Initial revision
diff --git a/board/sacsng/sacsng.c b/board/sacsng/sacsng.c
new file mode 100644
index 0000000..0f0f0e6
--- /dev/null
+++ b/board/sacsng/sacsng.c
@@ -0,0 +1,801 @@
+/*
+ * (C) Copyright 2002
+ * Custom IDEAS, Inc. <www.cideas.com>
+ * Gerald Van Baren <vanbaren@cideas.com>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <asm/u-boot.h>
+#include <common.h>
+#include <ioports.h>
+#include <mpc8260.h>
+/*NO// #include <memtest.h> */
+#include <i2c.h>
+#include <spi.h>
+
+#ifdef CONFIG_SHOW_BOOT_PROGRESS
+#include <status_led.h>
+#endif
+
+#include "clkinit.h"
+#include "ioconfig.h" /* I/O configuration table */
+
+/*
+ * PBI Page Based Interleaving
+ *   PSDMR_PBI page based interleaving
+ *   0         bank based interleaving
+ * External Address Multiplexing (EAMUX) adds a clock to address cycles
+ *   (this can help with marginal board layouts)
+ *   PSDMR_EAMUX  adds a clock
+ *   0            no extra clock
+ * Buffer Command (BUFCMD) adds a clock to command cycles.
+ *   PSDMR_BUFCMD adds a clock
+ *   0            no extra clock
+ */
+#define CONFIG_PBI		PSDMR_PBI
+#define PESSIMISTIC_SDRAM	0
+#define EAMUX			0	/* EST requires EAMUX */
+#define BUFCMD			0
+
+/*
+ * ADC/DAC Defines:
+ */
+#define INITIAL_SAMPLE_RATE 10016     /* Initial Daq sample rate */
+#define INITIAL_RIGHT_JUST  0         /* Initial DAC right justification */
+#define INITIAL_MCLK_DIVIDE 0         /* Initial MCLK Divide */
+#define INITIAL_SAMPLE_64X  1         /* Initial  64x clocking mode */
+#define INITIAL_SAMPLE_128X 0         /* Initial 128x clocking mode */
+
+/*
+ * ADC Defines:
+ */
+#define I2C_ADC_1_ADDR 0x0E           /* I2C Address of the ADC #1 */
+#define I2C_ADC_2_ADDR 0x0F           /* I2C Address of the ADC #2 */
+
+#define ADC_SDATA1_MASK 0x00020000    /* PA14 - CH12SDATA_PU   */
+#define ADC_SDATA2_MASK 0x00010000    /* PA15 - CH34SDATA_PU   */
+
+#define ADC_VREF_CAP   100            /* VREF capacitor in uF */
+#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */
+#define ADC_SDATA_DELAY    100        /* ADC SDATA release delay in usec */
+#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500)
+                                      /* Wait at least 4100 LRCLK's */
+
+#define ADC_REG1_FRAME_START    0x80  /* Frame start */
+#define ADC_REG1_GROUND_CAL     0x40  /* Ground calibration enable */
+#define ADC_REG1_ANA_MOD_PDOWN  0x20  /* Analog modulator section in power down */
+#define ADC_REG1_DIG_MOD_PDOWN  0x10  /* Digital modulator section in power down */
+
+#define ADC_REG2_128x           0x80  /* Oversample at 128x */
+#define ADC_REG2_CAL            0x40  /* System calibration enable */
+#define ADC_REG2_CHANGE_SIGN    0x20  /* Change sign enable */
+#define ADC_REG2_LR_DISABLE     0x10  /* Left/Right output disable */
+#define ADC_REG2_HIGH_PASS_DIS  0x08  /* High pass filter disable */
+#define ADC_REG2_SLAVE_MODE     0x04  /* Slave mode */
+#define ADC_REG2_DFS            0x02  /* Digital format select */
+#define ADC_REG2_MUTE           0x01  /* Mute */
+
+#define ADC_REG7_ADDR_ENABLE    0x80  /* Address enable */
+#define ADC_REG7_PEAK_ENABLE    0x40  /* Peak enable */
+#define ADC_REG7_PEAK_UPDATE    0x20  /* Peak update */
+#define ADC_REG7_PEAK_FORMAT    0x10  /* Peak display format */
+#define ADC_REG7_DIG_FILT_PDOWN 0x04  /* Digital filter power down enable */
+#define ADC_REG7_FIR2_IN_EN     0x02  /* External FIR2 input enable */
+#define ADC_REG7_PSYCHO_EN      0x01  /* External pyscho filter input enable */
+
+/*
+ * DAC Defines:
+ */
+
+#define I2C_DAC_ADDR 0x11             /* I2C Address of the DAC */
+
+#define DAC_RST_MASK 0x00008000       /* PA16 - DAC_RST*  */
+#define DAC_RESET_DELAY    100        /* DAC reset delay in usec */
+#define DAC_INITIAL_DELAY 5000        /* DAC initialization delay in usec */
+
+#define DAC_REG1_AMUTE   0x80         /* Auto-mute */
+
+#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit  */
+#define DAC_REG1_I2S_24_BIT       (1 << 4) /* Fmt 1: I2S up to 24 bit       */
+#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */
+#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */
+#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */
+#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */
+
+#define DAC_REG1_DEM_NO           (0 << 2) /* No      De-emphasis  */
+#define DAC_REG1_DEM_44KHZ        (1 << 2) /* 44.1KHz De-emphasis  */
+#define DAC_REG1_DEM_48KHZ        (2 << 2) /* 48KHz   De-emphasis  */
+#define DAC_REG1_DEM_32KHZ        (3 << 2) /* 32KHz   De-emphasis  */
+
+#define DAC_REG1_SINGLE 0             /*   4- 50KHz sample rate  */
+#define DAC_REG1_DOUBLE 1             /*  50-100KHz sample rate  */
+#define DAC_REG1_QUAD   2             /* 100-200KHz sample rate  */
+#define DAC_REG1_DSD    3             /* Direct Stream Data, DSD */
+
+#define DAC_REG5_INVERT_A   0x80      /* Invert channel A */
+#define DAC_REG5_INVERT_B   0x40      /* Invert channel B */
+#define DAC_REG5_I2C_MODE   0x20      /* Control port (I2C) mode */
+#define DAC_REG5_POWER_DOWN 0x10      /* Power down mode */
+#define DAC_REG5_MUTEC_A_B  0x08      /* Mutec A=B */
+#define DAC_REG5_FREEZE     0x04      /* Freeze */
+#define DAC_REG5_MCLK_DIV   0x02      /* MCLK divide by 2 */
+#define DAC_REG5_RESERVED   0x01      /* Reserved */
+
+/* ------------------------------------------------------------------------- */
+
+/*
+ * Check Board Identity:
+ */
+
+int checkboard(void)
+{
+    printf ("SACSng\n");
+
+    return 0;
+}
+
+/* ------------------------------------------------------------------------- */
+
+long int initdram(int board_type)
+{
+    volatile immap_t *immap  = (immap_t *)CFG_IMMR;
+    volatile memctl8260_t *memctl = &immap->im_memctl;
+    volatile uchar c = 0;
+    volatile uchar *ramaddr = (uchar *)(CFG_SDRAM_BASE + 0x8);
+    uint  psdmr = CFG_PSDMR;
+    int   i;
+    uint   psrt = 14;					/* for no SPD */
+    uint   chipselects = 1;				/* for no SPD */
+    uint   sdram_size = CFG_SDRAM0_SIZE * 1024 * 1024;	/* for no SPD */
+    uint   or = CFG_OR2_PRELIM;				/* for no SPD */
+#ifdef SDRAM_SPD_ADDR
+    uint   data_width;
+    uint   rows;
+    uint   banks;
+    uint   cols;
+    uint   caslatency;
+    uint   width;
+    uint   rowst;
+    uint   sdam;
+    uint   bsma;
+    uint   sda10;
+    u_char spd_size;
+    u_char data;
+    u_char cksum;
+    int    j;
+#endif
+
+#ifdef SDRAM_SPD_ADDR
+    /* Keep the compiler from complaining about potentially uninitialized vars */
+    data_width = chipselects = rows = banks = cols = caslatency = psrt = 0;
+
+    /*
+     * Read the SDRAM SPD EEPROM via I2C.
+     */
+    i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
+    spd_size = data;
+    cksum    = data;
+    for(j = 1; j < 64; j++) {	/* read only the checksummed bytes */
+	/* note: the I2C address autoincrements when alen == 0 */
+	i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
+	     if(j ==  5) chipselects = data & 0x0F;
+	else if(j ==  6) data_width  = data;
+	else if(j ==  7) data_width |= data << 8;
+	else if(j ==  3) rows        = data & 0x0F;
+	else if(j ==  4) cols        = data & 0x0F;
+	else if(j == 12) {
+	    /*
+             * Refresh rate: this assumes the prescaler is set to
+	     * approximately 1uSec per tick.
+	     */
+	    switch(data & 0x7F) {
+                default:
+                case 0:  psrt =  14 ; /*  15.625uS */  break;
+                case 1:  psrt =   2;  /*   3.9uS   */  break;
+                case 2:  psrt =   6;  /*   7.8uS   */  break;
+                case 3:  psrt =  29;  /*  31.3uS   */  break;
+                case 4:  psrt =  60;  /*  62.5uS   */  break;
+                case 5:  psrt = 120;  /* 125uS     */  break;
+	    }
+	}
+	else if(j == 17) banks       = data;
+	else if(j == 18) {
+	    caslatency = 3; /* default CL */
+#if(PESSIMISTIC_SDRAM)
+		 if((data & 0x04) != 0) caslatency = 3;
+	    else if((data & 0x02) != 0) caslatency = 2;
+	    else if((data & 0x01) != 0) caslatency = 1;
+#else
+		 if((data & 0x01) != 0) caslatency = 1;
+	    else if((data & 0x02) != 0) caslatency = 2;
+	    else if((data & 0x04) != 0) caslatency = 3;
+#endif
+	    else {
+		printf ("WARNING: Unknown CAS latency 0x%02X, using 3\n",
+		        data);
+	    }
+	}
+	else if(j == 63) {
+	    if(data != cksum) {
+		printf ("WARNING: Configuration data checksum failure:"
+		        " is 0x%02x, calculated 0x%02x\n",
+			data, cksum);
+	    }
+	}
+	cksum += data;
+    }
+
+    /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
+    if(caslatency < 2) {
+	printf("CL was %d, forcing to 2\n", caslatency);
+	caslatency = 2;
+    }
+    if(rows > 14) {
+	printf("This doesn't look good, rows = %d, should be <= 14\n", rows);
+	rows = 14;
+    }
+    if(cols > 11) {
+	printf("This doesn't look good, columns = %d, should be <= 11\n", cols);
+	cols = 11;
+    }
+
+    if((data_width != 64) && (data_width != 72))
+    {
+	printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
+	    data_width);
+    }
+    width = 3;		/* 2^3 = 8 bytes = 64 bits wide */
+    /*
+     * Convert banks into log2(banks)
+     */
+    if     (banks == 2)	banks = 1;
+    else if(banks == 4)	banks = 2;
+    else if(banks == 8)	banks = 3;
+
+    sdram_size = 1 << (rows + cols + banks + width);
+
+#if(CONFIG_PBI == 0)	/* bank-based interleaving */
+    rowst = ((32 - 6) - (rows + cols + width)) * 2;
+#else
+    rowst = 32 - (rows + banks + cols + width);
+#endif
+
+    or = ~(sdram_size - 1)    |	/* SDAM address mask	*/
+	  ((banks-1) << 13)   |	/* banks per device	*/
+	  (rowst << 9)        |	/* rowst		*/
+	  ((rows - 9) << 6);	/* numr			*/
+
+    memctl->memc_or2 = or;
+
+    /*
+     * SDAM specifies the number of columns that are multiplexed
+     * (reference AN2165/D), defined to be (columns - 6) for page
+     * interleave, (columns - 8) for bank interleave.
+     *
+     * BSMA is 14 - max(rows, cols).  The bank select lines come
+     * into play above the highest "address" line going into the
+     * the SDRAM.
+     */
+#if(CONFIG_PBI == 0)	/* bank-based interleaving */
+    sdam = cols - 8;
+    bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
+    sda10 = sdam + 2;
+#else
+    sdam = cols - 6;
+    bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
+    sda10 = sdam;
+#endif
+#if(PESSIMISTIC_SDRAM)
+    psdmr = (CONFIG_PBI              |\
+	     PSDMR_RFEN              |\
+	     PSDMR_RFRC_16_CLK       |\
+	     PSDMR_PRETOACT_8W       |\
+	     PSDMR_ACTTORW_8W        |\
+	     PSDMR_WRC_4C            |\
+	     PSDMR_EAMUX             |\
+             PSDMR_BUFCMD)           |\
+	     caslatency              |\
+	     ((caslatency - 1) << 6) |	/* LDOTOPRE is CL - 1 */ \
+	     (sdam << 24)            |\
+	     (bsma << 21)            |\
+	     (sda10 << 18);
+#else
+    psdmr = (CONFIG_PBI              |\
+	     PSDMR_RFEN              |\
+	     PSDMR_RFRC_7_CLK        |\
+	     PSDMR_PRETOACT_3W       |	/* 1 for 7E parts (fast PC-133) */ \
+	     PSDMR_ACTTORW_2W        |	/* 1 for 7E parts (fast PC-133) */ \
+	     PSDMR_WRC_1C            |	/* 1 clock + 7nSec */
+	     EAMUX                   |\
+             BUFCMD)                 |\
+	     caslatency              |\
+	     ((caslatency - 1) << 6) |	/* LDOTOPRE is CL - 1 */ \
+	     (sdam << 24)            |\
+	     (bsma << 21)            |\
+	     (sda10 << 18);
+#endif
+#endif
+
+    /*
+     * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
+     *
+     * "At system reset, initialization software must set up the
+     *  programmable parameters in the memory controller banks registers
+     *  (ORx, BRx, P/LSDMR). After all memory parameters are configured,
+     *  system software should execute the following initialization sequence
+     *  for each SDRAM device.
+     *
+     *  1. Issue a PRECHARGE-ALL-BANKS command
+     *  2. Issue eight CBR REFRESH commands
+     *  3. Issue a MODE-SET command to initialize the mode register
+     *
+     * Quote from Micron MT48LC8M16A2 data sheet:
+     *
+     *  "...the SDRAM requires a 100uS delay prior to issuing any
+     *  command other than a COMMAND INHIBIT or NOP.  Starting at some
+     *  point during this 100uS period and continuing at least through
+     *  the end of this period, COMMAND INHIBIT or NOP commands should
+     *  be applied."
+     *
+     *  "Once the 100uS delay has been satisfied with at least one COMMAND
+     *  INHIBIT or NOP command having been applied, a /PRECHARGE command/
+     *  should be applied.  All banks must then be precharged, thereby
+     *  placing the device in the all banks idle state."
+     *
+     *  "Once in the idle state, /two/ AUTO REFRESH cycles must be
+     *  performed.  After the AUTO REFRESH cycles are complete, the
+     *  SDRAM is ready for mode register programming."
+     *
+     *  (/emphasis/ mine, gvb)
+     *
+     *  The way I interpret this, Micron start up sequence is:
+     *  1. Issue a PRECHARGE-BANK command (initial precharge)
+     *  2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
+     *  3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
+     *  4. Issue a MODE-SET command to initialize the mode register
+     *
+     *  --------
+     *
+     *  The initial commands are executed by setting P/LSDMR[OP] and
+     *  accessing the SDRAM with a single-byte transaction."
+     *
+     * The appropriate BRx/ORx registers have already been set when we
+     * get here. The SDRAM can be accessed at the address CFG_SDRAM_BASE.
+     */
+
+    memctl->memc_mptpr = CFG_MPTPR;
+    memctl->memc_psrt  = psrt;
+
+    memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
+    *ramaddr = c;
+
+    memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
+    for (i = 0; i < 8; i++)
+	*ramaddr = c;
+
+    memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
+    *ramaddr = c;
+
+    memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
+    *ramaddr = c;
+
+    /*
+     * Do it a second time for the second set of chips if the DIMM has
+     * two chip selects (double sided).
+     */
+    if(chipselects > 1) {
+        ramaddr += sdram_size;
+
+	memctl->memc_br3 = CFG_BR3_PRELIM + sdram_size;
+	memctl->memc_or3 = or;
+
+	memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
+	*ramaddr = c;
+
+	memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
+	for (i = 0; i < 8; i++)
+	    *ramaddr = c;
+
+	memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
+	*ramaddr = c;
+
+	memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
+	*ramaddr = c;
+    }
+
+    /* return total ram size */
+    return (sdram_size * chipselects);
+}
+
+/*-----------------------------------------------------------------------
+ * Board Control Functions
+ */
+void board_poweroff (void)
+{
+    while (1);		/* hang forever */
+}
+
+
+#ifdef CONFIG_MISC_INIT_R
+/* ------------------------------------------------------------------------- */
+int misc_init_r(void)
+{
+    /*
+     * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
+     */
+    volatile ioport_t *iopa = ioport_addr((immap_t *)CFG_IMMR, 0 /* port A */);
+    volatile ioport_t *iop  = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT);
+
+    int  reg;          /* I2C register value */
+    char *ep;          /* Environment pointer */
+    char str_buf[12] ; /* sprintf output buffer */
+    int  sample_rate;  /* ADC/DAC sample rate */
+    int  sample_64x;   /* Use  64/4 clocking for the ADC/DAC */
+    int  sample_128x;  /* Use 128/4 clocking for the ADC/DAC */
+    int  right_just;   /* Is the data to the DAC right justified? */
+    int  mclk_divide;  /* MCLK Divide */
+
+    /*
+     * SACSng custom initialization:
+     *    Start the ADC and DAC clocks, since the Crystal parts do not
+     *    work on the I2C bus until the clocks are running.
+     */
+
+    sample_rate = INITIAL_SAMPLE_RATE;
+    if ((ep = getenv("DaqSampleRate")) != NULL) {
+        sample_rate = simple_strtol(ep, NULL, 10);
+    }
+
+    sample_64x  = INITIAL_SAMPLE_64X;
+    sample_128x = INITIAL_SAMPLE_128X;
+    if ((ep = getenv("Daq64xSampling")) != NULL) {
+        sample_64x = simple_strtol(ep, NULL, 10);
+	if (sample_64x) {
+	    sample_128x = 0;
+	}
+	else {
+	    sample_128x = 1;
+	}
+    }
+    else {
+        if ((ep = getenv("Daq128xSampling")) != NULL) {
+	    sample_128x = simple_strtol(ep, NULL, 10);
+	    if (sample_128x) {
+	        sample_64x = 0;
+	    }
+	    else {
+	        sample_64x = 1;
+	    }
+	}
+    }
+
+    Daq_Init_Clocks(sample_rate, sample_64x);
+    sample_rate = Daq_Get_SampleRate();
+    Daq_Start_Clocks(sample_rate);
+
+    sprintf(str_buf, "%d", sample_rate);
+    setenv("DaqSampleRate", str_buf);
+
+    if (sample_64x) {
+        setenv("Daq64xSampling",  "1");
+        setenv("Daq128xSampling", NULL);
+    }
+    else {
+        setenv("Daq64xSampling",  NULL);
+        setenv("Daq128xSampling", "1");
+    }
+
+    /* Display the ADC/DAC clocking information */
+    Daq_Display_Clocks();
+
+    /*
+     * Determine the DAC data justification
+     */
+
+    right_just = INITIAL_RIGHT_JUST;
+    if ((ep = getenv("DaqDACRightJustified")) != NULL) {
+        right_just = simple_strtol(ep, NULL, 10);
+    }
+
+    sprintf(str_buf, "%d", right_just);
+    setenv("DaqDACRightJustified", str_buf);
+
+    /*
+     * Determine the DAC MCLK Divide
+     */
+
+    mclk_divide = INITIAL_MCLK_DIVIDE;
+    if ((ep = getenv("DaqDACMClockDivide")) != NULL) {
+        mclk_divide = simple_strtol(ep, NULL, 10);
+    }
+
+    sprintf(str_buf, "%d", mclk_divide);
+    setenv("DaqDACMClockDivide", str_buf);
+
+    /*
+     * Initializing the I2C address in the Crystal A/Ds:
+     *
+     * 1) Wait for VREF cap to settle (10uSec per uF)
+     * 2) Release pullup on SDATA
+     * 3) Write the I2C address to register 6
+     * 4) Enable address matching by setting the MSB in register 7
+     */
+
+    printf("Initializing the ADC...\n");
+    udelay(ADC_INITIAL_DELAY);		/* 10uSec per uF of VREF cap */
+
+    iopa->pdat &= ~ADC_SDATA1_MASK;     /* release SDATA1 */
+    udelay(ADC_SDATA_DELAY);		/* arbitrary settling time */
+
+    i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR);	/* set address */
+    i2c_reg_write(I2C_ADC_1_ADDR, 0x07,         /* turn on ADDREN */
+		  ADC_REG7_ADDR_ENABLE);
+
+    i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */
+		  (sample_64x ? 0 : ADC_REG2_128x) |
+		  ADC_REG2_HIGH_PASS_DIS |
+		  ADC_REG2_SLAVE_MODE);
+
+    reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
+    if(reg != I2C_ADC_1_ADDR)
+	printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
+	       reg, I2C_ADC_1_ADDR);
+
+    iopa->pdat &= ~ADC_SDATA2_MASK;	/* release SDATA2 */
+    udelay(ADC_SDATA_DELAY);		/* arbitrary settling time */
+
+    i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR);	/* set address (do not set ADDREN yet) */
+
+    i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */
+		  (sample_64x ? 0 : ADC_REG2_128x) |
+		  ADC_REG2_HIGH_PASS_DIS |
+		  ADC_REG2_SLAVE_MODE);
+
+    reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
+    if(reg != I2C_ADC_2_ADDR)
+	printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
+	       reg, I2C_ADC_2_ADDR);
+
+    i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */
+		  ADC_REG1_FRAME_START |
+		  ADC_REG1_GROUND_CAL);
+
+    i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */
+		  (sample_64x ? 0 : ADC_REG2_128x) |
+		  ADC_REG2_CAL |
+		  ADC_REG2_HIGH_PASS_DIS |
+		  ADC_REG2_SLAVE_MODE);
+
+    udelay(ADC_CAL_DELAY);		/* a minimum of 4100 LRCLKs */
+    i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00);	/* remove GNDCAL */
+
+    /*
+     * Now that we have synchronized the ADC's, enable address
+     * selection on the second ADC as well as the first.
+     */
+    i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);
+
+    /*
+     * Initialize the Crystal DAC
+     *
+     * Two of the config lines are used for I2C so we have to set them
+     * to the proper initialization state without inadvertantly
+     * sending an I2C "start" sequence.  When we bring the I2C back to
+     * the normal state, we send an I2C "stop" sequence.
+     */
+    printf("Initializing the DAC...\n");
+
+    /*
+     * Bring the I2C clock and data lines low for initialization
+     */
+    I2C_SCL(0);
+    I2C_DELAY;
+    I2C_SDA(0);
+    I2C_ACTIVE;
+    I2C_DELAY;
+
+    /* Reset the DAC */
+    iopa->pdat &= ~DAC_RST_MASK;
+    udelay(DAC_RESET_DELAY);
+
+    /* Release the DAC reset */
+    iopa->pdat |=  DAC_RST_MASK;
+    udelay(DAC_INITIAL_DELAY);
+
+    /*
+     * Cause the DAC to:
+     *     Enable control port (I2C mode)
+     *     Going into power down
+     */
+    i2c_reg_write(I2C_DAC_ADDR, 0x05,
+		  DAC_REG5_I2C_MODE |
+		  DAC_REG5_POWER_DOWN);
+
+    /*
+     * Cause the DAC to:
+     *     Enable control port (I2C mode)
+     *     Going into power down
+     *         . MCLK divide by 1
+     *         . MCLK divide by 2
+     */
+    i2c_reg_write(I2C_DAC_ADDR, 0x05,
+		  DAC_REG5_I2C_MODE |
+		  DAC_REG5_POWER_DOWN |
+		  (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
+
+    /*
+     * Cause the DAC to:
+     *     Auto-mute disabled
+     *         . Format 0, left  justified 24 bits
+     *         . Format 3, right justified 24 bits
+     *     No de-emphasis
+     *         . Single speed mode
+     *         . Double speed mode
+     */
+    i2c_reg_write(I2C_DAC_ADDR, 0x01,
+		  (right_just ? DAC_REG1_RIGHT_JUST_24BIT :
+                                DAC_REG1_LEFT_JUST_24_BIT) |
+		  DAC_REG1_DEM_NO |
+		  (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));
+
+    sprintf(str_buf, "%d",
+	    sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
+    setenv("DaqDACFunctionalMode", str_buf);
+
+    /*
+     * Cause the DAC to:
+     *     Enable control port (I2C mode)
+     *     Remove power down
+     *         . MCLK divide by 1
+     *         . MCLK divide by 2
+     */
+    i2c_reg_write(I2C_DAC_ADDR, 0x05,
+		  DAC_REG5_I2C_MODE |
+		  (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
+
+    /*
+     * Create a I2C stop condition:
+     *     low->high on data while clock is high.
+     */
+    I2C_SCL(1);
+    I2C_DELAY;
+    I2C_SDA(1);
+    I2C_DELAY;
+    I2C_TRISTATE;
+
+    printf("\n");
+
+#ifdef CONFIG_SHOW_BOOT_PROGRESS
+    /*
+     * Turn off the RED fail LED now that we are up and running.
+     */
+    status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
+#endif
+
+    return 0;
+}
+
+#ifdef CONFIG_SHOW_BOOT_PROGRESS
+/*
+ * Show boot status: flash the LED if something goes wrong, indicating
+ * that last thing that worked and thus, by implication, what is broken.
+ *
+ * This stores the last OK value in RAM so this will not work properly
+ * before RAM is initialized.  Since it is being used for indicating
+ * boot status (i.e. after RAM is initialized), that is OK.
+ */
+static void flash_code(uchar number, uchar modulo, uchar digits)
+{
+    int   j;
+
+    /*
+     * Recursively do upper digits.
+     */
+    if(digits > 1) {
+        flash_code(number / modulo, modulo, digits - 1);
+    }
+
+    number = number % modulo;
+
+    /*
+     * Zero is indicated by one long flash (dash).
+     */
+    if(number == 0) {
+        status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
+        udelay(1000000);
+        status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
+        udelay(200000);
+    } else {
+        /*
+         * Non-zero is indicated by short flashes, one per count.
+         */
+        for(j = 0; j < number; j++) {
+            status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
+            udelay(100000);
+            status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
+            udelay(200000);
+        }
+    }
+    /*
+     * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
+     */
+    udelay(700000);
+}
+
+static int last_boot_progress;
+
+void show_boot_progress (int status)
+{
+    if(status != -1) {
+        last_boot_progress = status;
+    } else {
+        /*
+         * Houston, we have a problem.  Blink the last OK status which
+         * indicates where things failed.
+         */
+        status_led_set(STATUS_LED_RED, STATUS_LED_ON);
+        flash_code(last_boot_progress, 5, 3);
+        udelay(1000000);
+        status_led_set(STATUS_LED_RED, STATUS_LED_BLINKING);
+    }
+}
+#endif /* CONFIG_SHOW_BOOT_PROGRESS */
+
+
+/*
+ * The following are used to control the SPI chip selects for the SPI command.
+ */
+#if (CONFIG_COMMANDS & CFG_CMD_SPI)
+
+#define SPI_ADC_CS_MASK	0x00000800
+#define SPI_DAC_CS_MASK	0x00001000
+
+void spi_adc_chipsel(int cs)
+{
+    volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);
+
+    if(cs)
+	iopd->pdat &= ~SPI_ADC_CS_MASK;	/* activate the chip select */
+    else
+	iopd->pdat |=  SPI_ADC_CS_MASK;	/* deactivate the chip select */
+}
+
+void spi_dac_chipsel(int cs)
+{
+    volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);
+
+    if(cs)
+	iopd->pdat &= ~SPI_DAC_CS_MASK;	/* activate the chip select */
+    else
+	iopd->pdat |=  SPI_DAC_CS_MASK;	/* deactivate the chip select */
+}
+
+/*
+ * The SPI command uses this table of functions for controlling the SPI
+ * chip selects: it calls the appropriate function to control the SPI
+ * chip selects.
+ */
+spi_chipsel_type spi_chipsel[2] = {
+	spi_adc_chipsel,
+	spi_dac_chipsel
+};
+#endif /* CFG_CMD_SPI */
+
+#endif /* CONFIG_MISC_INIT_R */