Ley Foon Tan | ec6f882 | 2017-04-26 02:44:33 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2013-2017 Altera Corporation <www.altera.com> |
| 3 | * |
| 4 | * SPDX-License-Identifier: GPL-2.0+ |
| 5 | */ |
| 6 | |
| 7 | #include <common.h> |
| 8 | #include <asm/io.h> |
| 9 | #include <asm/arch/clock_manager.h> |
| 10 | #include <wait_bit.h> |
| 11 | |
| 12 | DECLARE_GLOBAL_DATA_PTR; |
| 13 | |
| 14 | static const struct socfpga_clock_manager *clock_manager_base = |
| 15 | (struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS; |
| 16 | |
| 17 | /* |
| 18 | * function to write the bypass register which requires a poll of the |
| 19 | * busy bit |
| 20 | */ |
| 21 | static void cm_write_bypass(u32 val) |
| 22 | { |
| 23 | writel(val, &clock_manager_base->bypass); |
| 24 | cm_wait_for_fsm(); |
| 25 | } |
| 26 | |
| 27 | /* function to write the ctrl register which requires a poll of the busy bit */ |
| 28 | static void cm_write_ctrl(u32 val) |
| 29 | { |
| 30 | writel(val, &clock_manager_base->ctrl); |
| 31 | cm_wait_for_fsm(); |
| 32 | } |
| 33 | |
| 34 | /* function to write a clock register that has phase information */ |
| 35 | static int cm_write_with_phase(u32 value, u32 reg_address, u32 mask) |
| 36 | { |
| 37 | int ret; |
| 38 | |
| 39 | /* poll until phase is zero */ |
| 40 | ret = wait_for_bit(__func__, (const u32 *)reg_address, mask, |
| 41 | false, 20000, false); |
| 42 | if (ret) |
| 43 | return ret; |
| 44 | |
| 45 | writel(value, reg_address); |
| 46 | |
| 47 | return wait_for_bit(__func__, (const u32 *)reg_address, mask, |
| 48 | false, 20000, false); |
| 49 | } |
| 50 | |
| 51 | /* |
| 52 | * Setup clocks while making no assumptions about previous state of the clocks. |
| 53 | * |
| 54 | * Start by being paranoid and gate all sw managed clocks |
| 55 | * Put all plls in bypass |
| 56 | * Put all plls VCO registers back to reset value (bandgap power down). |
| 57 | * Put peripheral and main pll src to reset value to avoid glitch. |
| 58 | * Delay 5 us. |
| 59 | * Deassert bandgap power down and set numerator and denominator |
| 60 | * Start 7 us timer. |
| 61 | * set internal dividers |
| 62 | * Wait for 7 us timer. |
| 63 | * Enable plls |
| 64 | * Set external dividers while plls are locking |
| 65 | * Wait for pll lock |
| 66 | * Assert/deassert outreset all. |
| 67 | * Take all pll's out of bypass |
| 68 | * Clear safe mode |
| 69 | * set source main and peripheral clocks |
| 70 | * Ungate clocks |
| 71 | */ |
| 72 | |
| 73 | int cm_basic_init(const struct cm_config * const cfg) |
| 74 | { |
| 75 | unsigned long end; |
| 76 | int ret; |
| 77 | |
| 78 | /* Start by being paranoid and gate all sw managed clocks */ |
| 79 | |
| 80 | /* |
| 81 | * We need to disable nandclk |
| 82 | * and then do another apb access before disabling |
| 83 | * gatting off the rest of the periperal clocks. |
| 84 | */ |
| 85 | writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK & |
| 86 | readl(&clock_manager_base->per_pll.en), |
| 87 | &clock_manager_base->per_pll.en); |
| 88 | |
| 89 | /* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */ |
| 90 | writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK | |
| 91 | CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK | |
| 92 | CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK | |
| 93 | CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK | |
| 94 | CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK | |
| 95 | CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK, |
| 96 | &clock_manager_base->main_pll.en); |
| 97 | |
| 98 | writel(0, &clock_manager_base->sdr_pll.en); |
| 99 | |
| 100 | /* now we can gate off the rest of the peripheral clocks */ |
| 101 | writel(0, &clock_manager_base->per_pll.en); |
| 102 | |
| 103 | /* Put all plls in bypass */ |
| 104 | cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL | |
| 105 | CLKMGR_BYPASS_MAINPLL); |
| 106 | |
| 107 | /* Put all plls VCO registers back to reset value. */ |
| 108 | writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE & |
| 109 | ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK, |
| 110 | &clock_manager_base->main_pll.vco); |
| 111 | writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE & |
| 112 | ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK, |
| 113 | &clock_manager_base->per_pll.vco); |
| 114 | writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE & |
| 115 | ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK, |
| 116 | &clock_manager_base->sdr_pll.vco); |
| 117 | |
| 118 | /* |
| 119 | * The clocks to the flash devices and the L4_MAIN clocks can |
| 120 | * glitch when coming out of safe mode if their source values |
| 121 | * are different from their reset value. So the trick it to |
| 122 | * put them back to their reset state, and change input |
| 123 | * after exiting safe mode but before ungating the clocks. |
| 124 | */ |
| 125 | writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE, |
| 126 | &clock_manager_base->per_pll.src); |
| 127 | writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE, |
| 128 | &clock_manager_base->main_pll.l4src); |
| 129 | |
| 130 | /* read back for the required 5 us delay. */ |
| 131 | readl(&clock_manager_base->main_pll.vco); |
| 132 | readl(&clock_manager_base->per_pll.vco); |
| 133 | readl(&clock_manager_base->sdr_pll.vco); |
| 134 | |
| 135 | |
| 136 | /* |
| 137 | * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN |
| 138 | * with numerator and denominator. |
| 139 | */ |
| 140 | writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco); |
| 141 | writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco); |
| 142 | writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco); |
| 143 | |
| 144 | /* |
| 145 | * Time starts here. Must wait 7 us from |
| 146 | * BGPWRDN_SET(0) to VCO_ENABLE_SET(1). |
| 147 | */ |
| 148 | end = timer_get_us() + 7; |
| 149 | |
| 150 | /* main mpu */ |
| 151 | writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk); |
| 152 | |
| 153 | /* altera group mpuclk */ |
| 154 | writel(cfg->altera_grp_mpuclk, &clock_manager_base->altera.mpuclk); |
| 155 | |
| 156 | /* main main clock */ |
| 157 | writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk); |
| 158 | |
| 159 | /* main for dbg */ |
| 160 | writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk); |
| 161 | |
| 162 | /* main for cfgs2fuser0clk */ |
| 163 | writel(cfg->cfg2fuser0clk, |
| 164 | &clock_manager_base->main_pll.cfgs2fuser0clk); |
| 165 | |
| 166 | /* Peri emac0 50 MHz default to RMII */ |
| 167 | writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk); |
| 168 | |
| 169 | /* Peri emac1 50 MHz default to RMII */ |
| 170 | writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk); |
| 171 | |
| 172 | /* Peri QSPI */ |
| 173 | writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk); |
| 174 | |
| 175 | writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk); |
| 176 | |
| 177 | /* Peri pernandsdmmcclk */ |
| 178 | writel(cfg->mainnandsdmmcclk, |
| 179 | &clock_manager_base->main_pll.mainnandsdmmcclk); |
| 180 | |
| 181 | writel(cfg->pernandsdmmcclk, |
| 182 | &clock_manager_base->per_pll.pernandsdmmcclk); |
| 183 | |
| 184 | /* Peri perbaseclk */ |
| 185 | writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk); |
| 186 | |
| 187 | /* Peri s2fuser1clk */ |
| 188 | writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk); |
| 189 | |
| 190 | /* 7 us must have elapsed before we can enable the VCO */ |
| 191 | while (timer_get_us() < end) |
| 192 | ; |
| 193 | |
| 194 | /* Enable vco */ |
| 195 | /* main pll vco */ |
| 196 | writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, |
| 197 | &clock_manager_base->main_pll.vco); |
| 198 | |
| 199 | /* periferal pll */ |
| 200 | writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, |
| 201 | &clock_manager_base->per_pll.vco); |
| 202 | |
| 203 | /* sdram pll vco */ |
| 204 | writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, |
| 205 | &clock_manager_base->sdr_pll.vco); |
| 206 | |
| 207 | /* L3 MP and L3 SP */ |
| 208 | writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv); |
| 209 | |
| 210 | writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv); |
| 211 | |
| 212 | writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv); |
| 213 | |
| 214 | /* L4 MP, L4 SP, can0, and can1 */ |
| 215 | writel(cfg->perdiv, &clock_manager_base->per_pll.div); |
| 216 | |
| 217 | writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv); |
| 218 | |
| 219 | cm_wait_for_lock(LOCKED_MASK); |
| 220 | |
| 221 | /* write the sdram clock counters before toggling outreset all */ |
| 222 | writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK, |
| 223 | &clock_manager_base->sdr_pll.ddrdqsclk); |
| 224 | |
| 225 | writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK, |
| 226 | &clock_manager_base->sdr_pll.ddr2xdqsclk); |
| 227 | |
| 228 | writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK, |
| 229 | &clock_manager_base->sdr_pll.ddrdqclk); |
| 230 | |
| 231 | writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK, |
| 232 | &clock_manager_base->sdr_pll.s2fuser2clk); |
| 233 | |
| 234 | /* |
| 235 | * after locking, but before taking out of bypass |
| 236 | * assert/deassert outresetall |
| 237 | */ |
| 238 | u32 mainvco = readl(&clock_manager_base->main_pll.vco); |
| 239 | |
| 240 | /* assert main outresetall */ |
| 241 | writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK, |
| 242 | &clock_manager_base->main_pll.vco); |
| 243 | |
| 244 | u32 periphvco = readl(&clock_manager_base->per_pll.vco); |
| 245 | |
| 246 | /* assert pheriph outresetall */ |
| 247 | writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK, |
| 248 | &clock_manager_base->per_pll.vco); |
| 249 | |
| 250 | /* assert sdram outresetall */ |
| 251 | writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN| |
| 252 | CLKMGR_SDRPLLGRP_VCO_OUTRESETALL, |
| 253 | &clock_manager_base->sdr_pll.vco); |
| 254 | |
| 255 | /* deassert main outresetall */ |
| 256 | writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK, |
| 257 | &clock_manager_base->main_pll.vco); |
| 258 | |
| 259 | /* deassert pheriph outresetall */ |
| 260 | writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK, |
| 261 | &clock_manager_base->per_pll.vco); |
| 262 | |
| 263 | /* deassert sdram outresetall */ |
| 264 | writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN, |
| 265 | &clock_manager_base->sdr_pll.vco); |
| 266 | |
| 267 | /* |
| 268 | * now that we've toggled outreset all, all the clocks |
| 269 | * are aligned nicely; so we can change any phase. |
| 270 | */ |
| 271 | ret = cm_write_with_phase(cfg->ddrdqsclk, |
| 272 | (u32)&clock_manager_base->sdr_pll.ddrdqsclk, |
| 273 | CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK); |
| 274 | if (ret) |
| 275 | return ret; |
| 276 | |
| 277 | /* SDRAM DDR2XDQSCLK */ |
| 278 | ret = cm_write_with_phase(cfg->ddr2xdqsclk, |
| 279 | (u32)&clock_manager_base->sdr_pll.ddr2xdqsclk, |
| 280 | CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK); |
| 281 | if (ret) |
| 282 | return ret; |
| 283 | |
| 284 | ret = cm_write_with_phase(cfg->ddrdqclk, |
| 285 | (u32)&clock_manager_base->sdr_pll.ddrdqclk, |
| 286 | CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK); |
| 287 | if (ret) |
| 288 | return ret; |
| 289 | |
| 290 | ret = cm_write_with_phase(cfg->s2fuser2clk, |
| 291 | (u32)&clock_manager_base->sdr_pll.s2fuser2clk, |
| 292 | CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK); |
| 293 | if (ret) |
| 294 | return ret; |
| 295 | |
| 296 | /* Take all three PLLs out of bypass when safe mode is cleared. */ |
| 297 | cm_write_bypass(0); |
| 298 | |
| 299 | /* clear safe mode */ |
| 300 | cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE); |
| 301 | |
| 302 | /* |
| 303 | * now that safe mode is clear with clocks gated |
| 304 | * it safe to change the source mux for the flashes the the L4_MAIN |
| 305 | */ |
| 306 | writel(cfg->persrc, &clock_manager_base->per_pll.src); |
| 307 | writel(cfg->l4src, &clock_manager_base->main_pll.l4src); |
| 308 | |
| 309 | /* Now ungate non-hw-managed clocks */ |
| 310 | writel(~0, &clock_manager_base->main_pll.en); |
| 311 | writel(~0, &clock_manager_base->per_pll.en); |
| 312 | writel(~0, &clock_manager_base->sdr_pll.en); |
| 313 | |
| 314 | /* Clear the loss of lock bits (write 1 to clear) */ |
| 315 | writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK | |
| 316 | CLKMGR_INTER_MAINPLLLOST_MASK, |
| 317 | &clock_manager_base->inter); |
| 318 | |
| 319 | return 0; |
| 320 | } |
| 321 | |
| 322 | static unsigned int cm_get_main_vco_clk_hz(void) |
| 323 | { |
| 324 | u32 reg, clock; |
| 325 | |
| 326 | /* get the main VCO clock */ |
| 327 | reg = readl(&clock_manager_base->main_pll.vco); |
| 328 | clock = cm_get_osc_clk_hz(1); |
| 329 | clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >> |
| 330 | CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1; |
| 331 | clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >> |
| 332 | CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1; |
| 333 | |
| 334 | return clock; |
| 335 | } |
| 336 | |
| 337 | static unsigned int cm_get_per_vco_clk_hz(void) |
| 338 | { |
| 339 | u32 reg, clock = 0; |
| 340 | |
| 341 | /* identify PER PLL clock source */ |
| 342 | reg = readl(&clock_manager_base->per_pll.vco); |
| 343 | reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >> |
| 344 | CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET; |
| 345 | if (reg == CLKMGR_VCO_SSRC_EOSC1) |
| 346 | clock = cm_get_osc_clk_hz(1); |
| 347 | else if (reg == CLKMGR_VCO_SSRC_EOSC2) |
| 348 | clock = cm_get_osc_clk_hz(2); |
| 349 | else if (reg == CLKMGR_VCO_SSRC_F2S) |
| 350 | clock = cm_get_f2s_per_ref_clk_hz(); |
| 351 | |
| 352 | /* get the PER VCO clock */ |
| 353 | reg = readl(&clock_manager_base->per_pll.vco); |
| 354 | clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >> |
| 355 | CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1; |
| 356 | clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >> |
| 357 | CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1; |
| 358 | |
| 359 | return clock; |
| 360 | } |
| 361 | |
| 362 | unsigned long cm_get_mpu_clk_hz(void) |
| 363 | { |
| 364 | u32 reg, clock; |
| 365 | |
| 366 | clock = cm_get_main_vco_clk_hz(); |
| 367 | |
| 368 | /* get the MPU clock */ |
| 369 | reg = readl(&clock_manager_base->altera.mpuclk); |
| 370 | clock /= (reg + 1); |
| 371 | reg = readl(&clock_manager_base->main_pll.mpuclk); |
| 372 | clock /= (reg + 1); |
| 373 | return clock; |
| 374 | } |
| 375 | |
| 376 | unsigned long cm_get_sdram_clk_hz(void) |
| 377 | { |
| 378 | u32 reg, clock = 0; |
| 379 | |
| 380 | /* identify SDRAM PLL clock source */ |
| 381 | reg = readl(&clock_manager_base->sdr_pll.vco); |
| 382 | reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >> |
| 383 | CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET; |
| 384 | if (reg == CLKMGR_VCO_SSRC_EOSC1) |
| 385 | clock = cm_get_osc_clk_hz(1); |
| 386 | else if (reg == CLKMGR_VCO_SSRC_EOSC2) |
| 387 | clock = cm_get_osc_clk_hz(2); |
| 388 | else if (reg == CLKMGR_VCO_SSRC_F2S) |
| 389 | clock = cm_get_f2s_sdr_ref_clk_hz(); |
| 390 | |
| 391 | /* get the SDRAM VCO clock */ |
| 392 | reg = readl(&clock_manager_base->sdr_pll.vco); |
| 393 | clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >> |
| 394 | CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1; |
| 395 | clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >> |
| 396 | CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1; |
| 397 | |
| 398 | /* get the SDRAM (DDR_DQS) clock */ |
| 399 | reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk); |
| 400 | reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >> |
| 401 | CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET; |
| 402 | clock /= (reg + 1); |
| 403 | |
| 404 | return clock; |
| 405 | } |
| 406 | |
| 407 | unsigned int cm_get_l4_sp_clk_hz(void) |
| 408 | { |
| 409 | u32 reg, clock = 0; |
| 410 | |
| 411 | /* identify the source of L4 SP clock */ |
| 412 | reg = readl(&clock_manager_base->main_pll.l4src); |
| 413 | reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >> |
| 414 | CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET; |
| 415 | |
| 416 | if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) { |
| 417 | clock = cm_get_main_vco_clk_hz(); |
| 418 | |
| 419 | /* get the clock prior L4 SP divider (main clk) */ |
| 420 | reg = readl(&clock_manager_base->altera.mainclk); |
| 421 | clock /= (reg + 1); |
| 422 | reg = readl(&clock_manager_base->main_pll.mainclk); |
| 423 | clock /= (reg + 1); |
| 424 | } else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) { |
| 425 | clock = cm_get_per_vco_clk_hz(); |
| 426 | |
| 427 | /* get the clock prior L4 SP divider (periph_base_clk) */ |
| 428 | reg = readl(&clock_manager_base->per_pll.perbaseclk); |
| 429 | clock /= (reg + 1); |
| 430 | } |
| 431 | |
| 432 | /* get the L4 SP clock which supplied to UART */ |
| 433 | reg = readl(&clock_manager_base->main_pll.maindiv); |
| 434 | reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >> |
| 435 | CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET; |
| 436 | clock = clock / (1 << reg); |
| 437 | |
| 438 | return clock; |
| 439 | } |
| 440 | |
| 441 | unsigned int cm_get_mmc_controller_clk_hz(void) |
| 442 | { |
| 443 | u32 reg, clock = 0; |
| 444 | |
| 445 | /* identify the source of MMC clock */ |
| 446 | reg = readl(&clock_manager_base->per_pll.src); |
| 447 | reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >> |
| 448 | CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET; |
| 449 | |
| 450 | if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) { |
| 451 | clock = cm_get_f2s_per_ref_clk_hz(); |
| 452 | } else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) { |
| 453 | clock = cm_get_main_vco_clk_hz(); |
| 454 | |
| 455 | /* get the SDMMC clock */ |
| 456 | reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk); |
| 457 | clock /= (reg + 1); |
| 458 | } else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) { |
| 459 | clock = cm_get_per_vco_clk_hz(); |
| 460 | |
| 461 | /* get the SDMMC clock */ |
| 462 | reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk); |
| 463 | clock /= (reg + 1); |
| 464 | } |
| 465 | |
| 466 | /* further divide by 4 as we have fixed divider at wrapper */ |
| 467 | clock /= 4; |
| 468 | return clock; |
| 469 | } |
| 470 | |
| 471 | unsigned int cm_get_qspi_controller_clk_hz(void) |
| 472 | { |
| 473 | u32 reg, clock = 0; |
| 474 | |
| 475 | /* identify the source of QSPI clock */ |
| 476 | reg = readl(&clock_manager_base->per_pll.src); |
| 477 | reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >> |
| 478 | CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET; |
| 479 | |
| 480 | if (reg == CLKMGR_QSPI_CLK_SRC_F2S) { |
| 481 | clock = cm_get_f2s_per_ref_clk_hz(); |
| 482 | } else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) { |
| 483 | clock = cm_get_main_vco_clk_hz(); |
| 484 | |
| 485 | /* get the qspi clock */ |
| 486 | reg = readl(&clock_manager_base->main_pll.mainqspiclk); |
| 487 | clock /= (reg + 1); |
| 488 | } else if (reg == CLKMGR_QSPI_CLK_SRC_PER) { |
| 489 | clock = cm_get_per_vco_clk_hz(); |
| 490 | |
| 491 | /* get the qspi clock */ |
| 492 | reg = readl(&clock_manager_base->per_pll.perqspiclk); |
| 493 | clock /= (reg + 1); |
| 494 | } |
| 495 | |
| 496 | return clock; |
| 497 | } |
| 498 | |
| 499 | unsigned int cm_get_spi_controller_clk_hz(void) |
| 500 | { |
| 501 | u32 reg, clock = 0; |
| 502 | |
| 503 | clock = cm_get_per_vco_clk_hz(); |
| 504 | |
| 505 | /* get the clock prior L4 SP divider (periph_base_clk) */ |
| 506 | reg = readl(&clock_manager_base->per_pll.perbaseclk); |
| 507 | clock /= (reg + 1); |
| 508 | |
| 509 | return clock; |
| 510 | } |
| 511 | |
| 512 | void cm_print_clock_quick_summary(void) |
| 513 | { |
| 514 | printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000); |
| 515 | printf("DDR %10ld kHz\n", cm_get_sdram_clk_hz() / 1000); |
| 516 | printf("EOSC1 %8d kHz\n", cm_get_osc_clk_hz(1) / 1000); |
| 517 | printf("EOSC2 %8d kHz\n", cm_get_osc_clk_hz(2) / 1000); |
| 518 | printf("F2S_SDR_REF %8d kHz\n", cm_get_f2s_sdr_ref_clk_hz() / 1000); |
| 519 | printf("F2S_PER_REF %8d kHz\n", cm_get_f2s_per_ref_clk_hz() / 1000); |
| 520 | printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000); |
| 521 | printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000); |
| 522 | printf("UART %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000); |
| 523 | printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000); |
| 524 | } |