blob: e571e5a68686c8722687b94a26933a282cba8370 [file] [log] [blame]
Dinesh Maniyamf61a2212025-02-27 00:18:17 +08001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Cadence NAND flash controller driver
4 *
5 * Copyright (C) 2019 Cadence
6 *
7 * Author: Piotr Sroka <piotrs@cadence.com>
8 *
9 */
10
11#include <cadence-nand.h>
12#include <clk.h>
13#include <dm.h>
14#include <hang.h>
15#include <malloc.h>
16#include <memalign.h>
17#include <nand.h>
18#include <reset.h>
19#include <wait_bit.h>
20#include <dm/device_compat.h>
21#include <dm/devres.h>
22#include <linux/bitfield.h>
23#include <linux/bug.h>
24#include <linux/delay.h>
25#include <linux/dma-direction.h>
26#include <linux/dma-mapping.h>
27#include <linux/io.h>
28#include <linux/iopoll.h>
29#include <linux/ioport.h>
30#include <linux/printk.h>
31#include <linux/sizes.h>
32
33static inline struct
34cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
35{
36 return container_of(chip, struct cdns_nand_chip, chip);
37}
38
39static inline struct
40cadence_nand_info *to_cadence_nand_info(struct nand_hw_control *controller)
41{
42 return container_of(controller, struct cadence_nand_info, controller);
43}
44
45static bool
46cadence_nand_dma_buf_ok(struct cadence_nand_info *cadence, const void *buf,
47 u32 buf_len)
48{
49 u8 data_dma_width = cadence->caps2.data_dma_width;
50
51 return buf &&
52 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
53 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
54}
55
56static int cadence_nand_wait_for_value(struct cadence_nand_info *cadence,
57 u32 reg_offset, u32 timeout_us,
58 u32 mask, bool is_clear)
59{
60 u32 val;
61 int ret;
62
63 ret = readl_poll_sleep_timeout(cadence->reg + reg_offset,
64 val, !(val & mask) == is_clear,
65 10, timeout_us);
66
67 if (ret < 0) {
68 dev_err(cadence->dev,
69 "Timeout while waiting for reg %x with mask %x is clear %d\n",
70 reg_offset, mask, is_clear);
71 }
72
73 return ret;
74}
75
76static int cadence_nand_set_ecc_enable(struct cadence_nand_info *cadence,
77 bool enable)
78{
79 u32 reg;
80
81 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
82 TIMEOUT_US,
83 CTRL_STATUS_CTRL_BUSY, true))
84 return -ETIMEDOUT;
85
86 reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
87
88 if (enable)
89 reg |= ECC_CONFIG_0_ECC_EN;
90 else
91 reg &= ~ECC_CONFIG_0_ECC_EN;
92
93 writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
94
95 return 0;
96}
97
98static void cadence_nand_set_ecc_strength(struct cadence_nand_info *cadence,
99 u8 corr_str_idx)
100{
101 u32 reg;
102
103 if (cadence->curr_corr_str_idx == corr_str_idx)
104 return;
105
106 reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
107 reg &= ~ECC_CONFIG_0_CORR_STR;
108 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
109 writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
110
111 cadence->curr_corr_str_idx = corr_str_idx;
112}
113
114static int cadence_nand_get_ecc_strength_idx(struct cadence_nand_info *cadence,
115 u8 strength)
116{
117 int i, corr_str_idx = -1;
118
119 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
120 if (cadence->ecc_strengths[i] == strength) {
121 corr_str_idx = i;
122 break;
123 }
124 }
125
126 return corr_str_idx;
127}
128
129static int cadence_nand_set_skip_marker_val(struct cadence_nand_info *cadence,
130 u16 marker_value)
131{
132 u32 reg;
133
134 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
135 TIMEOUT_US,
136 CTRL_STATUS_CTRL_BUSY, true))
137 return -ETIMEDOUT;
138
139 reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF);
140 reg &= ~SKIP_BYTES_MARKER_VALUE;
141 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
142 marker_value);
143
144 writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF);
145
146 return 0;
147}
148
149static int cadence_nand_set_skip_bytes_conf(struct cadence_nand_info *cadence,
150 u8 num_of_bytes,
151 u32 offset_value,
152 int enable)
153{
154 u32 reg, skip_bytes_offset;
155
156 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
157 TIMEOUT_US,
158 CTRL_STATUS_CTRL_BUSY, true))
159 return -ETIMEDOUT;
160
161 if (!enable) {
162 num_of_bytes = 0;
163 offset_value = 0;
164 }
165
166 reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF);
167 reg &= ~SKIP_BYTES_NUM_OF_BYTES;
168 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
169 num_of_bytes);
170 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
171 offset_value);
172
173 writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF);
174 writel_relaxed(skip_bytes_offset, cadence->reg + SKIP_BYTES_OFFSET);
175
176 return 0;
177}
178
179/* Functions enables/disables hardware detection of erased data */
180static void cadence_nand_set_erase_detection(struct cadence_nand_info *cadence,
181 bool enable,
182 u8 bitflips_threshold)
183{
184 u32 reg;
185
186 reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
187
188 if (enable)
189 reg |= ECC_CONFIG_0_ERASE_DET_EN;
190 else
191 reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
192
193 writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
194 writel_relaxed(bitflips_threshold, cadence->reg + ECC_CONFIG_1);
195}
196
197static int cadence_nand_set_access_width16(struct cadence_nand_info *cadence,
198 bool bit_bus16)
199{
200 u32 reg;
201
202 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
203 TIMEOUT_US,
204 CTRL_STATUS_CTRL_BUSY, true))
205 return -ETIMEDOUT;
206
207 reg = readl_relaxed(cadence->reg + COMMON_SET);
208 if (!bit_bus16)
209 reg &= ~COMMON_SET_DEVICE_16BIT;
210 else
211 reg |= COMMON_SET_DEVICE_16BIT;
212 writel_relaxed(reg, cadence->reg + COMMON_SET);
213
214 return 0;
215}
216
217static void
218cadence_nand_clear_interrupt(struct cadence_nand_info *cadence,
219 struct cadence_nand_irq_status *irq_status)
220{
221 writel_relaxed(irq_status->status, cadence->reg + INTR_STATUS);
222 writel_relaxed(irq_status->trd_status,
223 cadence->reg + TRD_COMP_INT_STATUS);
224 writel_relaxed(irq_status->trd_error,
225 cadence->reg + TRD_ERR_INT_STATUS);
226}
227
228static void
229cadence_nand_read_int_status(struct cadence_nand_info *cadence,
230 struct cadence_nand_irq_status *irq_status)
231{
232 irq_status->status = readl_relaxed(cadence->reg + INTR_STATUS);
233 irq_status->trd_status = readl_relaxed(cadence->reg
234 + TRD_COMP_INT_STATUS);
235 irq_status->trd_error = readl_relaxed(cadence->reg
236 + TRD_ERR_INT_STATUS);
237}
238
239static u32 irq_detected(struct cadence_nand_info *cadence,
240 struct cadence_nand_irq_status *irq_status)
241{
242 cadence_nand_read_int_status(cadence, irq_status);
243
244 return irq_status->status || irq_status->trd_status ||
245 irq_status->trd_error;
246}
247
248static void cadence_nand_reset_irq(struct cadence_nand_info *cadence)
249{
250 memset(&cadence->irq_status, 0, sizeof(cadence->irq_status));
251 memset(&cadence->irq_mask, 0, sizeof(cadence->irq_mask));
252}
253
254/*
255 * This is the interrupt service routine. It handles all interrupts
256 * sent to this device.
257 */
258static irqreturn_t cadence_nand_isr(struct cadence_nand_info *cadence)
259{
260 struct cadence_nand_irq_status irq_status;
261 irqreturn_t result = IRQ_NONE;
262
263 if (irq_detected(cadence, &irq_status)) {
264 /* Handle interrupt. */
265 /* First acknowledge it. */
266 cadence_nand_clear_interrupt(cadence, &irq_status);
267 /* Status in the device context for someone to read. */
268 cadence->irq_status.status |= irq_status.status;
269 cadence->irq_status.trd_status |= irq_status.trd_status;
270 cadence->irq_status.trd_error |= irq_status.trd_error;
271 /* Tell the OS that we've handled this. */
272 result = IRQ_HANDLED;
273 }
274 return result;
275}
276
277static void cadence_nand_set_irq_mask(struct cadence_nand_info *cadence,
278 struct cadence_nand_irq_status *irq_mask)
279{
280 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
281 cadence->reg + INTR_ENABLE);
282
283 writel_relaxed(irq_mask->trd_error,
284 cadence->reg + TRD_ERR_INT_STATUS_EN);
285}
286
287static void
288cadence_nand_wait_for_irq(struct cadence_nand_info *cadence,
289 struct cadence_nand_irq_status *irq_mask,
290 struct cadence_nand_irq_status *irq_status)
291{
292 irqreturn_t result = IRQ_NONE;
293 u32 start = get_timer(0);
294
295 while (get_timer(start) < TIMEOUT_US) {
296 result = cadence_nand_isr(cadence);
297
298 if (result == IRQ_HANDLED) {
299 *irq_status = cadence->irq_status;
300 break;
301 }
302 udelay(1);
303 }
304
305 if (!result) {
306 /* Timeout error. */
307 dev_err(cadence->dev, "timeout occurred:\n");
308 dev_err(cadence->dev, "\tstatus = 0x%x, mask = 0x%x\n",
309 irq_status->status, irq_mask->status);
310 dev_err(cadence->dev,
311 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
312 irq_status->trd_status, irq_mask->trd_status);
313 dev_err(cadence->dev,
314 "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
315 irq_status->trd_error, irq_mask->trd_error);
316 }
317}
318
319/* Execute generic command on NAND controller. */
320static int cadence_nand_generic_cmd_send(struct cadence_nand_info *cadence,
321 u8 chip_nr,
322 u64 mini_ctrl_cmd)
323{
324 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
325
326 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
327 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
328 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
329
330 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
331 TIMEOUT_US,
332 CTRL_STATUS_CTRL_BUSY, true))
333 return -ETIMEDOUT;
334
335 cadence_nand_reset_irq(cadence);
336
337 writel_relaxed(mini_ctrl_cmd_l, cadence->reg + CMD_REG2);
338 writel_relaxed(mini_ctrl_cmd_h, cadence->reg + CMD_REG3);
339
340 /* Select generic command. */
341 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
342 /* Thread number. */
343 reg |= FIELD_PREP(CMD_REG0_TN, 0);
344
345 /* Issue command. */
346 writel_relaxed(reg, cadence->reg + CMD_REG0);
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +0800347 cadence->buf_index = 0;
Dinesh Maniyamf61a2212025-02-27 00:18:17 +0800348
349 return 0;
350}
351
352/* Wait for data on slave DMA interface. */
353static int cadence_nand_wait_on_sdma(struct cadence_nand_info *cadence, u8 *out_sdma_trd,
354 u32 *out_sdma_size)
355{
356 struct cadence_nand_irq_status irq_mask, irq_status;
357
358 irq_mask.trd_status = 0;
359 irq_mask.trd_error = 0;
360 irq_mask.status = INTR_STATUS_SDMA_TRIGG
361 | INTR_STATUS_SDMA_ERR
362 | INTR_STATUS_UNSUPP_CMD;
363
364 cadence_nand_set_irq_mask(cadence, &irq_mask);
365 cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status);
366 if (irq_status.status == 0) {
367 dev_err(cadence->dev, "Timeout while waiting for SDMA\n");
368 return -ETIMEDOUT;
369 }
370
371 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
372 *out_sdma_size = readl_relaxed(cadence->reg + SDMA_SIZE);
373 *out_sdma_trd = readl_relaxed(cadence->reg + SDMA_TRD_NUM);
374 *out_sdma_trd =
375 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
376 } else {
377 dev_err(cadence->dev, "SDMA error - irq_status %x\n",
378 irq_status.status);
379 return -EIO;
380 }
381
382 return 0;
383}
384
385static void cadence_nand_get_caps(struct cadence_nand_info *cadence)
386{
387 u32 reg;
388
389 reg = readl_relaxed(cadence->reg + CTRL_FEATURES);
390
391 cadence->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
392
393 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
394 cadence->caps2.data_dma_width = 8;
395 else
396 cadence->caps2.data_dma_width = 4;
397
398 if (reg & CTRL_FEATURES_CONTROL_DATA)
399 cadence->caps2.data_control_supp = true;
400
401 if (reg & (CTRL_FEATURES_NVDDR_2_3
402 | CTRL_FEATURES_NVDDR))
403 cadence->caps2.is_phy_type_dll = true;
404}
405
406/* Prepare CDMA descriptor. */
407static void
408cadence_nand_cdma_desc_prepare(struct cadence_nand_info *cadence,
409 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
410 dma_addr_t ctrl_data_ptr, u16 ctype)
411{
412 struct cadence_nand_cdma_desc *cdma_desc = cadence->cdma_desc;
413
414 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
415
416 /* Set fields for one descriptor. */
417 cdma_desc->flash_pointer = flash_ptr;
418 if (cadence->ctrl_rev >= 13)
419 cdma_desc->bank = nf_mem;
420 else
421 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
422
423 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
424 cdma_desc->command_flags |= CDMA_CF_INT;
425
426 cdma_desc->memory_pointer = mem_ptr;
427 cdma_desc->status = 0;
428 cdma_desc->sync_flag_pointer = 0;
429 cdma_desc->sync_arguments = 0;
430
431 cdma_desc->command_type = ctype;
432 cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
Dinesh Maniyamf110c572025-02-27 00:18:23 +0800433
434 flush_cache((dma_addr_t)cadence->cdma_desc,
435 ROUND(sizeof(struct cadence_nand_cdma_desc),
436 ARCH_DMA_MINALIGN));
Dinesh Maniyamf61a2212025-02-27 00:18:17 +0800437}
438
439static u8 cadence_nand_check_desc_error(struct cadence_nand_info *cadence,
440 u32 desc_status)
441{
442 if (desc_status & CDMA_CS_ERP)
443 return STAT_ERASED;
444
445 if (desc_status & CDMA_CS_UNCE)
446 return STAT_ECC_UNCORR;
447
448 if (desc_status & CDMA_CS_ERR) {
449 dev_err(cadence->dev, ":CDMA desc error flag detected.\n");
450 return STAT_FAIL;
451 }
452
453 if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
454 return STAT_ECC_CORR;
455
456 return STAT_FAIL;
457}
458
459static int cadence_nand_cdma_finish(struct cadence_nand_info *cadence)
460{
461 struct cadence_nand_cdma_desc *desc_ptr = cadence->cdma_desc;
462 u8 status = STAT_BUSY;
463
Dinesh Maniyamf110c572025-02-27 00:18:23 +0800464 invalidate_dcache_range((dma_addr_t)cadence->cdma_desc,
465 (dma_addr_t)cadence->cdma_desc +
466 ROUND(sizeof(struct cadence_nand_cdma_desc),
467 ARCH_DMA_MINALIGN));
468
Dinesh Maniyamf61a2212025-02-27 00:18:17 +0800469 if (desc_ptr->status & CDMA_CS_FAIL) {
470 status = cadence_nand_check_desc_error(cadence,
471 desc_ptr->status);
472 dev_err(cadence->dev, ":CDMA error %x\n", desc_ptr->status);
473 } else if (desc_ptr->status & CDMA_CS_COMP) {
474 /* Descriptor finished with no errors. */
475 if (desc_ptr->command_flags & CDMA_CF_CONT) {
476 dev_info(cadence->dev, "DMA unsupported flag is set");
477 status = STAT_UNKNOWN;
478 } else {
479 /* Last descriptor. */
480 status = STAT_OK;
481 }
482 }
483
484 return status;
485}
486
487static int cadence_nand_cdma_send(struct cadence_nand_info *cadence,
488 u8 thread)
489{
490 u32 reg;
491 int status;
492
493 /* Wait for thread ready. */
494 status = cadence_nand_wait_for_value(cadence, TRD_STATUS,
495 TIMEOUT_US,
496 BIT(thread), true);
497 if (status)
498 return status;
499
500 cadence_nand_reset_irq(cadence);
501
502 writel_relaxed((u32)cadence->dma_cdma_desc,
503 cadence->reg + CMD_REG2);
504 writel_relaxed(0, cadence->reg + CMD_REG3);
505
506 /* Select CDMA mode. */
507 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
508 /* Thread number. */
509 reg |= FIELD_PREP(CMD_REG0_TN, thread);
510 /* Issue command. */
511 writel_relaxed(reg, cadence->reg + CMD_REG0);
512
513 return 0;
514}
515
516/* Send SDMA command and wait for finish. */
517static u32
518cadence_nand_cdma_send_and_wait(struct cadence_nand_info *cadence,
519 u8 thread)
520{
521 struct cadence_nand_irq_status irq_mask, irq_status = {0};
522 int status;
Dinesh Maniyamcf651332025-02-27 00:18:24 +0800523 u32 val;
Dinesh Maniyamf61a2212025-02-27 00:18:17 +0800524
525 irq_mask.trd_status = BIT(thread);
526 irq_mask.trd_error = BIT(thread);
527 irq_mask.status = INTR_STATUS_CDMA_TERR;
528
529 cadence_nand_set_irq_mask(cadence, &irq_mask);
530
531 status = cadence_nand_cdma_send(cadence, thread);
532 if (status)
533 return status;
534
Dinesh Maniyamcf651332025-02-27 00:18:24 +0800535 /* Make sure the descriptor processing is complete */
536 status = readl_poll_timeout(cadence->reg + TRD_COMP_INT_STATUS, val,
537 (val & BIT(thread)), TIMEOUT_US);
538 if (status) {
539 pr_err("cmd thread completion timeout!\n");
540 return status;
541 }
542
Dinesh Maniyamf61a2212025-02-27 00:18:17 +0800543 cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status);
544
545 if (irq_status.status == 0 && irq_status.trd_status == 0 &&
546 irq_status.trd_error == 0) {
547 dev_err(cadence->dev, "CDMA command timeout\n");
548 return -ETIMEDOUT;
549 }
550 if (irq_status.status & irq_mask.status) {
551 dev_err(cadence->dev, "CDMA command failed\n");
552 return -EIO;
553 }
554
555 return 0;
556}
557
558/*
559 * ECC size depends on configured ECC strength and on maximum supported
560 * ECC step size.
561 */
562static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
563{
564 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
565
566 return ALIGN(nbytes, 2);
567}
568
569#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
570 static int \
571 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
572 int strength)\
573 {\
574 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
575 }
576
577CADENCE_NAND_CALC_ECC_BYTES(256)
578CADENCE_NAND_CALC_ECC_BYTES(512)
579CADENCE_NAND_CALC_ECC_BYTES(1024)
580CADENCE_NAND_CALC_ECC_BYTES(2048)
581CADENCE_NAND_CALC_ECC_BYTES(4096)
582
583/* Function reads BCH capabilities. */
584static int cadence_nand_read_bch_caps(struct cadence_nand_info *cadence)
585{
586 struct nand_ecc_caps *ecc_caps = &cadence->ecc_caps;
587 int max_step_size = 0, nstrengths, i;
588 u32 reg;
589
590 reg = readl_relaxed(cadence->reg + BCH_CFG_3);
591 cadence->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
592 if (cadence->bch_metadata_size < 4) {
593 dev_err(cadence->dev,
594 "Driver needs at least 4 bytes of BCH meta data\n");
595 return -EIO;
596 }
597
598 reg = readl_relaxed(cadence->reg + BCH_CFG_0);
599 cadence->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
600 cadence->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
601 cadence->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
602 cadence->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
603
604 reg = readl_relaxed(cadence->reg + BCH_CFG_1);
605 cadence->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
606 cadence->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
607 cadence->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
608 cadence->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
609
610 reg = readl_relaxed(cadence->reg + BCH_CFG_2);
611 cadence->ecc_stepinfos[0].stepsize =
612 FIELD_GET(BCH_CFG_2_SECT_0, reg);
613
614 cadence->ecc_stepinfos[1].stepsize =
615 FIELD_GET(BCH_CFG_2_SECT_1, reg);
616
617 nstrengths = 0;
618 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
619 if (cadence->ecc_strengths[i] != 0)
620 nstrengths++;
621 }
622
623 ecc_caps->nstepinfos = 0;
624 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
625 /* ECC strengths are common for all step infos. */
626 cadence->ecc_stepinfos[i].nstrengths = nstrengths;
627 cadence->ecc_stepinfos[i].strengths =
628 cadence->ecc_strengths;
629
630 if (cadence->ecc_stepinfos[i].stepsize != 0)
631 ecc_caps->nstepinfos++;
632
633 if (cadence->ecc_stepinfos[i].stepsize > max_step_size)
634 max_step_size = cadence->ecc_stepinfos[i].stepsize;
635 }
636 ecc_caps->stepinfos = &cadence->ecc_stepinfos[0];
637
638 switch (max_step_size) {
639 case 256:
640 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
641 break;
642 case 512:
643 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
644 break;
645 case 1024:
646 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
647 break;
648 case 2048:
649 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
650 break;
651 case 4096:
652 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
653 break;
654 default:
655 dev_err(cadence->dev,
656 "Unsupported sector size(ecc step size) %d\n",
657 max_step_size);
658 return -EIO;
659 }
660
661 return 0;
662}
663
664/* Hardware initialization. */
665static int cadence_nand_hw_init(struct cadence_nand_info *cadence)
666{
667 int status;
668 u32 reg;
669
670 status = cadence_nand_wait_for_value(cadence, CTRL_STATUS,
671 TIMEOUT_US,
672 CTRL_STATUS_INIT_COMP, false);
673 if (status)
674 return status;
675
676 reg = readl_relaxed(cadence->reg + CTRL_VERSION);
677 cadence->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
678
679 dev_info(cadence->dev,
680 "%s: cadence nand controller version reg %x\n",
681 __func__, reg);
682
683 /* Disable cache and multiplane. */
684 writel_relaxed(0, cadence->reg + MULTIPLANE_CFG);
685 writel_relaxed(0, cadence->reg + CACHE_CFG);
686
687 /* Clear all interrupts. */
688 writel_relaxed(0xFFFFFFFF, cadence->reg + INTR_STATUS);
689
690 cadence_nand_get_caps(cadence);
691 if (cadence_nand_read_bch_caps(cadence))
692 return -EIO;
693
694 /*
695 * Set IO width access to 8.
696 * It is because during SW device discovering width access
697 * is expected to be 8.
698 */
699 status = cadence_nand_set_access_width16(cadence, false);
700
701 return status;
702}
703
704#define TT_MAIN_OOB_AREAS 2
705#define TT_RAW_PAGE 3
706#define TT_BBM 4
707#define TT_MAIN_OOB_AREA_EXT 5
708
709/* Prepare size of data to transfer. */
710static void
711cadence_nand_prepare_data_size(struct mtd_info *mtd,
712 int transfer_type)
713{
714 struct nand_chip *chip = mtd_to_nand(mtd);
715 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
716 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
717 u32 sec_size = 0, offset = 0, sec_cnt = 1;
718 u32 last_sec_size = cdns_chip->sector_size;
719 u32 data_ctrl_size = 0;
720 u32 reg = 0;
721
722 if (cadence->curr_trans_type == transfer_type)
723 return;
724
725 switch (transfer_type) {
726 case TT_MAIN_OOB_AREA_EXT:
727 sec_cnt = cdns_chip->sector_count;
728 sec_size = cdns_chip->sector_size;
729 data_ctrl_size = cdns_chip->avail_oob_size;
730 break;
731 case TT_MAIN_OOB_AREAS:
732 sec_cnt = cdns_chip->sector_count;
733 last_sec_size = cdns_chip->sector_size
734 + cdns_chip->avail_oob_size;
735 sec_size = cdns_chip->sector_size;
736 break;
737 case TT_RAW_PAGE:
738 last_sec_size = mtd->writesize + mtd->oobsize;
739 break;
740 case TT_BBM:
741 offset = mtd->writesize + cdns_chip->bbm_offs;
742 last_sec_size = 8;
743 break;
744 }
745
746 reg = 0;
747 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
748 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
749 writel_relaxed(reg, cadence->reg + TRAN_CFG_0);
750
751 reg = 0;
752 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
753 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
754 writel_relaxed(reg, cadence->reg + TRAN_CFG_1);
755
756 if (cadence->caps2.data_control_supp) {
757 reg = readl_relaxed(cadence->reg + CONTROL_DATA_CTRL);
758 reg &= ~CONTROL_DATA_CTRL_SIZE;
759 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
760 writel_relaxed(reg, cadence->reg + CONTROL_DATA_CTRL);
761 }
762
763 cadence->curr_trans_type = transfer_type;
764}
765
766static int
767cadence_nand_cdma_transfer(struct cadence_nand_info *cadence, u8 chip_nr,
768 int page, void *buf, void *ctrl_dat, u32 buf_size,
769 u32 ctrl_dat_size, enum dma_data_direction dir,
770 bool with_ecc)
771{
772 dma_addr_t dma_buf, dma_ctrl_dat = 0;
773 u8 thread_nr = chip_nr;
774 int status;
775 u16 ctype;
776
777 if (dir == DMA_FROM_DEVICE)
778 ctype = CDMA_CT_RD;
779 else
780 ctype = CDMA_CT_WR;
781
782 cadence_nand_set_ecc_enable(cadence, with_ecc);
783
784 dma_buf = dma_map_single(buf, buf_size, dir);
785 if (dma_mapping_error(cadence->dev, dma_buf)) {
786 dev_err(cadence->dev, "Failed to map DMA buffer\n");
787 return -EIO;
788 }
789
790 if (ctrl_dat && ctrl_dat_size) {
791 dma_ctrl_dat = dma_map_single(ctrl_dat,
792 ctrl_dat_size, dir);
793 if (dma_mapping_error(cadence->dev, dma_ctrl_dat)) {
794 dma_unmap_single(dma_buf,
795 buf_size, dir);
796 dev_err(cadence->dev, "Failed to map DMA buffer\n");
797 return -EIO;
798 }
799 }
800
801 cadence_nand_cdma_desc_prepare(cadence, chip_nr, page,
802 dma_buf, dma_ctrl_dat, ctype);
803
804 status = cadence_nand_cdma_send_and_wait(cadence, thread_nr);
805
806 dma_unmap_single(dma_buf,
807 buf_size, dir);
808
809 if (ctrl_dat && ctrl_dat_size)
810 dma_unmap_single(dma_ctrl_dat,
811 ctrl_dat_size, dir);
812 if (status)
813 return status;
814
815 return cadence_nand_cdma_finish(cadence);
816}
817
818static void cadence_nand_set_timings(struct cadence_nand_info *cadence,
819 struct cadence_nand_timings *t)
820{
821 writel_relaxed(t->async_toggle_timings,
822 cadence->reg + ASYNC_TOGGLE_TIMINGS);
823 writel_relaxed(t->timings0, cadence->reg + TIMINGS0);
824 writel_relaxed(t->timings1, cadence->reg + TIMINGS1);
825 writel_relaxed(t->timings2, cadence->reg + TIMINGS2);
826
827 if (cadence->caps2.is_phy_type_dll)
828 writel_relaxed(t->dll_phy_ctrl, cadence->reg + DLL_PHY_CTRL);
829
830 writel_relaxed(t->phy_ctrl, cadence->reg + PHY_CTRL);
831
832 if (cadence->caps2.is_phy_type_dll) {
833 writel_relaxed(0, cadence->reg + PHY_TSEL);
834 writel_relaxed(2, cadence->reg + PHY_DQ_TIMING);
835 writel_relaxed(t->phy_dqs_timing,
836 cadence->reg + PHY_DQS_TIMING);
837 writel_relaxed(t->phy_gate_lpbk_ctrl,
838 cadence->reg + PHY_GATE_LPBK_CTRL);
839 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
840 cadence->reg + PHY_DLL_MASTER_CTRL);
841 writel_relaxed(0, cadence->reg + PHY_DLL_SLAVE_CTRL);
842 }
843}
844
845static int cadence_nand_select_target(struct nand_chip *chip)
846{
847 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
848 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
849
850 if (chip == cadence->selected_chip)
851 return 0;
852
853 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
854 TIMEOUT_US,
855 CTRL_STATUS_CTRL_BUSY, true))
856 return -ETIMEDOUT;
857
858 cadence_nand_set_timings(cadence, &cdns_chip->timings);
859
860 cadence_nand_set_ecc_strength(cadence,
861 cdns_chip->corr_str_idx);
862
863 cadence_nand_set_erase_detection(cadence, true,
864 chip->ecc.strength);
865
866 cadence->curr_trans_type = -1;
867 cadence->selected_chip = chip;
868
869 return 0;
870}
871
872static int cadence_nand_erase(struct mtd_info *mtd, int page)
873{
874 struct nand_chip *chip = mtd_to_nand(mtd);
875 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
876 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
877 int status;
878 u8 thread_nr = cdns_chip->cs[chip->cur_cs];
879
880 cadence_nand_cdma_desc_prepare(cadence,
881 cdns_chip->cs[chip->cur_cs],
882 page, 0, 0,
883 CDMA_CT_ERASE);
884 status = cadence_nand_cdma_send_and_wait(cadence, thread_nr);
885 if (status) {
886 dev_err(cadence->dev, "erase operation failed\n");
887 return -EIO;
888 }
889
890 status = cadence_nand_cdma_finish(cadence);
891 if (status)
892 return status;
893
894 return 0;
895}
896
897static int cadence_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip, int oobavail)
898{
899 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
900 int ret;
901
902 /*
903 * If .size and .strength are already set (usually by DT),
904 * check if they are supported by this controller.
905 */
906 if (chip->ecc.size && chip->ecc.strength)
907 return nand_check_ecc_caps(chip, &cadence->ecc_caps, oobavail);
908
909 /*
910 * We want .size and .strength closest to the chip's requirement
911 * unless NAND_ECC_MAXIMIZE is requested.
912 */
913 if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
914 ret = nand_match_ecc_req(chip, &cadence->ecc_caps, oobavail);
915 if (!ret)
916 return 0;
917 }
918
919 /* Max ECC strength is the last thing we can do */
920 return nand_maximize_ecc(chip, &cadence->ecc_caps, oobavail);
921}
922
923static int cadence_nand_read_bbm(struct mtd_info *mtd, struct nand_chip *chip, int page, u8 *buf)
924{
925 int status;
926 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
927 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
928
929 cadence_nand_prepare_data_size(mtd, TT_BBM);
930
931 cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
932
933 /*
934 * Read only bad block marker from offset
935 * defined by a memory manufacturer.
936 */
937 status = cadence_nand_cdma_transfer(cadence,
938 cdns_chip->cs[chip->cur_cs],
939 page, cadence->buf, NULL,
940 mtd->oobsize,
941 0, DMA_FROM_DEVICE, false);
942 if (status) {
943 dev_err(cadence->dev, "read BBM failed\n");
944 return -EIO;
945 }
946
947 memcpy(buf + cdns_chip->bbm_offs, cadence->buf, cdns_chip->bbm_len);
948
949 return 0;
950}
951
952static int cadence_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
953 const u8 *buf, int oob_required, int page)
954{
955 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
956 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
957 int status;
958 u16 marker_val = 0xFFFF;
959
960 status = cadence_nand_select_target(chip);
961 if (status)
962 return status;
963
964 cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len,
965 mtd->writesize
966 + cdns_chip->bbm_offs,
967 1);
968
969 if (oob_required) {
970 marker_val = *(u16 *)(chip->oob_poi
971 + cdns_chip->bbm_offs);
972 } else {
973 /* Set oob data to 0xFF. */
974 memset(cadence->buf + mtd->writesize, 0xFF,
975 cdns_chip->avail_oob_size);
976 }
977
978 cadence_nand_set_skip_marker_val(cadence, marker_val);
979
980 cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT);
981
982 if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) &&
983 cadence->caps2.data_control_supp) {
984 u8 *oob;
985
986 if (oob_required)
987 oob = chip->oob_poi;
988 else
989 oob = cadence->buf + mtd->writesize;
990
991 status = cadence_nand_cdma_transfer(cadence,
992 cdns_chip->cs[chip->cur_cs],
993 page, (void *)buf, oob,
994 mtd->writesize,
995 cdns_chip->avail_oob_size,
996 DMA_TO_DEVICE, true);
997 if (status) {
998 dev_err(cadence->dev, "write page failed\n");
999 return -EIO;
1000 }
1001
1002 return 0;
1003 }
1004
1005 if (oob_required) {
1006 /* Transfer the data to the oob area. */
1007 memcpy(cadence->buf + mtd->writesize, chip->oob_poi,
1008 cdns_chip->avail_oob_size);
1009 }
1010
1011 memcpy(cadence->buf, buf, mtd->writesize);
1012
1013 cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS);
1014
1015 return cadence_nand_cdma_transfer(cadence,
1016 cdns_chip->cs[chip->cur_cs],
1017 page, cadence->buf, NULL,
1018 mtd->writesize
1019 + cdns_chip->avail_oob_size,
1020 0, DMA_TO_DEVICE, true);
1021}
1022
1023static int cadence_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1024 int page)
1025{
1026 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1027
1028 memset(cadence->buf, 0xFF, mtd->writesize);
1029
1030 return cadence_nand_write_page(mtd, chip, cadence->buf, 1, page);
1031}
1032
1033static int cadence_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1034 const u8 *buf, int oob_required, int page)
1035{
1036 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1037 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1038 int writesize = mtd->writesize;
1039 int oobsize = mtd->oobsize;
1040 int ecc_steps = chip->ecc.steps;
1041 int ecc_size = chip->ecc.size;
1042 int ecc_bytes = chip->ecc.bytes;
1043 void *tmp_buf = cadence->buf;
1044 int oob_skip = cdns_chip->bbm_len;
1045 size_t size = writesize + oobsize;
1046 int i, pos, len;
1047 int status;
1048
1049 status = cadence_nand_select_target(chip);
1050 if (status)
1051 return status;
1052
1053 /*
1054 * Fill the buffer with 0xff first except the full page transfer.
1055 * This simplifies the logic.
1056 */
1057 if (!buf || !oob_required)
1058 memset(tmp_buf, 0xff, size);
1059
1060 cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
1061
1062 /* Arrange the buffer for syndrome payload/ecc layout. */
1063 if (buf) {
1064 for (i = 0; i < ecc_steps; i++) {
1065 pos = i * (ecc_size + ecc_bytes);
1066 len = ecc_size;
1067
1068 if (pos >= writesize)
1069 pos += oob_skip;
1070 else if (pos + len > writesize)
1071 len = writesize - pos;
1072
1073 memcpy(tmp_buf + pos, buf, len);
1074 buf += len;
1075 if (len < ecc_size) {
1076 len = ecc_size - len;
1077 memcpy(tmp_buf + writesize + oob_skip, buf,
1078 len);
1079 buf += len;
1080 }
1081 }
1082 }
1083
1084 if (oob_required) {
1085 const u8 *oob = chip->oob_poi;
1086 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1087 (cdns_chip->sector_size + chip->ecc.bytes)
1088 + cdns_chip->sector_size + oob_skip;
1089
1090 /* BBM at the beginning of the OOB area. */
1091 memcpy(tmp_buf + writesize, oob, oob_skip);
1092
1093 /* OOB free. */
1094 memcpy(tmp_buf + oob_data_offset, oob,
1095 cdns_chip->avail_oob_size);
1096 oob += cdns_chip->avail_oob_size;
1097
1098 /* OOB ECC. */
1099 for (i = 0; i < ecc_steps; i++) {
1100 pos = ecc_size + i * (ecc_size + ecc_bytes);
1101 if (i == (ecc_steps - 1))
1102 pos += cdns_chip->avail_oob_size;
1103
1104 len = ecc_bytes;
1105
1106 if (pos >= writesize)
1107 pos += oob_skip;
1108 else if (pos + len > writesize)
1109 len = writesize - pos;
1110
1111 memcpy(tmp_buf + pos, oob, len);
1112 oob += len;
1113 if (len < ecc_bytes) {
1114 len = ecc_bytes - len;
1115 memcpy(tmp_buf + writesize + oob_skip, oob,
1116 len);
1117 oob += len;
1118 }
1119 }
1120 }
1121
1122 cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE);
1123
1124 return cadence_nand_cdma_transfer(cadence,
1125 cdns_chip->cs[chip->cur_cs],
1126 page, cadence->buf, NULL,
1127 mtd->writesize +
1128 mtd->oobsize,
1129 0, DMA_TO_DEVICE, false);
1130}
1131
1132static int cadence_nand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1133 int page)
1134{
1135 return cadence_nand_write_page_raw(mtd, chip, NULL, true, page);
1136}
1137
1138static int cadence_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1139 u8 *buf, int oob_required, int page)
1140{
1141 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1142 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1143 int status;
1144 int ecc_err_count = 0;
1145
1146 status = cadence_nand_select_target(chip);
1147 if (status)
1148 return status;
1149
1150 cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len,
1151 mtd->writesize
1152 + cdns_chip->bbm_offs, 1);
1153
1154 /*
1155 * If data buffer can be accessed by DMA and data_control feature
1156 * is supported then transfer data and oob directly.
1157 */
1158 if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) &&
1159 cadence->caps2.data_control_supp) {
1160 u8 *oob;
1161
1162 if (oob_required)
1163 oob = chip->oob_poi;
1164 else
1165 oob = cadence->buf + mtd->writesize;
1166
1167 cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT);
1168 status = cadence_nand_cdma_transfer(cadence,
1169 cdns_chip->cs[chip->cur_cs],
1170 page, buf, oob,
1171 mtd->writesize,
1172 cdns_chip->avail_oob_size,
1173 DMA_FROM_DEVICE, true);
1174 /* Otherwise use bounce buffer. */
1175 } else {
1176 cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS);
1177 status = cadence_nand_cdma_transfer(cadence,
1178 cdns_chip->cs[chip->cur_cs],
1179 page, cadence->buf,
1180 NULL, mtd->writesize
1181 + cdns_chip->avail_oob_size,
1182 0, DMA_FROM_DEVICE, true);
1183
1184 memcpy(buf, cadence->buf, mtd->writesize);
1185 if (oob_required)
1186 memcpy(chip->oob_poi,
1187 cadence->buf + mtd->writesize,
1188 mtd->oobsize);
1189 }
1190
1191 switch (status) {
1192 case STAT_ECC_UNCORR:
1193 mtd->ecc_stats.failed++;
1194 ecc_err_count++;
1195 break;
1196 case STAT_ECC_CORR:
1197 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1198 cadence->cdma_desc->status);
1199 mtd->ecc_stats.corrected += ecc_err_count;
1200 break;
1201 case STAT_ERASED:
1202 case STAT_OK:
1203 break;
1204 default:
1205 dev_err(cadence->dev, "read page failed\n");
1206 return -EIO;
1207 }
1208
1209 if (oob_required)
1210 if (cadence_nand_read_bbm(mtd, chip, page, chip->oob_poi))
1211 return -EIO;
1212
1213 return ecc_err_count;
1214}
1215
1216static int cadence_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1217 int page)
1218{
1219 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1220
1221 return cadence_nand_read_page(mtd, chip, cadence->buf, 1, page);
1222}
1223
1224static int cadence_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1225 u8 *buf, int oob_required, int page)
1226{
1227 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1228 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1229 int oob_skip = cdns_chip->bbm_len;
1230 int writesize = mtd->writesize;
1231 int ecc_steps = chip->ecc.steps;
1232 int ecc_size = chip->ecc.size;
1233 int ecc_bytes = chip->ecc.bytes;
1234 void *tmp_buf = cadence->buf;
1235 int i, pos, len;
1236 int status;
1237
1238 status = cadence_nand_select_target(chip);
1239 if (status)
1240 return status;
1241
1242 cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
1243
1244 cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE);
1245 status = cadence_nand_cdma_transfer(cadence,
1246 cdns_chip->cs[chip->cur_cs],
1247 page, cadence->buf, NULL,
1248 mtd->writesize
1249 + mtd->oobsize,
1250 0, DMA_FROM_DEVICE, false);
1251
1252 switch (status) {
1253 case STAT_ERASED:
1254 case STAT_OK:
1255 break;
1256 default:
1257 dev_err(cadence->dev, "read raw page failed\n");
1258 return -EIO;
1259 }
1260
1261 /* Arrange the buffer for syndrome payload/ecc layout. */
1262 if (buf) {
1263 for (i = 0; i < ecc_steps; i++) {
1264 pos = i * (ecc_size + ecc_bytes);
1265 len = ecc_size;
1266
1267 if (pos >= writesize)
1268 pos += oob_skip;
1269 else if (pos + len > writesize)
1270 len = writesize - pos;
1271
1272 memcpy(buf, tmp_buf + pos, len);
1273 buf += len;
1274 if (len < ecc_size) {
1275 len = ecc_size - len;
1276 memcpy(buf, tmp_buf + writesize + oob_skip,
1277 len);
1278 buf += len;
1279 }
1280 }
1281 }
1282
1283 if (oob_required) {
1284 u8 *oob = chip->oob_poi;
1285 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1286 (cdns_chip->sector_size + chip->ecc.bytes)
1287 + cdns_chip->sector_size + oob_skip;
1288
1289 /* OOB free. */
1290 memcpy(oob, tmp_buf + oob_data_offset,
1291 cdns_chip->avail_oob_size);
1292
1293 /* BBM at the beginning of the OOB area. */
1294 memcpy(oob, tmp_buf + writesize, oob_skip);
1295
1296 oob += cdns_chip->avail_oob_size;
1297
1298 /* OOB ECC */
1299 for (i = 0; i < ecc_steps; i++) {
1300 pos = ecc_size + i * (ecc_size + ecc_bytes);
1301 len = ecc_bytes;
1302
1303 if (i == (ecc_steps - 1))
1304 pos += cdns_chip->avail_oob_size;
1305
1306 if (pos >= writesize)
1307 pos += oob_skip;
1308 else if (pos + len > writesize)
1309 len = writesize - pos;
1310
1311 memcpy(oob, tmp_buf + pos, len);
1312 oob += len;
1313 if (len < ecc_bytes) {
1314 len = ecc_bytes - len;
1315 memcpy(oob, tmp_buf + writesize + oob_skip,
1316 len);
1317 oob += len;
1318 }
1319 }
1320 }
1321 return 0;
1322}
1323
1324static int cadence_nand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1325 int page)
1326{
1327 return cadence_nand_read_page_raw(mtd, chip, NULL, true, page);
1328}
1329
1330static void cadence_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
1331{
1332 struct nand_chip *chip = mtd_to_nand(mtd);
1333 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1334 u8 thread_nr = 0;
1335 u32 sdma_size;
1336 int status;
1337 int len_in_words = len >> 2;
1338
1339 /* Wait until slave DMA interface is ready to data transfer. */
1340 status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size);
1341 if (status) {
1342 pr_err("Wait on sdma failed:%x\n", status);
1343 hang();
1344 }
1345
1346 if (!cadence->caps1->has_dma) {
1347 readsq(cadence->io.virt, buf, len_in_words);
1348
1349 if (sdma_size > len) {
1350 memcpy(cadence->buf, buf + (len_in_words << 2),
1351 len - (len_in_words << 2));
1352 readsl(cadence->io.virt, cadence->buf,
1353 sdma_size / 4 - len_in_words);
1354 }
1355 }
1356}
1357
1358static void cadence_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
1359{
1360 struct nand_chip *chip = mtd_to_nand(mtd);
1361 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1362 u8 thread_nr = 0;
1363 u32 sdma_size;
1364 int status;
1365 int len_in_words = len >> 2;
1366
1367 /* Wait until slave DMA interface is ready to data transfer. */
1368 status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size);
1369 if (status) {
1370 pr_err("Wait on sdma failed:%x\n", status);
1371 hang();
1372 }
1373
1374 if (!cadence->caps1->has_dma) {
1375 writesq(cadence->io.virt, buf, len_in_words);
1376
1377 if (sdma_size > len) {
1378 memcpy(cadence->buf, buf + (len_in_words << 2),
1379 len - (len_in_words << 2));
1380 writesl(cadence->io.virt, cadence->buf,
1381 sdma_size / 4 - len_in_words);
1382 }
1383 }
1384}
1385
1386static int cadence_nand_cmd_opcode(struct nand_chip *chip, unsigned int op_id)
1387{
1388 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1389 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1390 u64 mini_ctrl_cmd = 0;
1391 int ret;
1392
1393 mini_ctrl_cmd |= GCMD_LAY_TWB;
1394 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, GCMD_LAY_INSTR_CMD);
1395 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, op_id);
1396
1397 ret = cadence_nand_generic_cmd_send(cadence,
1398 cdns_chip->cs[chip->cur_cs],
1399 mini_ctrl_cmd);
1400
1401 if (ret)
1402 dev_err(cadence->dev, "send cmd %x failed\n",
1403 op_id);
1404
1405 return ret;
1406}
1407
1408static int cadence_nand_cmd_address(struct nand_chip *chip,
1409 unsigned int naddrs, const u8 *addrs)
1410{
1411 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1412 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1413 u64 address = 0;
1414 u64 mini_ctrl_cmd = 0;
1415 int ret;
1416 int i;
1417
1418 mini_ctrl_cmd |= GCMD_LAY_TWB;
1419
1420 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
1421 GCMD_LAY_INSTR_ADDR);
1422
1423 for (i = 0; i < naddrs; i++)
1424 address |= (u64)addrs[i] << (8 * i);
1425
1426 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
1427 address);
1428 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
1429 naddrs - 1);
1430
1431 ret = cadence_nand_generic_cmd_send(cadence,
1432 cdns_chip->cs[chip->cur_cs],
1433 mini_ctrl_cmd);
1434
1435 if (ret)
1436 pr_err("send address %llx failed\n", address);
1437
1438 return ret;
1439}
1440
1441static int cadence_nand_cmd_data(struct nand_chip *chip,
1442 unsigned int len, u8 mode)
1443{
1444 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1445 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1446 u64 mini_ctrl_cmd = 0;
1447 int ret;
1448
1449 mini_ctrl_cmd |= GCMD_LAY_TWB;
1450 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
1451 GCMD_LAY_INSTR_DATA);
1452
1453 if (mode)
1454 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, GCMD_DIR_WRITE);
1455
1456 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
1457 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
1458
1459 ret = cadence_nand_generic_cmd_send(cadence,
1460 cdns_chip->cs[chip->cur_cs],
1461 mini_ctrl_cmd);
1462
1463 if (ret) {
1464 pr_err("send generic data cmd failed\n");
1465 return ret;
1466 }
1467
1468 return ret;
1469}
1470
1471static int cadence_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1472{
1473 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1474 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1475 int status;
1476
1477 status = cadence_nand_wait_for_value(cadence, RBN_SETINGS,
1478 TIMEOUT_US,
1479 BIT(cdns_chip->cs[chip->cur_cs]),
1480 false);
1481 return status;
1482}
1483
1484static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
1485 struct mtd_oob_region *oobregion)
1486{
1487 struct nand_chip *chip = mtd_to_nand(mtd);
1488 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1489
1490 if (section)
1491 return -ERANGE;
1492
1493 oobregion->offset = cdns_chip->bbm_len;
1494 oobregion->length = cdns_chip->avail_oob_size
1495 - cdns_chip->bbm_len;
1496
1497 return 0;
1498}
1499
1500static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
1501 struct mtd_oob_region *oobregion)
1502{
1503 struct nand_chip *chip = mtd_to_nand(mtd);
1504 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1505
1506 if (section)
1507 return -ERANGE;
1508
1509 oobregion->offset = cdns_chip->avail_oob_size;
1510 oobregion->length = chip->ecc.total;
1511
1512 return 0;
1513}
1514
1515static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
1516 .rfree = cadence_nand_ooblayout_free,
1517 .ecc = cadence_nand_ooblayout_ecc,
1518};
1519
1520static int calc_cycl(u32 timing, u32 clock)
1521{
1522 if (timing == 0 || clock == 0)
1523 return 0;
1524
1525 if ((timing % clock) > 0)
1526 return timing / clock;
1527 else
1528 return timing / clock - 1;
1529}
1530
1531/* Calculate max data valid window. */
1532static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
1533 u32 board_delay_skew_min, u32 ext_mode)
1534{
1535 if (ext_mode == 0)
1536 clk_period /= 2;
1537
1538 return (trp_cnt + 1) * clk_period + trhoh_min +
1539 board_delay_skew_min;
1540}
1541
1542/* Calculate data valid window. */
1543static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
1544 u32 trea_max, u32 ext_mode)
1545{
1546 if (ext_mode == 0)
1547 clk_period /= 2;
1548
1549 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
1550}
1551
1552static inline int of_get_child_count(const ofnode node)
1553{
1554 return fdtdec_get_child_count(gd->fdt_blob, ofnode_to_offset(node));
1555}
1556
1557static int cadence_setup_data_interface(struct mtd_info *mtd, int chipnr,
1558 const struct nand_data_interface *conf)
1559{
1560 struct nand_chip *chip = mtd_to_nand(mtd);
1561 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1562 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(mtd_to_nand(mtd));
1563 const struct nand_sdr_timings *sdr;
1564 struct cadence_nand_timings *t = &cdns_chip->timings;
1565 u32 reg;
1566 u32 board_delay = cadence->board_delay;
1567 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
1568 cadence->nf_clk_rate);
1569 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
1570 u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
1571 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
1572 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
1573 u32 if_skew = cadence->caps1->if_skew;
1574 u32 board_delay_skew_min = board_delay - if_skew;
1575 u32 board_delay_skew_max = board_delay + if_skew;
1576 u32 dqs_sampl_res, phony_dqs_mod;
1577 u32 tdvw, tdvw_min, tdvw_max;
1578 u32 ext_rd_mode, ext_wr_mode;
1579 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
1580 u32 sampling_point;
1581
1582 sdr = nand_get_sdr_timings(conf);
1583 if (IS_ERR(sdr))
1584 return PTR_ERR(sdr);
1585
1586 memset(t, 0, sizeof(*t));
1587 /* Sampling point calculation. */
1588 if (cadence->caps2.is_phy_type_dll)
1589 phony_dqs_mod = 2;
1590 else
1591 phony_dqs_mod = 1;
1592
1593 dqs_sampl_res = clk_period / phony_dqs_mod;
1594
1595 tdvw_min = sdr->tREA_max + board_delay_skew_max;
1596 /*
1597 * The idea of those calculation is to get the optimum value
1598 * for tRP and tRH timings. If it is NOT possible to sample data
1599 * with optimal tRP/tRH settings, the parameters will be extended.
1600 * If clk_period is 50ns (the lowest value) this condition is met
1601 * for SDR timing modes 1, 2, 3, 4 and 5.
1602 * If clk_period is 20ns the condition is met only for SDR timing
1603 * mode 5.
1604 */
1605 if (sdr->tRC_min <= clk_period &&
1606 sdr->tRP_min <= (clk_period / 2) &&
1607 sdr->tREH_min <= (clk_period / 2)) {
1608 /* Performance mode. */
1609 ext_rd_mode = 0;
1610 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
1611 sdr->tREA_max, ext_rd_mode);
1612 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
1613 board_delay_skew_min,
1614 ext_rd_mode);
1615 /*
1616 * Check if data valid window and sampling point can be found
1617 * and is not on the edge (ie. we have hold margin).
1618 * If not extend the tRP timings.
1619 */
1620 if (tdvw > 0) {
1621 if (tdvw_max <= tdvw_min ||
1622 (tdvw_max % dqs_sampl_res) == 0) {
1623 /*
1624 * No valid sampling point so the RE pulse need
1625 * to be widen widening by half clock cycle.
1626 */
1627 ext_rd_mode = 1;
1628 }
1629 } else {
1630 /*
1631 * There is no valid window
1632 * to be able to sample data the tRP need to be widen.
1633 * Very safe calculations are performed here.
1634 */
1635 trp_cnt = (sdr->tREA_max + board_delay_skew_max
1636 + dqs_sampl_res) / clk_period;
1637 ext_rd_mode = 1;
1638 }
1639
1640 } else {
1641 /* Extended read mode. */
1642 u32 trh;
1643
1644 ext_rd_mode = 1;
1645 trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
1646 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
1647 if (sdr->tREH_min >= trh)
1648 trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
1649 else
1650 trh_cnt = calc_cycl(trh, clk_period);
1651
1652 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
1653 sdr->tREA_max, ext_rd_mode);
1654 /*
1655 * Check if data valid window and sampling point can be found
1656 * or if it is at the edge check if previous is valid
1657 * - if not extend the tRP timings.
1658 */
1659 if (tdvw > 0) {
1660 tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
1661 sdr->tRHOH_min,
1662 board_delay_skew_min,
1663 ext_rd_mode);
1664
1665 if ((((tdvw_max / dqs_sampl_res)
1666 * dqs_sampl_res) <= tdvw_min) ||
1667 (((tdvw_max % dqs_sampl_res) == 0) &&
1668 (((tdvw_max / dqs_sampl_res - 1)
1669 * dqs_sampl_res) <= tdvw_min))) {
1670 /*
1671 * Data valid window width is lower than
1672 * sampling resolution and do not hit any
1673 * sampling point to be sure the sampling point
1674 * will be found the RE low pulse width will be
1675 * extended by one clock cycle.
1676 */
1677 trp_cnt = trp_cnt + 1;
1678 }
1679 } else {
1680 /*
1681 * There is no valid window to be able to sample data.
1682 * The tRP need to be widen.
1683 * Very safe calculations are performed here.
1684 */
1685 trp_cnt = (sdr->tREA_max + board_delay_skew_max
1686 + dqs_sampl_res) / clk_period;
1687 }
1688 }
1689
1690 tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
1691 sdr->tRHOH_min,
1692 board_delay_skew_min, ext_rd_mode);
1693
1694 if (sdr->tWC_min <= clk_period &&
1695 (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
1696 (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
1697 ext_wr_mode = 0;
1698 } else {
1699 u32 twh;
1700
1701 ext_wr_mode = 1;
1702 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
1703 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
1704 twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
1705 clk_period);
1706
1707 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
1708 if (sdr->tWH_min >= twh)
1709 twh = sdr->tWH_min;
1710
1711 twh_cnt = calc_cycl(twh + if_skew, clk_period);
1712 }
1713
1714 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
1715 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
1716 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
1717 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
1718 t->async_toggle_timings = reg;
1719 dev_dbg(cadence->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
1720
1721 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
1722 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
1723 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
1724 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
1725 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
1726
1727 /*
1728 * If timing exceeds delay field in timing register
1729 * then use maximum value.
1730 */
1731 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
1732 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
1733 else
1734 reg |= TIMINGS0_TCCS;
1735
1736 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
1737 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
1738 t->timings0 = reg;
1739 dev_dbg(cadence->dev, "TIMINGS0_SDR\t%x\n", reg);
1740
1741 /* The following is related to single signal so skew is not needed. */
1742 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
1743 trhz_cnt = trhz_cnt + 1;
1744 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
1745 /*
1746 * Because of the two stage syncflop the value must be increased by 3
1747 * first value is related with sync, second value is related
1748 * with output if delay.
1749 */
1750 twb_cnt = twb_cnt + 3 + 5;
1751 /*
1752 * The following is related to the we edge of the random data input
1753 * sequence so skew is not needed.
1754 */
1755 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
1756 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
1757 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
1758 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
1759 t->timings1 = reg;
1760 dev_dbg(cadence->dev, "TIMINGS1_SDR\t%x\n", reg);
1761
1762 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
1763 if (tfeat_cnt < twb_cnt)
1764 tfeat_cnt = twb_cnt;
1765
1766 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
1767 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
1768
1769 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
1770 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
1771 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
1772 t->timings2 = reg;
1773 dev_dbg(cadence->dev, "TIMINGS2_SDR\t%x\n", reg);
1774
1775 if (cadence->caps2.is_phy_type_dll) {
1776 reg = DLL_PHY_CTRL_DLL_RST_N;
1777 if (ext_wr_mode)
1778 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
1779 if (ext_rd_mode)
1780 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
1781
1782 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
1783 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
1784 t->dll_phy_ctrl = reg;
1785 dev_dbg(cadence->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
1786 }
1787
1788 /* Sampling point calculation. */
1789 if ((tdvw_max % dqs_sampl_res) > 0)
1790 sampling_point = tdvw_max / dqs_sampl_res;
1791 else
1792 sampling_point = (tdvw_max / dqs_sampl_res - 1);
1793
1794 if (sampling_point * dqs_sampl_res > tdvw_min) {
1795 dll_phy_dqs_timing =
1796 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
1797 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
1798 phony_dqs_timing = sampling_point / phony_dqs_mod;
1799
1800 if ((sampling_point % 2) > 0) {
1801 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
1802 if ((tdvw_max % dqs_sampl_res) == 0)
1803 /*
1804 * Calculation for sampling point at the edge
1805 * of data and being odd number.
1806 */
1807 phony_dqs_timing = (tdvw_max / dqs_sampl_res)
1808 / phony_dqs_mod - 1;
1809
1810 if (!cadence->caps2.is_phy_type_dll)
1811 phony_dqs_timing--;
1812
1813 } else {
1814 phony_dqs_timing--;
1815 }
1816 rd_del_sel = phony_dqs_timing + 3;
1817 } else {
1818 dev_warn(cadence->dev,
1819 "ERROR : cannot find valid sampling point\n");
1820 }
1821
1822 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
1823 if (cadence->caps2.is_phy_type_dll)
1824 reg |= PHY_CTRL_SDR_DQS;
1825 t->phy_ctrl = reg;
1826 dev_dbg(cadence->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
1827
1828 if (cadence->caps2.is_phy_type_dll) {
1829 dev_dbg(cadence->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
1830 dev_dbg(cadence->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
1831 dev_dbg(cadence->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
1832 dll_phy_dqs_timing);
1833 t->phy_dqs_timing = dll_phy_dqs_timing;
1834
1835 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
1836 dev_dbg(cadence->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
1837 reg);
1838 t->phy_gate_lpbk_ctrl = reg;
1839
1840 dev_dbg(cadence->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
1841 PHY_DLL_MASTER_CTRL_BYPASS_MODE);
1842 dev_dbg(cadence->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
1843 }
1844 return 0;
1845}
1846
1847static int cadence_nand_attach_chip(struct nand_chip *chip)
1848{
1849 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1850 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1851 static struct nand_ecclayout nand_oob;
1852 u32 ecc_size;
1853 struct mtd_info *mtd = nand_to_mtd(chip);
1854 int ret;
1855
1856 if (chip->options & NAND_BUSWIDTH_16) {
1857 ret = cadence_nand_set_access_width16(cadence, true);
1858 if (ret)
1859 return ret;
1860 }
1861
1862 chip->bbt_options |= NAND_BBT_USE_FLASH;
1863 chip->bbt_options |= NAND_BBT_NO_OOB;
1864 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1865
1866 chip->options |= NAND_NO_SUBPAGE_WRITE;
1867
1868 cdns_chip->bbm_offs = chip->badblockpos;
1869 cdns_chip->bbm_offs &= ~0x01;
1870 /* this value should be even number */
1871 cdns_chip->bbm_len = 2;
1872
1873 ret = cadence_ecc_setup(mtd, chip, mtd->oobsize - cdns_chip->bbm_len);
1874 if (ret) {
1875 dev_err(cadence->dev, "ECC configuration failed\n");
1876 return ret;
1877 }
1878
1879 dev_dbg(cadence->dev,
1880 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1881 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1882
1883 /* Error correction configuration. */
1884 cdns_chip->sector_size = chip->ecc.size;
1885 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
1886 ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
1887
1888 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
1889
1890 if (cdns_chip->avail_oob_size > cadence->bch_metadata_size)
1891 cdns_chip->avail_oob_size = cadence->bch_metadata_size;
1892
1893 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
1894 > mtd->oobsize)
1895 cdns_chip->avail_oob_size -= 4;
1896
1897 ret = cadence_nand_get_ecc_strength_idx(cadence, chip->ecc.strength);
1898 if (ret < 0)
1899 return -EINVAL;
1900
1901 cdns_chip->corr_str_idx = (u8)ret;
1902
1903 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
1904 TIMEOUT_US,
1905 CTRL_STATUS_CTRL_BUSY, true))
1906 return -ETIMEDOUT;
1907
1908 cadence_nand_set_ecc_strength(cadence,
1909 cdns_chip->corr_str_idx);
1910
1911 cadence_nand_set_erase_detection(cadence, true,
1912 chip->ecc.strength);
1913
1914 dev_dbg(cadence->dev,
1915 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1916 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1917
1918 /* Override the default read operations. */
1919 chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1920 chip->ecc.read_page = cadence_nand_read_page;
1921 chip->ecc.read_page_raw = cadence_nand_read_page_raw;
1922 chip->ecc.write_page = cadence_nand_write_page;
1923 chip->ecc.write_page_raw = cadence_nand_write_page_raw;
1924 chip->ecc.read_oob = cadence_nand_read_oob;
1925 chip->ecc.write_oob = cadence_nand_write_oob;
1926 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
1927 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
1928 chip->erase = cadence_nand_erase;
1929
1930 if ((mtd->writesize + mtd->oobsize) > cadence->buf_size)
1931 cadence->buf_size = mtd->writesize + mtd->oobsize;
1932
1933 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
1934
1935 nand_oob.eccbytes = cdns_chip->chip.ecc.bytes;
1936 cdns_chip->chip.ecc.layout = &nand_oob;
1937
1938 return 0;
1939}
1940
1941/* Dummy implementation: we don't support multiple chips */
1942static void cadence_nand_select_chip(struct mtd_info *mtd, int chipnr)
1943{
1944 switch (chipnr) {
1945 case -1:
1946 case 0:
1947 break;
1948
1949 default:
1950 WARN_ON(chipnr);
1951 }
1952}
1953
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08001954static int cadence_nand_status(struct mtd_info *mtd, unsigned int command)
1955{
1956 struct nand_chip *chip = mtd_to_nand(mtd);
1957 int ret = 0;
1958
1959 ret = cadence_nand_cmd_opcode(chip, command);
1960 if (ret)
1961 return ret;
1962
1963 ret = cadence_nand_cmd_data(chip, 1, GCMD_DIR_READ);
1964 if (ret)
1965 return ret;
1966
1967 return 0;
1968}
1969
Dinesh Maniyam113be182025-02-27 00:18:19 +08001970static int cadence_nand_readid(struct mtd_info *mtd, int offset_in_page, unsigned int command)
1971{
1972 struct nand_chip *chip = mtd_to_nand(mtd);
1973 u8 addrs = (u8)offset_in_page;
1974 int ret = 0;
1975
1976 ret = cadence_nand_cmd_opcode(chip, command);
1977 if (ret)
1978 return ret;
1979
1980 ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &addrs);
1981 if (ret)
1982 return ret;
1983
1984 ret = cadence_nand_cmd_data(chip, 8, GCMD_DIR_READ);
1985 if (ret)
1986 return ret;
1987
1988 return 0;
1989}
1990
Dinesh Maniyam890c01c2025-02-27 00:18:20 +08001991static int cadence_nand_param(struct mtd_info *mtd, u8 offset_in_page, unsigned int command)
1992{
1993 struct nand_chip *chip = mtd_to_nand(mtd);
1994 int ret = 0;
1995
1996 ret = cadence_nand_cmd_opcode(chip, command);
1997 if (ret)
1998 return ret;
1999
2000 ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &offset_in_page);
2001 if (ret)
2002 return ret;
2003
2004 ret = cadence_nand_waitfunc(mtd, chip);
2005 if (ret)
2006 return ret;
2007
2008 ret = cadence_nand_cmd_data(chip, sizeof(struct nand_jedec_params), GCMD_DIR_READ);
2009 if (ret)
2010 return ret;
2011
2012 return 0;
2013}
2014
Dinesh Maniyam5c586362025-02-27 00:18:21 +08002015static int cadence_nand_reset(struct mtd_info *mtd, unsigned int command)
2016{
2017 struct nand_chip *chip = mtd_to_nand(mtd);
2018 int ret = 0;
2019
2020 ret = cadence_nand_cmd_opcode(chip, command);
2021 if (ret)
2022 return ret;
2023
2024 ret = cadence_nand_waitfunc(mtd, chip);
2025 if (ret)
2026 return ret;
2027
2028 return 0;
2029}
2030
Dinesh Maniyamf33923f2025-02-27 00:18:22 +08002031static int cadence_nand_features(struct mtd_info *mtd, u8 offset_in_page, u32 command)
2032{
2033 struct nand_chip *chip = mtd_to_nand(mtd);
2034 int ret = 0;
2035
2036 ret = cadence_nand_cmd_opcode(chip, command);
2037 if (ret)
2038 return ret;
2039
2040 ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &offset_in_page);
2041 if (ret)
2042 return ret;
2043
2044 if (command == NAND_CMD_GET_FEATURES)
2045 ret = cadence_nand_cmd_data(chip, ONFI_SUBFEATURE_PARAM_LEN,
2046 GCMD_DIR_READ);
2047 else
2048 ret = cadence_nand_cmd_data(chip, ONFI_SUBFEATURE_PARAM_LEN,
2049 GCMD_DIR_WRITE);
2050
2051 return ret;
2052}
2053
Dinesh Maniyamf61a2212025-02-27 00:18:17 +08002054static void cadence_nand_cmdfunc(struct mtd_info *mtd, unsigned int command,
2055 int offset_in_page, int page)
2056{
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002057 struct nand_chip *chip = mtd_to_nand(mtd);
2058 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
2059 int ret = 0;
2060
2061 cadence->cmd = command;
2062 switch (command) {
2063 case NAND_CMD_STATUS:
2064 ret = cadence_nand_status(mtd, command);
2065 break;
Dinesh Maniyam113be182025-02-27 00:18:19 +08002066
2067 case NAND_CMD_READID:
2068 ret = cadence_nand_readid(mtd, offset_in_page, command);
2069 break;
2070
Dinesh Maniyam890c01c2025-02-27 00:18:20 +08002071 case NAND_CMD_PARAM:
2072 ret = cadence_nand_param(mtd, offset_in_page, command);
2073 break;
Dinesh Maniyam5c586362025-02-27 00:18:21 +08002074
2075 case NAND_CMD_RESET:
2076 ret = cadence_nand_reset(mtd, command);
2077 break;
Dinesh Maniyamf33923f2025-02-27 00:18:22 +08002078
2079 case NAND_CMD_SET_FEATURES:
2080 case NAND_CMD_GET_FEATURES:
2081 ret = cadence_nand_features(mtd, offset_in_page, command);
2082 break;
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002083 /*
2084 * ecc will override other command for read, write and erase
2085 */
2086 default:
2087 break;
2088 }
2089
Dinesh Maniyam5c586362025-02-27 00:18:21 +08002090 if (cadence->cmd == NAND_CMD_RESET) {
2091 ret = cadence_nand_select_target(chip);
2092 if (ret)
2093 dev_err(cadence->dev, "Chip select failure after reset\n");
2094 }
2095
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002096 if (ret != 0)
2097 printf("ERROR:%s:command:0x%x\n", __func__, cadence->cmd);
Dinesh Maniyamf61a2212025-02-27 00:18:17 +08002098}
2099
2100static int cadence_nand_dev_ready(struct mtd_info *mtd)
2101{
2102 struct nand_chip *chip = mtd_to_nand(mtd);
2103 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
2104
2105 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
2106 TIMEOUT_US,
2107 CTRL_STATUS_CTRL_BUSY, true))
2108 return -ETIMEDOUT;
2109
2110 return 0;
2111}
2112
2113static u8 cadence_nand_read_byte(struct mtd_info *mtd)
2114{
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002115 struct nand_chip *chip = mtd_to_nand(mtd);
2116 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
2117 u32 size = 1;
2118 u8 val;
2119
Dinesh Maniyam113be182025-02-27 00:18:19 +08002120 if (cadence->buf_index == 0) {
2121 if (cadence->cmd == NAND_CMD_READID)
2122 size = 8;
Dinesh Maniyam890c01c2025-02-27 00:18:20 +08002123 else if (cadence->cmd == NAND_CMD_PARAM)
2124 size = sizeof(struct nand_jedec_params);
Dinesh Maniyamf33923f2025-02-27 00:18:22 +08002125 else if (cadence->cmd == NAND_CMD_GET_FEATURES)
2126 size = ONFI_SUBFEATURE_PARAM_LEN;
Dinesh Maniyam113be182025-02-27 00:18:19 +08002127
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002128 cadence_nand_read_buf(mtd, &cadence->buf[0], size);
Dinesh Maniyam113be182025-02-27 00:18:19 +08002129 }
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002130
2131 val = *(&cadence->buf[0] + cadence->buf_index);
2132 cadence->buf_index++;
2133
2134 return val;
Dinesh Maniyamf61a2212025-02-27 00:18:17 +08002135}
2136
2137static void cadence_nand_write_byte(struct mtd_info *mtd, u8 byte)
2138{
2139 cadence_nand_write_buf(mtd, &byte, 1);
2140}
2141
2142static int cadence_nand_chip_init(struct cadence_nand_info *cadence, ofnode node)
2143{
2144 struct cdns_nand_chip *cdns_chip;
2145 struct nand_chip *chip;
2146 struct mtd_info *mtd;
2147 int ret, i;
2148 int nsels;
2149 u32 cs;
2150
2151 if (!ofnode_get_property(node, "reg", &nsels))
2152 return -ENODEV;
2153
2154 nsels /= sizeof(u32);
2155 if (nsels <= 0) {
2156 dev_err(cadence->dev, "invalid reg property size %d\n", nsels);
2157 return -EINVAL;
2158 }
2159
2160 cdns_chip = devm_kzalloc(cadence->dev, sizeof(*cdns_chip) +
2161 (nsels * sizeof(u8)), GFP_KERNEL);
2162 if (!cdns_chip)
2163 return -ENODEV;
2164
2165 cdns_chip->nsels = nsels;
2166 for (i = 0; i < nsels; i++) {
2167 /* Retrieve CS id. */
2168 ret = ofnode_read_u32_index(node, "reg", i, &cs);
2169 if (ret) {
2170 dev_err(cadence->dev,
2171 "could not retrieve reg property: %d\n",
2172 ret);
2173 goto free_buf;
2174 }
2175
2176 if (cs >= cadence->caps2.max_banks) {
2177 dev_err(cadence->dev,
2178 "invalid reg value: %u (max CS = %d)\n",
2179 cs, cadence->caps2.max_banks);
2180 ret = -EINVAL;
2181 goto free_buf;
2182 }
2183
2184 if (test_and_set_bit(cs, &cadence->assigned_cs)) {
2185 dev_err(cadence->dev,
2186 "CS %d already assigned\n", cs);
2187 ret = -EINVAL;
2188 goto free_buf;
2189 }
2190
2191 cdns_chip->cs[i] = cs;
2192 }
2193
2194 chip = &cdns_chip->chip;
2195 chip->controller = &cadence->controller;
2196 nand_set_flash_node(chip, node);
2197 mtd = nand_to_mtd(chip);
2198 mtd->dev->parent = cadence->dev;
2199
2200 chip->options |= NAND_BUSWIDTH_AUTO;
2201 chip->select_chip = cadence_nand_select_chip;
2202 chip->cmdfunc = cadence_nand_cmdfunc;
2203 chip->dev_ready = cadence_nand_dev_ready;
2204 chip->read_byte = cadence_nand_read_byte;
2205 chip->write_byte = cadence_nand_write_byte;
2206 chip->waitfunc = cadence_nand_waitfunc;
2207 chip->read_buf = cadence_nand_read_buf;
2208 chip->write_buf = cadence_nand_write_buf;
2209 chip->setup_data_interface = cadence_setup_data_interface;
2210
2211 ret = nand_scan_ident(mtd, 1, NULL);
2212 if (ret) {
2213 dev_err(cadence->dev, "Chip identification failure\n");
2214 goto free_buf;
2215 }
2216
2217 ret = cadence_nand_attach_chip(chip);
2218 if (ret) {
2219 dev_err(cadence->dev, "Chip not able to attached\n");
2220 goto free_buf;
2221 }
2222
2223 ret = nand_scan_tail(mtd);
2224 if (ret) {
2225 dev_err(cadence->dev, "could not scan the nand chip\n");
2226 goto free_buf;
2227 }
2228
2229 ret = nand_register(0, mtd);
2230 if (ret) {
2231 dev_err(cadence->dev, "Failed to register MTD: %d\n", ret);
2232 goto free_buf;
2233 }
2234
2235 return 0;
2236
2237free_buf:
2238 devm_kfree(cadence->dev, cdns_chip);
2239 return ret;
2240}
2241
2242static int cadence_nand_chips_init(struct cadence_nand_info *cadence)
2243{
2244 struct udevice *dev = cadence->dev;
2245 ofnode node = dev_ofnode(dev);
2246 ofnode nand_node;
2247 int max_cs = cadence->caps2.max_banks;
2248 int nchips, ret;
2249
2250 nchips = of_get_child_count(node);
2251
2252 if (nchips > max_cs) {
2253 dev_err(cadence->dev,
2254 "too many NAND chips: %d (max = %d CS)\n",
2255 nchips, max_cs);
2256 return -EINVAL;
2257 }
2258
2259 ofnode_for_each_subnode(nand_node, node) {
2260 ret = cadence_nand_chip_init(cadence, nand_node);
2261 if (ret)
2262 return ret;
2263 }
2264
2265 return 0;
2266}
2267
2268static int cadence_nand_init(struct cadence_nand_info *cadence)
2269{
2270 int ret;
2271
2272 cadence->cdma_desc = dma_alloc_coherent(sizeof(*cadence->cdma_desc),
2273 (unsigned long *)&cadence->dma_cdma_desc);
2274 if (!cadence->cdma_desc)
2275 return -ENOMEM;
2276
2277 cadence->buf_size = SZ_16K;
2278 cadence->buf = kmalloc(cadence->buf_size, GFP_KERNEL);
2279 if (!cadence->buf) {
2280 ret = -ENOMEM;
2281 goto free_buf_desc;
2282 }
2283
2284 //Hardware initialization
2285 ret = cadence_nand_hw_init(cadence);
2286 if (ret)
2287 goto free_buf;
2288
2289 cadence->curr_corr_str_idx = 0xFF;
2290
2291 ret = cadence_nand_chips_init(cadence);
2292 if (ret) {
2293 dev_err(cadence->dev, "Failed to register MTD: %d\n",
2294 ret);
2295 goto free_buf;
2296 }
2297
2298 kfree(cadence->buf);
2299 cadence->buf = kzalloc(cadence->buf_size, GFP_KERNEL);
2300 if (!cadence->buf) {
2301 ret = -ENOMEM;
2302 goto free_buf_desc;
2303 }
2304
2305 return 0;
2306
2307free_buf:
2308 kfree(cadence->buf);
2309
2310free_buf_desc:
2311 dma_free_coherent(cadence->cdma_desc);
2312
2313 return ret;
2314}
2315
2316static const struct cadence_nand_dt_devdata cadence_nand_default = {
2317 .if_skew = 0,
2318 .has_dma = 0,
2319};
2320
2321static const struct udevice_id cadence_nand_dt_ids[] = {
2322 {
2323 .compatible = "cdns,nand",
2324 .data = (unsigned long)&cadence_nand_default
2325 }, {}
2326};
2327
2328static int cadence_nand_dt_probe(struct udevice *dev)
2329{
2330 struct cadence_nand_info *cadence = dev_get_priv(dev);
2331 const struct udevice_id *of_id;
2332 const struct cadence_nand_dt_devdata *devdata;
2333 struct resource res;
2334 int ret;
2335 u32 val;
2336
2337 if (!dev) {
2338 dev_warn(dev, "Device ptr null\n");
2339 return -EINVAL;
2340 }
2341
2342 of_id = &cadence_nand_dt_ids[0];
2343 devdata = (struct cadence_nand_dt_devdata *)of_id->data;
2344
2345 cadence->caps1 = devdata;
2346 cadence->dev = dev;
2347
2348 ret = clk_get_by_index(dev, 0, &cadence->clk);
2349 if (ret)
2350 return ret;
2351
2352 ret = clk_enable(&cadence->clk);
2353 if (ret && ret != -ENOSYS && ret != -ENOMEM) {
2354 dev_err(dev, "failed to enable clock\n");
2355 return ret;
2356 }
2357 cadence->nf_clk_rate = clk_get_rate(&cadence->clk);
2358
2359 ret = reset_get_by_index(dev, 1, &cadence->softphy_reset);
2360 if (ret) {
2361 if (ret != -ENOMEM)
2362 dev_warn(dev, "Can't get softphy_reset: %d\n", ret);
2363 } else {
2364 reset_deassert(&cadence->softphy_reset);
2365 }
2366
2367 ret = reset_get_by_index(dev, 0, &cadence->nand_reset);
2368 if (ret) {
2369 if (ret != -ENOMEM)
2370 dev_warn(dev, "Can't get nand_reset: %d\n", ret);
2371 } else {
2372 reset_deassert(&cadence->nand_reset);
2373 }
2374
2375 ret = dev_read_resource_byname(dev, "reg", &res);
2376 if (ret)
2377 return ret;
2378 cadence->reg = devm_ioremap(dev, res.start, resource_size(&res));
2379
2380 ret = dev_read_resource_byname(dev, "sdma", &res);
2381 if (ret)
2382 return ret;
2383 cadence->io.dma = res.start;
2384 cadence->io.virt = devm_ioremap(dev, res.start, resource_size(&res));
2385
2386 ret = ofnode_read_u32(dev_ofnode(dev->parent),
2387 "cdns,board-delay-ps", &val);
2388 if (ret) {
2389 val = 4830;
2390 dev_info(cadence->dev,
2391 "missing cdns,board-delay-ps property, %d was set\n",
2392 val);
2393 }
2394 cadence->board_delay = val;
2395
2396 ret = cadence_nand_init(cadence);
2397 if (ret)
2398 return ret;
2399
2400 return 0;
2401}
2402
2403U_BOOT_DRIVER(cadence_nand_dt) = {
2404 .name = "cadence-nand-dt",
2405 .id = UCLASS_MTD,
2406 .of_match = cadence_nand_dt_ids,
2407 .probe = cadence_nand_dt_probe,
2408 .priv_auto = sizeof(struct cadence_nand_info),
2409};
2410
2411void board_nand_init(void)
2412{
2413 struct udevice *dev;
2414 int ret;
2415
2416 ret = uclass_get_device_by_driver(UCLASS_MTD,
2417 DM_DRIVER_GET(cadence_nand_dt),
2418 &dev);
2419 if (ret && ret != -ENODEV)
2420 pr_err("Failed to initialize Cadence NAND controller. (error %d)\n",
2421 ret);
2422}