blob: 12987a6893691f8646016ac1e242b71519a811da [file] [log] [blame]
Simon Glass16134fd2011-08-30 06:23:13 +00001/*
2 * Copyright (c) 2011 The Chromium OS Authors.
3 * See file CREDITS for list of people who contributed to this
4 * project.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of
9 * the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
20 */
21
Allen Martin55d98a12012-08-31 08:30:00 +000022/* Tegra20 Clock control functions */
Simon Glass16134fd2011-08-30 06:23:13 +000023
Tom Warrenab371962012-09-19 15:50:56 -070024#include <common.h>
Simon Glass16134fd2011-08-30 06:23:13 +000025#include <asm/io.h>
Simon Glass16134fd2011-08-30 06:23:13 +000026#include <asm/arch/clock.h>
Tom Warrenab371962012-09-19 15:50:56 -070027#include <asm/arch/tegra.h>
28#include <asm/arch-tegra/clk_rst.h>
29#include <asm/arch-tegra/timer.h>
Simon Glassc2ea5e42011-09-21 12:40:04 +000030#include <div64.h>
Simon Glass2966cd22012-03-06 17:10:27 +000031#include <fdtdec.h>
Simon Glass16134fd2011-08-30 06:23:13 +000032
Simon Glass16134fd2011-08-30 06:23:13 +000033/*
Simon Glassc2ea5e42011-09-21 12:40:04 +000034 * This is our record of the current clock rate of each clock. We don't
35 * fill all of these in since we are only really interested in clocks which
36 * we use as parents.
37 */
38static unsigned pll_rate[CLOCK_ID_COUNT];
39
40/*
41 * The oscillator frequency is fixed to one of four set values. Based on this
42 * the other clocks are set up appropriately.
43 */
44static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
45 13000000,
46 19200000,
47 12000000,
48 26000000,
49};
50
51/*
Allen Martin55d98a12012-08-31 08:30:00 +000052 * Clock types that we can use as a source. The Tegra20 has muxes for the
Simon Glassc2ea5e42011-09-21 12:40:04 +000053 * peripheral clocks, and in most cases there are four options for the clock
54 * source. This gives us a clock 'type' and exploits what commonality exists
55 * in the device.
56 *
57 * Letters are obvious, except for T which means CLK_M, and S which means the
58 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
59 * datasheet) and PLL_M are different things. The former is the basic
60 * clock supplied to the SOC from an external oscillator. The latter is the
61 * memory clock PLL.
62 *
63 * See definitions in clock_id in the header file.
64 */
65enum clock_type_id {
66 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
67 CLOCK_TYPE_MCPA, /* and so on */
68 CLOCK_TYPE_MCPT,
69 CLOCK_TYPE_PCM,
70 CLOCK_TYPE_PCMT,
Simon Glassd2430222012-02-03 15:13:54 +000071 CLOCK_TYPE_PCMT16, /* CLOCK_TYPE_PCMT with 16-bit divider */
Simon Glassc2ea5e42011-09-21 12:40:04 +000072 CLOCK_TYPE_PCXTS,
73 CLOCK_TYPE_PDCT,
74
75 CLOCK_TYPE_COUNT,
76 CLOCK_TYPE_NONE = -1, /* invalid clock type */
77};
78
79/* return 1 if a peripheral ID is in range */
80#define clock_type_id_isvalid(id) ((id) >= 0 && \
81 (id) < CLOCK_TYPE_COUNT)
82
83char pllp_valid = 1; /* PLLP is set up correctly */
84
85enum {
86 CLOCK_MAX_MUX = 4 /* number of source options for each clock */
87};
88
89/*
90 * Clock source mux for each clock type. This just converts our enum into
91 * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
92 * is special as it has 5 sources. Since it also has a different number of
93 * bits in its register for the source, we just handle it with a special
94 * case in the code.
95 */
96#define CLK(x) CLOCK_ID_ ## x
97static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
98 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) },
99 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) },
100 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) },
101 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) },
102 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
Simon Glassd2430222012-02-03 15:13:54 +0000103 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
Simon Glassc2ea5e42011-09-21 12:40:04 +0000104 { CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) },
105 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) },
106};
107
108/*
109 * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
110 * not in the header file since it is for purely internal use - we want
111 * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
112 * confusion bewteen PERIPH_ID_... and PERIPHC_...
113 *
114 * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
115 * confusing.
116 *
117 * Note to SOC vendors: perhaps define a unified numbering for peripherals and
118 * use it for reset, clock enable, clock source/divider and even pinmuxing
119 * if you can.
120 */
121enum periphc_internal_id {
122 /* 0x00 */
123 PERIPHC_I2S1,
124 PERIPHC_I2S2,
125 PERIPHC_SPDIF_OUT,
126 PERIPHC_SPDIF_IN,
127 PERIPHC_PWM,
128 PERIPHC_SPI1,
129 PERIPHC_SPI2,
130 PERIPHC_SPI3,
131
132 /* 0x08 */
133 PERIPHC_XIO,
134 PERIPHC_I2C1,
135 PERIPHC_DVC_I2C,
136 PERIPHC_TWC,
137 PERIPHC_0c,
138 PERIPHC_10, /* PERIPHC_SPI1, what is this really? */
139 PERIPHC_DISP1,
140 PERIPHC_DISP2,
141
142 /* 0x10 */
143 PERIPHC_CVE,
144 PERIPHC_IDE0,
145 PERIPHC_VI,
146 PERIPHC_1c,
147 PERIPHC_SDMMC1,
148 PERIPHC_SDMMC2,
149 PERIPHC_G3D,
150 PERIPHC_G2D,
151
152 /* 0x18 */
153 PERIPHC_NDFLASH,
154 PERIPHC_SDMMC4,
155 PERIPHC_VFIR,
156 PERIPHC_EPP,
157 PERIPHC_MPE,
158 PERIPHC_MIPI,
159 PERIPHC_UART1,
160 PERIPHC_UART2,
161
162 /* 0x20 */
163 PERIPHC_HOST1X,
164 PERIPHC_21,
165 PERIPHC_TVO,
166 PERIPHC_HDMI,
167 PERIPHC_24,
168 PERIPHC_TVDAC,
169 PERIPHC_I2C2,
170 PERIPHC_EMC,
171
172 /* 0x28 */
173 PERIPHC_UART3,
174 PERIPHC_29,
175 PERIPHC_VI_SENSOR,
176 PERIPHC_2b,
177 PERIPHC_2c,
178 PERIPHC_SPI4,
179 PERIPHC_I2C3,
180 PERIPHC_SDMMC3,
181
182 /* 0x30 */
183 PERIPHC_UART4,
184 PERIPHC_UART5,
185 PERIPHC_VDE,
186 PERIPHC_OWR,
187 PERIPHC_NOR,
188 PERIPHC_CSITE,
189
190 PERIPHC_COUNT,
191
192 PERIPHC_NONE = -1,
193};
194
195/* return 1 if a periphc_internal_id is in range */
196#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
197 (id) < PERIPHC_COUNT)
198
199/*
200 * Clock type for each peripheral clock source. We put the name in each
201 * record just so it is easy to match things up
202 */
203#define TYPE(name, type) type
204static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
205 /* 0x00 */
206 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
207 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
208 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
209 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
210 TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS),
211 TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
212 TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT),
213 TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT),
214
215 /* 0x08 */
216 TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT),
Simon Glassd2430222012-02-03 15:13:54 +0000217 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
218 TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
Simon Glassc2ea5e42011-09-21 12:40:04 +0000219 TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT),
220 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
221 TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
222 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT),
223 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT),
224
225 /* 0x10 */
226 TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
227 TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT),
228 TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
229 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
230 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
231 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
232 TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
233 TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
234
235 /* 0x18 */
236 TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
237 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
238 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
239 TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
240 TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
241 TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT),
242 TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
243 TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
244
245 /* 0x20 */
246 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
247 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
248 TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
249 TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT),
250 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
251 TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
Simon Glassd2430222012-02-03 15:13:54 +0000252 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
Simon Glassc2ea5e42011-09-21 12:40:04 +0000253 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
254
255 /* 0x28 */
256 TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
257 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
258 TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
259 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
260 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
261 TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT),
Simon Glassd2430222012-02-03 15:13:54 +0000262 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
Simon Glassc2ea5e42011-09-21 12:40:04 +0000263 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
264
265 /* 0x30 */
266 TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
267 TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
268 TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
269 TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
270 TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
271 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
272};
273
274/*
275 * This array translates a periph_id to a periphc_internal_id
276 *
277 * Not present/matched up:
278 * uint vi_sensor; _VI_SENSOR_0, 0x1A8
279 * SPDIF - which is both 0x08 and 0x0c
280 *
281 */
282#define NONE(name) (-1)
283#define OFFSET(name, value) PERIPHC_ ## name
284static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
285 /* Low word: 31:0 */
286 NONE(CPU),
287 NONE(RESERVED1),
288 NONE(RESERVED2),
289 NONE(AC97),
290 NONE(RTC),
291 NONE(TMR),
292 PERIPHC_UART1,
293 PERIPHC_UART2, /* and vfir 0x68 */
294
295 /* 0x08 */
296 NONE(GPIO),
297 PERIPHC_SDMMC2,
298 NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
299 PERIPHC_I2S1,
300 PERIPHC_I2C1,
301 PERIPHC_NDFLASH,
302 PERIPHC_SDMMC1,
303 PERIPHC_SDMMC4,
304
305 /* 0x10 */
306 PERIPHC_TWC,
307 PERIPHC_PWM,
308 PERIPHC_I2S2,
309 PERIPHC_EPP,
310 PERIPHC_VI,
311 PERIPHC_G2D,
312 NONE(USBD),
313 NONE(ISP),
314
315 /* 0x18 */
316 PERIPHC_G3D,
317 PERIPHC_IDE0,
318 PERIPHC_DISP2,
319 PERIPHC_DISP1,
320 PERIPHC_HOST1X,
321 NONE(VCP),
322 NONE(RESERVED30),
323 NONE(CACHE2),
324
325 /* Middle word: 63:32 */
326 NONE(MEM),
327 NONE(AHBDMA),
328 NONE(APBDMA),
329 NONE(RESERVED35),
330 NONE(KBC),
331 NONE(STAT_MON),
332 NONE(PMC),
333 NONE(FUSE),
334
335 /* 0x28 */
336 NONE(KFUSE),
337 NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
338 PERIPHC_NOR,
339 PERIPHC_SPI1,
340 PERIPHC_SPI2,
341 PERIPHC_XIO,
342 PERIPHC_SPI3,
343 PERIPHC_DVC_I2C,
344
345 /* 0x30 */
346 NONE(DSI),
347 PERIPHC_TVO, /* also CVE 0x40 */
348 PERIPHC_MIPI,
349 PERIPHC_HDMI,
350 PERIPHC_CSITE,
351 PERIPHC_TVDAC,
352 PERIPHC_I2C2,
353 PERIPHC_UART3,
354
355 /* 0x38 */
356 NONE(RESERVED56),
357 PERIPHC_EMC,
358 NONE(USB2),
359 NONE(USB3),
360 PERIPHC_MPE,
361 PERIPHC_VDE,
362 NONE(BSEA),
363 NONE(BSEV),
364
365 /* Upper word 95:64 */
366 NONE(SPEEDO),
367 PERIPHC_UART4,
368 PERIPHC_UART5,
369 PERIPHC_I2C3,
370 PERIPHC_SPI4,
371 PERIPHC_SDMMC3,
372 NONE(PCIE),
373 PERIPHC_OWR,
374
375 /* 0x48 */
376 NONE(AFI),
377 NONE(CORESIGHT),
378 NONE(RESERVED74),
379 NONE(AVPUCQ),
380 NONE(RESERVED76),
381 NONE(RESERVED77),
382 NONE(RESERVED78),
383 NONE(RESERVED79),
384
385 /* 0x50 */
386 NONE(RESERVED80),
387 NONE(RESERVED81),
388 NONE(RESERVED82),
389 NONE(RESERVED83),
390 NONE(IRAMA),
391 NONE(IRAMB),
392 NONE(IRAMC),
393 NONE(IRAMD),
394
395 /* 0x58 */
396 NONE(CRAM2),
397};
398
Lucas Stachf7ee2a42012-09-25 20:21:13 +0000399/* number of clock outputs of a PLL */
400static const u8 pll_num_clkouts[] = {
401 1, /* PLLC */
402 1, /* PLLM */
403 4, /* PLLP */
404 1, /* PLLA */
405 0, /* PLLU */
406 0, /* PLLD */
407};
408
Simon Glassc2ea5e42011-09-21 12:40:04 +0000409/*
Simon Glass16134fd2011-08-30 06:23:13 +0000410 * Get the oscillator frequency, from the corresponding hardware configuration
411 * field.
412 */
413enum clock_osc_freq clock_get_osc_freq(void)
414{
415 struct clk_rst_ctlr *clkrst =
416 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
417 u32 reg;
418
419 reg = readl(&clkrst->crc_osc_ctrl);
420 return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
421}
422
Simon Glass01df75f2012-04-02 13:18:47 +0000423int clock_get_osc_bypass(void)
424{
425 struct clk_rst_ctlr *clkrst =
426 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
427 u32 reg;
428
429 reg = readl(&clkrst->crc_osc_ctrl);
430 return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
431}
432
Simon Glassc2ea5e42011-09-21 12:40:04 +0000433/* Returns a pointer to the registers of the given pll */
434static struct clk_pll *get_pll(enum clock_id clkid)
Simon Glass16134fd2011-08-30 06:23:13 +0000435{
436 struct clk_rst_ctlr *clkrst =
437 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
Simon Glass16134fd2011-08-30 06:23:13 +0000438
Simon Glass563b46f2012-04-19 08:04:39 +0000439 assert(clock_id_is_pll(clkid));
Simon Glassc2ea5e42011-09-21 12:40:04 +0000440 return &clkrst->crc_pll[clkid];
441}
442
Simon Glass01df75f2012-04-02 13:18:47 +0000443int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
444 u32 *divp, u32 *cpcon, u32 *lfcon)
445{
446 struct clk_pll *pll = get_pll(clkid);
447 u32 data;
448
449 assert(clkid != CLOCK_ID_USB);
450
451 /* Safety check, adds to code size but is small */
Simon Glass563b46f2012-04-19 08:04:39 +0000452 if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
Simon Glass01df75f2012-04-02 13:18:47 +0000453 return -1;
454 data = readl(&pll->pll_base);
455 *divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
456 *divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
457 *divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
458 data = readl(&pll->pll_misc);
459 *cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
460 *lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
461
462 return 0;
463}
464
Simon Glassc2ea5e42011-09-21 12:40:04 +0000465unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
466 u32 divp, u32 cpcon, u32 lfcon)
467{
468 struct clk_pll *pll = get_pll(clkid);
469 u32 data;
Simon Glass16134fd2011-08-30 06:23:13 +0000470
471 /*
472 * We cheat by treating all PLL (except PLLU) in the same fashion.
473 * This works only because:
474 * - same fields are always mapped at same offsets, except DCCON
475 * - DCCON is always 0, doesn't conflict
476 * - M,N, P of PLLP values are ignored for PLLP
477 */
478 data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
479 writel(data, &pll->pll_misc);
480
481 data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
482 (0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
483
Simon Glass069784e2011-09-21 12:40:02 +0000484 if (clkid == CLOCK_ID_USB)
Simon Glass16134fd2011-08-30 06:23:13 +0000485 data |= divp << PLLU_VCO_FREQ_SHIFT;
486 else
487 data |= divp << PLL_DIVP_SHIFT;
488 writel(data, &pll->pll_base);
489
490 /* calculate the stable time */
491 return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
492}
493
Simon Glassc2ea5e42011-09-21 12:40:04 +0000494/* return 1 if a peripheral ID is in range and valid */
495static int clock_periph_id_isvalid(enum periph_id id)
496{
497 if (id < PERIPH_ID_FIRST || id >= PERIPH_ID_COUNT)
498 printf("Peripheral id %d out of range\n", id);
499 else {
500 switch (id) {
501 case PERIPH_ID_RESERVED1:
502 case PERIPH_ID_RESERVED2:
503 case PERIPH_ID_RESERVED30:
504 case PERIPH_ID_RESERVED35:
505 case PERIPH_ID_RESERVED56:
506 case PERIPH_ID_RESERVED74:
507 case PERIPH_ID_RESERVED76:
508 case PERIPH_ID_RESERVED77:
509 case PERIPH_ID_RESERVED78:
510 case PERIPH_ID_RESERVED79:
511 case PERIPH_ID_RESERVED80:
512 case PERIPH_ID_RESERVED81:
513 case PERIPH_ID_RESERVED82:
514 case PERIPH_ID_RESERVED83:
Lucas Stache6941782012-09-25 09:59:12 +0000515 case PERIPH_ID_RESERVED91:
Simon Glassc2ea5e42011-09-21 12:40:04 +0000516 printf("Peripheral id %d is reserved\n", id);
517 break;
518 default:
519 return 1;
520 }
521 }
522 return 0;
523}
524
525/* Returns a pointer to the clock source register for a peripheral */
526static u32 *get_periph_source_reg(enum periph_id periph_id)
527{
528 struct clk_rst_ctlr *clkrst =
529 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
530 enum periphc_internal_id internal_id;
531
532 assert(clock_periph_id_isvalid(periph_id));
533 internal_id = periph_id_to_internal_id[periph_id];
534 assert(internal_id != -1);
535 return &clkrst->crc_clk_src[internal_id];
536}
537
538void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
539 unsigned divisor)
540{
541 u32 *reg = get_periph_source_reg(periph_id);
542 u32 value;
543
544 value = readl(reg);
545
546 value &= ~OUT_CLK_SOURCE_MASK;
547 value |= source << OUT_CLK_SOURCE_SHIFT;
548
549 value &= ~OUT_CLK_DIVISOR_MASK;
550 value |= divisor << OUT_CLK_DIVISOR_SHIFT;
551
552 writel(value, reg);
553}
554
555void clock_ll_set_source(enum periph_id periph_id, unsigned source)
556{
557 u32 *reg = get_periph_source_reg(periph_id);
558
559 clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
560 source << OUT_CLK_SOURCE_SHIFT);
561}
562
563/**
564 * Given the parent's rate and the required rate for the children, this works
565 * out the peripheral clock divider to use, in 7.1 binary format.
566 *
Simon Glassd2430222012-02-03 15:13:54 +0000567 * @param divider_bits number of divider bits (8 or 16)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000568 * @param parent_rate clock rate of parent clock in Hz
569 * @param rate required clock rate for this clock
570 * @return divider which should be used
571 */
Simon Glassd2430222012-02-03 15:13:54 +0000572static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
573 unsigned long rate)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000574{
575 u64 divider = parent_rate * 2;
Simon Glassd2430222012-02-03 15:13:54 +0000576 unsigned max_divider = 1 << divider_bits;
Simon Glassc2ea5e42011-09-21 12:40:04 +0000577
578 divider += rate - 1;
579 do_div(divider, rate);
580
581 if ((s64)divider - 2 < 0)
582 return 0;
583
Simon Glassd2430222012-02-03 15:13:54 +0000584 if ((s64)divider - 2 >= max_divider)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000585 return -1;
586
587 return divider - 2;
588}
589
590/**
591 * Given the parent's rate and the divider in 7.1 format, this works out the
592 * resulting peripheral clock rate.
593 *
594 * @param parent_rate clock rate of parent clock in Hz
595 * @param divider which should be used in 7.1 format
596 * @return effective clock rate of peripheral
597 */
598static unsigned long get_rate_from_divider(unsigned long parent_rate,
599 int divider)
600{
601 u64 rate;
602
603 rate = (u64)parent_rate * 2;
604 do_div(rate, divider + 2);
605 return rate;
606}
607
608unsigned long clock_get_periph_rate(enum periph_id periph_id,
609 enum clock_id parent)
610{
611 u32 *reg = get_periph_source_reg(periph_id);
612
613 return get_rate_from_divider(pll_rate[parent],
614 (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
615}
616
Lucas Stachf7ee2a42012-09-25 20:21:13 +0000617int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
618{
619 struct clk_pll *pll = get_pll(clkid);
620 int data = 0, div = 0, offset = 0;
621
622 if (!clock_id_is_pll(clkid))
623 return -1;
624
625 if (pllout + 1 > pll_num_clkouts[clkid])
626 return -1;
627
628 div = clk_get_divider(8, pll_rate[clkid], rate);
629
630 if (div < 0)
631 return -1;
632
633 /* out2 and out4 are in the high part of the register */
634 if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
635 offset = 16;
636
637 data = (div << PLL_OUT_RATIO_SHIFT) |
638 PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
639 clrsetbits_le32(&pll->pll_out[pllout >> 1],
640 PLL_OUT_RATIO_MASK << offset, data << offset);
641
642 return 0;
643}
644
Simon Glassc2ea5e42011-09-21 12:40:04 +0000645/**
646 * Find the best available 7.1 format divisor given a parent clock rate and
647 * required child clock rate. This function assumes that a second-stage
648 * divisor is available which can divide by powers of 2 from 1 to 256.
649 *
Simon Glassd2430222012-02-03 15:13:54 +0000650 * @param divider_bits number of divider bits (8 or 16)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000651 * @param parent_rate clock rate of parent clock in Hz
652 * @param rate required clock rate for this clock
653 * @param extra_div value for the second-stage divisor (not set if this
654 * function returns -1.
655 * @return divider which should be used, or -1 if nothing is valid
656 *
657 */
Simon Glassd2430222012-02-03 15:13:54 +0000658static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
659 unsigned long rate, int *extra_div)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000660{
661 int shift;
662 int best_divider = -1;
663 int best_error = rate;
664
665 /* try dividers from 1 to 256 and find closest match */
666 for (shift = 0; shift <= 8 && best_error > 0; shift++) {
667 unsigned divided_parent = parent_rate >> shift;
Simon Glassd2430222012-02-03 15:13:54 +0000668 int divider = clk_get_divider(divider_bits, divided_parent,
669 rate);
Simon Glassc2ea5e42011-09-21 12:40:04 +0000670 unsigned effective_rate = get_rate_from_divider(divided_parent,
671 divider);
672 int error = rate - effective_rate;
673
674 /* Given a valid divider, look for the lowest error */
675 if (divider != -1 && error < best_error) {
676 best_error = error;
677 *extra_div = 1 << shift;
678 best_divider = divider;
679 }
680 }
681
682 /* return what we found - *extra_div will already be set */
683 return best_divider;
684}
685
686/**
687 * Given a peripheral ID and the required source clock, this returns which
688 * value should be programmed into the source mux for that peripheral.
689 *
690 * There is special code here to handle the one source type with 5 sources.
691 *
692 * @param periph_id peripheral to start
693 * @param source PLL id of required parent clock
694 * @param mux_bits Set to number of bits in mux register: 2 or 4
Simon Glassd2430222012-02-03 15:13:54 +0000695 * @param divider_bits Set to number of divider bits (8 or 16)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000696 * @return mux value (0-4, or -1 if not found)
697 */
698static int get_periph_clock_source(enum periph_id periph_id,
Simon Glassd2430222012-02-03 15:13:54 +0000699 enum clock_id parent, int *mux_bits, int *divider_bits)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000700{
701 enum clock_type_id type;
702 enum periphc_internal_id internal_id;
703 int mux;
704
705 assert(clock_periph_id_isvalid(periph_id));
706
707 internal_id = periph_id_to_internal_id[periph_id];
708 assert(periphc_internal_id_isvalid(internal_id));
709
710 type = clock_periph_type[internal_id];
711 assert(clock_type_id_isvalid(type));
712
Simon Glassd2430222012-02-03 15:13:54 +0000713 /*
714 * Special cases here for the clock with a 4-bit source mux and I2C
715 * with its 16-bit divisor
716 */
Simon Glassc2ea5e42011-09-21 12:40:04 +0000717 if (type == CLOCK_TYPE_PCXTS)
718 *mux_bits = 4;
719 else
720 *mux_bits = 2;
Simon Glassd2430222012-02-03 15:13:54 +0000721 if (type == CLOCK_TYPE_PCMT16)
722 *divider_bits = 16;
723 else
724 *divider_bits = 8;
Simon Glassc2ea5e42011-09-21 12:40:04 +0000725
726 for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
727 if (clock_source[type][mux] == parent)
728 return mux;
729
730 /*
731 * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
732 * which is not in our table. If not, then they are asking for a
733 * source which this peripheral can't access through its mux.
734 */
735 assert(type == CLOCK_TYPE_PCXTS);
736 assert(parent == CLOCK_ID_SFROM32KHZ);
737 if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
738 return 4; /* mux value for this clock */
739
740 /* if we get here, either us or the caller has made a mistake */
741 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
742 parent);
743 return -1;
744}
745
746/**
747 * Adjust peripheral PLL to use the given divider and source.
748 *
749 * @param periph_id peripheral to adjust
Simon Glassd2430222012-02-03 15:13:54 +0000750 * @param source Source number (0-3 or 0-7)
751 * @param mux_bits Number of mux bits (2 or 4)
752 * @param divider Required divider in 7.1 or 15.1 format
Simon Glassc2ea5e42011-09-21 12:40:04 +0000753 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
754 * for this peripheral)
755 */
Simon Glassd2430222012-02-03 15:13:54 +0000756static int adjust_periph_pll(enum periph_id periph_id, int source,
757 int mux_bits, unsigned divider)
Simon Glassc2ea5e42011-09-21 12:40:04 +0000758{
759 u32 *reg = get_periph_source_reg(periph_id);
Simon Glassc2ea5e42011-09-21 12:40:04 +0000760
761 clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
762 divider << OUT_CLK_DIVISOR_SHIFT);
763 udelay(1);
764
765 /* work out the source clock and set it */
Simon Glassc2ea5e42011-09-21 12:40:04 +0000766 if (source < 0)
767 return -1;
768 if (mux_bits == 4) {
769 clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK,
770 source << OUT_CLK_SOURCE4_SHIFT);
771 } else {
772 clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
773 source << OUT_CLK_SOURCE_SHIFT);
774 }
775 udelay(2);
776 return 0;
777}
778
779unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
780 enum clock_id parent, unsigned rate, int *extra_div)
781{
782 unsigned effective_rate;
Simon Glassd2430222012-02-03 15:13:54 +0000783 int mux_bits, divider_bits, source;
Simon Glassc2ea5e42011-09-21 12:40:04 +0000784 int divider;
785
Simon Glassd2430222012-02-03 15:13:54 +0000786 /* work out the source clock and set it */
787 source = get_periph_clock_source(periph_id, parent, &mux_bits,
788 &divider_bits);
789
Simon Glassc2ea5e42011-09-21 12:40:04 +0000790 if (extra_div)
Simon Glassd2430222012-02-03 15:13:54 +0000791 divider = find_best_divider(divider_bits, pll_rate[parent],
792 rate, extra_div);
Simon Glassc2ea5e42011-09-21 12:40:04 +0000793 else
Simon Glassd2430222012-02-03 15:13:54 +0000794 divider = clk_get_divider(divider_bits, pll_rate[parent],
795 rate);
Simon Glassc2ea5e42011-09-21 12:40:04 +0000796 assert(divider >= 0);
Simon Glassd2430222012-02-03 15:13:54 +0000797 if (adjust_periph_pll(periph_id, source, mux_bits, divider))
Simon Glassc2ea5e42011-09-21 12:40:04 +0000798 return -1U;
799 debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
800 get_periph_source_reg(periph_id),
801 readl(get_periph_source_reg(periph_id)));
802
803 /* Check what we ended up with. This shouldn't matter though */
804 effective_rate = clock_get_periph_rate(periph_id, parent);
805 if (extra_div)
806 effective_rate /= *extra_div;
807 if (rate != effective_rate)
808 debug("Requested clock rate %u not honored (got %u)\n",
809 rate, effective_rate);
810 return effective_rate;
811}
812
813unsigned clock_start_periph_pll(enum periph_id periph_id,
814 enum clock_id parent, unsigned rate)
815{
816 unsigned effective_rate;
817
818 reset_set_enable(periph_id, 1);
819 clock_enable(periph_id);
820
821 effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
822 NULL);
823
824 reset_set_enable(periph_id, 0);
825 return effective_rate;
826}
827
Simon Glass16134fd2011-08-30 06:23:13 +0000828void clock_set_enable(enum periph_id periph_id, int enable)
829{
830 struct clk_rst_ctlr *clkrst =
831 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
832 u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
833 u32 reg;
834
835 /* Enable/disable the clock to this peripheral */
836 assert(clock_periph_id_isvalid(periph_id));
837 reg = readl(clk);
838 if (enable)
839 reg |= PERIPH_MASK(periph_id);
840 else
841 reg &= ~PERIPH_MASK(periph_id);
842 writel(reg, clk);
843}
844
845void clock_enable(enum periph_id clkid)
846{
847 clock_set_enable(clkid, 1);
848}
849
850void clock_disable(enum periph_id clkid)
851{
852 clock_set_enable(clkid, 0);
853}
854
855void reset_set_enable(enum periph_id periph_id, int enable)
856{
857 struct clk_rst_ctlr *clkrst =
858 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
859 u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
860 u32 reg;
861
862 /* Enable/disable reset to the peripheral */
863 assert(clock_periph_id_isvalid(periph_id));
864 reg = readl(reset);
865 if (enable)
866 reg |= PERIPH_MASK(periph_id);
867 else
868 reg &= ~PERIPH_MASK(periph_id);
869 writel(reg, reset);
870}
871
872void reset_periph(enum periph_id periph_id, int us_delay)
873{
874 /* Put peripheral into reset */
875 reset_set_enable(periph_id, 1);
876 udelay(us_delay);
877
878 /* Remove reset */
879 reset_set_enable(periph_id, 0);
880
881 udelay(us_delay);
882}
883
884void reset_cmplx_set_enable(int cpu, int which, int reset)
885{
886 struct clk_rst_ctlr *clkrst =
887 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
888 u32 mask;
889
Allen Martin55d98a12012-08-31 08:30:00 +0000890 /* Form the mask, which depends on the cpu chosen. Tegra20 has 2 */
Simon Glass16134fd2011-08-30 06:23:13 +0000891 assert(cpu >= 0 && cpu < 2);
892 mask = which << cpu;
893
894 /* either enable or disable those reset for that CPU */
895 if (reset)
896 writel(mask, &clkrst->crc_cpu_cmplx_set);
897 else
898 writel(mask, &clkrst->crc_cpu_cmplx_clr);
899}
Simon Glassc2ea5e42011-09-21 12:40:04 +0000900
901unsigned clock_get_rate(enum clock_id clkid)
902{
903 struct clk_pll *pll;
904 u32 base;
905 u32 divm;
906 u64 parent_rate;
907 u64 rate;
908
909 parent_rate = osc_freq[clock_get_osc_freq()];
910 if (clkid == CLOCK_ID_OSC)
911 return parent_rate;
912
913 pll = get_pll(clkid);
914 base = readl(&pll->pll_base);
915
916 /* Oh for bf_unpack()... */
917 rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
918 divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
919 if (clkid == CLOCK_ID_USB)
920 divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
921 else
922 divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
923 do_div(rate, divm);
924 return rate;
925}
926
927/**
928 * Set the output frequency you want for each PLL clock.
929 * PLL output frequencies are programmed by setting their N, M and P values.
930 * The governing equations are:
931 * VCO = (Fi / m) * n, Fo = VCO / (2^p)
932 * where Fo is the output frequency from the PLL.
933 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
934 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
935 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
936 *
937 * @param n PLL feedback divider(DIVN)
938 * @param m PLL input divider(DIVN)
939 * @param p post divider(DIVP)
940 * @param cpcon base PLL charge pump(CPCON)
941 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
942 * be overriden), 1 if PLL is already correct
943 */
944static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
945{
946 u32 base_reg;
947 u32 misc_reg;
948 struct clk_pll *pll;
949
950 pll = get_pll(clkid);
951
952 base_reg = readl(&pll->pll_base);
953
954 /* Set BYPASS, m, n and p to PLL_BASE */
955 base_reg &= ~PLL_DIVM_MASK;
956 base_reg |= m << PLL_DIVM_SHIFT;
957
958 base_reg &= ~PLL_DIVN_MASK;
959 base_reg |= n << PLL_DIVN_SHIFT;
960
961 base_reg &= ~PLL_DIVP_MASK;
962 base_reg |= p << PLL_DIVP_SHIFT;
963
964 if (clkid == CLOCK_ID_PERIPH) {
965 /*
966 * If the PLL is already set up, check that it is correct
967 * and record this info for clock_verify() to check.
968 */
969 if (base_reg & PLL_BASE_OVRRIDE_MASK) {
970 base_reg |= PLL_ENABLE_MASK;
971 if (base_reg != readl(&pll->pll_base))
972 pllp_valid = 0;
973 return pllp_valid ? 1 : -1;
974 }
975 base_reg |= PLL_BASE_OVRRIDE_MASK;
976 }
977
978 base_reg |= PLL_BYPASS_MASK;
979 writel(base_reg, &pll->pll_base);
980
981 /* Set cpcon to PLL_MISC */
982 misc_reg = readl(&pll->pll_misc);
983 misc_reg &= ~PLL_CPCON_MASK;
984 misc_reg |= cpcon << PLL_CPCON_SHIFT;
985 writel(misc_reg, &pll->pll_misc);
986
987 /* Enable PLL */
988 base_reg |= PLL_ENABLE_MASK;
989 writel(base_reg, &pll->pll_base);
990
991 /* Disable BYPASS */
992 base_reg &= ~PLL_BYPASS_MASK;
993 writel(base_reg, &pll->pll_base);
994
995 return 0;
996}
997
Simon Glass2ffbb252011-11-28 15:04:37 +0000998void clock_ll_start_uart(enum periph_id periph_id)
999{
1000 /* Assert UART reset and enable clock */
1001 reset_set_enable(periph_id, 1);
1002 clock_enable(periph_id);
1003 clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
1004
1005 /* wait for 2us */
1006 udelay(2);
1007
1008 /* De-assert reset to UART */
1009 reset_set_enable(periph_id, 0);
1010}
1011
Simon Glass2966cd22012-03-06 17:10:27 +00001012#ifdef CONFIG_OF_CONTROL
1013/*
1014 * Convert a device tree clock ID to our peripheral ID. They are mostly
1015 * the same but we are very cautious so we check that a valid clock ID is
1016 * provided.
1017 *
Allen Martin55d98a12012-08-31 08:30:00 +00001018 * @param clk_id Clock ID according to tegra20 device tree binding
Simon Glass2966cd22012-03-06 17:10:27 +00001019 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
1020 */
1021static enum periph_id clk_id_to_periph_id(int clk_id)
1022{
1023 if (clk_id > 95)
1024 return PERIPH_ID_NONE;
1025
1026 switch (clk_id) {
1027 case 1:
1028 case 2:
1029 case 7:
1030 case 10:
1031 case 20:
1032 case 30:
1033 case 35:
1034 case 49:
1035 case 56:
1036 case 74:
1037 case 76:
1038 case 77:
1039 case 78:
1040 case 79:
1041 case 80:
1042 case 81:
1043 case 82:
1044 case 83:
1045 case 91:
1046 case 95:
1047 return PERIPH_ID_NONE;
1048 default:
1049 return clk_id;
1050 }
1051}
1052
1053int clock_decode_periph_id(const void *blob, int node)
1054{
1055 enum periph_id id;
1056 u32 cell[2];
1057 int err;
1058
1059 err = fdtdec_get_int_array(blob, node, "clocks", cell,
1060 ARRAY_SIZE(cell));
1061 if (err)
1062 return -1;
1063 id = clk_id_to_periph_id(cell[1]);
1064 assert(clock_periph_id_isvalid(id));
1065 return id;
1066}
1067#endif /* CONFIG_OF_CONTROL */
1068
Simon Glassc2ea5e42011-09-21 12:40:04 +00001069int clock_verify(void)
1070{
1071 struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
1072 u32 reg = readl(&pll->pll_base);
1073
1074 if (!pllp_valid) {
1075 printf("Warning: PLLP %x is not correct\n", reg);
1076 return -1;
1077 }
1078 debug("PLLX %x is correct\n", reg);
1079 return 0;
1080}
1081
1082void clock_early_init(void)
1083{
1084 /*
1085 * PLLP output frequency set to 216MHz
1086 * PLLC output frequency set to 600Mhz
1087 *
1088 * TODO: Can we calculate these values instead of hard-coding?
1089 */
1090 switch (clock_get_osc_freq()) {
1091 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
1092 clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
1093 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
1094 break;
1095
1096 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
1097 clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
1098 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
1099 break;
1100
Lucas Stacha5851fc2012-05-01 12:50:05 +00001101 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
1102 clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8);
1103 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
1104 break;
Simon Glassc2ea5e42011-09-21 12:40:04 +00001105 case CLOCK_OSC_FREQ_19_2:
1106 default:
1107 /*
1108 * These are not supported. It is too early to print a
1109 * message and the UART likely won't work anyway due to the
1110 * oscillator being wrong.
1111 */
1112 break;
1113 }
1114}
1115
1116void clock_init(void)
1117{
1118 pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
1119 pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
1120 pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
1121 pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
1122 pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
1123 debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
1124 debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
1125 debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
1126}