| /* |
| * FD polling functions for FreeBSD kqueue() |
| * |
| * Copyright 2000-2014 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <unistd.h> |
| #include <sys/time.h> |
| #include <sys/types.h> |
| |
| #include <sys/event.h> |
| #include <sys/time.h> |
| |
| #include <haproxy/api.h> |
| #include <haproxy/thread-t.h> |
| #include <haproxy/ticks.h> |
| #include <haproxy/time.h> |
| |
| #include <types/global.h> |
| |
| #include <haproxy/activity.h> |
| #include <haproxy/fd.h> |
| #include <proto/signal.h> |
| |
| |
| /* private data */ |
| static int kqueue_fd[MAX_THREADS]; // per-thread kqueue_fd |
| static THREAD_LOCAL struct kevent *kev = NULL; |
| static struct kevent *kev_out = NULL; // Trash buffer for kevent() to write the eventlist in |
| |
| static int _update_fd(int fd, int start) |
| { |
| int en; |
| int changes = start; |
| |
| en = fdtab[fd].state; |
| |
| if (!(fdtab[fd].thread_mask & tid_bit) || !(en & FD_EV_ACTIVE_RW)) { |
| if (!(polled_mask[fd].poll_recv & tid_bit) && |
| !(polled_mask[fd].poll_send & tid_bit)) { |
| /* fd was not watched, it's still not */ |
| return changes; |
| } |
| /* fd totally removed from poll list */ |
| EV_SET(&kev[changes++], fd, EVFILT_READ, EV_DELETE, 0, 0, NULL); |
| EV_SET(&kev[changes++], fd, EVFILT_WRITE, EV_DELETE, 0, 0, NULL); |
| if (polled_mask[fd].poll_recv & tid_bit) |
| _HA_ATOMIC_AND(&polled_mask[fd].poll_recv, ~tid_bit); |
| if (polled_mask[fd].poll_send & tid_bit) |
| _HA_ATOMIC_AND(&polled_mask[fd].poll_send, ~tid_bit); |
| } |
| else { |
| /* OK fd has to be monitored, it was either added or changed */ |
| |
| if (en & FD_EV_ACTIVE_R) { |
| if (!(polled_mask[fd].poll_recv & tid_bit)) { |
| EV_SET(&kev[changes++], fd, EVFILT_READ, EV_ADD, 0, 0, NULL); |
| _HA_ATOMIC_OR(&polled_mask[fd].poll_recv, tid_bit); |
| } |
| } |
| else if (polled_mask[fd].poll_recv & tid_bit) { |
| EV_SET(&kev[changes++], fd, EVFILT_READ, EV_DELETE, 0, 0, NULL); |
| HA_ATOMIC_AND(&polled_mask[fd].poll_recv, ~tid_bit); |
| } |
| |
| if (en & FD_EV_ACTIVE_W) { |
| if (!(polled_mask[fd].poll_send & tid_bit)) { |
| EV_SET(&kev[changes++], fd, EVFILT_WRITE, EV_ADD, 0, 0, NULL); |
| _HA_ATOMIC_OR(&polled_mask[fd].poll_send, tid_bit); |
| } |
| } |
| else if (polled_mask[fd].poll_send & tid_bit) { |
| EV_SET(&kev[changes++], fd, EVFILT_WRITE, EV_DELETE, 0, 0, NULL); |
| _HA_ATOMIC_AND(&polled_mask[fd].poll_send, ~tid_bit); |
| } |
| |
| } |
| return changes; |
| } |
| |
| /* |
| * kqueue() poller |
| */ |
| static void _do_poll(struct poller *p, int exp, int wake) |
| { |
| int status; |
| int count, fd, wait_time; |
| struct timespec timeout_ts; |
| int updt_idx; |
| int changes = 0; |
| int old_fd; |
| |
| timeout_ts.tv_sec = 0; |
| timeout_ts.tv_nsec = 0; |
| /* first, scan the update list to find changes */ |
| for (updt_idx = 0; updt_idx < fd_nbupdt; updt_idx++) { |
| fd = fd_updt[updt_idx]; |
| |
| _HA_ATOMIC_AND(&fdtab[fd].update_mask, ~tid_bit); |
| if (!fdtab[fd].owner) { |
| activity[tid].poll_drop++; |
| continue; |
| } |
| changes = _update_fd(fd, changes); |
| } |
| /* Scan the global update list */ |
| for (old_fd = fd = update_list.first; fd != -1; fd = fdtab[fd].update.next) { |
| if (fd == -2) { |
| fd = old_fd; |
| continue; |
| } |
| else if (fd <= -3) |
| fd = -fd -4; |
| if (fd == -1) |
| break; |
| if (fdtab[fd].update_mask & tid_bit) |
| done_update_polling(fd); |
| else |
| continue; |
| if (!fdtab[fd].owner) |
| continue; |
| changes = _update_fd(fd, changes); |
| } |
| |
| thread_harmless_now(); |
| |
| if (changes) { |
| #ifdef EV_RECEIPT |
| kev[0].flags |= EV_RECEIPT; |
| #else |
| /* If EV_RECEIPT isn't defined, just add an invalid entry, |
| * so that we get an error and kevent() stops before scanning |
| * the kqueue. |
| */ |
| EV_SET(&kev[changes++], -1, EVFILT_WRITE, EV_DELETE, 0, 0, NULL); |
| #endif |
| kevent(kqueue_fd[tid], kev, changes, kev_out, changes, &timeout_ts); |
| } |
| fd_nbupdt = 0; |
| |
| /* now let's wait for events */ |
| wait_time = wake ? 0 : compute_poll_timeout(exp); |
| fd = global.tune.maxpollevents; |
| tv_entering_poll(); |
| activity_count_runtime(); |
| |
| do { |
| int timeout = (global.tune.options & GTUNE_BUSY_POLLING) ? 0 : wait_time; |
| |
| timeout_ts.tv_sec = (timeout / 1000); |
| timeout_ts.tv_nsec = (timeout % 1000) * 1000000; |
| |
| status = kevent(kqueue_fd[tid], // int kq |
| NULL, // const struct kevent *changelist |
| 0, // int nchanges |
| kev, // struct kevent *eventlist |
| fd, // int nevents |
| &timeout_ts); // const struct timespec *timeout |
| tv_update_date(timeout, status); |
| |
| if (status) |
| break; |
| if (timeout || !wait_time) |
| break; |
| if (signal_queue_len || wake) |
| break; |
| if (tick_isset(exp) && tick_is_expired(exp, now_ms)) |
| break; |
| } while (1); |
| |
| tv_leaving_poll(wait_time, status); |
| |
| thread_harmless_end(); |
| if (sleeping_thread_mask & tid_bit) |
| _HA_ATOMIC_AND(&sleeping_thread_mask, ~tid_bit); |
| |
| for (count = 0; count < status; count++) { |
| unsigned int n = 0; |
| fd = kev[count].ident; |
| |
| if (!fdtab[fd].owner) { |
| activity[tid].poll_dead++; |
| continue; |
| } |
| |
| if (!(fdtab[fd].thread_mask & tid_bit)) { |
| activity[tid].poll_skip++; |
| continue; |
| } |
| |
| if (kev[count].filter == EVFILT_READ) { |
| if (kev[count].data || !(kev[count].flags & EV_EOF)) |
| n |= FD_EV_READY_R; |
| if (kev[count].flags & EV_EOF) |
| n |= FD_EV_SHUT_R; |
| } |
| else if (kev[count].filter == EVFILT_WRITE) { |
| n |= FD_EV_READY_W; |
| if (kev[count].flags & EV_EOF) |
| n |= FD_EV_ERR_RW; |
| } |
| |
| fd_update_events(fd, n); |
| } |
| } |
| |
| |
| static int init_kqueue_per_thread() |
| { |
| int fd; |
| |
| /* we can have up to two events per fd, so allocate enough to store |
| * 2*fd event, and an extra one, in case EV_RECEIPT isn't defined, |
| * so that we can add an invalid entry and get an error, to avoid |
| * scanning the kqueue uselessly. |
| */ |
| kev = calloc(1, sizeof(struct kevent) * (2 * global.maxsock + 1)); |
| if (kev == NULL) |
| goto fail_alloc; |
| |
| if (MAX_THREADS > 1 && tid) { |
| kqueue_fd[tid] = kqueue(); |
| if (kqueue_fd[tid] < 0) |
| goto fail_fd; |
| } |
| |
| /* we may have to unregister some events initially registered on the |
| * original fd when it was alone, and/or to register events on the new |
| * fd for this thread. Let's just mark them as updated, the poller will |
| * do the rest. |
| */ |
| for (fd = 0; fd < global.maxsock; fd++) |
| updt_fd_polling(fd); |
| |
| return 1; |
| fail_fd: |
| free(kev); |
| fail_alloc: |
| return 0; |
| } |
| |
| static void deinit_kqueue_per_thread() |
| { |
| if (MAX_THREADS > 1 && tid) |
| close(kqueue_fd[tid]); |
| |
| free(kev); |
| kev = NULL; |
| } |
| |
| /* |
| * Initialization of the kqueue() poller. |
| * Returns 0 in case of failure, non-zero in case of success. If it fails, it |
| * disables the poller by setting its pref to 0. |
| */ |
| static int _do_init(struct poller *p) |
| { |
| p->private = NULL; |
| |
| /* we can have up to two events per fd, so allocate enough to store |
| * 2*fd event, and an extra one, in case EV_RECEIPT isn't defined, |
| * so that we can add an invalid entry and get an error, to avoid |
| * scanning the kqueue uselessly. |
| */ |
| kev_out = calloc(1, sizeof(struct kevent) * (2 * global.maxsock + 1)); |
| if (!kev_out) |
| goto fail_alloc; |
| |
| kqueue_fd[tid] = kqueue(); |
| if (kqueue_fd[tid] < 0) |
| goto fail_fd; |
| |
| hap_register_per_thread_init(init_kqueue_per_thread); |
| hap_register_per_thread_deinit(deinit_kqueue_per_thread); |
| return 1; |
| |
| fail_fd: |
| free(kev_out); |
| kev_out = NULL; |
| fail_alloc: |
| p->pref = 0; |
| return 0; |
| } |
| |
| /* |
| * Termination of the kqueue() poller. |
| * Memory is released and the poller is marked as unselectable. |
| */ |
| static void _do_term(struct poller *p) |
| { |
| if (kqueue_fd[tid] >= 0) { |
| close(kqueue_fd[tid]); |
| kqueue_fd[tid] = -1; |
| } |
| |
| p->private = NULL; |
| p->pref = 0; |
| if (kev_out) { |
| free(kev_out); |
| kev_out = NULL; |
| } |
| } |
| |
| /* |
| * Check that the poller works. |
| * Returns 1 if OK, otherwise 0. |
| */ |
| static int _do_test(struct poller *p) |
| { |
| int fd; |
| |
| fd = kqueue(); |
| if (fd < 0) |
| return 0; |
| close(fd); |
| return 1; |
| } |
| |
| /* |
| * Recreate the kqueue file descriptor after a fork(). Returns 1 if OK, |
| * otherwise 0. Note that some pollers need to be reopened after a fork() |
| * (such as kqueue), and some others may fail to do so in a chroot. |
| */ |
| static int _do_fork(struct poller *p) |
| { |
| kqueue_fd[tid] = kqueue(); |
| if (kqueue_fd[tid] < 0) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * It is a constructor, which means that it will automatically be called before |
| * main(). This is GCC-specific but it works at least since 2.95. |
| * Special care must be taken so that it does not need any uninitialized data. |
| */ |
| __attribute__((constructor)) |
| static void _do_register(void) |
| { |
| struct poller *p; |
| int i; |
| |
| if (nbpollers >= MAX_POLLERS) |
| return; |
| |
| for (i = 0; i < MAX_THREADS; i++) |
| kqueue_fd[i] = -1; |
| |
| p = &pollers[nbpollers++]; |
| |
| p->name = "kqueue"; |
| p->pref = 300; |
| p->flags = HAP_POLL_F_RDHUP | HAP_POLL_F_ERRHUP; |
| p->private = NULL; |
| |
| p->clo = NULL; |
| p->test = _do_test; |
| p->init = _do_init; |
| p->term = _do_term; |
| p->poll = _do_poll; |
| p->fork = _do_fork; |
| } |
| |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |