blob: e50b7479238f5e758f8c2410da37b3847bbca6d3 [file] [log] [blame]
wdenkfe8c2802002-11-03 00:38:21 +00001/*
2 * (C) Copyright 2002
3 * Custom IDEAS, Inc. <www.cideas.com>
4 * Gerald Van Baren <vanbaren@cideas.com>
5 *
6 * See file CREDITS for list of people who contributed to this
7 * project.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of
12 * the License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22 * MA 02111-1307 USA
23 */
24
25#include <asm/u-boot.h>
26#include <common.h>
27#include <ioports.h>
28#include <mpc8260.h>
wdenkfe8c2802002-11-03 00:38:21 +000029#include <i2c.h>
30#include <spi.h>
wdenk1f197c62003-09-15 18:00:00 +000031#include <command.h>
wdenkfe8c2802002-11-03 00:38:21 +000032
33#ifdef CONFIG_SHOW_BOOT_PROGRESS
34#include <status_led.h>
35#endif
36
wdenk1f197c62003-09-15 18:00:00 +000037#ifdef CONFIG_ETHER_LOOPBACK_TEST
38extern void eth_loopback_test(void);
39#endif /* CONFIG_ETHER_LOOPBACK_TEST */
40
41extern int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
42
wdenkfe8c2802002-11-03 00:38:21 +000043#include "clkinit.h"
44#include "ioconfig.h" /* I/O configuration table */
45
46/*
47 * PBI Page Based Interleaving
48 * PSDMR_PBI page based interleaving
49 * 0 bank based interleaving
50 * External Address Multiplexing (EAMUX) adds a clock to address cycles
51 * (this can help with marginal board layouts)
52 * PSDMR_EAMUX adds a clock
53 * 0 no extra clock
54 * Buffer Command (BUFCMD) adds a clock to command cycles.
55 * PSDMR_BUFCMD adds a clock
56 * 0 no extra clock
57 */
58#define CONFIG_PBI PSDMR_PBI
59#define PESSIMISTIC_SDRAM 0
60#define EAMUX 0 /* EST requires EAMUX */
61#define BUFCMD 0
62
63/*
64 * ADC/DAC Defines:
65 */
66#define INITIAL_SAMPLE_RATE 10016 /* Initial Daq sample rate */
67#define INITIAL_RIGHT_JUST 0 /* Initial DAC right justification */
68#define INITIAL_MCLK_DIVIDE 0 /* Initial MCLK Divide */
69#define INITIAL_SAMPLE_64X 1 /* Initial 64x clocking mode */
70#define INITIAL_SAMPLE_128X 0 /* Initial 128x clocking mode */
71
72/*
73 * ADC Defines:
74 */
75#define I2C_ADC_1_ADDR 0x0E /* I2C Address of the ADC #1 */
76#define I2C_ADC_2_ADDR 0x0F /* I2C Address of the ADC #2 */
77
78#define ADC_SDATA1_MASK 0x00020000 /* PA14 - CH12SDATA_PU */
79#define ADC_SDATA2_MASK 0x00010000 /* PA15 - CH34SDATA_PU */
80
81#define ADC_VREF_CAP 100 /* VREF capacitor in uF */
82#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */
83#define ADC_SDATA_DELAY 100 /* ADC SDATA release delay in usec */
84#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500)
wdenk57b2d802003-06-27 21:31:46 +000085 /* Wait at least 4100 LRCLK's */
wdenkfe8c2802002-11-03 00:38:21 +000086
87#define ADC_REG1_FRAME_START 0x80 /* Frame start */
88#define ADC_REG1_GROUND_CAL 0x40 /* Ground calibration enable */
89#define ADC_REG1_ANA_MOD_PDOWN 0x20 /* Analog modulator section in power down */
90#define ADC_REG1_DIG_MOD_PDOWN 0x10 /* Digital modulator section in power down */
91
92#define ADC_REG2_128x 0x80 /* Oversample at 128x */
93#define ADC_REG2_CAL 0x40 /* System calibration enable */
94#define ADC_REG2_CHANGE_SIGN 0x20 /* Change sign enable */
95#define ADC_REG2_LR_DISABLE 0x10 /* Left/Right output disable */
96#define ADC_REG2_HIGH_PASS_DIS 0x08 /* High pass filter disable */
97#define ADC_REG2_SLAVE_MODE 0x04 /* Slave mode */
98#define ADC_REG2_DFS 0x02 /* Digital format select */
99#define ADC_REG2_MUTE 0x01 /* Mute */
100
101#define ADC_REG7_ADDR_ENABLE 0x80 /* Address enable */
102#define ADC_REG7_PEAK_ENABLE 0x40 /* Peak enable */
103#define ADC_REG7_PEAK_UPDATE 0x20 /* Peak update */
104#define ADC_REG7_PEAK_FORMAT 0x10 /* Peak display format */
105#define ADC_REG7_DIG_FILT_PDOWN 0x04 /* Digital filter power down enable */
106#define ADC_REG7_FIR2_IN_EN 0x02 /* External FIR2 input enable */
107#define ADC_REG7_PSYCHO_EN 0x01 /* External pyscho filter input enable */
108
109/*
110 * DAC Defines:
111 */
112
113#define I2C_DAC_ADDR 0x11 /* I2C Address of the DAC */
114
115#define DAC_RST_MASK 0x00008000 /* PA16 - DAC_RST* */
116#define DAC_RESET_DELAY 100 /* DAC reset delay in usec */
117#define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */
118
119#define DAC_REG1_AMUTE 0x80 /* Auto-mute */
120
121#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit */
122#define DAC_REG1_I2S_24_BIT (1 << 4) /* Fmt 1: I2S up to 24 bit */
123#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */
124#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */
125#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */
126#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */
127
128#define DAC_REG1_DEM_NO (0 << 2) /* No De-emphasis */
129#define DAC_REG1_DEM_44KHZ (1 << 2) /* 44.1KHz De-emphasis */
130#define DAC_REG1_DEM_48KHZ (2 << 2) /* 48KHz De-emphasis */
131#define DAC_REG1_DEM_32KHZ (3 << 2) /* 32KHz De-emphasis */
132
133#define DAC_REG1_SINGLE 0 /* 4- 50KHz sample rate */
134#define DAC_REG1_DOUBLE 1 /* 50-100KHz sample rate */
135#define DAC_REG1_QUAD 2 /* 100-200KHz sample rate */
136#define DAC_REG1_DSD 3 /* Direct Stream Data, DSD */
137
138#define DAC_REG5_INVERT_A 0x80 /* Invert channel A */
139#define DAC_REG5_INVERT_B 0x40 /* Invert channel B */
140#define DAC_REG5_I2C_MODE 0x20 /* Control port (I2C) mode */
141#define DAC_REG5_POWER_DOWN 0x10 /* Power down mode */
142#define DAC_REG5_MUTEC_A_B 0x08 /* Mutec A=B */
143#define DAC_REG5_FREEZE 0x04 /* Freeze */
144#define DAC_REG5_MCLK_DIV 0x02 /* MCLK divide by 2 */
145#define DAC_REG5_RESERVED 0x01 /* Reserved */
146
147/* ------------------------------------------------------------------------- */
148
149/*
150 * Check Board Identity:
151 */
152
153int checkboard(void)
154{
155 printf ("SACSng\n");
156
157 return 0;
158}
159
160/* ------------------------------------------------------------------------- */
161
162long int initdram(int board_type)
163{
164 volatile immap_t *immap = (immap_t *)CFG_IMMR;
165 volatile memctl8260_t *memctl = &immap->im_memctl;
166 volatile uchar c = 0;
167 volatile uchar *ramaddr = (uchar *)(CFG_SDRAM_BASE + 0x8);
168 uint psdmr = CFG_PSDMR;
169 int i;
170 uint psrt = 14; /* for no SPD */
171 uint chipselects = 1; /* for no SPD */
172 uint sdram_size = CFG_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */
173 uint or = CFG_OR2_PRELIM; /* for no SPD */
174#ifdef SDRAM_SPD_ADDR
175 uint data_width;
176 uint rows;
177 uint banks;
178 uint cols;
179 uint caslatency;
180 uint width;
181 uint rowst;
182 uint sdam;
183 uint bsma;
184 uint sda10;
185 u_char spd_size;
186 u_char data;
187 u_char cksum;
188 int j;
189#endif
190
191#ifdef SDRAM_SPD_ADDR
192 /* Keep the compiler from complaining about potentially uninitialized vars */
193 data_width = chipselects = rows = banks = cols = caslatency = psrt = 0;
194
195 /*
196 * Read the SDRAM SPD EEPROM via I2C.
197 */
198 i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
199 spd_size = data;
200 cksum = data;
201 for(j = 1; j < 64; j++) { /* read only the checksummed bytes */
202 /* note: the I2C address autoincrements when alen == 0 */
203 i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
204 if(j == 5) chipselects = data & 0x0F;
205 else if(j == 6) data_width = data;
206 else if(j == 7) data_width |= data << 8;
207 else if(j == 3) rows = data & 0x0F;
208 else if(j == 4) cols = data & 0x0F;
209 else if(j == 12) {
210 /*
wdenk57b2d802003-06-27 21:31:46 +0000211 * Refresh rate: this assumes the prescaler is set to
wdenkfe8c2802002-11-03 00:38:21 +0000212 * approximately 1uSec per tick.
213 */
214 switch(data & 0x7F) {
wdenk57b2d802003-06-27 21:31:46 +0000215 default:
216 case 0: psrt = 14 ; /* 15.625uS */ break;
217 case 1: psrt = 2; /* 3.9uS */ break;
218 case 2: psrt = 6; /* 7.8uS */ break;
219 case 3: psrt = 29; /* 31.3uS */ break;
220 case 4: psrt = 60; /* 62.5uS */ break;
221 case 5: psrt = 120; /* 125uS */ break;
wdenkfe8c2802002-11-03 00:38:21 +0000222 }
223 }
224 else if(j == 17) banks = data;
225 else if(j == 18) {
226 caslatency = 3; /* default CL */
227#if(PESSIMISTIC_SDRAM)
228 if((data & 0x04) != 0) caslatency = 3;
229 else if((data & 0x02) != 0) caslatency = 2;
230 else if((data & 0x01) != 0) caslatency = 1;
231#else
232 if((data & 0x01) != 0) caslatency = 1;
233 else if((data & 0x02) != 0) caslatency = 2;
234 else if((data & 0x04) != 0) caslatency = 3;
235#endif
236 else {
237 printf ("WARNING: Unknown CAS latency 0x%02X, using 3\n",
wdenk57b2d802003-06-27 21:31:46 +0000238 data);
wdenkfe8c2802002-11-03 00:38:21 +0000239 }
240 }
241 else if(j == 63) {
242 if(data != cksum) {
243 printf ("WARNING: Configuration data checksum failure:"
wdenk57b2d802003-06-27 21:31:46 +0000244 " is 0x%02x, calculated 0x%02x\n",
wdenkfe8c2802002-11-03 00:38:21 +0000245 data, cksum);
246 }
247 }
248 cksum += data;
249 }
250
251 /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
252 if(caslatency < 2) {
wdenk1f197c62003-09-15 18:00:00 +0000253 printf("WARNING: CL was %d, forcing to 2\n", caslatency);
wdenkfe8c2802002-11-03 00:38:21 +0000254 caslatency = 2;
255 }
256 if(rows > 14) {
wdenk1f197c62003-09-15 18:00:00 +0000257 printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n", rows);
wdenkfe8c2802002-11-03 00:38:21 +0000258 rows = 14;
259 }
260 if(cols > 11) {
wdenk1f197c62003-09-15 18:00:00 +0000261 printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n", cols);
wdenkfe8c2802002-11-03 00:38:21 +0000262 cols = 11;
263 }
264
265 if((data_width != 64) && (data_width != 72))
266 {
267 printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
268 data_width);
269 }
270 width = 3; /* 2^3 = 8 bytes = 64 bits wide */
271 /*
272 * Convert banks into log2(banks)
273 */
274 if (banks == 2) banks = 1;
275 else if(banks == 4) banks = 2;
276 else if(banks == 8) banks = 3;
277
278 sdram_size = 1 << (rows + cols + banks + width);
279
280#if(CONFIG_PBI == 0) /* bank-based interleaving */
281 rowst = ((32 - 6) - (rows + cols + width)) * 2;
282#else
283 rowst = 32 - (rows + banks + cols + width);
284#endif
285
286 or = ~(sdram_size - 1) | /* SDAM address mask */
287 ((banks-1) << 13) | /* banks per device */
288 (rowst << 9) | /* rowst */
289 ((rows - 9) << 6); /* numr */
290
291 memctl->memc_or2 = or;
292
293 /*
294 * SDAM specifies the number of columns that are multiplexed
295 * (reference AN2165/D), defined to be (columns - 6) for page
296 * interleave, (columns - 8) for bank interleave.
297 *
298 * BSMA is 14 - max(rows, cols). The bank select lines come
299 * into play above the highest "address" line going into the
300 * the SDRAM.
301 */
302#if(CONFIG_PBI == 0) /* bank-based interleaving */
303 sdam = cols - 8;
304 bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
305 sda10 = sdam + 2;
306#else
307 sdam = cols - 6;
308 bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
309 sda10 = sdam;
310#endif
311#if(PESSIMISTIC_SDRAM)
312 psdmr = (CONFIG_PBI |\
313 PSDMR_RFEN |\
314 PSDMR_RFRC_16_CLK |\
315 PSDMR_PRETOACT_8W |\
316 PSDMR_ACTTORW_8W |\
317 PSDMR_WRC_4C |\
318 PSDMR_EAMUX |\
wdenk57b2d802003-06-27 21:31:46 +0000319 PSDMR_BUFCMD) |\
wdenkfe8c2802002-11-03 00:38:21 +0000320 caslatency |\
321 ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \
322 (sdam << 24) |\
323 (bsma << 21) |\
324 (sda10 << 18);
325#else
326 psdmr = (CONFIG_PBI |\
327 PSDMR_RFEN |\
328 PSDMR_RFRC_7_CLK |\
329 PSDMR_PRETOACT_3W | /* 1 for 7E parts (fast PC-133) */ \
330 PSDMR_ACTTORW_2W | /* 1 for 7E parts (fast PC-133) */ \
331 PSDMR_WRC_1C | /* 1 clock + 7nSec */
332 EAMUX |\
wdenk57b2d802003-06-27 21:31:46 +0000333 BUFCMD) |\
wdenkfe8c2802002-11-03 00:38:21 +0000334 caslatency |\
335 ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \
336 (sdam << 24) |\
337 (bsma << 21) |\
338 (sda10 << 18);
339#endif
340#endif
341
342 /*
343 * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
344 *
345 * "At system reset, initialization software must set up the
346 * programmable parameters in the memory controller banks registers
347 * (ORx, BRx, P/LSDMR). After all memory parameters are configured,
348 * system software should execute the following initialization sequence
349 * for each SDRAM device.
350 *
351 * 1. Issue a PRECHARGE-ALL-BANKS command
352 * 2. Issue eight CBR REFRESH commands
353 * 3. Issue a MODE-SET command to initialize the mode register
354 *
355 * Quote from Micron MT48LC8M16A2 data sheet:
356 *
357 * "...the SDRAM requires a 100uS delay prior to issuing any
358 * command other than a COMMAND INHIBIT or NOP. Starting at some
359 * point during this 100uS period and continuing at least through
360 * the end of this period, COMMAND INHIBIT or NOP commands should
361 * be applied."
362 *
363 * "Once the 100uS delay has been satisfied with at least one COMMAND
364 * INHIBIT or NOP command having been applied, a /PRECHARGE command/
365 * should be applied. All banks must then be precharged, thereby
366 * placing the device in the all banks idle state."
367 *
368 * "Once in the idle state, /two/ AUTO REFRESH cycles must be
369 * performed. After the AUTO REFRESH cycles are complete, the
370 * SDRAM is ready for mode register programming."
371 *
372 * (/emphasis/ mine, gvb)
373 *
374 * The way I interpret this, Micron start up sequence is:
375 * 1. Issue a PRECHARGE-BANK command (initial precharge)
376 * 2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
377 * 3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
378 * 4. Issue a MODE-SET command to initialize the mode register
379 *
380 * --------
381 *
382 * The initial commands are executed by setting P/LSDMR[OP] and
383 * accessing the SDRAM with a single-byte transaction."
384 *
385 * The appropriate BRx/ORx registers have already been set when we
386 * get here. The SDRAM can be accessed at the address CFG_SDRAM_BASE.
387 */
388
389 memctl->memc_mptpr = CFG_MPTPR;
390 memctl->memc_psrt = psrt;
391
392 memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
393 *ramaddr = c;
394
395 memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
396 for (i = 0; i < 8; i++)
397 *ramaddr = c;
398
399 memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
400 *ramaddr = c;
401
402 memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
403 *ramaddr = c;
404
405 /*
406 * Do it a second time for the second set of chips if the DIMM has
407 * two chip selects (double sided).
408 */
409 if(chipselects > 1) {
wdenk57b2d802003-06-27 21:31:46 +0000410 ramaddr += sdram_size;
wdenkfe8c2802002-11-03 00:38:21 +0000411
412 memctl->memc_br3 = CFG_BR3_PRELIM + sdram_size;
413 memctl->memc_or3 = or;
414
415 memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
416 *ramaddr = c;
417
418 memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
419 for (i = 0; i < 8; i++)
420 *ramaddr = c;
421
422 memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
423 *ramaddr = c;
424
425 memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
426 *ramaddr = c;
427 }
428
429 /* return total ram size */
430 return (sdram_size * chipselects);
431}
432
433/*-----------------------------------------------------------------------
434 * Board Control Functions
435 */
436void board_poweroff (void)
437{
438 while (1); /* hang forever */
439}
440
441
442#ifdef CONFIG_MISC_INIT_R
443/* ------------------------------------------------------------------------- */
444int misc_init_r(void)
445{
446 /*
447 * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
448 */
449 volatile ioport_t *iopa = ioport_addr((immap_t *)CFG_IMMR, 0 /* port A */);
450 volatile ioport_t *iop = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT);
451
452 int reg; /* I2C register value */
453 char *ep; /* Environment pointer */
454 char str_buf[12] ; /* sprintf output buffer */
455 int sample_rate; /* ADC/DAC sample rate */
456 int sample_64x; /* Use 64/4 clocking for the ADC/DAC */
457 int sample_128x; /* Use 128/4 clocking for the ADC/DAC */
458 int right_just; /* Is the data to the DAC right justified? */
459 int mclk_divide; /* MCLK Divide */
wdenk1f197c62003-09-15 18:00:00 +0000460 int quiet; /* Quiet or minimal output mode */
461
462 quiet = 0;
463 if ((ep = getenv("quiet")) != NULL) {
464 quiet = simple_strtol(ep, NULL, 10);
465 }
466 else {
467 setenv("quiet", "0");
468 }
wdenkfe8c2802002-11-03 00:38:21 +0000469
470 /*
471 * SACSng custom initialization:
472 * Start the ADC and DAC clocks, since the Crystal parts do not
473 * work on the I2C bus until the clocks are running.
474 */
475
476 sample_rate = INITIAL_SAMPLE_RATE;
477 if ((ep = getenv("DaqSampleRate")) != NULL) {
wdenk57b2d802003-06-27 21:31:46 +0000478 sample_rate = simple_strtol(ep, NULL, 10);
wdenkfe8c2802002-11-03 00:38:21 +0000479 }
480
481 sample_64x = INITIAL_SAMPLE_64X;
482 sample_128x = INITIAL_SAMPLE_128X;
483 if ((ep = getenv("Daq64xSampling")) != NULL) {
wdenk57b2d802003-06-27 21:31:46 +0000484 sample_64x = simple_strtol(ep, NULL, 10);
wdenkfe8c2802002-11-03 00:38:21 +0000485 if (sample_64x) {
486 sample_128x = 0;
487 }
488 else {
489 sample_128x = 1;
490 }
491 }
492 else {
wdenk57b2d802003-06-27 21:31:46 +0000493 if ((ep = getenv("Daq128xSampling")) != NULL) {
wdenkfe8c2802002-11-03 00:38:21 +0000494 sample_128x = simple_strtol(ep, NULL, 10);
495 if (sample_128x) {
wdenk57b2d802003-06-27 21:31:46 +0000496 sample_64x = 0;
wdenkfe8c2802002-11-03 00:38:21 +0000497 }
498 else {
wdenk57b2d802003-06-27 21:31:46 +0000499 sample_64x = 1;
wdenkfe8c2802002-11-03 00:38:21 +0000500 }
501 }
502 }
503
wdenk57b2d802003-06-27 21:31:46 +0000504 /*
wdenkc217f6d2002-11-11 02:11:37 +0000505 * Stop the clocks and wait for at least 1 LRCLK period
506 * to make sure the clocking has really stopped.
507 */
508 Daq_Stop_Clocks();
509 udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
510
511 /*
512 * Initialize the clocks with the new rates
513 */
wdenkfe8c2802002-11-03 00:38:21 +0000514 Daq_Init_Clocks(sample_rate, sample_64x);
515 sample_rate = Daq_Get_SampleRate();
wdenkc217f6d2002-11-11 02:11:37 +0000516
517 /*
518 * Start the clocks and wait for at least 1 LRCLK period
519 * to make sure the clocking has become stable.
520 */
wdenkfe8c2802002-11-03 00:38:21 +0000521 Daq_Start_Clocks(sample_rate);
wdenkc217f6d2002-11-11 02:11:37 +0000522 udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
wdenkfe8c2802002-11-03 00:38:21 +0000523
524 sprintf(str_buf, "%d", sample_rate);
525 setenv("DaqSampleRate", str_buf);
526
527 if (sample_64x) {
wdenk57b2d802003-06-27 21:31:46 +0000528 setenv("Daq64xSampling", "1");
529 setenv("Daq128xSampling", NULL);
wdenkfe8c2802002-11-03 00:38:21 +0000530 }
531 else {
wdenk57b2d802003-06-27 21:31:46 +0000532 setenv("Daq64xSampling", NULL);
533 setenv("Daq128xSampling", "1");
wdenkfe8c2802002-11-03 00:38:21 +0000534 }
535
wdenk9c53f402003-10-15 23:53:47 +0000536 /*
537 * Display the ADC/DAC clocking information
wdenk1f197c62003-09-15 18:00:00 +0000538 */
539 if (!quiet) {
wdenk9c53f402003-10-15 23:53:47 +0000540 Daq_Display_Clocks();
wdenk1f197c62003-09-15 18:00:00 +0000541 }
wdenkfe8c2802002-11-03 00:38:21 +0000542
543 /*
544 * Determine the DAC data justification
545 */
546
547 right_just = INITIAL_RIGHT_JUST;
548 if ((ep = getenv("DaqDACRightJustified")) != NULL) {
wdenk57b2d802003-06-27 21:31:46 +0000549 right_just = simple_strtol(ep, NULL, 10);
wdenkfe8c2802002-11-03 00:38:21 +0000550 }
551
552 sprintf(str_buf, "%d", right_just);
553 setenv("DaqDACRightJustified", str_buf);
554
555 /*
556 * Determine the DAC MCLK Divide
557 */
558
559 mclk_divide = INITIAL_MCLK_DIVIDE;
560 if ((ep = getenv("DaqDACMClockDivide")) != NULL) {
wdenk57b2d802003-06-27 21:31:46 +0000561 mclk_divide = simple_strtol(ep, NULL, 10);
wdenkfe8c2802002-11-03 00:38:21 +0000562 }
563
564 sprintf(str_buf, "%d", mclk_divide);
565 setenv("DaqDACMClockDivide", str_buf);
566
567 /*
568 * Initializing the I2C address in the Crystal A/Ds:
569 *
570 * 1) Wait for VREF cap to settle (10uSec per uF)
571 * 2) Release pullup on SDATA
572 * 3) Write the I2C address to register 6
573 * 4) Enable address matching by setting the MSB in register 7
574 */
wdenk9c53f402003-10-15 23:53:47 +0000575
wdenk1f197c62003-09-15 18:00:00 +0000576 if (!quiet) {
wdenk9c53f402003-10-15 23:53:47 +0000577 printf("Initializing the ADC...\n");
wdenk1f197c62003-09-15 18:00:00 +0000578 }
wdenkfe8c2802002-11-03 00:38:21 +0000579 udelay(ADC_INITIAL_DELAY); /* 10uSec per uF of VREF cap */
580
581 iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */
582 udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
583
584 i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR); /* set address */
585 i2c_reg_write(I2C_ADC_1_ADDR, 0x07, /* turn on ADDREN */
586 ADC_REG7_ADDR_ENABLE);
587
588 i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */
589 (sample_64x ? 0 : ADC_REG2_128x) |
590 ADC_REG2_HIGH_PASS_DIS |
591 ADC_REG2_SLAVE_MODE);
592
593 reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
594 if(reg != I2C_ADC_1_ADDR)
595 printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
596 reg, I2C_ADC_1_ADDR);
597
598 iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */
599 udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
600
601 i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR); /* set address (do not set ADDREN yet) */
602
603 i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */
604 (sample_64x ? 0 : ADC_REG2_128x) |
605 ADC_REG2_HIGH_PASS_DIS |
606 ADC_REG2_SLAVE_MODE);
607
608 reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
609 if(reg != I2C_ADC_2_ADDR)
610 printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
611 reg, I2C_ADC_2_ADDR);
612
613 i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */
614 ADC_REG1_FRAME_START |
615 ADC_REG1_GROUND_CAL);
616
617 i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */
618 (sample_64x ? 0 : ADC_REG2_128x) |
619 ADC_REG2_CAL |
620 ADC_REG2_HIGH_PASS_DIS |
621 ADC_REG2_SLAVE_MODE);
622
623 udelay(ADC_CAL_DELAY); /* a minimum of 4100 LRCLKs */
624 i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00); /* remove GNDCAL */
625
626 /*
627 * Now that we have synchronized the ADC's, enable address
628 * selection on the second ADC as well as the first.
629 */
630 i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);
631
632 /*
633 * Initialize the Crystal DAC
634 *
635 * Two of the config lines are used for I2C so we have to set them
636 * to the proper initialization state without inadvertantly
637 * sending an I2C "start" sequence. When we bring the I2C back to
638 * the normal state, we send an I2C "stop" sequence.
639 */
wdenk1f197c62003-09-15 18:00:00 +0000640 if (!quiet) {
641 printf("Initializing the DAC...\n");
642 }
wdenkfe8c2802002-11-03 00:38:21 +0000643
644 /*
645 * Bring the I2C clock and data lines low for initialization
646 */
647 I2C_SCL(0);
648 I2C_DELAY;
649 I2C_SDA(0);
650 I2C_ACTIVE;
651 I2C_DELAY;
652
653 /* Reset the DAC */
654 iopa->pdat &= ~DAC_RST_MASK;
655 udelay(DAC_RESET_DELAY);
656
657 /* Release the DAC reset */
658 iopa->pdat |= DAC_RST_MASK;
659 udelay(DAC_INITIAL_DELAY);
660
661 /*
662 * Cause the DAC to:
663 * Enable control port (I2C mode)
664 * Going into power down
665 */
666 i2c_reg_write(I2C_DAC_ADDR, 0x05,
667 DAC_REG5_I2C_MODE |
668 DAC_REG5_POWER_DOWN);
669
670 /*
671 * Cause the DAC to:
672 * Enable control port (I2C mode)
673 * Going into power down
674 * . MCLK divide by 1
675 * . MCLK divide by 2
676 */
677 i2c_reg_write(I2C_DAC_ADDR, 0x05,
678 DAC_REG5_I2C_MODE |
679 DAC_REG5_POWER_DOWN |
680 (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
681
682 /*
683 * Cause the DAC to:
684 * Auto-mute disabled
685 * . Format 0, left justified 24 bits
686 * . Format 3, right justified 24 bits
687 * No de-emphasis
688 * . Single speed mode
689 * . Double speed mode
690 */
691 i2c_reg_write(I2C_DAC_ADDR, 0x01,
692 (right_just ? DAC_REG1_RIGHT_JUST_24BIT :
wdenk57b2d802003-06-27 21:31:46 +0000693 DAC_REG1_LEFT_JUST_24_BIT) |
wdenkfe8c2802002-11-03 00:38:21 +0000694 DAC_REG1_DEM_NO |
695 (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));
696
697 sprintf(str_buf, "%d",
698 sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
699 setenv("DaqDACFunctionalMode", str_buf);
700
701 /*
702 * Cause the DAC to:
703 * Enable control port (I2C mode)
704 * Remove power down
705 * . MCLK divide by 1
706 * . MCLK divide by 2
707 */
708 i2c_reg_write(I2C_DAC_ADDR, 0x05,
709 DAC_REG5_I2C_MODE |
710 (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
711
712 /*
713 * Create a I2C stop condition:
714 * low->high on data while clock is high.
715 */
716 I2C_SCL(1);
717 I2C_DELAY;
718 I2C_SDA(1);
719 I2C_DELAY;
720 I2C_TRISTATE;
721
wdenk1f197c62003-09-15 18:00:00 +0000722 if (!quiet) {
wdenk9c53f402003-10-15 23:53:47 +0000723 printf("\n");
wdenk1f197c62003-09-15 18:00:00 +0000724 }
725
726#ifdef CONFIG_ETHER_LOOPBACK_TEST
727 /*
728 * Run the Ethernet loopback test
729 */
730 eth_loopback_test ();
731#endif /* CONFIG_ETHER_LOOPBACK_TEST */
wdenkfe8c2802002-11-03 00:38:21 +0000732
733#ifdef CONFIG_SHOW_BOOT_PROGRESS
734 /*
735 * Turn off the RED fail LED now that we are up and running.
736 */
737 status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
738#endif
739
740 return 0;
741}
742
743#ifdef CONFIG_SHOW_BOOT_PROGRESS
744/*
745 * Show boot status: flash the LED if something goes wrong, indicating
746 * that last thing that worked and thus, by implication, what is broken.
747 *
748 * This stores the last OK value in RAM so this will not work properly
749 * before RAM is initialized. Since it is being used for indicating
750 * boot status (i.e. after RAM is initialized), that is OK.
751 */
752static void flash_code(uchar number, uchar modulo, uchar digits)
753{
754 int j;
755
756 /*
757 * Recursively do upper digits.
758 */
759 if(digits > 1) {
wdenk57b2d802003-06-27 21:31:46 +0000760 flash_code(number / modulo, modulo, digits - 1);
wdenkfe8c2802002-11-03 00:38:21 +0000761 }
762
763 number = number % modulo;
764
765 /*
766 * Zero is indicated by one long flash (dash).
767 */
768 if(number == 0) {
wdenk57b2d802003-06-27 21:31:46 +0000769 status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
770 udelay(1000000);
771 status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
772 udelay(200000);
wdenkfe8c2802002-11-03 00:38:21 +0000773 } else {
wdenk57b2d802003-06-27 21:31:46 +0000774 /*
775 * Non-zero is indicated by short flashes, one per count.
776 */
777 for(j = 0; j < number; j++) {
778 status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
779 udelay(100000);
780 status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
781 udelay(200000);
782 }
wdenkfe8c2802002-11-03 00:38:21 +0000783 }
784 /*
785 * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
786 */
787 udelay(700000);
788}
789
790static int last_boot_progress;
791
792void show_boot_progress (int status)
793{
wdenk1f197c62003-09-15 18:00:00 +0000794 int i,j;
795 if(status > 0) {
wdenk57b2d802003-06-27 21:31:46 +0000796 last_boot_progress = status;
wdenkfe8c2802002-11-03 00:38:21 +0000797 } else {
wdenk9c53f402003-10-15 23:53:47 +0000798 /*
wdenk1f197c62003-09-15 18:00:00 +0000799 * If a specific failure code is given, flash this code
800 * else just use the last success code we've seen
801 */
802 if(status < -1)
803 last_boot_progress = -status;
wdenk9c53f402003-10-15 23:53:47 +0000804
805 /*
wdenk1f197c62003-09-15 18:00:00 +0000806 * Flash this code 5 times
807 */
808 for(j=0; j<5; j++) {
809 /*
810 * Houston, we have a problem.
811 * Blink the last OK status which indicates where things failed.
812 */
813 status_led_set(STATUS_LED_RED, STATUS_LED_ON);
814 flash_code(last_boot_progress, 5, 3);
815
wdenk9c53f402003-10-15 23:53:47 +0000816 /*
817 * Delay 5 seconds between repetitions,
818 * with the fault LED blinking
wdenk1f197c62003-09-15 18:00:00 +0000819 */
820 for(i=0; i<5; i++) {
wdenk9c53f402003-10-15 23:53:47 +0000821 status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
822 udelay(500000);
823 status_led_set(STATUS_LED_RED, STATUS_LED_ON);
824 udelay(500000);
wdenk1f197c62003-09-15 18:00:00 +0000825 }
826 }
827
wdenk57b2d802003-06-27 21:31:46 +0000828 /*
wdenk1f197c62003-09-15 18:00:00 +0000829 * Reset the board to retry initialization.
wdenk57b2d802003-06-27 21:31:46 +0000830 */
wdenk1f197c62003-09-15 18:00:00 +0000831 do_reset (NULL, 0, 0, NULL);
wdenkfe8c2802002-11-03 00:38:21 +0000832 }
833}
834#endif /* CONFIG_SHOW_BOOT_PROGRESS */
835
836
837/*
838 * The following are used to control the SPI chip selects for the SPI command.
839 */
840#if (CONFIG_COMMANDS & CFG_CMD_SPI)
841
842#define SPI_ADC_CS_MASK 0x00000800
843#define SPI_DAC_CS_MASK 0x00001000
844
845void spi_adc_chipsel(int cs)
846{
847 volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);
848
849 if(cs)
850 iopd->pdat &= ~SPI_ADC_CS_MASK; /* activate the chip select */
851 else
852 iopd->pdat |= SPI_ADC_CS_MASK; /* deactivate the chip select */
853}
854
855void spi_dac_chipsel(int cs)
856{
857 volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);
858
859 if(cs)
860 iopd->pdat &= ~SPI_DAC_CS_MASK; /* activate the chip select */
861 else
862 iopd->pdat |= SPI_DAC_CS_MASK; /* deactivate the chip select */
863}
864
865/*
866 * The SPI command uses this table of functions for controlling the SPI
867 * chip selects: it calls the appropriate function to control the SPI
868 * chip selects.
869 */
wdenkc217f6d2002-11-11 02:11:37 +0000870spi_chipsel_type spi_chipsel[] = {
wdenkfe8c2802002-11-03 00:38:21 +0000871 spi_adc_chipsel,
872 spi_dac_chipsel
873};
wdenkc217f6d2002-11-11 02:11:37 +0000874int spi_chipsel_cnt = sizeof(spi_chipsel) / sizeof(spi_chipsel[0]);
875
wdenkfe8c2802002-11-03 00:38:21 +0000876#endif /* CFG_CMD_SPI */
877
878#endif /* CONFIG_MISC_INIT_R */
wdenkdccbda02003-07-14 22:13:32 +0000879
880#ifdef CONFIG_POST
wdenk21136db2003-07-16 21:53:01 +0000881/*
wdenkdccbda02003-07-14 22:13:32 +0000882 * Returns 1 if keys pressed to start the power-on long-running tests
883 * Called from board_init_f().
884 */
885int post_hotkeys_pressed(void)
886{
887 return 0; /* No hotkeys supported */
888}
889
890#endif