pct = 100;
198 clock_update_date(0, 1);
199}
200
201/* must be called once per thread to initialize their thread-local variables.
202 * Note that other threads might also be initializing and running in parallel.
203 */
204void clock_init_thread_date(void)
205{
206 ullong old_now;
207
208 gettimeofday(&date, NULL);
209 after_poll = before_poll = date;
210
211 old_now = _HA_ATOMIC_LOAD(&global_now);
212 now.tv_sec = old_now >> 32;
213 now.tv_usec = (uint)old_now;
214 ti->idle_pct = 100;
215 clock_update_date(0, 1);
216}
217
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200218/* report the average CPU idle percentage over all running threads, between 0 and 100 */
219uint clock_report_idle(void)
220{
221 uint total = 0;
222 uint rthr = 0;
223 uint thr;
224
225 for (thr = 0; thr < MAX_THREADS; thr++) {
226 if (!(all_threads_mask & (1UL << thr)))
227 continue;
228 total += HA_ATOMIC_LOAD(&ha_thread_info[thr].idle_pct);
229 rthr++;
230 }
231 return rthr ? total / rthr : 0;
232}
233
234/* Update the idle time value twice a second, to be called after
235 * clock_update_date() when called after poll(), and currently called only by
236 * clock_leaving_poll() below. It relies on <before_poll> to be updated to
237 * the system time before calling poll().
238 */
239static inline void clock_measure_idle(void)
240{
241 /* Let's compute the idle to work ratio. We worked between after_poll
242 * and before_poll, and slept between before_poll and date. The idle_pct
243 * is updated at most twice every second. Note that the current second
244 * rarely changes so we avoid a multiply when not needed.
245 */
246 int delta;
247
248 if ((delta = date.tv_sec - before_poll.tv_sec))
249 delta *= 1000000;
250 idle_time += delta + (date.tv_usec - before_poll.tv_usec);
251
252 if ((delta = date.tv_sec - after_poll.tv_sec))
253 delta *= 1000000;
254 samp_time += delta + (date.tv_usec - after_poll.tv_usec);
255
256 after_poll.tv_sec = date.tv_sec; after_poll.tv_usec = date.tv_usec;
257 if (samp_time < 500000)
258 return;
259
260 HA_ATOMIC_STORE(&ti->idle_pct, (100ULL * idle_time + samp_time / 2) / samp_time);
261 idle_time = samp_time = 0;
262}
263
264/* Collect date and time information after leaving poll(). <timeout> must be
265 * set to the maximum sleep time passed to poll (in milliseconds), and
266 * <interrupted> must be zero if the poller reached the timeout or non-zero
267 * otherwise, which generally is provided by the poller's return value.
268 */
269void clock_leaving_poll(int timeout, int interrupted)
270{
271 clock_measure_idle();
272 ti->prev_cpu_time = now_cpu_time();
273 ti->prev_mono_time = now_mono_time();
274}
275
276/* Collect date and time information before calling poll(). This will be used
277 * to count the run time of the past loop and the sleep time of the next poll.
278 * It also compares the elasped and cpu times during the activity period to
279 * estimate the amount of stolen time, which is reported if higher than half
280 * a millisecond.
281 */
282void clock_entering_poll(void)
283{
284 uint64_t new_mono_time;
285 uint64_t new_cpu_time;
Willy Tarreau20adfde2021-10-08 11:34:46 +0200286 uint32_t run_time;
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200287 int64_t stolen;
288
289 gettimeofday(&before_poll, NULL);
290
Willy Tarreau20adfde2021-10-08 11:34:46 +0200291 run_time = (before_poll.tv_sec - after_poll.tv_sec) * 1000000U + (before_poll.tv_usec - after_poll.tv_usec);
292
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200293 new_cpu_time = now_cpu_time();
294 new_mono_time = now_mono_time();
295
296 if (ti->prev_cpu_time && ti->prev_mono_time) {
297 new_cpu_time -= ti->prev_cpu_time;
298 new_mono_time -= ti->prev_mono_time;
299 stolen = new_mono_time - new_cpu_time;
300 if (unlikely(stolen >= 500000)) {
301 stolen /= 500000;
302 /* more than half a millisecond difference might
303 * indicate an undesired preemption.
304 */
305 report_stolen_time(stolen);
306 }
307 }
Willy Tarreau20adfde2021-10-08 11:34:46 +0200308
309 /* update the average runtime */
310 activity_count_runtime(run_time);
Willy Tarreauf9d5e102021-10-08 10:43:59 +0200311}
312
Willy Tarreau55542642021-10-08 09:33:24 +0200313/* returns the current date as returned by gettimeofday() in ISO+microsecond
314 * format. It uses a thread-local static variable that the reader can consume
315 * for as long as it wants until next call. Thus, do not call it from a signal
316 * handler. If <pad> is non-0, a trailing space will be added. It will always
317 * return exactly 32 or 33 characters (depending on padding) and will always be
318 * zero-terminated, thus it will always fit into a 34 bytes buffer.
319 * This also always include the local timezone (in +/-HH:mm format) .
320 */
321char *timeofday_as_iso_us(int pad)
322{
323 struct timeval new_date;
324 struct tm tm;
325 const char *offset;
326 char c;
327
328 gettimeofday(&new_date, NULL);
329 if (new_date.tv_sec != iso_time_sec || !new_date.tv_sec) {
330 get_localtime(new_date.tv_sec, &tm);
331 offset = get_gmt_offset(new_date.tv_sec, &tm);
332 if (unlikely(strftime(iso_time_str, sizeof(iso_time_str), "%Y-%m-%dT%H:%M:%S.000000+00:00", &tm) != 32))
333 strcpy(iso_time_str, "YYYY-mm-ddTHH:MM:SS.000000-00:00"); // make the failure visible but respect format.
334 iso_time_str[26] = offset[0];
335 iso_time_str[27] = offset[1];
336 iso_time_str[28] = offset[2];
337 iso_time_str[30] = offset[3];
338 iso_time_str[31] = offset[4];
339 iso_time_sec = new_date.tv_sec;
340 }
341
342 /* utoa_pad adds a trailing 0 so we save the char for restore */
343 c = iso_time_str[26];
344 utoa_pad(new_date.tv_usec, iso_time_str + 20, 7);
345 iso_time_str[26] = c;
346 if (pad) {
347 iso_time_str[32] = ' ';
348 iso_time_str[33] = 0;
349 }
350 return iso_time_str;
351}