blob: 8d45ac1c37ca0ac02d4012dbef713190b7f16cc3 [file] [log] [blame]
/*
* Functions managing applets
*
* Copyright 2000-2015 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/channel.h>
#include <haproxy/conn_stream.h>
#include <haproxy/cs_utils.h>
#include <haproxy/list.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
unsigned int nb_applets = 0;
DECLARE_POOL(pool_head_appctx, "appctx", sizeof(struct appctx));
/* Tries to allocate a new appctx and initialize all of its fields. The appctx
* is returned on success, NULL on failure. The appctx must be released using
* appctx_free(). <applet> is assigned as the applet, but it can be NULL. The
* applet's task is always created on the current thread.
*/
struct appctx *appctx_new(struct applet *applet, struct sedesc *sedesc, unsigned long thread_mask)
{
struct appctx *appctx;
/* Backend appctx cannot be started on another thread than the local one */
BUG_ON(thread_mask != tid_bit && sedesc);
appctx = pool_zalloc(pool_head_appctx);
if (unlikely(!appctx))
goto fail_appctx;
LIST_INIT(&appctx->wait_entry);
appctx->obj_type = OBJ_TYPE_APPCTX;
appctx->applet = applet;
appctx->sess = NULL;
if (!sedesc) {
sedesc = sedesc_new();
if (!sedesc)
goto fail_endp;
sedesc->se = appctx;
se_fl_set(sedesc, SE_FL_T_APPLET | SE_FL_ORPHAN);
}
appctx->sedesc = sedesc;
appctx->t = task_new(thread_mask);
if (unlikely(!appctx->t))
goto fail_task;
appctx->t->process = task_run_applet;
appctx->t->context = appctx;
LIST_INIT(&appctx->buffer_wait.list);
appctx->buffer_wait.target = appctx;
appctx->buffer_wait.wakeup_cb = appctx_buf_available;
_HA_ATOMIC_INC(&nb_applets);
return appctx;
fail_task:
sedesc_free(appctx->sedesc);
fail_endp:
pool_free(pool_head_appctx, appctx);
fail_appctx:
return NULL;
}
/* Finalize the frontend appctx startup. It must not be called for a backend
* appctx. This function is responsible to create the appctx's session and the
* frontend conn-stream. By transitivity, the stream is also created.
*
* It returns 0 on success and -1 on error. In this case, it is the caller
* responsibility to release the appctx. However, the session is released if it
* was created. On success, if an error is encountered in the caller function,
* the stream must be released instead of the appctx. To be sure,
* appctx_free_on_early_error() must be called in this case.
*/
int appctx_finalize_startup(struct appctx *appctx, struct proxy *px, struct buffer *input)
{
struct session *sess;
/* async startup is only possible for frontend appctx. Thus for orphan
* appctx. Because no backend appctx can be orphan.
*/
BUG_ON(!se_fl_test(appctx->sedesc, SE_FL_ORPHAN));
sess = session_new(px, NULL, &appctx->obj_type);
if (!sess)
return -1;
if (!cs_new_from_endp(appctx->sedesc, sess, input)) {
session_free(sess);
return -1;
}
appctx->sess = sess;
return 0;
}
/* Release function to call when an error occurred during init stage of a
* frontend appctx. For a backend appctx, it just calls appctx_free()
*/
void appctx_free_on_early_error(struct appctx *appctx)
{
/* If a frontend apctx is attached to a conn-stream, release the stream
* instead of the appctx.
*/
if (!se_fl_test(appctx->sedesc, SE_FL_ORPHAN) && !(appctx_cs(appctx)->flags & CS_FL_ISBACK)) {
stream_free(appctx_strm(appctx));
return;
}
appctx_free(appctx);
}
/* reserves a command context of at least <size> bytes in the <appctx>, for
* use by a CLI command or any regular applet. The pointer to this context is
* stored in ctx.svcctx and is returned. The caller doesn't need to release
* it as it's allocated from reserved space. If the size is larger than
* APPLET_MAX_SVCCTX a crash will occur (hence that will never happen outside
* of development).
*
* Note that the command does *not* initialize the area, so that it can easily
* be used upon each entry in a function. It's left to the initialization code
* to do it if needed. The CLI will always zero the whole area before calling
* a keyword's ->parse() function.
*/
void *applet_reserve_svcctx(struct appctx *appctx, size_t size)
{
BUG_ON(size > APPLET_MAX_SVCCTX);
appctx->svcctx = &appctx->svc.storage;
return appctx->svcctx;
}
/* call the applet's release() function if any, and marks the sedesc as shut.
* Needs to be called upon close().
*/
void appctx_shut(struct appctx *appctx)
{
if (se_fl_test(appctx->sedesc, SE_FL_SHR | SE_FL_SHW))
return;
if (appctx->applet->release)
appctx->applet->release(appctx);
se_fl_set(appctx->sedesc, SE_FL_SHRR | SE_FL_SHWN);
}
/* Callback used to wake up an applet when a buffer is available. The applet
* <appctx> is woken up if an input buffer was requested for the associated
* conn-stream. In this case the buffer is immediately allocated and the
* function returns 1. Otherwise it returns 0. Note that this automatically
* covers multiple wake-up attempts by ensuring that the same buffer will not
* be accounted for multiple times.
*/
int appctx_buf_available(void *arg)
{
struct appctx *appctx = arg;
struct conn_stream *cs = appctx_cs(appctx);
/* allocation requested ? */
if (!se_fl_test(appctx->sedesc, SE_FL_RXBLK_BUFF))
return 0;
cs_rx_buff_rdy(cs);
/* was already allocated another way ? if so, don't take this one */
if (c_size(cs_ic(cs)) || cs_ic(cs)->pipe)
return 0;
/* allocation possible now ? */
if (!b_alloc(&cs_ic(cs)->buf)) {
cs_rx_buff_blk(cs);
return 0;
}
task_wakeup(appctx->t, TASK_WOKEN_RES);
return 1;
}
/* Default applet handler */
struct task *task_run_applet(struct task *t, void *context, unsigned int state)
{
struct appctx *app = context;
struct conn_stream *cs;
unsigned int rate;
size_t count;
if (app->state & APPLET_WANT_DIE) {
__appctx_free(app);
return NULL;
}
if (se_fl_test(app->sedesc, SE_FL_ORPHAN)) {
/* Finalize init of orphan appctx. .init callback function must
* be defined and it must finalize appctx startup.
*/
BUG_ON(!app->applet->init);
if (appctx_init(app) == -1) {
appctx_free_on_early_error(app);
return NULL;
}
BUG_ON(!app->sess || !appctx_cs(app) || !appctx_strm(app));
}
cs = appctx_cs(app);
/* We always pretend the applet can't get and doesn't want to
* put, it's up to it to change this if needed. This ensures
* that one applet which ignores any event will not spin.
*/
cs_cant_get(cs);
cs_rx_endp_done(cs);
/* Now we'll try to allocate the input buffer. We wake up the applet in
* all cases. So this is the applet's responsibility to check if this
* buffer was allocated or not. This leaves a chance for applets to do
* some other processing if needed. The applet doesn't have anything to
* do if it needs the buffer, it will be called again upon readiness.
*/
if (!cs_alloc_ibuf(cs, &app->buffer_wait))
cs_rx_endp_more(cs);
count = co_data(cs_oc(cs));
app->applet->fct(app);
/* now check if the applet has released some room and forgot to
* notify the other side about it.
*/
if (count != co_data(cs_oc(cs))) {
cs_oc(cs)->flags |= CF_WRITE_PARTIAL | CF_WROTE_DATA;
cs_rx_room_rdy(cs_opposite(cs));
}
/* measure the call rate and check for anomalies when too high */
rate = update_freq_ctr(&app->call_rate, 1);
if (rate >= 100000 && app->call_rate.prev_ctr && // looped more than 100k times over last second
((b_size(cs_ib(cs)) && se_fl_test(app->sedesc, SE_FL_RXBLK_BUFF)) || // asks for a buffer which is present
(b_size(cs_ib(cs)) && !b_data(cs_ib(cs)) && se_fl_test(app->sedesc, SE_FL_RXBLK_ROOM)) || // asks for room in an empty buffer
(b_data(cs_ob(cs)) && cs_tx_endp_ready(cs) && !cs_tx_blocked(cs)) || // asks for data already present
(!b_data(cs_ib(cs)) && b_data(cs_ob(cs)) && // didn't return anything ...
(cs_oc(cs)->flags & (CF_WRITE_PARTIAL|CF_SHUTW_NOW)) == CF_SHUTW_NOW))) { // ... and left data pending after a shut
stream_dump_and_crash(&app->obj_type, read_freq_ctr(&app->call_rate));
}
cs->data_cb->wake(cs);
channel_release_buffer(cs_ic(cs), &app->buffer_wait);
return t;
}