| /* |
| * functions about threads. |
| * |
| * Copyright (C) 2017 Christopher Fauet - cfaulet@haproxy.com |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #define _GNU_SOURCE |
| #include <unistd.h> |
| #include <stdlib.h> |
| |
| #include <signal.h> |
| #include <unistd.h> |
| #ifdef _POSIX_PRIORITY_SCHEDULING |
| #include <sched.h> |
| #endif |
| |
| #ifdef USE_THREAD |
| # include <pthread.h> |
| #endif |
| |
| #ifdef USE_CPU_AFFINITY |
| # include <sched.h> |
| # if defined(__FreeBSD__) || defined(__DragonFly__) |
| # include <sys/param.h> |
| # ifdef __FreeBSD__ |
| # include <sys/cpuset.h> |
| # endif |
| # include <pthread_np.h> |
| # endif |
| # ifdef __APPLE__ |
| # include <mach/mach_types.h> |
| # include <mach/thread_act.h> |
| # include <mach/thread_policy.h> |
| # endif |
| # include <haproxy/cpuset.h> |
| #endif |
| |
| #include <haproxy/cfgparse.h> |
| #include <haproxy/clock.h> |
| #include <haproxy/fd.h> |
| #include <haproxy/global.h> |
| #include <haproxy/log.h> |
| #include <haproxy/thread.h> |
| #include <haproxy/tools.h> |
| |
| struct tgroup_info ha_tgroup_info[MAX_TGROUPS] = { }; |
| THREAD_LOCAL const struct tgroup_info *tg = &ha_tgroup_info[0]; |
| |
| struct thread_info ha_thread_info[MAX_THREADS] = { }; |
| THREAD_LOCAL const struct thread_info *ti = &ha_thread_info[0]; |
| |
| struct tgroup_ctx ha_tgroup_ctx[MAX_TGROUPS] = { }; |
| THREAD_LOCAL struct tgroup_ctx *tg_ctx = &ha_tgroup_ctx[0]; |
| |
| struct thread_ctx ha_thread_ctx[MAX_THREADS] = { }; |
| THREAD_LOCAL struct thread_ctx *th_ctx = &ha_thread_ctx[0]; |
| |
| #ifdef USE_THREAD |
| |
| volatile unsigned long all_tgroups_mask __read_mostly = 1; // nbtgroup 1 assumed by default |
| volatile unsigned int rdv_requests = 0; // total number of threads requesting RDV |
| volatile unsigned int isolated_thread = ~0; // ID of the isolated thread, or ~0 when none |
| THREAD_LOCAL unsigned int tgid = 1; // thread ID starts at 1 |
| THREAD_LOCAL unsigned int tid = 0; |
| int thread_cpus_enabled_at_boot = 1; |
| static pthread_t ha_pthread[MAX_THREADS] = { }; |
| |
| /* Marks the thread as harmless until the last thread using the rendez-vous |
| * point quits. Given that we can wait for a long time, sched_yield() is |
| * used when available to offer the CPU resources to competing threads if |
| * needed. |
| */ |
| void thread_harmless_till_end() |
| { |
| _HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit); |
| while (_HA_ATOMIC_LOAD(&rdv_requests) != 0) { |
| ha_thread_relax(); |
| } |
| } |
| |
| /* Isolates the current thread : request the ability to work while all other |
| * threads are harmless, as defined by thread_harmless_now() (i.e. they're not |
| * going to touch any visible memory area). Only returns once all of them are |
| * harmless, with the current thread's bit in &tg_ctx->threads_harmless cleared. |
| * Needs to be completed using thread_release(). |
| */ |
| void thread_isolate() |
| { |
| uint tgrp, thr; |
| |
| _HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit); |
| __ha_barrier_atomic_store(); |
| _HA_ATOMIC_INC(&rdv_requests); |
| |
| /* wait for all threads to become harmless. They cannot change their |
| * mind once seen thanks to rdv_requests above, unless they pass in |
| * front of us. For this reason we proceed in 4 steps: |
| * 1) wait for all threads to declare themselves harmless |
| * 2) try to grab the isolated_thread exclusivity |
| * 3) verify again that all threads are harmless, since another one |
| * that was isolating between 1 and 2 could have dropped its |
| * harmless state there. |
| * 4) drop harmless flag (which also has the benefit of leaving |
| * all other threads wait on reads instead of writes. |
| */ |
| while (1) { |
| for (tgrp = 0; tgrp < global.nbtgroups; tgrp++) { |
| do { |
| ulong te = _HA_ATOMIC_LOAD(&ha_tgroup_info[tgrp].threads_enabled); |
| ulong th = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_harmless); |
| |
| if ((th & te) == te) |
| break; |
| ha_thread_relax(); |
| } while (1); |
| } |
| |
| /* all other ones are harmless. isolated_thread will contain |
| * ~0U if no other one competes, !=tid if another one got it, |
| * tid if the current thread already grabbed it on the previous |
| * round. |
| */ |
| thr = _HA_ATOMIC_LOAD(&isolated_thread); |
| if (thr == tid) |
| break; // we won and we're certain everyone is harmless |
| |
| /* try to win the race against others */ |
| if (thr != ~0U || !_HA_ATOMIC_CAS(&isolated_thread, &thr, tid)) |
| ha_thread_relax(); |
| } |
| |
| /* the thread is no longer harmless as it runs */ |
| _HA_ATOMIC_AND(&tg_ctx->threads_harmless, ~ti->ltid_bit); |
| |
| /* the thread is isolated until it calls thread_release() which will |
| * 1) reset isolated_thread to ~0; |
| * 2) decrement rdv_requests. |
| */ |
| } |
| |
| /* Isolates the current thread : request the ability to work while all other |
| * threads are idle, as defined by thread_idle_now(). It only returns once |
| * all of them are both harmless and idle, with the current thread's bit in |
| * &tg_ctx->threads_harmless and idle_mask cleared. Needs to be completed using |
| * thread_release(). By doing so the thread also engages in being safe against |
| * any actions that other threads might be about to start under the same |
| * conditions. This specifically targets destruction of any internal structure, |
| * which implies that the current thread may not hold references to any object. |
| * |
| * Note that a concurrent thread_isolate() will usually win against |
| * thread_isolate_full() as it doesn't consider the idle_mask, allowing it to |
| * get back to the poller or any other fully idle location, that will |
| * ultimately release this one. |
| */ |
| void thread_isolate_full() |
| { |
| uint tgrp, thr; |
| |
| _HA_ATOMIC_OR(&tg_ctx->threads_idle, ti->ltid_bit); |
| _HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit); |
| __ha_barrier_atomic_store(); |
| _HA_ATOMIC_INC(&rdv_requests); |
| |
| /* wait for all threads to become harmless. They cannot change their |
| * mind once seen thanks to rdv_requests above, unless they pass in |
| * front of us. For this reason we proceed in 4 steps: |
| * 1) wait for all threads to declare themselves harmless |
| * 2) try to grab the isolated_thread exclusivity |
| * 3) verify again that all threads are harmless, since another one |
| * that was isolating between 1 and 2 could have dropped its |
| * harmless state there. |
| * 4) drop harmless flag (which also has the benefit of leaving |
| * all other threads wait on reads instead of writes. |
| */ |
| while (1) { |
| for (tgrp = 0; tgrp < global.nbtgroups; tgrp++) { |
| do { |
| ulong te = _HA_ATOMIC_LOAD(&ha_tgroup_info[tgrp].threads_enabled); |
| ulong th = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_harmless); |
| ulong id = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_idle); |
| |
| if ((th & id & te) == te) |
| break; |
| ha_thread_relax(); |
| } while (1); |
| } |
| |
| /* all other ones are harmless and idle. isolated_thread will |
| * contain ~0U if no other one competes, !=tid if another one |
| * got it, tid if the current thread already grabbed it on the |
| * previous round. |
| */ |
| thr = _HA_ATOMIC_LOAD(&isolated_thread); |
| if (thr == tid) |
| break; // we won and we're certain everyone is harmless |
| |
| if (thr != ~0U || !_HA_ATOMIC_CAS(&isolated_thread, &thr, tid)) |
| ha_thread_relax(); |
| } |
| |
| /* we're not idle nor harmless anymore at this point. Other threads |
| * waiting on this condition will need to wait until out next pass to |
| * the poller, or our next call to thread_isolate_full(). |
| */ |
| _HA_ATOMIC_AND(&tg_ctx->threads_idle, ~ti->ltid_bit); |
| _HA_ATOMIC_AND(&tg_ctx->threads_harmless, ~ti->ltid_bit); |
| |
| /* the thread is isolated until it calls thread_release() which will |
| * 1) reset isolated_thread to ~0; |
| * 2) decrement rdv_requests. |
| */ |
| } |
| |
| /* Cancels the effect of thread_isolate() by resetting the ID of the isolated |
| * thread and decrementing the number of RDV requesters. This immediately allows |
| * other threads to expect to be executed, though they will first have to wait |
| * for this thread to become harmless again (possibly by reaching the poller |
| * again). |
| */ |
| void thread_release() |
| { |
| HA_ATOMIC_STORE(&isolated_thread, ~0U); |
| HA_ATOMIC_DEC(&rdv_requests); |
| } |
| |
| /* Sets up threads, signals and masks, and starts threads 2 and above. |
| * Does nothing when threads are disabled. |
| */ |
| void setup_extra_threads(void *(*handler)(void *)) |
| { |
| sigset_t blocked_sig, old_sig; |
| int i; |
| |
| /* ensure the signals will be blocked in every thread */ |
| sigfillset(&blocked_sig); |
| sigdelset(&blocked_sig, SIGPROF); |
| sigdelset(&blocked_sig, SIGBUS); |
| sigdelset(&blocked_sig, SIGFPE); |
| sigdelset(&blocked_sig, SIGILL); |
| sigdelset(&blocked_sig, SIGSEGV); |
| pthread_sigmask(SIG_SETMASK, &blocked_sig, &old_sig); |
| |
| /* Create nbthread-1 thread. The first thread is the current process */ |
| ha_pthread[0] = pthread_self(); |
| for (i = 1; i < global.nbthread; i++) |
| pthread_create(&ha_pthread[i], NULL, handler, &ha_thread_info[i]); |
| } |
| |
| /* waits for all threads to terminate. Does nothing when threads are |
| * disabled. |
| */ |
| void wait_for_threads_completion() |
| { |
| int i; |
| |
| /* Wait the end of other threads */ |
| for (i = 1; i < global.nbthread; i++) |
| pthread_join(ha_pthread[i], NULL); |
| |
| #if defined(DEBUG_THREAD) || defined(DEBUG_FULL) |
| show_lock_stats(); |
| #endif |
| } |
| |
| /* Tries to set the current thread's CPU affinity according to the cpu_map */ |
| void set_thread_cpu_affinity() |
| { |
| #if defined(USE_CPU_AFFINITY) |
| /* no affinity setting for the master process */ |
| if (master) |
| return; |
| |
| /* Now the CPU affinity for all threads */ |
| if (ha_cpuset_count(&cpu_map[tgid - 1].proc)) |
| ha_cpuset_and(&cpu_map[tgid - 1].thread[ti->ltid], &cpu_map[tgid - 1].proc); |
| |
| if (ha_cpuset_count(&cpu_map[tgid - 1].thread[ti->ltid])) {/* only do this if the thread has a THREAD map */ |
| # if defined(__APPLE__) |
| /* Note: this API is limited to the first 32/64 CPUs */ |
| unsigned long set = cpu_map[tgid - 1].thread[ti->ltid].cpuset; |
| int j; |
| |
| while ((j = ffsl(set)) > 0) { |
| thread_affinity_policy_data_t cpu_set = { j - 1 }; |
| thread_port_t mthread; |
| |
| mthread = pthread_mach_thread_np(ha_pthread[tid]); |
| thread_policy_set(mthread, THREAD_AFFINITY_POLICY, (thread_policy_t)&cpu_set, 1); |
| set &= ~(1UL << (j - 1)); |
| } |
| # else |
| struct hap_cpuset *set = &cpu_map[tgid - 1].thread[ti->ltid]; |
| |
| pthread_setaffinity_np(ha_pthread[tid], sizeof(set->cpuset), &set->cpuset); |
| # endif |
| } |
| #endif /* USE_CPU_AFFINITY */ |
| } |
| |
| /* Retrieves the opaque pthread_t of thread <thr> cast to an unsigned long long |
| * since POSIX took great care of not specifying its representation, making it |
| * hard to export for post-mortem analysis. For this reason we copy it into a |
| * union and will use the smallest scalar type at least as large as its size, |
| * which will keep endianness and alignment for all regular sizes. As a last |
| * resort we end up with a long long ligned to the first bytes in memory, which |
| * will be endian-dependent if pthread_t is larger than a long long (not seen |
| * yet). |
| */ |
| unsigned long long ha_get_pthread_id(unsigned int thr) |
| { |
| union { |
| pthread_t t; |
| unsigned long long ll; |
| unsigned int i; |
| unsigned short s; |
| unsigned char c; |
| } u = { 0 }; |
| |
| u.t = ha_pthread[thr]; |
| |
| if (sizeof(u.t) <= sizeof(u.c)) |
| return u.c; |
| else if (sizeof(u.t) <= sizeof(u.s)) |
| return u.s; |
| else if (sizeof(u.t) <= sizeof(u.i)) |
| return u.i; |
| return u.ll; |
| } |
| |
| /* send signal <sig> to thread <thr> */ |
| void ha_tkill(unsigned int thr, int sig) |
| { |
| pthread_kill(ha_pthread[thr], sig); |
| } |
| |
| /* send signal <sig> to all threads. The calling thread is signaled last in |
| * order to allow all threads to synchronize in the handler. |
| */ |
| void ha_tkillall(int sig) |
| { |
| unsigned int thr; |
| |
| for (thr = 0; thr < global.nbthread; thr++) { |
| if (!(ha_thread_info[thr].tg->threads_enabled & ha_thread_info[thr].ltid_bit)) |
| continue; |
| if (thr == tid) |
| continue; |
| pthread_kill(ha_pthread[thr], sig); |
| } |
| raise(sig); |
| } |
| |
| void ha_thread_relax(void) |
| { |
| #ifdef _POSIX_PRIORITY_SCHEDULING |
| sched_yield(); |
| #else |
| pl_cpu_relax(); |
| #endif |
| } |
| |
| /* these calls are used as callbacks at init time when debugging is on */ |
| void ha_spin_init(HA_SPINLOCK_T *l) |
| { |
| HA_SPIN_INIT(l); |
| } |
| |
| /* these calls are used as callbacks at init time when debugging is on */ |
| void ha_rwlock_init(HA_RWLOCK_T *l) |
| { |
| HA_RWLOCK_INIT(l); |
| } |
| |
| /* returns the number of CPUs the current process is enabled to run on, |
| * regardless of any MAX_THREADS limitation. |
| */ |
| static int thread_cpus_enabled() |
| { |
| int ret = 1; |
| |
| #ifdef USE_CPU_AFFINITY |
| #if defined(__linux__) && defined(CPU_COUNT) |
| cpu_set_t mask; |
| |
| if (sched_getaffinity(0, sizeof(mask), &mask) == 0) |
| ret = CPU_COUNT(&mask); |
| #elif defined(__FreeBSD__) && defined(USE_CPU_AFFINITY) |
| cpuset_t cpuset; |
| if (cpuset_getaffinity(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, |
| sizeof(cpuset), &cpuset) == 0) |
| ret = CPU_COUNT(&cpuset); |
| #elif defined(__APPLE__) |
| ret = (int)sysconf(_SC_NPROCESSORS_ONLN); |
| #endif |
| #endif |
| ret = MAX(ret, 1); |
| return ret; |
| } |
| |
| /* Returns 1 if the cpu set is currently restricted for the process else 0. |
| * Currently only implemented for the Linux platform. |
| */ |
| int thread_cpu_mask_forced() |
| { |
| #if defined(__linux__) |
| const int cpus_avail = sysconf(_SC_NPROCESSORS_ONLN); |
| return cpus_avail != thread_cpus_enabled(); |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* Below come the lock-debugging functions */ |
| |
| #if defined(DEBUG_THREAD) || defined(DEBUG_FULL) |
| |
| struct lock_stat lock_stats[LOCK_LABELS]; |
| |
| /* this is only used below */ |
| static const char *lock_label(enum lock_label label) |
| { |
| switch (label) { |
| case TASK_RQ_LOCK: return "TASK_RQ"; |
| case TASK_WQ_LOCK: return "TASK_WQ"; |
| case LISTENER_LOCK: return "LISTENER"; |
| case PROXY_LOCK: return "PROXY"; |
| case SERVER_LOCK: return "SERVER"; |
| case LBPRM_LOCK: return "LBPRM"; |
| case SIGNALS_LOCK: return "SIGNALS"; |
| case STK_TABLE_LOCK: return "STK_TABLE"; |
| case STK_SESS_LOCK: return "STK_SESS"; |
| case APPLETS_LOCK: return "APPLETS"; |
| case PEER_LOCK: return "PEER"; |
| case SHCTX_LOCK: return "SHCTX"; |
| case SSL_LOCK: return "SSL"; |
| case SSL_GEN_CERTS_LOCK: return "SSL_GEN_CERTS"; |
| case PATREF_LOCK: return "PATREF"; |
| case PATEXP_LOCK: return "PATEXP"; |
| case VARS_LOCK: return "VARS"; |
| case COMP_POOL_LOCK: return "COMP_POOL"; |
| case LUA_LOCK: return "LUA"; |
| case NOTIF_LOCK: return "NOTIF"; |
| case SPOE_APPLET_LOCK: return "SPOE_APPLET"; |
| case DNS_LOCK: return "DNS"; |
| case PID_LIST_LOCK: return "PID_LIST"; |
| case EMAIL_ALERTS_LOCK: return "EMAIL_ALERTS"; |
| case PIPES_LOCK: return "PIPES"; |
| case TLSKEYS_REF_LOCK: return "TLSKEYS_REF"; |
| case AUTH_LOCK: return "AUTH"; |
| case LOGSRV_LOCK: return "LOGSRV"; |
| case DICT_LOCK: return "DICT"; |
| case PROTO_LOCK: return "PROTO"; |
| case QUEUE_LOCK: return "QUEUE"; |
| case CKCH_LOCK: return "CKCH"; |
| case SNI_LOCK: return "SNI"; |
| case SSL_SERVER_LOCK: return "SSL_SERVER"; |
| case SFT_LOCK: return "SFT"; |
| case IDLE_CONNS_LOCK: return "IDLE_CONNS"; |
| case OCSP_LOCK: return "OCSP"; |
| case QC_CID_LOCK: return "QC_CID"; |
| case OTHER_LOCK: return "OTHER"; |
| case DEBUG1_LOCK: return "DEBUG1"; |
| case DEBUG2_LOCK: return "DEBUG2"; |
| case DEBUG3_LOCK: return "DEBUG3"; |
| case DEBUG4_LOCK: return "DEBUG4"; |
| case DEBUG5_LOCK: return "DEBUG5"; |
| case LOCK_LABELS: break; /* keep compiler happy */ |
| }; |
| /* only way to come here is consecutive to an internal bug */ |
| abort(); |
| } |
| |
| void show_lock_stats() |
| { |
| int lbl; |
| |
| for (lbl = 0; lbl < LOCK_LABELS; lbl++) { |
| if (!lock_stats[lbl].num_write_locked && |
| !lock_stats[lbl].num_seek_locked && |
| !lock_stats[lbl].num_read_locked) { |
| fprintf(stderr, |
| "Stats about Lock %s: not used\n", |
| lock_label(lbl)); |
| continue; |
| } |
| |
| fprintf(stderr, |
| "Stats about Lock %s: \n", |
| lock_label(lbl)); |
| |
| if (lock_stats[lbl].num_write_locked) |
| fprintf(stderr, |
| "\t # write lock : %llu\n" |
| "\t # write unlock: %llu (%lld)\n" |
| "\t # wait time for write : %.3f msec\n" |
| "\t # wait time for write/lock: %.3f nsec\n", |
| (ullong)lock_stats[lbl].num_write_locked, |
| (ullong)lock_stats[lbl].num_write_unlocked, |
| (llong)(lock_stats[lbl].num_write_unlocked - lock_stats[lbl].num_write_locked), |
| (double)lock_stats[lbl].nsec_wait_for_write / 1000000.0, |
| lock_stats[lbl].num_write_locked ? ((double)lock_stats[lbl].nsec_wait_for_write / (double)lock_stats[lbl].num_write_locked) : 0); |
| |
| if (lock_stats[lbl].num_seek_locked) |
| fprintf(stderr, |
| "\t # seek lock : %llu\n" |
| "\t # seek unlock : %llu (%lld)\n" |
| "\t # wait time for seek : %.3f msec\n" |
| "\t # wait time for seek/lock : %.3f nsec\n", |
| (ullong)lock_stats[lbl].num_seek_locked, |
| (ullong)lock_stats[lbl].num_seek_unlocked, |
| (llong)(lock_stats[lbl].num_seek_unlocked - lock_stats[lbl].num_seek_locked), |
| (double)lock_stats[lbl].nsec_wait_for_seek / 1000000.0, |
| lock_stats[lbl].num_seek_locked ? ((double)lock_stats[lbl].nsec_wait_for_seek / (double)lock_stats[lbl].num_seek_locked) : 0); |
| |
| if (lock_stats[lbl].num_read_locked) |
| fprintf(stderr, |
| "\t # read lock : %llu\n" |
| "\t # read unlock : %llu (%lld)\n" |
| "\t # wait time for read : %.3f msec\n" |
| "\t # wait time for read/lock : %.3f nsec\n", |
| (ullong)lock_stats[lbl].num_read_locked, |
| (ullong)lock_stats[lbl].num_read_unlocked, |
| (llong)(lock_stats[lbl].num_read_unlocked - lock_stats[lbl].num_read_locked), |
| (double)lock_stats[lbl].nsec_wait_for_read / 1000000.0, |
| lock_stats[lbl].num_read_locked ? ((double)lock_stats[lbl].nsec_wait_for_read / (double)lock_stats[lbl].num_read_locked) : 0); |
| } |
| } |
| |
| void __ha_rwlock_init(struct ha_rwlock *l) |
| { |
| memset(l, 0, sizeof(struct ha_rwlock)); |
| __RWLOCK_INIT(&l->lock); |
| } |
| |
| void __ha_rwlock_destroy(struct ha_rwlock *l) |
| { |
| __RWLOCK_DESTROY(&l->lock); |
| memset(l, 0, sizeof(struct ha_rwlock)); |
| } |
| |
| |
| void __ha_rwlock_wrlock(enum lock_label lbl, struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| |
| if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) |
| abort(); |
| |
| HA_ATOMIC_OR(&st->wait_writers, tbit); |
| |
| start_time = now_mono_time(); |
| __RWLOCK_WRLOCK(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); |
| |
| HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); |
| |
| st->cur_writer = tbit; |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| HA_ATOMIC_AND(&st->wait_writers, ~tbit); |
| } |
| |
| int __ha_rwlock_trywrlock(enum lock_label lbl, struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| int r; |
| |
| if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) |
| abort(); |
| |
| /* We set waiting writer because trywrlock could wait for readers to quit */ |
| HA_ATOMIC_OR(&st->wait_writers, tbit); |
| |
| start_time = now_mono_time(); |
| r = __RWLOCK_TRYWRLOCK(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); |
| if (unlikely(r)) { |
| HA_ATOMIC_AND(&st->wait_writers, ~tbit); |
| return r; |
| } |
| HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); |
| |
| st->cur_writer = tbit; |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| HA_ATOMIC_AND(&st->wait_writers, ~tbit); |
| |
| return 0; |
| } |
| |
| void __ha_rwlock_wrunlock(enum lock_label lbl,struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| |
| if (unlikely(!(st->cur_writer & tbit))) { |
| /* the thread is not owning the lock for write */ |
| abort(); |
| } |
| |
| st->cur_writer = 0; |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| __RWLOCK_WRUNLOCK(&l->lock); |
| |
| HA_ATOMIC_INC(&lock_stats[lbl].num_write_unlocked); |
| } |
| |
| void __ha_rwlock_rdlock(enum lock_label lbl,struct ha_rwlock *l) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| |
| if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) |
| abort(); |
| |
| HA_ATOMIC_OR(&st->wait_readers, tbit); |
| |
| start_time = now_mono_time(); |
| __RWLOCK_RDLOCK(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); |
| HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); |
| |
| HA_ATOMIC_OR(&st->cur_readers, tbit); |
| |
| HA_ATOMIC_AND(&st->wait_readers, ~tbit); |
| } |
| |
| int __ha_rwlock_tryrdlock(enum lock_label lbl,struct ha_rwlock *l) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| int r; |
| |
| if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) |
| abort(); |
| |
| /* try read should never wait */ |
| r = __RWLOCK_TRYRDLOCK(&l->lock); |
| if (unlikely(r)) |
| return r; |
| HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); |
| |
| HA_ATOMIC_OR(&st->cur_readers, tbit); |
| |
| return 0; |
| } |
| |
| void __ha_rwlock_rdunlock(enum lock_label lbl,struct ha_rwlock *l) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| |
| if (unlikely(!(st->cur_readers & tbit))) { |
| /* the thread is not owning the lock for read */ |
| abort(); |
| } |
| |
| HA_ATOMIC_AND(&st->cur_readers, ~tbit); |
| |
| __RWLOCK_RDUNLOCK(&l->lock); |
| |
| HA_ATOMIC_INC(&lock_stats[lbl].num_read_unlocked); |
| } |
| |
| void __ha_rwlock_wrtord(enum lock_label lbl, struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| |
| if ((st->cur_readers | st->cur_seeker) & tbit) |
| abort(); |
| |
| if (!(st->cur_writer & tbit)) |
| abort(); |
| |
| HA_ATOMIC_OR(&st->wait_readers, tbit); |
| |
| start_time = now_mono_time(); |
| __RWLOCK_WRTORD(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); |
| |
| HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); |
| |
| HA_ATOMIC_OR(&st->cur_readers, tbit); |
| HA_ATOMIC_AND(&st->cur_writer, ~tbit); |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| HA_ATOMIC_AND(&st->wait_readers, ~tbit); |
| } |
| |
| void __ha_rwlock_wrtosk(enum lock_label lbl, struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| |
| if ((st->cur_readers | st->cur_seeker) & tbit) |
| abort(); |
| |
| if (!(st->cur_writer & tbit)) |
| abort(); |
| |
| HA_ATOMIC_OR(&st->wait_seekers, tbit); |
| |
| start_time = now_mono_time(); |
| __RWLOCK_WRTOSK(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); |
| |
| HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); |
| |
| HA_ATOMIC_OR(&st->cur_seeker, tbit); |
| HA_ATOMIC_AND(&st->cur_writer, ~tbit); |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| HA_ATOMIC_AND(&st->wait_seekers, ~tbit); |
| } |
| |
| void __ha_rwlock_sklock(enum lock_label lbl, struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| |
| if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) |
| abort(); |
| |
| HA_ATOMIC_OR(&st->wait_seekers, tbit); |
| |
| start_time = now_mono_time(); |
| __RWLOCK_SKLOCK(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); |
| |
| HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); |
| |
| HA_ATOMIC_OR(&st->cur_seeker, tbit); |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| HA_ATOMIC_AND(&st->wait_seekers, ~tbit); |
| } |
| |
| void __ha_rwlock_sktowr(enum lock_label lbl, struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| |
| if ((st->cur_readers | st->cur_writer) & tbit) |
| abort(); |
| |
| if (!(st->cur_seeker & tbit)) |
| abort(); |
| |
| HA_ATOMIC_OR(&st->wait_writers, tbit); |
| |
| start_time = now_mono_time(); |
| __RWLOCK_SKTOWR(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); |
| |
| HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); |
| |
| HA_ATOMIC_OR(&st->cur_writer, tbit); |
| HA_ATOMIC_AND(&st->cur_seeker, ~tbit); |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| HA_ATOMIC_AND(&st->wait_writers, ~tbit); |
| } |
| |
| void __ha_rwlock_sktord(enum lock_label lbl, struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| |
| if ((st->cur_readers | st->cur_writer) & tbit) |
| abort(); |
| |
| if (!(st->cur_seeker & tbit)) |
| abort(); |
| |
| HA_ATOMIC_OR(&st->wait_readers, tbit); |
| |
| start_time = now_mono_time(); |
| __RWLOCK_SKTORD(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time)); |
| |
| HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked); |
| |
| HA_ATOMIC_OR(&st->cur_readers, tbit); |
| HA_ATOMIC_AND(&st->cur_seeker, ~tbit); |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| HA_ATOMIC_AND(&st->wait_readers, ~tbit); |
| } |
| |
| void __ha_rwlock_skunlock(enum lock_label lbl,struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| if (!(st->cur_seeker & tbit)) |
| abort(); |
| |
| HA_ATOMIC_AND(&st->cur_seeker, ~tbit); |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| __RWLOCK_SKUNLOCK(&l->lock); |
| |
| HA_ATOMIC_INC(&lock_stats[lbl].num_seek_unlocked); |
| } |
| |
| int __ha_rwlock_trysklock(enum lock_label lbl, struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| int r; |
| |
| if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit) |
| abort(); |
| |
| HA_ATOMIC_OR(&st->wait_seekers, tbit); |
| |
| start_time = now_mono_time(); |
| r = __RWLOCK_TRYSKLOCK(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); |
| |
| if (likely(!r)) { |
| /* got the lock ! */ |
| HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); |
| HA_ATOMIC_OR(&st->cur_seeker, tbit); |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| } |
| |
| HA_ATOMIC_AND(&st->wait_seekers, ~tbit); |
| return r; |
| } |
| |
| int __ha_rwlock_tryrdtosk(enum lock_label lbl, struct ha_rwlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_rwlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| int r; |
| |
| if ((st->cur_writer | st->cur_seeker) & tbit) |
| abort(); |
| |
| if (!(st->cur_readers & tbit)) |
| abort(); |
| |
| HA_ATOMIC_OR(&st->wait_seekers, tbit); |
| |
| start_time = now_mono_time(); |
| r = __RWLOCK_TRYRDTOSK(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time)); |
| |
| if (likely(!r)) { |
| /* got the lock ! */ |
| HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked); |
| HA_ATOMIC_OR(&st->cur_seeker, tbit); |
| HA_ATOMIC_AND(&st->cur_readers, ~tbit); |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| } |
| |
| HA_ATOMIC_AND(&st->wait_seekers, ~tbit); |
| return r; |
| } |
| |
| void __spin_init(struct ha_spinlock *l) |
| { |
| memset(l, 0, sizeof(struct ha_spinlock)); |
| __SPIN_INIT(&l->lock); |
| } |
| |
| void __spin_destroy(struct ha_spinlock *l) |
| { |
| __SPIN_DESTROY(&l->lock); |
| memset(l, 0, sizeof(struct ha_spinlock)); |
| } |
| |
| void __spin_lock(enum lock_label lbl, struct ha_spinlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_spinlock_state *st = &l->info.st[tgid-1]; |
| uint64_t start_time; |
| |
| if (unlikely(st->owner & tbit)) { |
| /* the thread is already owning the lock */ |
| abort(); |
| } |
| |
| HA_ATOMIC_OR(&st->waiters, tbit); |
| |
| start_time = now_mono_time(); |
| __SPIN_LOCK(&l->lock); |
| HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time)); |
| |
| HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); |
| |
| |
| st->owner = tbit; |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| HA_ATOMIC_AND(&st->waiters, ~tbit); |
| } |
| |
| int __spin_trylock(enum lock_label lbl, struct ha_spinlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_spinlock_state *st = &l->info.st[tgid-1]; |
| int r; |
| |
| if (unlikely(st->owner & tbit)) { |
| /* the thread is already owning the lock */ |
| abort(); |
| } |
| |
| /* try read should never wait */ |
| r = __SPIN_TRYLOCK(&l->lock); |
| if (unlikely(r)) |
| return r; |
| HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked); |
| |
| st->owner = tbit; |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| return 0; |
| } |
| |
| void __spin_unlock(enum lock_label lbl, struct ha_spinlock *l, |
| const char *func, const char *file, int line) |
| { |
| ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1; |
| struct ha_spinlock_state *st = &l->info.st[tgid-1]; |
| |
| if (unlikely(!(st->owner & tbit))) { |
| /* the thread is not owning the lock */ |
| abort(); |
| } |
| |
| st->owner = 0; |
| l->info.last_location.function = func; |
| l->info.last_location.file = file; |
| l->info.last_location.line = line; |
| |
| __SPIN_UNLOCK(&l->lock); |
| HA_ATOMIC_INC(&lock_stats[lbl].num_write_unlocked); |
| } |
| |
| #endif // defined(DEBUG_THREAD) || defined(DEBUG_FULL) |
| |
| |
| #if defined(USE_PTHREAD_EMULATION) |
| |
| /* pthread rwlock emulation using plocks (to avoid expensive futexes). |
| * these are a direct mapping on Progressive Locks, with the exception that |
| * since there's a common unlock operation in pthreads, we need to know if |
| * we need to unlock for reads or writes, so we set the topmost bit to 1 when |
| * a write lock is acquired to indicate that a write unlock needs to be |
| * performed. It's not a problem since this bit will never be used given that |
| * haproxy won't support as many threads as the plocks. |
| * |
| * The storage is the pthread_rwlock_t cast as an ulong |
| */ |
| |
| int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr) |
| { |
| ulong *lock = (ulong *)rwlock; |
| |
| *lock = 0; |
| return 0; |
| } |
| |
| int pthread_rwlock_destroy(pthread_rwlock_t *rwlock) |
| { |
| ulong *lock = (ulong *)rwlock; |
| |
| *lock = 0; |
| return 0; |
| } |
| |
| int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock) |
| { |
| pl_lorw_rdlock((unsigned long *)rwlock); |
| return 0; |
| } |
| |
| int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock) |
| { |
| return !!pl_cmpxchg((unsigned long *)rwlock, 0, PLOCK_LORW_SHR_BASE); |
| } |
| |
| int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abstime) |
| { |
| return pthread_rwlock_tryrdlock(rwlock); |
| } |
| |
| int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock) |
| { |
| pl_lorw_wrlock((unsigned long *)rwlock); |
| return 0; |
| } |
| |
| int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock) |
| { |
| return !!pl_cmpxchg((unsigned long *)rwlock, 0, PLOCK_LORW_EXC_BASE); |
| } |
| |
| int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abstime) |
| { |
| return pthread_rwlock_trywrlock(rwlock); |
| } |
| |
| int pthread_rwlock_unlock(pthread_rwlock_t *rwlock) |
| { |
| pl_lorw_unlock((unsigned long *)rwlock); |
| return 0; |
| } |
| #endif // defined(USE_PTHREAD_EMULATION) |
| |
| /* Depending on the platform and how libpthread was built, pthread_exit() may |
| * involve some code in libgcc_s that would be loaded on exit for the first |
| * time, causing aborts if the process is chrooted. It's harmless bit very |
| * dirty. There isn't much we can do to make sure libgcc_s is loaded only if |
| * needed, so what we do here is that during early boot we create a dummy |
| * thread that immediately exits. This will lead to libgcc_s being loaded |
| * during boot on the platforms where it's required. |
| */ |
| static void *dummy_thread_function(void *data) |
| { |
| pthread_exit(NULL); |
| return NULL; |
| } |
| |
| static inline void preload_libgcc_s(void) |
| { |
| pthread_t dummy_thread; |
| if (pthread_create(&dummy_thread, NULL, dummy_thread_function, NULL) == 0) |
| pthread_join(dummy_thread, NULL); |
| } |
| |
| static void __thread_init(void) |
| { |
| char *ptr = NULL; |
| |
| preload_libgcc_s(); |
| |
| thread_cpus_enabled_at_boot = thread_cpus_enabled(); |
| thread_cpus_enabled_at_boot = MIN(thread_cpus_enabled_at_boot, MAX_THREADS); |
| |
| memprintf(&ptr, "Built with multi-threading support (MAX_TGROUPS=%d, MAX_THREADS=%d, default=%d).", |
| MAX_TGROUPS, MAX_THREADS, thread_cpus_enabled_at_boot); |
| hap_register_build_opts(ptr, 1); |
| |
| #if defined(DEBUG_THREAD) || defined(DEBUG_FULL) |
| memset(lock_stats, 0, sizeof(lock_stats)); |
| #endif |
| } |
| INITCALL0(STG_PREPARE, __thread_init); |
| |
| #else |
| |
| /* send signal <sig> to thread <thr> (send to process in fact) */ |
| void ha_tkill(unsigned int thr, int sig) |
| { |
| raise(sig); |
| } |
| |
| /* send signal <sig> to all threads (send to process in fact) */ |
| void ha_tkillall(int sig) |
| { |
| raise(sig); |
| } |
| |
| void ha_thread_relax(void) |
| { |
| #ifdef _POSIX_PRIORITY_SCHEDULING |
| sched_yield(); |
| #endif |
| } |
| |
| REGISTER_BUILD_OPTS("Built without multi-threading support (USE_THREAD not set)."); |
| |
| #endif // USE_THREAD |
| |
| |
| /* scans the configured thread mapping and establishes the final one. Returns <0 |
| * on failure, >=0 on success. |
| */ |
| int thread_map_to_groups() |
| { |
| int t, g, ut, ug; |
| int q, r; |
| ulong m __maybe_unused; |
| |
| ut = ug = 0; // unassigned threads & groups |
| |
| for (t = 0; t < global.nbthread; t++) { |
| if (!ha_thread_info[t].tg) |
| ut++; |
| } |
| |
| for (g = 0; g < global.nbtgroups; g++) { |
| if (!ha_tgroup_info[g].count) |
| ug++; |
| ha_tgroup_info[g].tgid_bit = 1UL << g; |
| } |
| |
| if (ug > ut) { |
| ha_alert("More unassigned thread-groups (%d) than threads (%d). Please reduce thread-groups\n", ug, ut); |
| return -1; |
| } |
| |
| /* look for first unassigned thread */ |
| for (t = 0; t < global.nbthread && ha_thread_info[t].tg; t++) |
| ; |
| |
| /* assign threads to empty groups */ |
| for (g = 0; ug && ut; ) { |
| /* due to sparse thread assignment we can end up with more threads |
| * per group on last assigned groups than former ones, so we must |
| * always try to pack the maximum remaining ones together first. |
| */ |
| q = ut / ug; |
| r = ut % ug; |
| if ((q + !!r) > MAX_THREADS_PER_GROUP) { |
| ha_alert("Too many remaining unassigned threads (%d) for thread groups (%d). Please increase thread-groups or make sure to keep thread numbers contiguous\n", ut, ug); |
| return -1; |
| } |
| |
| /* thread <t> is the next unassigned one. Let's look for next |
| * unassigned group, we know there are some left |
| */ |
| while (ut >= ug && ha_tgroup_info[g].count) |
| g++; |
| |
| /* group g is unassigned, try to fill it with consecutive threads */ |
| while (ut && ut >= ug && ha_tgroup_info[g].count < q + !!r && |
| (!ha_tgroup_info[g].count || t == ha_tgroup_info[g].base + ha_tgroup_info[g].count)) { |
| |
| if (!ha_tgroup_info[g].count) { |
| /* assign new group */ |
| ha_tgroup_info[g].base = t; |
| ug--; |
| } |
| |
| ha_tgroup_info[g].count++; |
| ha_thread_info[t].tgid = g + 1; |
| ha_thread_info[t].tg = &ha_tgroup_info[g]; |
| ha_thread_info[t].tg_ctx = &ha_tgroup_ctx[g]; |
| |
| ut--; |
| /* switch to next unassigned thread */ |
| while (++t < global.nbthread && ha_thread_info[t].tg) |
| ; |
| } |
| } |
| |
| if (ut) { |
| ha_alert("Remaining unassigned threads found (%d) because all groups are in use. Please increase 'thread-groups', reduce 'nbthreads' or remove or extend 'thread-group' enumerations.\n", ut); |
| return -1; |
| } |
| |
| for (t = 0; t < global.nbthread; t++) { |
| ha_thread_info[t].tid = t; |
| ha_thread_info[t].ltid = t - ha_thread_info[t].tg->base; |
| ha_thread_info[t].ltid_bit = 1UL << ha_thread_info[t].ltid; |
| } |
| |
| m = 0; |
| for (g = 0; g < global.nbtgroups; g++) { |
| ha_tgroup_info[g].threads_enabled = nbits(ha_tgroup_info[g].count); |
| /* for now, additional threads are not started, so we should |
| * consider them as harmless and idle. |
| * This will get automatically updated when such threads are |
| * started in run_thread_poll_loop() |
| * Without this, thread_isolate() and thread_isolate_full() |
| * will fail to work as long as secondary threads did not enter |
| * the polling loop at least once. |
| */ |
| ha_tgroup_ctx[g].threads_harmless = ha_tgroup_info[g].threads_enabled; |
| ha_tgroup_ctx[g].threads_idle = ha_tgroup_info[g].threads_enabled; |
| if (!ha_tgroup_info[g].count) |
| continue; |
| m |= 1UL << g; |
| |
| } |
| |
| #ifdef USE_THREAD |
| all_tgroups_mask = m; |
| #endif |
| return 0; |
| } |
| |
| /* Converts a configuration thread set based on either absolute or relative |
| * thread numbers into a global group+mask. This is essentially for use with |
| * the "thread" directive on "bind" lines, where "thread 4-6,10-12" might be |
| * turned to "2/1-3,4/1-3". It cannot be used before the thread mapping above |
| * was completed and the thread group numbers configured. The thread_set is |
| * replaced by the resolved group-based one. It is possible to force a single |
| * default group for unspecified sets instead of enabling all groups by passing |
| * this group's non-zero value to defgrp. |
| * |
| * Returns <0 on failure, >=0 on success. |
| */ |
| int thread_resolve_group_mask(struct thread_set *ts, int defgrp, char **err) |
| { |
| struct thread_set new_ts = { }; |
| ulong mask, imask; |
| uint g; |
| |
| if (!ts->grps) { |
| /* unspecified group, IDs are global */ |
| if (thread_set_is_empty(ts)) { |
| /* all threads of all groups, unless defgrp is set and |
| * we then set it as the only group. |
| */ |
| for (g = defgrp ? defgrp-1 : 0; g < (defgrp ? defgrp : global.nbtgroups); g++) { |
| new_ts.rel[g] = ha_tgroup_info[g].threads_enabled; |
| if (new_ts.rel[g]) |
| new_ts.grps |= 1UL << g; |
| } |
| } else { |
| /* some absolute threads are set, we must remap them to |
| * relative ones. Each group cannot have more than |
| * LONGBITS threads, thus it spans at most two absolute |
| * blocks. |
| */ |
| for (g = 0; g < global.nbtgroups; g++) { |
| uint block = ha_tgroup_info[g].base / LONGBITS; |
| uint base = ha_tgroup_info[g].base % LONGBITS; |
| |
| mask = ts->abs[block] >> base; |
| if (base && |
| (block + 1) < sizeof(ts->abs) / sizeof(ts->abs[0]) && |
| ha_tgroup_info[g].count > (LONGBITS - base)) |
| mask |= ts->abs[block + 1] << (LONGBITS - base); |
| mask &= nbits(ha_tgroup_info[g].count); |
| mask &= ha_tgroup_info[g].threads_enabled; |
| |
| /* now the mask exactly matches the threads to be enabled |
| * in this group. |
| */ |
| new_ts.rel[g] |= mask; |
| if (new_ts.rel[g]) |
| new_ts.grps |= 1UL << g; |
| } |
| } |
| } else { |
| /* groups were specified */ |
| for (g = 0; g < MAX_TGROUPS; g++) { |
| imask = ts->rel[g]; |
| if (!imask) |
| continue; |
| |
| if (g >= global.nbtgroups) { |
| memprintf(err, "'thread' directive references non-existing thread group %u", g+1); |
| return -1; |
| } |
| |
| /* some relative threads are set. Keep only existing ones for this group */ |
| mask = nbits(ha_tgroup_info[g].count); |
| |
| if (!(mask & imask)) { |
| /* no intersection between the thread group's |
| * threads and the bind line's. |
| */ |
| #ifdef THREAD_AUTO_ADJUST_GROUPS |
| unsigned long new_mask = 0; |
| |
| while (imask) { |
| new_mask |= imask & mask; |
| imask >>= ha_tgroup_info[g].count; |
| } |
| imask = new_mask; |
| #else |
| memprintf(err, "'thread' directive only references threads not belonging to group %u", g+1); |
| return -1; |
| #endif |
| } |
| |
| new_ts.rel[g] = imask & mask; |
| if (new_ts.rel[g]) |
| new_ts.grps |= 1UL << g; |
| } |
| } |
| |
| /* update the thread_set */ |
| if (!thread_set_nth_group(&new_ts, 0)) { |
| memprintf(err, "'thread' directive only references non-existing threads"); |
| return -1; |
| } |
| |
| *ts = new_ts; |
| return 0; |
| } |
| |
| /* Parse a string representing a thread set in one of the following forms: |
| * |
| * - { "all" | "odd" | "even" | <abs_num> [ "-" <abs_num> ] }[,...] |
| * => these are (lists of) absolute thread numbers |
| * |
| * - <tgnum> "/" { "all" | "odd" | "even" | <rel_num> [ "-" <rel_num> ][,...] |
| * => these are (lists of) per-group relative thread numbers. All numbers |
| * must be lower than or equal to LONGBITS. When multiple list elements |
| * are provided, each of them must contain the thread group number. |
| * |
| * Minimum value for a thread or group number is always 1. Maximum value for an |
| * absolute thread number is MAX_THREADS, maximum value for a relative thread |
| * number is MAX_THREADS_PER_GROUP, an maximum value for a thread group is |
| * MAX_TGROUPS. "all", "even" and "odd" will be bound by MAX_THREADS and/or |
| * MAX_THREADS_PER_GROUP in any case. In ranges, a missing digit before "-" |
| * is implicitly 1, and a missing digit after "-" is implicitly the highest of |
| * its class. As such "-" is equivalent to "all", allowing to build strings |
| * such as "${MIN}-${MAX}" where both MIN and MAX are optional. |
| * |
| * It is not valid to mix absolute and relative numbers. As such: |
| * - all valid (all absolute threads) |
| * - 12-19,24-31 valid (abs threads 12 to 19 and 24 to 31) |
| * - 1/all valid (all 32 or 64 threads of group 1) |
| * - 1/1-4,1/8-10,2/1 valid |
| * - 1/1-4,8-10 invalid (mixes relatve "1/1-4" with absolute "8-10") |
| * - 1-4,8-10,2/1 invalid (mixes absolute "1-4,8-10" with relative "2/1") |
| * - 1/odd-4 invalid (mixes range with boundary) |
| * |
| * The target thread set is *completed* with supported threads, which means |
| * that it's the caller's responsibility for pre-initializing it. If the target |
| * thread set is NULL, it's not updated and the function only verifies that the |
| * input parses. |
| * |
| * On success, it returns 0. otherwise it returns non-zero with an error |
| * message in <err>. |
| */ |
| int parse_thread_set(const char *arg, struct thread_set *ts, char **err) |
| { |
| const char *set; |
| const char *sep; |
| int v, min, max, tg; |
| int is_rel; |
| |
| /* search for the first delimiter (',', '-' or '/') to decide whether |
| * we're facing an absolute or relative form. The relative form always |
| * starts with a number followed by a slash. |
| */ |
| for (sep = arg; isdigit((uchar)*sep); sep++) |
| ; |
| |
| is_rel = (/*sep > arg &&*/ *sep == '/'); /* relative form */ |
| |
| /* from there we have to cut the thread spec around commas */ |
| |
| set = arg; |
| tg = 0; |
| while (*set) { |
| /* note: we can't use strtol() here because "-3" would parse as |
| * (-3) while we want to stop before the "-", so we find the |
| * separator ourselves and rely on atoi() whose value we may |
| * ignore depending where the separator is. |
| */ |
| for (sep = set; isdigit((uchar)*sep); sep++) |
| ; |
| |
| if (sep != set && *sep && *sep != '/' && *sep != '-' && *sep != ',') { |
| memprintf(err, "invalid character '%c' in thread set specification: '%s'.", *sep, set); |
| return -1; |
| } |
| |
| v = (sep != set) ? atoi(set) : 0; |
| |
| /* Now we know that the string is made of an optional series of digits |
| * optionally followed by one of the delimiters above, or that it |
| * starts with a different character. |
| */ |
| |
| /* first, let's search for the thread group (digits before '/') */ |
| |
| if (tg || !is_rel) { |
| /* thread group already specified or not expected if absolute spec */ |
| if (*sep == '/') { |
| if (tg) |
| memprintf(err, "redundant thread group specification '%s' for group %d", set, tg); |
| else |
| memprintf(err, "group-relative thread specification '%s' is not permitted after a absolute thread range.", set); |
| return -1; |
| } |
| } else { |
| /* this is a group-relative spec, first field is the group number */ |
| if (sep == set && *sep == '/') { |
| memprintf(err, "thread group number expected before '%s'.", set); |
| return -1; |
| } |
| |
| if (*sep != '/') { |
| memprintf(err, "absolute thread specification '%s' is not permitted after a group-relative thread range.", set); |
| return -1; |
| } |
| |
| if (v < 1 || v > MAX_TGROUPS) { |
| memprintf(err, "invalid thread group number '%d', permitted range is 1..%d in '%s'.", v, MAX_TGROUPS, set); |
| return -1; |
| } |
| |
| tg = v; |
| |
| /* skip group number and go on with set,sep,v as if |
| * there was no group number. |
| */ |
| set = sep + 1; |
| continue; |
| } |
| |
| /* Now 'set' starts at the min thread number, whose value is in v if any, |
| * and preset the max to it, unless the range is filled at once via "all" |
| * (stored as 1:0), "odd" (stored as) 1:-1, or "even" (stored as 1:-2). |
| * 'sep' points to the next non-digit which may be set itself e.g. for |
| * "all" etc or "-xx". |
| */ |
| |
| if (!*set) { |
| /* empty set sets no restriction */ |
| min = 1; |
| max = is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS; |
| } |
| else { |
| if (sep != set && *sep && *sep != '-' && *sep != ',') { |
| // Only delimiters are permitted around digits. |
| memprintf(err, "invalid character '%c' in thread set specification: '%s'.", *sep, set); |
| return -1; |
| } |
| |
| /* for non-digits, find next delim */ |
| for (; *sep && *sep != '-' && *sep != ','; sep++) |
| ; |
| |
| min = max = 1; |
| if (sep != set) { |
| /* non-empty first thread */ |
| if (isteq(ist2(set, sep-set), ist("all"))) |
| max = 0; |
| else if (isteq(ist2(set, sep-set), ist("odd"))) |
| max = -1; |
| else if (isteq(ist2(set, sep-set), ist("even"))) |
| max = -2; |
| else if (v) |
| min = max = v; |
| else |
| max = min = 0; // throw an error below |
| } |
| |
| if (min < 1 || min > MAX_THREADS || (is_rel && min > MAX_THREADS_PER_GROUP)) { |
| memprintf(err, "invalid first thread number '%s', permitted range is 1..%d, or 'all', 'odd', 'even'.", |
| set, is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS); |
| return -1; |
| } |
| |
| /* is this a range ? */ |
| if (*sep == '-') { |
| if (min != max) { |
| memprintf(err, "extraneous range after 'all', 'odd' or 'even': '%s'.", set); |
| return -1; |
| } |
| |
| /* this is a seemingly valid range, there may be another number */ |
| for (set = ++sep; isdigit((uchar)*sep); sep++) |
| ; |
| v = atoi(set); |
| |
| if (sep == set) { // no digit: to the max |
| max = is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS; |
| if (*sep && *sep != ',') |
| max = 0; // throw an error below |
| } else |
| max = v; |
| |
| if (max < 1 || max > MAX_THREADS || (is_rel && max > MAX_THREADS_PER_GROUP)) { |
| memprintf(err, "invalid last thread number '%s', permitted range is 1..%d.", |
| set, is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS); |
| return -1; |
| } |
| } |
| |
| /* here sep points to the first non-digit after the thread spec, |
| * must be a valid delimiter. |
| */ |
| if (*sep && *sep != ',') { |
| memprintf(err, "invalid character '%c' after thread set specification: '%s'.", *sep, set); |
| return -1; |
| } |
| } |
| |
| /* store values */ |
| if (ts) { |
| if (is_rel) { |
| /* group-relative thread numbers */ |
| ts->grps |= 1UL << (tg - 1); |
| |
| if (max >= min) { |
| for (v = min; v <= max; v++) |
| ts->rel[tg - 1] |= 1UL << (v - 1); |
| } else { |
| memset(&ts->rel[tg - 1], |
| (max == 0) ? 0xff /* all */ : (max == -1) ? 0x55 /* odd */: 0xaa /* even */, |
| sizeof(ts->rel[tg - 1])); |
| } |
| } else { |
| /* absolute thread numbers */ |
| if (max >= min) { |
| for (v = min; v <= max; v++) |
| ts->abs[(v - 1) / LONGBITS] |= 1UL << ((v - 1) % LONGBITS); |
| } else { |
| memset(&ts->abs, |
| (max == 0) ? 0xff /* all */ : (max == -1) ? 0x55 /* odd */: 0xaa /* even */, |
| sizeof(ts->abs)); |
| } |
| } |
| } |
| |
| set = *sep ? sep + 1 : sep; |
| tg = 0; |
| } |
| return 0; |
| } |
| |
| /* Parse the "nbthread" global directive, which takes an integer argument that |
| * contains the desired number of threads. |
| */ |
| static int cfg_parse_nbthread(char **args, int section_type, struct proxy *curpx, |
| const struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| long nbthread; |
| char *errptr; |
| |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| |
| if (non_global_section_parsed == 1) { |
| memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]); |
| return -1; |
| } |
| |
| nbthread = strtol(args[1], &errptr, 10); |
| if (!*args[1] || *errptr) { |
| memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); |
| return -1; |
| } |
| |
| #ifndef USE_THREAD |
| if (nbthread != 1) { |
| memprintf(err, "'%s' specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD", args[0]); |
| return -1; |
| } |
| #else |
| if (nbthread < 1 || nbthread > MAX_THREADS) { |
| memprintf(err, "'%s' value must be between 1 and %d (was %ld)", args[0], MAX_THREADS, nbthread); |
| return -1; |
| } |
| #endif |
| |
| HA_DIAG_WARNING_COND(global.nbthread, |
| "parsing [%s:%d] : '%s' is already defined and will be overridden.\n", |
| file, line, args[0]); |
| |
| global.nbthread = nbthread; |
| return 0; |
| } |
| |
| /* Parse the "thread-group" global directive, which takes an integer argument |
| * that designates a thread group, and a list of threads to put into that group. |
| */ |
| static int cfg_parse_thread_group(char **args, int section_type, struct proxy *curpx, |
| const struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| char *errptr; |
| long tnum, tend, tgroup; |
| int arg, tot; |
| |
| if (non_global_section_parsed == 1) { |
| memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]); |
| return -1; |
| } |
| |
| tgroup = strtol(args[1], &errptr, 10); |
| if (!*args[1] || *errptr) { |
| memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); |
| return -1; |
| } |
| |
| if (tgroup < 1 || tgroup > MAX_TGROUPS) { |
| memprintf(err, "'%s' thread-group number must be between 1 and %d (was %ld)", args[0], MAX_TGROUPS, tgroup); |
| return -1; |
| } |
| |
| /* look for a preliminary definition of any thread pointing to this |
| * group, and remove them. |
| */ |
| if (ha_tgroup_info[tgroup-1].count) { |
| ha_warning("parsing [%s:%d] : '%s %ld' was already defined and will be overridden.\n", |
| file, line, args[0], tgroup); |
| |
| for (tnum = ha_tgroup_info[tgroup-1].base; |
| tnum < ha_tgroup_info[tgroup-1].base + ha_tgroup_info[tgroup-1].count; |
| tnum++) { |
| if (ha_thread_info[tnum-1].tg == &ha_tgroup_info[tgroup-1]) { |
| ha_thread_info[tnum-1].tg = NULL; |
| ha_thread_info[tnum-1].tgid = 0; |
| ha_thread_info[tnum-1].tg_ctx = NULL; |
| } |
| } |
| ha_tgroup_info[tgroup-1].count = ha_tgroup_info[tgroup-1].base = 0; |
| } |
| |
| tot = 0; |
| for (arg = 2; args[arg] && *args[arg]; arg++) { |
| tend = tnum = strtol(args[arg], &errptr, 10); |
| |
| if (*errptr == '-') |
| tend = strtol(errptr + 1, &errptr, 10); |
| |
| if (*errptr || tnum < 1 || tend < 1 || tnum > MAX_THREADS || tend > MAX_THREADS) { |
| memprintf(err, "'%s %ld' passed an unparsable or invalid thread number '%s' (valid range is 1 to %d)", args[0], tgroup, args[arg], MAX_THREADS); |
| return -1; |
| } |
| |
| for(; tnum <= tend; tnum++) { |
| if (ha_thread_info[tnum-1].tg == &ha_tgroup_info[tgroup-1]) { |
| ha_warning("parsing [%s:%d] : '%s %ld': thread %ld assigned more than once on the same line.\n", |
| file, line, args[0], tgroup, tnum); |
| } else if (ha_thread_info[tnum-1].tg) { |
| ha_warning("parsing [%s:%d] : '%s %ld': thread %ld was previously assigned to thread group %ld and will be overridden.\n", |
| file, line, args[0], tgroup, tnum, |
| (long)(ha_thread_info[tnum-1].tg - &ha_tgroup_info[0] + 1)); |
| } |
| |
| if (!ha_tgroup_info[tgroup-1].count) { |
| ha_tgroup_info[tgroup-1].base = tnum-1; |
| ha_tgroup_info[tgroup-1].count = 1; |
| } |
| else if (tnum >= ha_tgroup_info[tgroup-1].base + ha_tgroup_info[tgroup-1].count) { |
| ha_tgroup_info[tgroup-1].count = tnum - ha_tgroup_info[tgroup-1].base; |
| } |
| else if (tnum < ha_tgroup_info[tgroup-1].base) { |
| ha_tgroup_info[tgroup-1].count += ha_tgroup_info[tgroup-1].base - tnum-1; |
| ha_tgroup_info[tgroup-1].base = tnum - 1; |
| } |
| |
| ha_thread_info[tnum-1].tgid = tgroup; |
| ha_thread_info[tnum-1].tg = &ha_tgroup_info[tgroup-1]; |
| ha_thread_info[tnum-1].tg_ctx = &ha_tgroup_ctx[tgroup-1]; |
| tot++; |
| } |
| } |
| |
| if (ha_tgroup_info[tgroup-1].count > tot) { |
| memprintf(err, "'%s %ld' assigned sparse threads, only contiguous supported", args[0], tgroup); |
| return -1; |
| } |
| |
| if (ha_tgroup_info[tgroup-1].count > MAX_THREADS_PER_GROUP) { |
| memprintf(err, "'%s %ld' assigned too many threads (%d, max=%d)", args[0], tgroup, tot, MAX_THREADS_PER_GROUP); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* Parse the "thread-groups" global directive, which takes an integer argument |
| * that contains the desired number of thread groups. |
| */ |
| static int cfg_parse_thread_groups(char **args, int section_type, struct proxy *curpx, |
| const struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| long nbtgroups; |
| char *errptr; |
| |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| |
| if (non_global_section_parsed == 1) { |
| memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]); |
| return -1; |
| } |
| |
| nbtgroups = strtol(args[1], &errptr, 10); |
| if (!*args[1] || *errptr) { |
| memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]); |
| return -1; |
| } |
| |
| #ifndef USE_THREAD |
| if (nbtgroups != 1) { |
| memprintf(err, "'%s' specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD", args[0]); |
| return -1; |
| } |
| #else |
| if (nbtgroups < 1 || nbtgroups > MAX_TGROUPS) { |
| memprintf(err, "'%s' value must be between 1 and %d (was %ld)", args[0], MAX_TGROUPS, nbtgroups); |
| return -1; |
| } |
| #endif |
| |
| HA_DIAG_WARNING_COND(global.nbtgroups, |
| "parsing [%s:%d] : '%s' is already defined and will be overridden.\n", |
| file, line, args[0]); |
| |
| global.nbtgroups = nbtgroups; |
| return 0; |
| } |
| |
| /* config keyword parsers */ |
| static struct cfg_kw_list cfg_kws = {ILH, { |
| { CFG_GLOBAL, "nbthread", cfg_parse_nbthread, 0 }, |
| { CFG_GLOBAL, "thread-group", cfg_parse_thread_group, 0 }, |
| { CFG_GLOBAL, "thread-groups", cfg_parse_thread_groups, 0 }, |
| { 0, NULL, NULL } |
| }}; |
| |
| INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); |