blob: 6a9d9393c772b1e10db0cfd1d733db46b5a5bfa7 [file] [log] [blame]
Dinesh Maniyamf61a2212025-02-27 00:18:17 +08001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Cadence NAND flash controller driver
4 *
5 * Copyright (C) 2019 Cadence
6 *
7 * Author: Piotr Sroka <piotrs@cadence.com>
8 *
9 */
10
11#include <cadence-nand.h>
12#include <clk.h>
13#include <dm.h>
14#include <hang.h>
15#include <malloc.h>
16#include <memalign.h>
17#include <nand.h>
18#include <reset.h>
19#include <wait_bit.h>
20#include <dm/device_compat.h>
21#include <dm/devres.h>
22#include <linux/bitfield.h>
23#include <linux/bug.h>
24#include <linux/delay.h>
25#include <linux/dma-direction.h>
26#include <linux/dma-mapping.h>
27#include <linux/io.h>
28#include <linux/iopoll.h>
29#include <linux/ioport.h>
30#include <linux/printk.h>
31#include <linux/sizes.h>
32
33static inline struct
34cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
35{
36 return container_of(chip, struct cdns_nand_chip, chip);
37}
38
39static inline struct
40cadence_nand_info *to_cadence_nand_info(struct nand_hw_control *controller)
41{
42 return container_of(controller, struct cadence_nand_info, controller);
43}
44
45static bool
46cadence_nand_dma_buf_ok(struct cadence_nand_info *cadence, const void *buf,
47 u32 buf_len)
48{
49 u8 data_dma_width = cadence->caps2.data_dma_width;
50
51 return buf &&
52 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
53 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
54}
55
56static int cadence_nand_wait_for_value(struct cadence_nand_info *cadence,
57 u32 reg_offset, u32 timeout_us,
58 u32 mask, bool is_clear)
59{
60 u32 val;
61 int ret;
62
63 ret = readl_poll_sleep_timeout(cadence->reg + reg_offset,
64 val, !(val & mask) == is_clear,
65 10, timeout_us);
66
67 if (ret < 0) {
68 dev_err(cadence->dev,
69 "Timeout while waiting for reg %x with mask %x is clear %d\n",
70 reg_offset, mask, is_clear);
71 }
72
73 return ret;
74}
75
76static int cadence_nand_set_ecc_enable(struct cadence_nand_info *cadence,
77 bool enable)
78{
79 u32 reg;
80
81 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
82 TIMEOUT_US,
83 CTRL_STATUS_CTRL_BUSY, true))
84 return -ETIMEDOUT;
85
86 reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
87
88 if (enable)
89 reg |= ECC_CONFIG_0_ECC_EN;
90 else
91 reg &= ~ECC_CONFIG_0_ECC_EN;
92
93 writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
94
95 return 0;
96}
97
98static void cadence_nand_set_ecc_strength(struct cadence_nand_info *cadence,
99 u8 corr_str_idx)
100{
101 u32 reg;
102
103 if (cadence->curr_corr_str_idx == corr_str_idx)
104 return;
105
106 reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
107 reg &= ~ECC_CONFIG_0_CORR_STR;
108 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
109 writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
110
111 cadence->curr_corr_str_idx = corr_str_idx;
112}
113
114static int cadence_nand_get_ecc_strength_idx(struct cadence_nand_info *cadence,
115 u8 strength)
116{
117 int i, corr_str_idx = -1;
118
119 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
120 if (cadence->ecc_strengths[i] == strength) {
121 corr_str_idx = i;
122 break;
123 }
124 }
125
126 return corr_str_idx;
127}
128
129static int cadence_nand_set_skip_marker_val(struct cadence_nand_info *cadence,
130 u16 marker_value)
131{
132 u32 reg;
133
134 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
135 TIMEOUT_US,
136 CTRL_STATUS_CTRL_BUSY, true))
137 return -ETIMEDOUT;
138
139 reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF);
140 reg &= ~SKIP_BYTES_MARKER_VALUE;
141 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
142 marker_value);
143
144 writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF);
145
146 return 0;
147}
148
149static int cadence_nand_set_skip_bytes_conf(struct cadence_nand_info *cadence,
150 u8 num_of_bytes,
151 u32 offset_value,
152 int enable)
153{
154 u32 reg, skip_bytes_offset;
155
156 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
157 TIMEOUT_US,
158 CTRL_STATUS_CTRL_BUSY, true))
159 return -ETIMEDOUT;
160
161 if (!enable) {
162 num_of_bytes = 0;
163 offset_value = 0;
164 }
165
166 reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF);
167 reg &= ~SKIP_BYTES_NUM_OF_BYTES;
168 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
169 num_of_bytes);
170 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
171 offset_value);
172
173 writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF);
174 writel_relaxed(skip_bytes_offset, cadence->reg + SKIP_BYTES_OFFSET);
175
176 return 0;
177}
178
179/* Functions enables/disables hardware detection of erased data */
180static void cadence_nand_set_erase_detection(struct cadence_nand_info *cadence,
181 bool enable,
182 u8 bitflips_threshold)
183{
184 u32 reg;
185
186 reg = readl_relaxed(cadence->reg + ECC_CONFIG_0);
187
188 if (enable)
189 reg |= ECC_CONFIG_0_ERASE_DET_EN;
190 else
191 reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
192
193 writel_relaxed(reg, cadence->reg + ECC_CONFIG_0);
194 writel_relaxed(bitflips_threshold, cadence->reg + ECC_CONFIG_1);
195}
196
197static int cadence_nand_set_access_width16(struct cadence_nand_info *cadence,
198 bool bit_bus16)
199{
200 u32 reg;
201
202 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
203 TIMEOUT_US,
204 CTRL_STATUS_CTRL_BUSY, true))
205 return -ETIMEDOUT;
206
207 reg = readl_relaxed(cadence->reg + COMMON_SET);
208 if (!bit_bus16)
209 reg &= ~COMMON_SET_DEVICE_16BIT;
210 else
211 reg |= COMMON_SET_DEVICE_16BIT;
212 writel_relaxed(reg, cadence->reg + COMMON_SET);
213
214 return 0;
215}
216
217static void
218cadence_nand_clear_interrupt(struct cadence_nand_info *cadence,
219 struct cadence_nand_irq_status *irq_status)
220{
221 writel_relaxed(irq_status->status, cadence->reg + INTR_STATUS);
222 writel_relaxed(irq_status->trd_status,
223 cadence->reg + TRD_COMP_INT_STATUS);
224 writel_relaxed(irq_status->trd_error,
225 cadence->reg + TRD_ERR_INT_STATUS);
226}
227
228static void
229cadence_nand_read_int_status(struct cadence_nand_info *cadence,
230 struct cadence_nand_irq_status *irq_status)
231{
232 irq_status->status = readl_relaxed(cadence->reg + INTR_STATUS);
233 irq_status->trd_status = readl_relaxed(cadence->reg
234 + TRD_COMP_INT_STATUS);
235 irq_status->trd_error = readl_relaxed(cadence->reg
236 + TRD_ERR_INT_STATUS);
237}
238
239static u32 irq_detected(struct cadence_nand_info *cadence,
240 struct cadence_nand_irq_status *irq_status)
241{
242 cadence_nand_read_int_status(cadence, irq_status);
243
244 return irq_status->status || irq_status->trd_status ||
245 irq_status->trd_error;
246}
247
248static void cadence_nand_reset_irq(struct cadence_nand_info *cadence)
249{
250 memset(&cadence->irq_status, 0, sizeof(cadence->irq_status));
251 memset(&cadence->irq_mask, 0, sizeof(cadence->irq_mask));
252}
253
254/*
255 * This is the interrupt service routine. It handles all interrupts
256 * sent to this device.
257 */
258static irqreturn_t cadence_nand_isr(struct cadence_nand_info *cadence)
259{
260 struct cadence_nand_irq_status irq_status;
261 irqreturn_t result = IRQ_NONE;
262
263 if (irq_detected(cadence, &irq_status)) {
264 /* Handle interrupt. */
265 /* First acknowledge it. */
266 cadence_nand_clear_interrupt(cadence, &irq_status);
267 /* Status in the device context for someone to read. */
268 cadence->irq_status.status |= irq_status.status;
269 cadence->irq_status.trd_status |= irq_status.trd_status;
270 cadence->irq_status.trd_error |= irq_status.trd_error;
271 /* Tell the OS that we've handled this. */
272 result = IRQ_HANDLED;
273 }
274 return result;
275}
276
277static void cadence_nand_set_irq_mask(struct cadence_nand_info *cadence,
278 struct cadence_nand_irq_status *irq_mask)
279{
280 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
281 cadence->reg + INTR_ENABLE);
282
283 writel_relaxed(irq_mask->trd_error,
284 cadence->reg + TRD_ERR_INT_STATUS_EN);
285}
286
287static void
288cadence_nand_wait_for_irq(struct cadence_nand_info *cadence,
289 struct cadence_nand_irq_status *irq_mask,
290 struct cadence_nand_irq_status *irq_status)
291{
292 irqreturn_t result = IRQ_NONE;
293 u32 start = get_timer(0);
294
295 while (get_timer(start) < TIMEOUT_US) {
296 result = cadence_nand_isr(cadence);
297
298 if (result == IRQ_HANDLED) {
299 *irq_status = cadence->irq_status;
300 break;
301 }
302 udelay(1);
303 }
304
305 if (!result) {
306 /* Timeout error. */
307 dev_err(cadence->dev, "timeout occurred:\n");
308 dev_err(cadence->dev, "\tstatus = 0x%x, mask = 0x%x\n",
309 irq_status->status, irq_mask->status);
310 dev_err(cadence->dev,
311 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
312 irq_status->trd_status, irq_mask->trd_status);
313 dev_err(cadence->dev,
314 "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
315 irq_status->trd_error, irq_mask->trd_error);
316 }
317}
318
319/* Execute generic command on NAND controller. */
320static int cadence_nand_generic_cmd_send(struct cadence_nand_info *cadence,
321 u8 chip_nr,
322 u64 mini_ctrl_cmd)
323{
324 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
325
326 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
327 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
328 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
329
330 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
331 TIMEOUT_US,
332 CTRL_STATUS_CTRL_BUSY, true))
333 return -ETIMEDOUT;
334
335 cadence_nand_reset_irq(cadence);
336
337 writel_relaxed(mini_ctrl_cmd_l, cadence->reg + CMD_REG2);
338 writel_relaxed(mini_ctrl_cmd_h, cadence->reg + CMD_REG3);
339
340 /* Select generic command. */
341 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
342 /* Thread number. */
343 reg |= FIELD_PREP(CMD_REG0_TN, 0);
344
345 /* Issue command. */
346 writel_relaxed(reg, cadence->reg + CMD_REG0);
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +0800347 cadence->buf_index = 0;
Dinesh Maniyamf61a2212025-02-27 00:18:17 +0800348
349 return 0;
350}
351
352/* Wait for data on slave DMA interface. */
353static int cadence_nand_wait_on_sdma(struct cadence_nand_info *cadence, u8 *out_sdma_trd,
354 u32 *out_sdma_size)
355{
356 struct cadence_nand_irq_status irq_mask, irq_status;
357
358 irq_mask.trd_status = 0;
359 irq_mask.trd_error = 0;
360 irq_mask.status = INTR_STATUS_SDMA_TRIGG
361 | INTR_STATUS_SDMA_ERR
362 | INTR_STATUS_UNSUPP_CMD;
363
364 cadence_nand_set_irq_mask(cadence, &irq_mask);
365 cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status);
366 if (irq_status.status == 0) {
367 dev_err(cadence->dev, "Timeout while waiting for SDMA\n");
368 return -ETIMEDOUT;
369 }
370
371 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
372 *out_sdma_size = readl_relaxed(cadence->reg + SDMA_SIZE);
373 *out_sdma_trd = readl_relaxed(cadence->reg + SDMA_TRD_NUM);
374 *out_sdma_trd =
375 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
376 } else {
377 dev_err(cadence->dev, "SDMA error - irq_status %x\n",
378 irq_status.status);
379 return -EIO;
380 }
381
382 return 0;
383}
384
385static void cadence_nand_get_caps(struct cadence_nand_info *cadence)
386{
387 u32 reg;
388
389 reg = readl_relaxed(cadence->reg + CTRL_FEATURES);
390
391 cadence->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
392
393 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
394 cadence->caps2.data_dma_width = 8;
395 else
396 cadence->caps2.data_dma_width = 4;
397
398 if (reg & CTRL_FEATURES_CONTROL_DATA)
399 cadence->caps2.data_control_supp = true;
400
401 if (reg & (CTRL_FEATURES_NVDDR_2_3
402 | CTRL_FEATURES_NVDDR))
403 cadence->caps2.is_phy_type_dll = true;
404}
405
406/* Prepare CDMA descriptor. */
407static void
408cadence_nand_cdma_desc_prepare(struct cadence_nand_info *cadence,
409 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
410 dma_addr_t ctrl_data_ptr, u16 ctype)
411{
412 struct cadence_nand_cdma_desc *cdma_desc = cadence->cdma_desc;
413
414 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
415
416 /* Set fields for one descriptor. */
417 cdma_desc->flash_pointer = flash_ptr;
418 if (cadence->ctrl_rev >= 13)
419 cdma_desc->bank = nf_mem;
420 else
421 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
422
423 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
424 cdma_desc->command_flags |= CDMA_CF_INT;
425
426 cdma_desc->memory_pointer = mem_ptr;
427 cdma_desc->status = 0;
428 cdma_desc->sync_flag_pointer = 0;
429 cdma_desc->sync_arguments = 0;
430
431 cdma_desc->command_type = ctype;
432 cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
433}
434
435static u8 cadence_nand_check_desc_error(struct cadence_nand_info *cadence,
436 u32 desc_status)
437{
438 if (desc_status & CDMA_CS_ERP)
439 return STAT_ERASED;
440
441 if (desc_status & CDMA_CS_UNCE)
442 return STAT_ECC_UNCORR;
443
444 if (desc_status & CDMA_CS_ERR) {
445 dev_err(cadence->dev, ":CDMA desc error flag detected.\n");
446 return STAT_FAIL;
447 }
448
449 if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
450 return STAT_ECC_CORR;
451
452 return STAT_FAIL;
453}
454
455static int cadence_nand_cdma_finish(struct cadence_nand_info *cadence)
456{
457 struct cadence_nand_cdma_desc *desc_ptr = cadence->cdma_desc;
458 u8 status = STAT_BUSY;
459
460 if (desc_ptr->status & CDMA_CS_FAIL) {
461 status = cadence_nand_check_desc_error(cadence,
462 desc_ptr->status);
463 dev_err(cadence->dev, ":CDMA error %x\n", desc_ptr->status);
464 } else if (desc_ptr->status & CDMA_CS_COMP) {
465 /* Descriptor finished with no errors. */
466 if (desc_ptr->command_flags & CDMA_CF_CONT) {
467 dev_info(cadence->dev, "DMA unsupported flag is set");
468 status = STAT_UNKNOWN;
469 } else {
470 /* Last descriptor. */
471 status = STAT_OK;
472 }
473 }
474
475 return status;
476}
477
478static int cadence_nand_cdma_send(struct cadence_nand_info *cadence,
479 u8 thread)
480{
481 u32 reg;
482 int status;
483
484 /* Wait for thread ready. */
485 status = cadence_nand_wait_for_value(cadence, TRD_STATUS,
486 TIMEOUT_US,
487 BIT(thread), true);
488 if (status)
489 return status;
490
491 cadence_nand_reset_irq(cadence);
492
493 writel_relaxed((u32)cadence->dma_cdma_desc,
494 cadence->reg + CMD_REG2);
495 writel_relaxed(0, cadence->reg + CMD_REG3);
496
497 /* Select CDMA mode. */
498 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
499 /* Thread number. */
500 reg |= FIELD_PREP(CMD_REG0_TN, thread);
501 /* Issue command. */
502 writel_relaxed(reg, cadence->reg + CMD_REG0);
503
504 return 0;
505}
506
507/* Send SDMA command and wait for finish. */
508static u32
509cadence_nand_cdma_send_and_wait(struct cadence_nand_info *cadence,
510 u8 thread)
511{
512 struct cadence_nand_irq_status irq_mask, irq_status = {0};
513 int status;
514
515 irq_mask.trd_status = BIT(thread);
516 irq_mask.trd_error = BIT(thread);
517 irq_mask.status = INTR_STATUS_CDMA_TERR;
518
519 cadence_nand_set_irq_mask(cadence, &irq_mask);
520
521 status = cadence_nand_cdma_send(cadence, thread);
522 if (status)
523 return status;
524
525 cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status);
526
527 if (irq_status.status == 0 && irq_status.trd_status == 0 &&
528 irq_status.trd_error == 0) {
529 dev_err(cadence->dev, "CDMA command timeout\n");
530 return -ETIMEDOUT;
531 }
532 if (irq_status.status & irq_mask.status) {
533 dev_err(cadence->dev, "CDMA command failed\n");
534 return -EIO;
535 }
536
537 return 0;
538}
539
540/*
541 * ECC size depends on configured ECC strength and on maximum supported
542 * ECC step size.
543 */
544static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
545{
546 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
547
548 return ALIGN(nbytes, 2);
549}
550
551#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
552 static int \
553 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
554 int strength)\
555 {\
556 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
557 }
558
559CADENCE_NAND_CALC_ECC_BYTES(256)
560CADENCE_NAND_CALC_ECC_BYTES(512)
561CADENCE_NAND_CALC_ECC_BYTES(1024)
562CADENCE_NAND_CALC_ECC_BYTES(2048)
563CADENCE_NAND_CALC_ECC_BYTES(4096)
564
565/* Function reads BCH capabilities. */
566static int cadence_nand_read_bch_caps(struct cadence_nand_info *cadence)
567{
568 struct nand_ecc_caps *ecc_caps = &cadence->ecc_caps;
569 int max_step_size = 0, nstrengths, i;
570 u32 reg;
571
572 reg = readl_relaxed(cadence->reg + BCH_CFG_3);
573 cadence->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
574 if (cadence->bch_metadata_size < 4) {
575 dev_err(cadence->dev,
576 "Driver needs at least 4 bytes of BCH meta data\n");
577 return -EIO;
578 }
579
580 reg = readl_relaxed(cadence->reg + BCH_CFG_0);
581 cadence->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
582 cadence->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
583 cadence->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
584 cadence->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
585
586 reg = readl_relaxed(cadence->reg + BCH_CFG_1);
587 cadence->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
588 cadence->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
589 cadence->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
590 cadence->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
591
592 reg = readl_relaxed(cadence->reg + BCH_CFG_2);
593 cadence->ecc_stepinfos[0].stepsize =
594 FIELD_GET(BCH_CFG_2_SECT_0, reg);
595
596 cadence->ecc_stepinfos[1].stepsize =
597 FIELD_GET(BCH_CFG_2_SECT_1, reg);
598
599 nstrengths = 0;
600 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
601 if (cadence->ecc_strengths[i] != 0)
602 nstrengths++;
603 }
604
605 ecc_caps->nstepinfos = 0;
606 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
607 /* ECC strengths are common for all step infos. */
608 cadence->ecc_stepinfos[i].nstrengths = nstrengths;
609 cadence->ecc_stepinfos[i].strengths =
610 cadence->ecc_strengths;
611
612 if (cadence->ecc_stepinfos[i].stepsize != 0)
613 ecc_caps->nstepinfos++;
614
615 if (cadence->ecc_stepinfos[i].stepsize > max_step_size)
616 max_step_size = cadence->ecc_stepinfos[i].stepsize;
617 }
618 ecc_caps->stepinfos = &cadence->ecc_stepinfos[0];
619
620 switch (max_step_size) {
621 case 256:
622 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
623 break;
624 case 512:
625 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
626 break;
627 case 1024:
628 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
629 break;
630 case 2048:
631 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
632 break;
633 case 4096:
634 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
635 break;
636 default:
637 dev_err(cadence->dev,
638 "Unsupported sector size(ecc step size) %d\n",
639 max_step_size);
640 return -EIO;
641 }
642
643 return 0;
644}
645
646/* Hardware initialization. */
647static int cadence_nand_hw_init(struct cadence_nand_info *cadence)
648{
649 int status;
650 u32 reg;
651
652 status = cadence_nand_wait_for_value(cadence, CTRL_STATUS,
653 TIMEOUT_US,
654 CTRL_STATUS_INIT_COMP, false);
655 if (status)
656 return status;
657
658 reg = readl_relaxed(cadence->reg + CTRL_VERSION);
659 cadence->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
660
661 dev_info(cadence->dev,
662 "%s: cadence nand controller version reg %x\n",
663 __func__, reg);
664
665 /* Disable cache and multiplane. */
666 writel_relaxed(0, cadence->reg + MULTIPLANE_CFG);
667 writel_relaxed(0, cadence->reg + CACHE_CFG);
668
669 /* Clear all interrupts. */
670 writel_relaxed(0xFFFFFFFF, cadence->reg + INTR_STATUS);
671
672 cadence_nand_get_caps(cadence);
673 if (cadence_nand_read_bch_caps(cadence))
674 return -EIO;
675
676 /*
677 * Set IO width access to 8.
678 * It is because during SW device discovering width access
679 * is expected to be 8.
680 */
681 status = cadence_nand_set_access_width16(cadence, false);
682
683 return status;
684}
685
686#define TT_MAIN_OOB_AREAS 2
687#define TT_RAW_PAGE 3
688#define TT_BBM 4
689#define TT_MAIN_OOB_AREA_EXT 5
690
691/* Prepare size of data to transfer. */
692static void
693cadence_nand_prepare_data_size(struct mtd_info *mtd,
694 int transfer_type)
695{
696 struct nand_chip *chip = mtd_to_nand(mtd);
697 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
698 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
699 u32 sec_size = 0, offset = 0, sec_cnt = 1;
700 u32 last_sec_size = cdns_chip->sector_size;
701 u32 data_ctrl_size = 0;
702 u32 reg = 0;
703
704 if (cadence->curr_trans_type == transfer_type)
705 return;
706
707 switch (transfer_type) {
708 case TT_MAIN_OOB_AREA_EXT:
709 sec_cnt = cdns_chip->sector_count;
710 sec_size = cdns_chip->sector_size;
711 data_ctrl_size = cdns_chip->avail_oob_size;
712 break;
713 case TT_MAIN_OOB_AREAS:
714 sec_cnt = cdns_chip->sector_count;
715 last_sec_size = cdns_chip->sector_size
716 + cdns_chip->avail_oob_size;
717 sec_size = cdns_chip->sector_size;
718 break;
719 case TT_RAW_PAGE:
720 last_sec_size = mtd->writesize + mtd->oobsize;
721 break;
722 case TT_BBM:
723 offset = mtd->writesize + cdns_chip->bbm_offs;
724 last_sec_size = 8;
725 break;
726 }
727
728 reg = 0;
729 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
730 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
731 writel_relaxed(reg, cadence->reg + TRAN_CFG_0);
732
733 reg = 0;
734 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
735 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
736 writel_relaxed(reg, cadence->reg + TRAN_CFG_1);
737
738 if (cadence->caps2.data_control_supp) {
739 reg = readl_relaxed(cadence->reg + CONTROL_DATA_CTRL);
740 reg &= ~CONTROL_DATA_CTRL_SIZE;
741 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
742 writel_relaxed(reg, cadence->reg + CONTROL_DATA_CTRL);
743 }
744
745 cadence->curr_trans_type = transfer_type;
746}
747
748static int
749cadence_nand_cdma_transfer(struct cadence_nand_info *cadence, u8 chip_nr,
750 int page, void *buf, void *ctrl_dat, u32 buf_size,
751 u32 ctrl_dat_size, enum dma_data_direction dir,
752 bool with_ecc)
753{
754 dma_addr_t dma_buf, dma_ctrl_dat = 0;
755 u8 thread_nr = chip_nr;
756 int status;
757 u16 ctype;
758
759 if (dir == DMA_FROM_DEVICE)
760 ctype = CDMA_CT_RD;
761 else
762 ctype = CDMA_CT_WR;
763
764 cadence_nand_set_ecc_enable(cadence, with_ecc);
765
766 dma_buf = dma_map_single(buf, buf_size, dir);
767 if (dma_mapping_error(cadence->dev, dma_buf)) {
768 dev_err(cadence->dev, "Failed to map DMA buffer\n");
769 return -EIO;
770 }
771
772 if (ctrl_dat && ctrl_dat_size) {
773 dma_ctrl_dat = dma_map_single(ctrl_dat,
774 ctrl_dat_size, dir);
775 if (dma_mapping_error(cadence->dev, dma_ctrl_dat)) {
776 dma_unmap_single(dma_buf,
777 buf_size, dir);
778 dev_err(cadence->dev, "Failed to map DMA buffer\n");
779 return -EIO;
780 }
781 }
782
783 cadence_nand_cdma_desc_prepare(cadence, chip_nr, page,
784 dma_buf, dma_ctrl_dat, ctype);
785
786 status = cadence_nand_cdma_send_and_wait(cadence, thread_nr);
787
788 dma_unmap_single(dma_buf,
789 buf_size, dir);
790
791 if (ctrl_dat && ctrl_dat_size)
792 dma_unmap_single(dma_ctrl_dat,
793 ctrl_dat_size, dir);
794 if (status)
795 return status;
796
797 return cadence_nand_cdma_finish(cadence);
798}
799
800static void cadence_nand_set_timings(struct cadence_nand_info *cadence,
801 struct cadence_nand_timings *t)
802{
803 writel_relaxed(t->async_toggle_timings,
804 cadence->reg + ASYNC_TOGGLE_TIMINGS);
805 writel_relaxed(t->timings0, cadence->reg + TIMINGS0);
806 writel_relaxed(t->timings1, cadence->reg + TIMINGS1);
807 writel_relaxed(t->timings2, cadence->reg + TIMINGS2);
808
809 if (cadence->caps2.is_phy_type_dll)
810 writel_relaxed(t->dll_phy_ctrl, cadence->reg + DLL_PHY_CTRL);
811
812 writel_relaxed(t->phy_ctrl, cadence->reg + PHY_CTRL);
813
814 if (cadence->caps2.is_phy_type_dll) {
815 writel_relaxed(0, cadence->reg + PHY_TSEL);
816 writel_relaxed(2, cadence->reg + PHY_DQ_TIMING);
817 writel_relaxed(t->phy_dqs_timing,
818 cadence->reg + PHY_DQS_TIMING);
819 writel_relaxed(t->phy_gate_lpbk_ctrl,
820 cadence->reg + PHY_GATE_LPBK_CTRL);
821 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
822 cadence->reg + PHY_DLL_MASTER_CTRL);
823 writel_relaxed(0, cadence->reg + PHY_DLL_SLAVE_CTRL);
824 }
825}
826
827static int cadence_nand_select_target(struct nand_chip *chip)
828{
829 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
830 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
831
832 if (chip == cadence->selected_chip)
833 return 0;
834
835 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
836 TIMEOUT_US,
837 CTRL_STATUS_CTRL_BUSY, true))
838 return -ETIMEDOUT;
839
840 cadence_nand_set_timings(cadence, &cdns_chip->timings);
841
842 cadence_nand_set_ecc_strength(cadence,
843 cdns_chip->corr_str_idx);
844
845 cadence_nand_set_erase_detection(cadence, true,
846 chip->ecc.strength);
847
848 cadence->curr_trans_type = -1;
849 cadence->selected_chip = chip;
850
851 return 0;
852}
853
854static int cadence_nand_erase(struct mtd_info *mtd, int page)
855{
856 struct nand_chip *chip = mtd_to_nand(mtd);
857 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
858 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
859 int status;
860 u8 thread_nr = cdns_chip->cs[chip->cur_cs];
861
862 cadence_nand_cdma_desc_prepare(cadence,
863 cdns_chip->cs[chip->cur_cs],
864 page, 0, 0,
865 CDMA_CT_ERASE);
866 status = cadence_nand_cdma_send_and_wait(cadence, thread_nr);
867 if (status) {
868 dev_err(cadence->dev, "erase operation failed\n");
869 return -EIO;
870 }
871
872 status = cadence_nand_cdma_finish(cadence);
873 if (status)
874 return status;
875
876 return 0;
877}
878
879static int cadence_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip, int oobavail)
880{
881 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
882 int ret;
883
884 /*
885 * If .size and .strength are already set (usually by DT),
886 * check if they are supported by this controller.
887 */
888 if (chip->ecc.size && chip->ecc.strength)
889 return nand_check_ecc_caps(chip, &cadence->ecc_caps, oobavail);
890
891 /*
892 * We want .size and .strength closest to the chip's requirement
893 * unless NAND_ECC_MAXIMIZE is requested.
894 */
895 if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
896 ret = nand_match_ecc_req(chip, &cadence->ecc_caps, oobavail);
897 if (!ret)
898 return 0;
899 }
900
901 /* Max ECC strength is the last thing we can do */
902 return nand_maximize_ecc(chip, &cadence->ecc_caps, oobavail);
903}
904
905static int cadence_nand_read_bbm(struct mtd_info *mtd, struct nand_chip *chip, int page, u8 *buf)
906{
907 int status;
908 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
909 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
910
911 cadence_nand_prepare_data_size(mtd, TT_BBM);
912
913 cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
914
915 /*
916 * Read only bad block marker from offset
917 * defined by a memory manufacturer.
918 */
919 status = cadence_nand_cdma_transfer(cadence,
920 cdns_chip->cs[chip->cur_cs],
921 page, cadence->buf, NULL,
922 mtd->oobsize,
923 0, DMA_FROM_DEVICE, false);
924 if (status) {
925 dev_err(cadence->dev, "read BBM failed\n");
926 return -EIO;
927 }
928
929 memcpy(buf + cdns_chip->bbm_offs, cadence->buf, cdns_chip->bbm_len);
930
931 return 0;
932}
933
934static int cadence_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
935 const u8 *buf, int oob_required, int page)
936{
937 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
938 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
939 int status;
940 u16 marker_val = 0xFFFF;
941
942 status = cadence_nand_select_target(chip);
943 if (status)
944 return status;
945
946 cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len,
947 mtd->writesize
948 + cdns_chip->bbm_offs,
949 1);
950
951 if (oob_required) {
952 marker_val = *(u16 *)(chip->oob_poi
953 + cdns_chip->bbm_offs);
954 } else {
955 /* Set oob data to 0xFF. */
956 memset(cadence->buf + mtd->writesize, 0xFF,
957 cdns_chip->avail_oob_size);
958 }
959
960 cadence_nand_set_skip_marker_val(cadence, marker_val);
961
962 cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT);
963
964 if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) &&
965 cadence->caps2.data_control_supp) {
966 u8 *oob;
967
968 if (oob_required)
969 oob = chip->oob_poi;
970 else
971 oob = cadence->buf + mtd->writesize;
972
973 status = cadence_nand_cdma_transfer(cadence,
974 cdns_chip->cs[chip->cur_cs],
975 page, (void *)buf, oob,
976 mtd->writesize,
977 cdns_chip->avail_oob_size,
978 DMA_TO_DEVICE, true);
979 if (status) {
980 dev_err(cadence->dev, "write page failed\n");
981 return -EIO;
982 }
983
984 return 0;
985 }
986
987 if (oob_required) {
988 /* Transfer the data to the oob area. */
989 memcpy(cadence->buf + mtd->writesize, chip->oob_poi,
990 cdns_chip->avail_oob_size);
991 }
992
993 memcpy(cadence->buf, buf, mtd->writesize);
994
995 cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS);
996
997 return cadence_nand_cdma_transfer(cadence,
998 cdns_chip->cs[chip->cur_cs],
999 page, cadence->buf, NULL,
1000 mtd->writesize
1001 + cdns_chip->avail_oob_size,
1002 0, DMA_TO_DEVICE, true);
1003}
1004
1005static int cadence_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1006 int page)
1007{
1008 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1009
1010 memset(cadence->buf, 0xFF, mtd->writesize);
1011
1012 return cadence_nand_write_page(mtd, chip, cadence->buf, 1, page);
1013}
1014
1015static int cadence_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1016 const u8 *buf, int oob_required, int page)
1017{
1018 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1019 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1020 int writesize = mtd->writesize;
1021 int oobsize = mtd->oobsize;
1022 int ecc_steps = chip->ecc.steps;
1023 int ecc_size = chip->ecc.size;
1024 int ecc_bytes = chip->ecc.bytes;
1025 void *tmp_buf = cadence->buf;
1026 int oob_skip = cdns_chip->bbm_len;
1027 size_t size = writesize + oobsize;
1028 int i, pos, len;
1029 int status;
1030
1031 status = cadence_nand_select_target(chip);
1032 if (status)
1033 return status;
1034
1035 /*
1036 * Fill the buffer with 0xff first except the full page transfer.
1037 * This simplifies the logic.
1038 */
1039 if (!buf || !oob_required)
1040 memset(tmp_buf, 0xff, size);
1041
1042 cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
1043
1044 /* Arrange the buffer for syndrome payload/ecc layout. */
1045 if (buf) {
1046 for (i = 0; i < ecc_steps; i++) {
1047 pos = i * (ecc_size + ecc_bytes);
1048 len = ecc_size;
1049
1050 if (pos >= writesize)
1051 pos += oob_skip;
1052 else if (pos + len > writesize)
1053 len = writesize - pos;
1054
1055 memcpy(tmp_buf + pos, buf, len);
1056 buf += len;
1057 if (len < ecc_size) {
1058 len = ecc_size - len;
1059 memcpy(tmp_buf + writesize + oob_skip, buf,
1060 len);
1061 buf += len;
1062 }
1063 }
1064 }
1065
1066 if (oob_required) {
1067 const u8 *oob = chip->oob_poi;
1068 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1069 (cdns_chip->sector_size + chip->ecc.bytes)
1070 + cdns_chip->sector_size + oob_skip;
1071
1072 /* BBM at the beginning of the OOB area. */
1073 memcpy(tmp_buf + writesize, oob, oob_skip);
1074
1075 /* OOB free. */
1076 memcpy(tmp_buf + oob_data_offset, oob,
1077 cdns_chip->avail_oob_size);
1078 oob += cdns_chip->avail_oob_size;
1079
1080 /* OOB ECC. */
1081 for (i = 0; i < ecc_steps; i++) {
1082 pos = ecc_size + i * (ecc_size + ecc_bytes);
1083 if (i == (ecc_steps - 1))
1084 pos += cdns_chip->avail_oob_size;
1085
1086 len = ecc_bytes;
1087
1088 if (pos >= writesize)
1089 pos += oob_skip;
1090 else if (pos + len > writesize)
1091 len = writesize - pos;
1092
1093 memcpy(tmp_buf + pos, oob, len);
1094 oob += len;
1095 if (len < ecc_bytes) {
1096 len = ecc_bytes - len;
1097 memcpy(tmp_buf + writesize + oob_skip, oob,
1098 len);
1099 oob += len;
1100 }
1101 }
1102 }
1103
1104 cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE);
1105
1106 return cadence_nand_cdma_transfer(cadence,
1107 cdns_chip->cs[chip->cur_cs],
1108 page, cadence->buf, NULL,
1109 mtd->writesize +
1110 mtd->oobsize,
1111 0, DMA_TO_DEVICE, false);
1112}
1113
1114static int cadence_nand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1115 int page)
1116{
1117 return cadence_nand_write_page_raw(mtd, chip, NULL, true, page);
1118}
1119
1120static int cadence_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1121 u8 *buf, int oob_required, int page)
1122{
1123 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1124 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1125 int status;
1126 int ecc_err_count = 0;
1127
1128 status = cadence_nand_select_target(chip);
1129 if (status)
1130 return status;
1131
1132 cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len,
1133 mtd->writesize
1134 + cdns_chip->bbm_offs, 1);
1135
1136 /*
1137 * If data buffer can be accessed by DMA and data_control feature
1138 * is supported then transfer data and oob directly.
1139 */
1140 if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) &&
1141 cadence->caps2.data_control_supp) {
1142 u8 *oob;
1143
1144 if (oob_required)
1145 oob = chip->oob_poi;
1146 else
1147 oob = cadence->buf + mtd->writesize;
1148
1149 cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT);
1150 status = cadence_nand_cdma_transfer(cadence,
1151 cdns_chip->cs[chip->cur_cs],
1152 page, buf, oob,
1153 mtd->writesize,
1154 cdns_chip->avail_oob_size,
1155 DMA_FROM_DEVICE, true);
1156 /* Otherwise use bounce buffer. */
1157 } else {
1158 cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS);
1159 status = cadence_nand_cdma_transfer(cadence,
1160 cdns_chip->cs[chip->cur_cs],
1161 page, cadence->buf,
1162 NULL, mtd->writesize
1163 + cdns_chip->avail_oob_size,
1164 0, DMA_FROM_DEVICE, true);
1165
1166 memcpy(buf, cadence->buf, mtd->writesize);
1167 if (oob_required)
1168 memcpy(chip->oob_poi,
1169 cadence->buf + mtd->writesize,
1170 mtd->oobsize);
1171 }
1172
1173 switch (status) {
1174 case STAT_ECC_UNCORR:
1175 mtd->ecc_stats.failed++;
1176 ecc_err_count++;
1177 break;
1178 case STAT_ECC_CORR:
1179 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1180 cadence->cdma_desc->status);
1181 mtd->ecc_stats.corrected += ecc_err_count;
1182 break;
1183 case STAT_ERASED:
1184 case STAT_OK:
1185 break;
1186 default:
1187 dev_err(cadence->dev, "read page failed\n");
1188 return -EIO;
1189 }
1190
1191 if (oob_required)
1192 if (cadence_nand_read_bbm(mtd, chip, page, chip->oob_poi))
1193 return -EIO;
1194
1195 return ecc_err_count;
1196}
1197
1198static int cadence_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1199 int page)
1200{
1201 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1202
1203 return cadence_nand_read_page(mtd, chip, cadence->buf, 1, page);
1204}
1205
1206static int cadence_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1207 u8 *buf, int oob_required, int page)
1208{
1209 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1210 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1211 int oob_skip = cdns_chip->bbm_len;
1212 int writesize = mtd->writesize;
1213 int ecc_steps = chip->ecc.steps;
1214 int ecc_size = chip->ecc.size;
1215 int ecc_bytes = chip->ecc.bytes;
1216 void *tmp_buf = cadence->buf;
1217 int i, pos, len;
1218 int status;
1219
1220 status = cadence_nand_select_target(chip);
1221 if (status)
1222 return status;
1223
1224 cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0);
1225
1226 cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE);
1227 status = cadence_nand_cdma_transfer(cadence,
1228 cdns_chip->cs[chip->cur_cs],
1229 page, cadence->buf, NULL,
1230 mtd->writesize
1231 + mtd->oobsize,
1232 0, DMA_FROM_DEVICE, false);
1233
1234 switch (status) {
1235 case STAT_ERASED:
1236 case STAT_OK:
1237 break;
1238 default:
1239 dev_err(cadence->dev, "read raw page failed\n");
1240 return -EIO;
1241 }
1242
1243 /* Arrange the buffer for syndrome payload/ecc layout. */
1244 if (buf) {
1245 for (i = 0; i < ecc_steps; i++) {
1246 pos = i * (ecc_size + ecc_bytes);
1247 len = ecc_size;
1248
1249 if (pos >= writesize)
1250 pos += oob_skip;
1251 else if (pos + len > writesize)
1252 len = writesize - pos;
1253
1254 memcpy(buf, tmp_buf + pos, len);
1255 buf += len;
1256 if (len < ecc_size) {
1257 len = ecc_size - len;
1258 memcpy(buf, tmp_buf + writesize + oob_skip,
1259 len);
1260 buf += len;
1261 }
1262 }
1263 }
1264
1265 if (oob_required) {
1266 u8 *oob = chip->oob_poi;
1267 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1268 (cdns_chip->sector_size + chip->ecc.bytes)
1269 + cdns_chip->sector_size + oob_skip;
1270
1271 /* OOB free. */
1272 memcpy(oob, tmp_buf + oob_data_offset,
1273 cdns_chip->avail_oob_size);
1274
1275 /* BBM at the beginning of the OOB area. */
1276 memcpy(oob, tmp_buf + writesize, oob_skip);
1277
1278 oob += cdns_chip->avail_oob_size;
1279
1280 /* OOB ECC */
1281 for (i = 0; i < ecc_steps; i++) {
1282 pos = ecc_size + i * (ecc_size + ecc_bytes);
1283 len = ecc_bytes;
1284
1285 if (i == (ecc_steps - 1))
1286 pos += cdns_chip->avail_oob_size;
1287
1288 if (pos >= writesize)
1289 pos += oob_skip;
1290 else if (pos + len > writesize)
1291 len = writesize - pos;
1292
1293 memcpy(oob, tmp_buf + pos, len);
1294 oob += len;
1295 if (len < ecc_bytes) {
1296 len = ecc_bytes - len;
1297 memcpy(oob, tmp_buf + writesize + oob_skip,
1298 len);
1299 oob += len;
1300 }
1301 }
1302 }
1303 return 0;
1304}
1305
1306static int cadence_nand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
1307 int page)
1308{
1309 return cadence_nand_read_page_raw(mtd, chip, NULL, true, page);
1310}
1311
1312static void cadence_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
1313{
1314 struct nand_chip *chip = mtd_to_nand(mtd);
1315 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1316 u8 thread_nr = 0;
1317 u32 sdma_size;
1318 int status;
1319 int len_in_words = len >> 2;
1320
1321 /* Wait until slave DMA interface is ready to data transfer. */
1322 status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size);
1323 if (status) {
1324 pr_err("Wait on sdma failed:%x\n", status);
1325 hang();
1326 }
1327
1328 if (!cadence->caps1->has_dma) {
1329 readsq(cadence->io.virt, buf, len_in_words);
1330
1331 if (sdma_size > len) {
1332 memcpy(cadence->buf, buf + (len_in_words << 2),
1333 len - (len_in_words << 2));
1334 readsl(cadence->io.virt, cadence->buf,
1335 sdma_size / 4 - len_in_words);
1336 }
1337 }
1338}
1339
1340static void cadence_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
1341{
1342 struct nand_chip *chip = mtd_to_nand(mtd);
1343 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1344 u8 thread_nr = 0;
1345 u32 sdma_size;
1346 int status;
1347 int len_in_words = len >> 2;
1348
1349 /* Wait until slave DMA interface is ready to data transfer. */
1350 status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size);
1351 if (status) {
1352 pr_err("Wait on sdma failed:%x\n", status);
1353 hang();
1354 }
1355
1356 if (!cadence->caps1->has_dma) {
1357 writesq(cadence->io.virt, buf, len_in_words);
1358
1359 if (sdma_size > len) {
1360 memcpy(cadence->buf, buf + (len_in_words << 2),
1361 len - (len_in_words << 2));
1362 writesl(cadence->io.virt, cadence->buf,
1363 sdma_size / 4 - len_in_words);
1364 }
1365 }
1366}
1367
1368static int cadence_nand_cmd_opcode(struct nand_chip *chip, unsigned int op_id)
1369{
1370 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1371 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1372 u64 mini_ctrl_cmd = 0;
1373 int ret;
1374
1375 mini_ctrl_cmd |= GCMD_LAY_TWB;
1376 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, GCMD_LAY_INSTR_CMD);
1377 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, op_id);
1378
1379 ret = cadence_nand_generic_cmd_send(cadence,
1380 cdns_chip->cs[chip->cur_cs],
1381 mini_ctrl_cmd);
1382
1383 if (ret)
1384 dev_err(cadence->dev, "send cmd %x failed\n",
1385 op_id);
1386
1387 return ret;
1388}
1389
1390static int cadence_nand_cmd_address(struct nand_chip *chip,
1391 unsigned int naddrs, const u8 *addrs)
1392{
1393 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1394 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1395 u64 address = 0;
1396 u64 mini_ctrl_cmd = 0;
1397 int ret;
1398 int i;
1399
1400 mini_ctrl_cmd |= GCMD_LAY_TWB;
1401
1402 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
1403 GCMD_LAY_INSTR_ADDR);
1404
1405 for (i = 0; i < naddrs; i++)
1406 address |= (u64)addrs[i] << (8 * i);
1407
1408 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
1409 address);
1410 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
1411 naddrs - 1);
1412
1413 ret = cadence_nand_generic_cmd_send(cadence,
1414 cdns_chip->cs[chip->cur_cs],
1415 mini_ctrl_cmd);
1416
1417 if (ret)
1418 pr_err("send address %llx failed\n", address);
1419
1420 return ret;
1421}
1422
1423static int cadence_nand_cmd_data(struct nand_chip *chip,
1424 unsigned int len, u8 mode)
1425{
1426 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1427 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1428 u64 mini_ctrl_cmd = 0;
1429 int ret;
1430
1431 mini_ctrl_cmd |= GCMD_LAY_TWB;
1432 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
1433 GCMD_LAY_INSTR_DATA);
1434
1435 if (mode)
1436 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, GCMD_DIR_WRITE);
1437
1438 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
1439 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
1440
1441 ret = cadence_nand_generic_cmd_send(cadence,
1442 cdns_chip->cs[chip->cur_cs],
1443 mini_ctrl_cmd);
1444
1445 if (ret) {
1446 pr_err("send generic data cmd failed\n");
1447 return ret;
1448 }
1449
1450 return ret;
1451}
1452
1453static int cadence_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1454{
1455 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1456 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1457 int status;
1458
1459 status = cadence_nand_wait_for_value(cadence, RBN_SETINGS,
1460 TIMEOUT_US,
1461 BIT(cdns_chip->cs[chip->cur_cs]),
1462 false);
1463 return status;
1464}
1465
1466static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
1467 struct mtd_oob_region *oobregion)
1468{
1469 struct nand_chip *chip = mtd_to_nand(mtd);
1470 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1471
1472 if (section)
1473 return -ERANGE;
1474
1475 oobregion->offset = cdns_chip->bbm_len;
1476 oobregion->length = cdns_chip->avail_oob_size
1477 - cdns_chip->bbm_len;
1478
1479 return 0;
1480}
1481
1482static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
1483 struct mtd_oob_region *oobregion)
1484{
1485 struct nand_chip *chip = mtd_to_nand(mtd);
1486 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1487
1488 if (section)
1489 return -ERANGE;
1490
1491 oobregion->offset = cdns_chip->avail_oob_size;
1492 oobregion->length = chip->ecc.total;
1493
1494 return 0;
1495}
1496
1497static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
1498 .rfree = cadence_nand_ooblayout_free,
1499 .ecc = cadence_nand_ooblayout_ecc,
1500};
1501
1502static int calc_cycl(u32 timing, u32 clock)
1503{
1504 if (timing == 0 || clock == 0)
1505 return 0;
1506
1507 if ((timing % clock) > 0)
1508 return timing / clock;
1509 else
1510 return timing / clock - 1;
1511}
1512
1513/* Calculate max data valid window. */
1514static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
1515 u32 board_delay_skew_min, u32 ext_mode)
1516{
1517 if (ext_mode == 0)
1518 clk_period /= 2;
1519
1520 return (trp_cnt + 1) * clk_period + trhoh_min +
1521 board_delay_skew_min;
1522}
1523
1524/* Calculate data valid window. */
1525static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
1526 u32 trea_max, u32 ext_mode)
1527{
1528 if (ext_mode == 0)
1529 clk_period /= 2;
1530
1531 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
1532}
1533
1534static inline int of_get_child_count(const ofnode node)
1535{
1536 return fdtdec_get_child_count(gd->fdt_blob, ofnode_to_offset(node));
1537}
1538
1539static int cadence_setup_data_interface(struct mtd_info *mtd, int chipnr,
1540 const struct nand_data_interface *conf)
1541{
1542 struct nand_chip *chip = mtd_to_nand(mtd);
1543 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1544 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(mtd_to_nand(mtd));
1545 const struct nand_sdr_timings *sdr;
1546 struct cadence_nand_timings *t = &cdns_chip->timings;
1547 u32 reg;
1548 u32 board_delay = cadence->board_delay;
1549 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
1550 cadence->nf_clk_rate);
1551 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
1552 u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
1553 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
1554 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
1555 u32 if_skew = cadence->caps1->if_skew;
1556 u32 board_delay_skew_min = board_delay - if_skew;
1557 u32 board_delay_skew_max = board_delay + if_skew;
1558 u32 dqs_sampl_res, phony_dqs_mod;
1559 u32 tdvw, tdvw_min, tdvw_max;
1560 u32 ext_rd_mode, ext_wr_mode;
1561 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
1562 u32 sampling_point;
1563
1564 sdr = nand_get_sdr_timings(conf);
1565 if (IS_ERR(sdr))
1566 return PTR_ERR(sdr);
1567
1568 memset(t, 0, sizeof(*t));
1569 /* Sampling point calculation. */
1570 if (cadence->caps2.is_phy_type_dll)
1571 phony_dqs_mod = 2;
1572 else
1573 phony_dqs_mod = 1;
1574
1575 dqs_sampl_res = clk_period / phony_dqs_mod;
1576
1577 tdvw_min = sdr->tREA_max + board_delay_skew_max;
1578 /*
1579 * The idea of those calculation is to get the optimum value
1580 * for tRP and tRH timings. If it is NOT possible to sample data
1581 * with optimal tRP/tRH settings, the parameters will be extended.
1582 * If clk_period is 50ns (the lowest value) this condition is met
1583 * for SDR timing modes 1, 2, 3, 4 and 5.
1584 * If clk_period is 20ns the condition is met only for SDR timing
1585 * mode 5.
1586 */
1587 if (sdr->tRC_min <= clk_period &&
1588 sdr->tRP_min <= (clk_period / 2) &&
1589 sdr->tREH_min <= (clk_period / 2)) {
1590 /* Performance mode. */
1591 ext_rd_mode = 0;
1592 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
1593 sdr->tREA_max, ext_rd_mode);
1594 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
1595 board_delay_skew_min,
1596 ext_rd_mode);
1597 /*
1598 * Check if data valid window and sampling point can be found
1599 * and is not on the edge (ie. we have hold margin).
1600 * If not extend the tRP timings.
1601 */
1602 if (tdvw > 0) {
1603 if (tdvw_max <= tdvw_min ||
1604 (tdvw_max % dqs_sampl_res) == 0) {
1605 /*
1606 * No valid sampling point so the RE pulse need
1607 * to be widen widening by half clock cycle.
1608 */
1609 ext_rd_mode = 1;
1610 }
1611 } else {
1612 /*
1613 * There is no valid window
1614 * to be able to sample data the tRP need to be widen.
1615 * Very safe calculations are performed here.
1616 */
1617 trp_cnt = (sdr->tREA_max + board_delay_skew_max
1618 + dqs_sampl_res) / clk_period;
1619 ext_rd_mode = 1;
1620 }
1621
1622 } else {
1623 /* Extended read mode. */
1624 u32 trh;
1625
1626 ext_rd_mode = 1;
1627 trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
1628 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
1629 if (sdr->tREH_min >= trh)
1630 trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
1631 else
1632 trh_cnt = calc_cycl(trh, clk_period);
1633
1634 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
1635 sdr->tREA_max, ext_rd_mode);
1636 /*
1637 * Check if data valid window and sampling point can be found
1638 * or if it is at the edge check if previous is valid
1639 * - if not extend the tRP timings.
1640 */
1641 if (tdvw > 0) {
1642 tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
1643 sdr->tRHOH_min,
1644 board_delay_skew_min,
1645 ext_rd_mode);
1646
1647 if ((((tdvw_max / dqs_sampl_res)
1648 * dqs_sampl_res) <= tdvw_min) ||
1649 (((tdvw_max % dqs_sampl_res) == 0) &&
1650 (((tdvw_max / dqs_sampl_res - 1)
1651 * dqs_sampl_res) <= tdvw_min))) {
1652 /*
1653 * Data valid window width is lower than
1654 * sampling resolution and do not hit any
1655 * sampling point to be sure the sampling point
1656 * will be found the RE low pulse width will be
1657 * extended by one clock cycle.
1658 */
1659 trp_cnt = trp_cnt + 1;
1660 }
1661 } else {
1662 /*
1663 * There is no valid window to be able to sample data.
1664 * The tRP need to be widen.
1665 * Very safe calculations are performed here.
1666 */
1667 trp_cnt = (sdr->tREA_max + board_delay_skew_max
1668 + dqs_sampl_res) / clk_period;
1669 }
1670 }
1671
1672 tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
1673 sdr->tRHOH_min,
1674 board_delay_skew_min, ext_rd_mode);
1675
1676 if (sdr->tWC_min <= clk_period &&
1677 (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
1678 (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
1679 ext_wr_mode = 0;
1680 } else {
1681 u32 twh;
1682
1683 ext_wr_mode = 1;
1684 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
1685 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
1686 twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
1687 clk_period);
1688
1689 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
1690 if (sdr->tWH_min >= twh)
1691 twh = sdr->tWH_min;
1692
1693 twh_cnt = calc_cycl(twh + if_skew, clk_period);
1694 }
1695
1696 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
1697 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
1698 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
1699 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
1700 t->async_toggle_timings = reg;
1701 dev_dbg(cadence->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
1702
1703 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
1704 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
1705 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
1706 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
1707 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
1708
1709 /*
1710 * If timing exceeds delay field in timing register
1711 * then use maximum value.
1712 */
1713 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
1714 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
1715 else
1716 reg |= TIMINGS0_TCCS;
1717
1718 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
1719 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
1720 t->timings0 = reg;
1721 dev_dbg(cadence->dev, "TIMINGS0_SDR\t%x\n", reg);
1722
1723 /* The following is related to single signal so skew is not needed. */
1724 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
1725 trhz_cnt = trhz_cnt + 1;
1726 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
1727 /*
1728 * Because of the two stage syncflop the value must be increased by 3
1729 * first value is related with sync, second value is related
1730 * with output if delay.
1731 */
1732 twb_cnt = twb_cnt + 3 + 5;
1733 /*
1734 * The following is related to the we edge of the random data input
1735 * sequence so skew is not needed.
1736 */
1737 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
1738 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
1739 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
1740 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
1741 t->timings1 = reg;
1742 dev_dbg(cadence->dev, "TIMINGS1_SDR\t%x\n", reg);
1743
1744 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
1745 if (tfeat_cnt < twb_cnt)
1746 tfeat_cnt = twb_cnt;
1747
1748 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
1749 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
1750
1751 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
1752 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
1753 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
1754 t->timings2 = reg;
1755 dev_dbg(cadence->dev, "TIMINGS2_SDR\t%x\n", reg);
1756
1757 if (cadence->caps2.is_phy_type_dll) {
1758 reg = DLL_PHY_CTRL_DLL_RST_N;
1759 if (ext_wr_mode)
1760 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
1761 if (ext_rd_mode)
1762 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
1763
1764 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
1765 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
1766 t->dll_phy_ctrl = reg;
1767 dev_dbg(cadence->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
1768 }
1769
1770 /* Sampling point calculation. */
1771 if ((tdvw_max % dqs_sampl_res) > 0)
1772 sampling_point = tdvw_max / dqs_sampl_res;
1773 else
1774 sampling_point = (tdvw_max / dqs_sampl_res - 1);
1775
1776 if (sampling_point * dqs_sampl_res > tdvw_min) {
1777 dll_phy_dqs_timing =
1778 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
1779 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
1780 phony_dqs_timing = sampling_point / phony_dqs_mod;
1781
1782 if ((sampling_point % 2) > 0) {
1783 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
1784 if ((tdvw_max % dqs_sampl_res) == 0)
1785 /*
1786 * Calculation for sampling point at the edge
1787 * of data and being odd number.
1788 */
1789 phony_dqs_timing = (tdvw_max / dqs_sampl_res)
1790 / phony_dqs_mod - 1;
1791
1792 if (!cadence->caps2.is_phy_type_dll)
1793 phony_dqs_timing--;
1794
1795 } else {
1796 phony_dqs_timing--;
1797 }
1798 rd_del_sel = phony_dqs_timing + 3;
1799 } else {
1800 dev_warn(cadence->dev,
1801 "ERROR : cannot find valid sampling point\n");
1802 }
1803
1804 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
1805 if (cadence->caps2.is_phy_type_dll)
1806 reg |= PHY_CTRL_SDR_DQS;
1807 t->phy_ctrl = reg;
1808 dev_dbg(cadence->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
1809
1810 if (cadence->caps2.is_phy_type_dll) {
1811 dev_dbg(cadence->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
1812 dev_dbg(cadence->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
1813 dev_dbg(cadence->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
1814 dll_phy_dqs_timing);
1815 t->phy_dqs_timing = dll_phy_dqs_timing;
1816
1817 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
1818 dev_dbg(cadence->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
1819 reg);
1820 t->phy_gate_lpbk_ctrl = reg;
1821
1822 dev_dbg(cadence->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
1823 PHY_DLL_MASTER_CTRL_BYPASS_MODE);
1824 dev_dbg(cadence->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
1825 }
1826 return 0;
1827}
1828
1829static int cadence_nand_attach_chip(struct nand_chip *chip)
1830{
1831 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
1832 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1833 static struct nand_ecclayout nand_oob;
1834 u32 ecc_size;
1835 struct mtd_info *mtd = nand_to_mtd(chip);
1836 int ret;
1837
1838 if (chip->options & NAND_BUSWIDTH_16) {
1839 ret = cadence_nand_set_access_width16(cadence, true);
1840 if (ret)
1841 return ret;
1842 }
1843
1844 chip->bbt_options |= NAND_BBT_USE_FLASH;
1845 chip->bbt_options |= NAND_BBT_NO_OOB;
1846 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1847
1848 chip->options |= NAND_NO_SUBPAGE_WRITE;
1849
1850 cdns_chip->bbm_offs = chip->badblockpos;
1851 cdns_chip->bbm_offs &= ~0x01;
1852 /* this value should be even number */
1853 cdns_chip->bbm_len = 2;
1854
1855 ret = cadence_ecc_setup(mtd, chip, mtd->oobsize - cdns_chip->bbm_len);
1856 if (ret) {
1857 dev_err(cadence->dev, "ECC configuration failed\n");
1858 return ret;
1859 }
1860
1861 dev_dbg(cadence->dev,
1862 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1863 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1864
1865 /* Error correction configuration. */
1866 cdns_chip->sector_size = chip->ecc.size;
1867 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
1868 ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
1869
1870 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
1871
1872 if (cdns_chip->avail_oob_size > cadence->bch_metadata_size)
1873 cdns_chip->avail_oob_size = cadence->bch_metadata_size;
1874
1875 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
1876 > mtd->oobsize)
1877 cdns_chip->avail_oob_size -= 4;
1878
1879 ret = cadence_nand_get_ecc_strength_idx(cadence, chip->ecc.strength);
1880 if (ret < 0)
1881 return -EINVAL;
1882
1883 cdns_chip->corr_str_idx = (u8)ret;
1884
1885 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
1886 TIMEOUT_US,
1887 CTRL_STATUS_CTRL_BUSY, true))
1888 return -ETIMEDOUT;
1889
1890 cadence_nand_set_ecc_strength(cadence,
1891 cdns_chip->corr_str_idx);
1892
1893 cadence_nand_set_erase_detection(cadence, true,
1894 chip->ecc.strength);
1895
1896 dev_dbg(cadence->dev,
1897 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1898 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1899
1900 /* Override the default read operations. */
1901 chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1902 chip->ecc.read_page = cadence_nand_read_page;
1903 chip->ecc.read_page_raw = cadence_nand_read_page_raw;
1904 chip->ecc.write_page = cadence_nand_write_page;
1905 chip->ecc.write_page_raw = cadence_nand_write_page_raw;
1906 chip->ecc.read_oob = cadence_nand_read_oob;
1907 chip->ecc.write_oob = cadence_nand_write_oob;
1908 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
1909 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
1910 chip->erase = cadence_nand_erase;
1911
1912 if ((mtd->writesize + mtd->oobsize) > cadence->buf_size)
1913 cadence->buf_size = mtd->writesize + mtd->oobsize;
1914
1915 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
1916
1917 nand_oob.eccbytes = cdns_chip->chip.ecc.bytes;
1918 cdns_chip->chip.ecc.layout = &nand_oob;
1919
1920 return 0;
1921}
1922
1923/* Dummy implementation: we don't support multiple chips */
1924static void cadence_nand_select_chip(struct mtd_info *mtd, int chipnr)
1925{
1926 switch (chipnr) {
1927 case -1:
1928 case 0:
1929 break;
1930
1931 default:
1932 WARN_ON(chipnr);
1933 }
1934}
1935
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08001936static int cadence_nand_status(struct mtd_info *mtd, unsigned int command)
1937{
1938 struct nand_chip *chip = mtd_to_nand(mtd);
1939 int ret = 0;
1940
1941 ret = cadence_nand_cmd_opcode(chip, command);
1942 if (ret)
1943 return ret;
1944
1945 ret = cadence_nand_cmd_data(chip, 1, GCMD_DIR_READ);
1946 if (ret)
1947 return ret;
1948
1949 return 0;
1950}
1951
Dinesh Maniyam113be182025-02-27 00:18:19 +08001952static int cadence_nand_readid(struct mtd_info *mtd, int offset_in_page, unsigned int command)
1953{
1954 struct nand_chip *chip = mtd_to_nand(mtd);
1955 u8 addrs = (u8)offset_in_page;
1956 int ret = 0;
1957
1958 ret = cadence_nand_cmd_opcode(chip, command);
1959 if (ret)
1960 return ret;
1961
1962 ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &addrs);
1963 if (ret)
1964 return ret;
1965
1966 ret = cadence_nand_cmd_data(chip, 8, GCMD_DIR_READ);
1967 if (ret)
1968 return ret;
1969
1970 return 0;
1971}
1972
Dinesh Maniyam890c01c2025-02-27 00:18:20 +08001973static int cadence_nand_param(struct mtd_info *mtd, u8 offset_in_page, unsigned int command)
1974{
1975 struct nand_chip *chip = mtd_to_nand(mtd);
1976 int ret = 0;
1977
1978 ret = cadence_nand_cmd_opcode(chip, command);
1979 if (ret)
1980 return ret;
1981
1982 ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &offset_in_page);
1983 if (ret)
1984 return ret;
1985
1986 ret = cadence_nand_waitfunc(mtd, chip);
1987 if (ret)
1988 return ret;
1989
1990 ret = cadence_nand_cmd_data(chip, sizeof(struct nand_jedec_params), GCMD_DIR_READ);
1991 if (ret)
1992 return ret;
1993
1994 return 0;
1995}
1996
Dinesh Maniyamf61a2212025-02-27 00:18:17 +08001997static void cadence_nand_cmdfunc(struct mtd_info *mtd, unsigned int command,
1998 int offset_in_page, int page)
1999{
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002000 struct nand_chip *chip = mtd_to_nand(mtd);
2001 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
2002 int ret = 0;
2003
2004 cadence->cmd = command;
2005 switch (command) {
2006 case NAND_CMD_STATUS:
2007 ret = cadence_nand_status(mtd, command);
2008 break;
Dinesh Maniyam113be182025-02-27 00:18:19 +08002009
2010 case NAND_CMD_READID:
2011 ret = cadence_nand_readid(mtd, offset_in_page, command);
2012 break;
2013
Dinesh Maniyam890c01c2025-02-27 00:18:20 +08002014 case NAND_CMD_PARAM:
2015 ret = cadence_nand_param(mtd, offset_in_page, command);
2016 break;
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002017 /*
2018 * ecc will override other command for read, write and erase
2019 */
2020 default:
2021 break;
2022 }
2023
2024 if (ret != 0)
2025 printf("ERROR:%s:command:0x%x\n", __func__, cadence->cmd);
Dinesh Maniyamf61a2212025-02-27 00:18:17 +08002026}
2027
2028static int cadence_nand_dev_ready(struct mtd_info *mtd)
2029{
2030 struct nand_chip *chip = mtd_to_nand(mtd);
2031 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
2032
2033 if (cadence_nand_wait_for_value(cadence, CTRL_STATUS,
2034 TIMEOUT_US,
2035 CTRL_STATUS_CTRL_BUSY, true))
2036 return -ETIMEDOUT;
2037
2038 return 0;
2039}
2040
2041static u8 cadence_nand_read_byte(struct mtd_info *mtd)
2042{
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002043 struct nand_chip *chip = mtd_to_nand(mtd);
2044 struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller);
2045 u32 size = 1;
2046 u8 val;
2047
Dinesh Maniyam113be182025-02-27 00:18:19 +08002048 if (cadence->buf_index == 0) {
2049 if (cadence->cmd == NAND_CMD_READID)
2050 size = 8;
Dinesh Maniyam890c01c2025-02-27 00:18:20 +08002051 else if (cadence->cmd == NAND_CMD_PARAM)
2052 size = sizeof(struct nand_jedec_params);
Dinesh Maniyam113be182025-02-27 00:18:19 +08002053
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002054 cadence_nand_read_buf(mtd, &cadence->buf[0], size);
Dinesh Maniyam113be182025-02-27 00:18:19 +08002055 }
Dinesh Maniyamd7bc8562025-02-27 00:18:18 +08002056
2057 val = *(&cadence->buf[0] + cadence->buf_index);
2058 cadence->buf_index++;
2059
2060 return val;
Dinesh Maniyamf61a2212025-02-27 00:18:17 +08002061}
2062
2063static void cadence_nand_write_byte(struct mtd_info *mtd, u8 byte)
2064{
2065 cadence_nand_write_buf(mtd, &byte, 1);
2066}
2067
2068static int cadence_nand_chip_init(struct cadence_nand_info *cadence, ofnode node)
2069{
2070 struct cdns_nand_chip *cdns_chip;
2071 struct nand_chip *chip;
2072 struct mtd_info *mtd;
2073 int ret, i;
2074 int nsels;
2075 u32 cs;
2076
2077 if (!ofnode_get_property(node, "reg", &nsels))
2078 return -ENODEV;
2079
2080 nsels /= sizeof(u32);
2081 if (nsels <= 0) {
2082 dev_err(cadence->dev, "invalid reg property size %d\n", nsels);
2083 return -EINVAL;
2084 }
2085
2086 cdns_chip = devm_kzalloc(cadence->dev, sizeof(*cdns_chip) +
2087 (nsels * sizeof(u8)), GFP_KERNEL);
2088 if (!cdns_chip)
2089 return -ENODEV;
2090
2091 cdns_chip->nsels = nsels;
2092 for (i = 0; i < nsels; i++) {
2093 /* Retrieve CS id. */
2094 ret = ofnode_read_u32_index(node, "reg", i, &cs);
2095 if (ret) {
2096 dev_err(cadence->dev,
2097 "could not retrieve reg property: %d\n",
2098 ret);
2099 goto free_buf;
2100 }
2101
2102 if (cs >= cadence->caps2.max_banks) {
2103 dev_err(cadence->dev,
2104 "invalid reg value: %u (max CS = %d)\n",
2105 cs, cadence->caps2.max_banks);
2106 ret = -EINVAL;
2107 goto free_buf;
2108 }
2109
2110 if (test_and_set_bit(cs, &cadence->assigned_cs)) {
2111 dev_err(cadence->dev,
2112 "CS %d already assigned\n", cs);
2113 ret = -EINVAL;
2114 goto free_buf;
2115 }
2116
2117 cdns_chip->cs[i] = cs;
2118 }
2119
2120 chip = &cdns_chip->chip;
2121 chip->controller = &cadence->controller;
2122 nand_set_flash_node(chip, node);
2123 mtd = nand_to_mtd(chip);
2124 mtd->dev->parent = cadence->dev;
2125
2126 chip->options |= NAND_BUSWIDTH_AUTO;
2127 chip->select_chip = cadence_nand_select_chip;
2128 chip->cmdfunc = cadence_nand_cmdfunc;
2129 chip->dev_ready = cadence_nand_dev_ready;
2130 chip->read_byte = cadence_nand_read_byte;
2131 chip->write_byte = cadence_nand_write_byte;
2132 chip->waitfunc = cadence_nand_waitfunc;
2133 chip->read_buf = cadence_nand_read_buf;
2134 chip->write_buf = cadence_nand_write_buf;
2135 chip->setup_data_interface = cadence_setup_data_interface;
2136
2137 ret = nand_scan_ident(mtd, 1, NULL);
2138 if (ret) {
2139 dev_err(cadence->dev, "Chip identification failure\n");
2140 goto free_buf;
2141 }
2142
2143 ret = cadence_nand_attach_chip(chip);
2144 if (ret) {
2145 dev_err(cadence->dev, "Chip not able to attached\n");
2146 goto free_buf;
2147 }
2148
2149 ret = nand_scan_tail(mtd);
2150 if (ret) {
2151 dev_err(cadence->dev, "could not scan the nand chip\n");
2152 goto free_buf;
2153 }
2154
2155 ret = nand_register(0, mtd);
2156 if (ret) {
2157 dev_err(cadence->dev, "Failed to register MTD: %d\n", ret);
2158 goto free_buf;
2159 }
2160
2161 return 0;
2162
2163free_buf:
2164 devm_kfree(cadence->dev, cdns_chip);
2165 return ret;
2166}
2167
2168static int cadence_nand_chips_init(struct cadence_nand_info *cadence)
2169{
2170 struct udevice *dev = cadence->dev;
2171 ofnode node = dev_ofnode(dev);
2172 ofnode nand_node;
2173 int max_cs = cadence->caps2.max_banks;
2174 int nchips, ret;
2175
2176 nchips = of_get_child_count(node);
2177
2178 if (nchips > max_cs) {
2179 dev_err(cadence->dev,
2180 "too many NAND chips: %d (max = %d CS)\n",
2181 nchips, max_cs);
2182 return -EINVAL;
2183 }
2184
2185 ofnode_for_each_subnode(nand_node, node) {
2186 ret = cadence_nand_chip_init(cadence, nand_node);
2187 if (ret)
2188 return ret;
2189 }
2190
2191 return 0;
2192}
2193
2194static int cadence_nand_init(struct cadence_nand_info *cadence)
2195{
2196 int ret;
2197
2198 cadence->cdma_desc = dma_alloc_coherent(sizeof(*cadence->cdma_desc),
2199 (unsigned long *)&cadence->dma_cdma_desc);
2200 if (!cadence->cdma_desc)
2201 return -ENOMEM;
2202
2203 cadence->buf_size = SZ_16K;
2204 cadence->buf = kmalloc(cadence->buf_size, GFP_KERNEL);
2205 if (!cadence->buf) {
2206 ret = -ENOMEM;
2207 goto free_buf_desc;
2208 }
2209
2210 //Hardware initialization
2211 ret = cadence_nand_hw_init(cadence);
2212 if (ret)
2213 goto free_buf;
2214
2215 cadence->curr_corr_str_idx = 0xFF;
2216
2217 ret = cadence_nand_chips_init(cadence);
2218 if (ret) {
2219 dev_err(cadence->dev, "Failed to register MTD: %d\n",
2220 ret);
2221 goto free_buf;
2222 }
2223
2224 kfree(cadence->buf);
2225 cadence->buf = kzalloc(cadence->buf_size, GFP_KERNEL);
2226 if (!cadence->buf) {
2227 ret = -ENOMEM;
2228 goto free_buf_desc;
2229 }
2230
2231 return 0;
2232
2233free_buf:
2234 kfree(cadence->buf);
2235
2236free_buf_desc:
2237 dma_free_coherent(cadence->cdma_desc);
2238
2239 return ret;
2240}
2241
2242static const struct cadence_nand_dt_devdata cadence_nand_default = {
2243 .if_skew = 0,
2244 .has_dma = 0,
2245};
2246
2247static const struct udevice_id cadence_nand_dt_ids[] = {
2248 {
2249 .compatible = "cdns,nand",
2250 .data = (unsigned long)&cadence_nand_default
2251 }, {}
2252};
2253
2254static int cadence_nand_dt_probe(struct udevice *dev)
2255{
2256 struct cadence_nand_info *cadence = dev_get_priv(dev);
2257 const struct udevice_id *of_id;
2258 const struct cadence_nand_dt_devdata *devdata;
2259 struct resource res;
2260 int ret;
2261 u32 val;
2262
2263 if (!dev) {
2264 dev_warn(dev, "Device ptr null\n");
2265 return -EINVAL;
2266 }
2267
2268 of_id = &cadence_nand_dt_ids[0];
2269 devdata = (struct cadence_nand_dt_devdata *)of_id->data;
2270
2271 cadence->caps1 = devdata;
2272 cadence->dev = dev;
2273
2274 ret = clk_get_by_index(dev, 0, &cadence->clk);
2275 if (ret)
2276 return ret;
2277
2278 ret = clk_enable(&cadence->clk);
2279 if (ret && ret != -ENOSYS && ret != -ENOMEM) {
2280 dev_err(dev, "failed to enable clock\n");
2281 return ret;
2282 }
2283 cadence->nf_clk_rate = clk_get_rate(&cadence->clk);
2284
2285 ret = reset_get_by_index(dev, 1, &cadence->softphy_reset);
2286 if (ret) {
2287 if (ret != -ENOMEM)
2288 dev_warn(dev, "Can't get softphy_reset: %d\n", ret);
2289 } else {
2290 reset_deassert(&cadence->softphy_reset);
2291 }
2292
2293 ret = reset_get_by_index(dev, 0, &cadence->nand_reset);
2294 if (ret) {
2295 if (ret != -ENOMEM)
2296 dev_warn(dev, "Can't get nand_reset: %d\n", ret);
2297 } else {
2298 reset_deassert(&cadence->nand_reset);
2299 }
2300
2301 ret = dev_read_resource_byname(dev, "reg", &res);
2302 if (ret)
2303 return ret;
2304 cadence->reg = devm_ioremap(dev, res.start, resource_size(&res));
2305
2306 ret = dev_read_resource_byname(dev, "sdma", &res);
2307 if (ret)
2308 return ret;
2309 cadence->io.dma = res.start;
2310 cadence->io.virt = devm_ioremap(dev, res.start, resource_size(&res));
2311
2312 ret = ofnode_read_u32(dev_ofnode(dev->parent),
2313 "cdns,board-delay-ps", &val);
2314 if (ret) {
2315 val = 4830;
2316 dev_info(cadence->dev,
2317 "missing cdns,board-delay-ps property, %d was set\n",
2318 val);
2319 }
2320 cadence->board_delay = val;
2321
2322 ret = cadence_nand_init(cadence);
2323 if (ret)
2324 return ret;
2325
2326 return 0;
2327}
2328
2329U_BOOT_DRIVER(cadence_nand_dt) = {
2330 .name = "cadence-nand-dt",
2331 .id = UCLASS_MTD,
2332 .of_match = cadence_nand_dt_ids,
2333 .probe = cadence_nand_dt_probe,
2334 .priv_auto = sizeof(struct cadence_nand_info),
2335};
2336
2337void board_nand_init(void)
2338{
2339 struct udevice *dev;
2340 int ret;
2341
2342 ret = uclass_get_device_by_driver(UCLASS_MTD,
2343 DM_DRIVER_GET(cadence_nand_dt),
2344 &dev);
2345 if (ret && ret != -ENODEV)
2346 pr_err("Failed to initialize Cadence NAND controller. (error %d)\n",
2347 ret);
2348}