blob: 70fc02ee5ca6bb9bb28abf9361eb359398e6089e [file] [log] [blame]
wdenk4e112c12003-06-03 23:54:09 +00001/**************************************************************************
Andre Schwarz68c2a302008-03-06 16:45:44 +01002Intel Pro 1000 for ppcboot/das-u-boot
wdenk4e112c12003-06-03 23:54:09 +00003Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
wdenk57b2d802003-06-27 21:31:46 +00009
wdenk4e112c12003-06-03 23:54:09 +000010 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk57b2d802003-06-27 21:31:46 +000011
Wolfgang Denkd79de1d2013-07-08 09:37:19 +020012 * SPDX-License-Identifier: GPL-2.0+
wdenk57b2d802003-06-27 21:31:46 +000013
wdenk4e112c12003-06-03 23:54:09 +000014 Contact Information:
15 Linux NICS <linux.nics@intel.com>
16 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18*******************************************************************************/
19/*
20 * Copyright (C) Archway Digital Solutions.
21 *
22 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23 * 2/9/2002
24 *
25 * Copyright (C) Linux Networx.
26 * Massive upgrade to work with the new intel gigabit NICs.
27 * <ebiederman at lnxi dot com>
Roy Zang181119b2011-01-21 11:29:38 +080028 *
29 * Copyright 2011 Freescale Semiconductor, Inc.
wdenk4e112c12003-06-03 23:54:09 +000030 */
31
Simon Glasscece9042015-08-19 09:33:38 -060032#include <common.h>
Simon Glass9f86b382015-08-19 09:33:40 -060033#include <dm.h>
Simon Glassc53abc32015-08-19 09:33:39 -060034#include <errno.h>
Simon Glass2dd337a2015-09-02 17:24:58 -060035#include <memalign.h>
Simon Glassc53abc32015-08-19 09:33:39 -060036#include <pci.h>
wdenk4e112c12003-06-03 23:54:09 +000037#include "e1000.h"
38
wdenk4e112c12003-06-03 23:54:09 +000039#define TOUT_LOOP 100000
40
Timur Tabiedc45b52009-08-17 15:55:38 -050041#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
wdenk4e112c12003-06-03 23:54:09 +000042#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
wdenk4e112c12003-06-03 23:54:09 +000043
Roy Zang966172e2009-08-22 03:49:52 +080044#define E1000_DEFAULT_PCI_PBA 0x00000030
45#define E1000_DEFAULT_PCIE_PBA 0x000a0026
wdenk4e112c12003-06-03 23:54:09 +000046
47/* NIC specific static variables go here */
48
Marek Vasut742c5c22014-08-08 07:41:38 -070049/* Intel i210 needs the DMA descriptor rings aligned to 128b */
50#define E1000_BUFFER_ALIGN 128
wdenk4e112c12003-06-03 23:54:09 +000051
Simon Glass9f86b382015-08-19 09:33:40 -060052/*
53 * TODO(sjg@chromium.org): Even with driver model we share these buffers.
54 * Concurrent receiving on multiple active Ethernet devices will not work.
55 * Normally U-Boot does not support this anyway. To fix it in this driver,
56 * move these buffers and the tx/rx pointers to struct e1000_hw.
57 */
Marek Vasut742c5c22014-08-08 07:41:38 -070058DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
59DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
60DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
wdenk4e112c12003-06-03 23:54:09 +000061
62static int tx_tail;
63static int rx_tail, rx_last;
Simon Glass9f86b382015-08-19 09:33:40 -060064#ifdef CONFIG_DM_ETH
65static int num_cards; /* Number of E1000 devices seen so far */
66#endif
wdenk4e112c12003-06-03 23:54:09 +000067
Kyle Moffett7b698d52011-10-18 11:05:26 +000068static struct pci_device_id e1000_supported[] = {
Simon Glassc53abc32015-08-19 09:33:39 -060069 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
70 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
71 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
72 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
73 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
74 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
75 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
76 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
77 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
78 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
79 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
80 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
81 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
82 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
83 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
84 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
85 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
Roy Zang28f7a052009-07-31 13:34:02 +080086 /* E1000 PCIe card */
Simon Glassc53abc32015-08-19 09:33:39 -060087 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
88 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
89 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
90 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
91 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
92 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
93 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
94 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
95 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
96 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
97 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
98 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
99 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
100 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
101 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
102 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
103 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
104 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
105 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
106 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
107 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
108 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
109 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
110 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
111 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
112 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
113 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
114 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
115 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
116 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
Marek Vasut74a13c22014-08-08 07:41:39 -0700117
Stefan Althoeferbc6d2fc2008-12-20 19:40:41 +0100118 {}
wdenk4e112c12003-06-03 23:54:09 +0000119};
120
121/* Function forward declarations */
Simon Glassc53abc32015-08-19 09:33:39 -0600122static int e1000_setup_link(struct e1000_hw *hw);
123static int e1000_setup_fiber_link(struct e1000_hw *hw);
124static int e1000_setup_copper_link(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000125static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
126static void e1000_config_collision_dist(struct e1000_hw *hw);
127static int e1000_config_mac_to_phy(struct e1000_hw *hw);
128static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
Simon Glassc53abc32015-08-19 09:33:39 -0600129static int e1000_check_for_link(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000130static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800131static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk4e112c12003-06-03 23:54:09 +0000132 uint16_t * duplex);
133static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
134 uint16_t * phy_data);
135static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
136 uint16_t phy_data);
Roy Zang28f7a052009-07-31 13:34:02 +0800137static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000138static int e1000_phy_reset(struct e1000_hw *hw);
139static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800140static void e1000_set_media_type(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000141
Roy Zang28f7a052009-07-31 13:34:02 +0800142static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
Tim Harvey5cb59ec2015-05-19 10:01:18 -0700143static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
Roy Zang28f7a052009-07-31 13:34:02 +0800144static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000145
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200146#ifndef CONFIG_E1000_NO_NVM
147static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
Roy Zang9b7c4302009-08-11 03:48:05 +0800148static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
149 uint16_t words,
150 uint16_t *data);
wdenk4e112c12003-06-03 23:54:09 +0000151/******************************************************************************
152 * Raises the EEPROM's clock input.
153 *
154 * hw - Struct containing variables accessed by shared code
155 * eecd - EECD's current value
156 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000157void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000158{
159 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
160 * wait 50 microseconds.
161 */
162 *eecd = *eecd | E1000_EECD_SK;
163 E1000_WRITE_REG(hw, EECD, *eecd);
164 E1000_WRITE_FLUSH(hw);
165 udelay(50);
166}
167
168/******************************************************************************
169 * Lowers the EEPROM's clock input.
170 *
wdenk57b2d802003-06-27 21:31:46 +0000171 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000172 * eecd - EECD's current value
173 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000174void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000175{
wdenk57b2d802003-06-27 21:31:46 +0000176 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
177 * wait 50 microseconds.
wdenk4e112c12003-06-03 23:54:09 +0000178 */
179 *eecd = *eecd & ~E1000_EECD_SK;
180 E1000_WRITE_REG(hw, EECD, *eecd);
181 E1000_WRITE_FLUSH(hw);
182 udelay(50);
183}
184
185/******************************************************************************
186 * Shift data bits out to the EEPROM.
187 *
188 * hw - Struct containing variables accessed by shared code
189 * data - data to send to the EEPROM
190 * count - number of bits to shift out
191 *****************************************************************************/
192static void
193e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
194{
195 uint32_t eecd;
196 uint32_t mask;
197
198 /* We need to shift "count" bits out to the EEPROM. So, value in the
199 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk57b2d802003-06-27 21:31:46 +0000200 * In order to do this, "data" must be broken down into bits.
wdenk4e112c12003-06-03 23:54:09 +0000201 */
202 mask = 0x01 << (count - 1);
203 eecd = E1000_READ_REG(hw, EECD);
204 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
205 do {
206 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
207 * and then raising and then lowering the clock (the SK bit controls
208 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
209 * by setting "DI" to "0" and then raising and then lowering the clock.
210 */
211 eecd &= ~E1000_EECD_DI;
212
213 if (data & mask)
214 eecd |= E1000_EECD_DI;
215
216 E1000_WRITE_REG(hw, EECD, eecd);
217 E1000_WRITE_FLUSH(hw);
218
219 udelay(50);
220
221 e1000_raise_ee_clk(hw, &eecd);
222 e1000_lower_ee_clk(hw, &eecd);
223
224 mask = mask >> 1;
225
226 } while (mask);
227
228 /* We leave the "DI" bit set to "0" when we leave this routine. */
229 eecd &= ~E1000_EECD_DI;
230 E1000_WRITE_REG(hw, EECD, eecd);
231}
232
233/******************************************************************************
234 * Shift data bits in from the EEPROM
235 *
236 * hw - Struct containing variables accessed by shared code
237 *****************************************************************************/
238static uint16_t
Roy Zang28f7a052009-07-31 13:34:02 +0800239e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk4e112c12003-06-03 23:54:09 +0000240{
241 uint32_t eecd;
242 uint32_t i;
243 uint16_t data;
244
Roy Zang28f7a052009-07-31 13:34:02 +0800245 /* In order to read a register from the EEPROM, we need to shift 'count'
246 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
247 * input to the EEPROM (setting the SK bit), and then reading the
248 * value of the "DO" bit. During this "shifting in" process the
249 * "DI" bit should always be clear.
wdenk4e112c12003-06-03 23:54:09 +0000250 */
251
252 eecd = E1000_READ_REG(hw, EECD);
253
254 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
255 data = 0;
256
Roy Zang28f7a052009-07-31 13:34:02 +0800257 for (i = 0; i < count; i++) {
wdenk4e112c12003-06-03 23:54:09 +0000258 data = data << 1;
259 e1000_raise_ee_clk(hw, &eecd);
260
261 eecd = E1000_READ_REG(hw, EECD);
262
263 eecd &= ~(E1000_EECD_DI);
264 if (eecd & E1000_EECD_DO)
265 data |= 1;
266
267 e1000_lower_ee_clk(hw, &eecd);
268 }
269
270 return data;
271}
272
273/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800274 * Returns EEPROM to a "standby" state
wdenk4e112c12003-06-03 23:54:09 +0000275 *
276 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000277 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000278void e1000_standby_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000279{
Roy Zang28f7a052009-07-31 13:34:02 +0800280 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk4e112c12003-06-03 23:54:09 +0000281 uint32_t eecd;
282
283 eecd = E1000_READ_REG(hw, EECD);
284
Roy Zang28f7a052009-07-31 13:34:02 +0800285 if (eeprom->type == e1000_eeprom_microwire) {
286 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
287 E1000_WRITE_REG(hw, EECD, eecd);
288 E1000_WRITE_FLUSH(hw);
289 udelay(eeprom->delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000290
Roy Zang28f7a052009-07-31 13:34:02 +0800291 /* Clock high */
292 eecd |= E1000_EECD_SK;
293 E1000_WRITE_REG(hw, EECD, eecd);
294 E1000_WRITE_FLUSH(hw);
295 udelay(eeprom->delay_usec);
296
297 /* Select EEPROM */
298 eecd |= E1000_EECD_CS;
299 E1000_WRITE_REG(hw, EECD, eecd);
300 E1000_WRITE_FLUSH(hw);
301 udelay(eeprom->delay_usec);
302
303 /* Clock low */
304 eecd &= ~E1000_EECD_SK;
305 E1000_WRITE_REG(hw, EECD, eecd);
306 E1000_WRITE_FLUSH(hw);
307 udelay(eeprom->delay_usec);
308 } else if (eeprom->type == e1000_eeprom_spi) {
309 /* Toggle CS to flush commands */
310 eecd |= E1000_EECD_CS;
311 E1000_WRITE_REG(hw, EECD, eecd);
312 E1000_WRITE_FLUSH(hw);
313 udelay(eeprom->delay_usec);
314 eecd &= ~E1000_EECD_CS;
315 E1000_WRITE_REG(hw, EECD, eecd);
316 E1000_WRITE_FLUSH(hw);
317 udelay(eeprom->delay_usec);
318 }
319}
320
321/***************************************************************************
322* Description: Determines if the onboard NVM is FLASH or EEPROM.
323*
324* hw - Struct containing variables accessed by shared code
325****************************************************************************/
York Sun4a598092013-04-01 11:29:11 -0700326static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +0800327{
328 uint32_t eecd = 0;
329
330 DEBUGFUNC();
331
332 if (hw->mac_type == e1000_ich8lan)
York Sun4a598092013-04-01 11:29:11 -0700333 return false;
Roy Zang28f7a052009-07-31 13:34:02 +0800334
Roy Zang181119b2011-01-21 11:29:38 +0800335 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800336 eecd = E1000_READ_REG(hw, EECD);
337
338 /* Isolate bits 15 & 16 */
339 eecd = ((eecd >> 15) & 0x03);
340
341 /* If both bits are set, device is Flash type */
342 if (eecd == 0x03)
York Sun4a598092013-04-01 11:29:11 -0700343 return false;
Roy Zang28f7a052009-07-31 13:34:02 +0800344 }
York Sun4a598092013-04-01 11:29:11 -0700345 return true;
wdenk4e112c12003-06-03 23:54:09 +0000346}
347
348/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800349 * Prepares EEPROM for access
wdenk57b2d802003-06-27 21:31:46 +0000350 *
wdenk4e112c12003-06-03 23:54:09 +0000351 * hw - Struct containing variables accessed by shared code
Roy Zang28f7a052009-07-31 13:34:02 +0800352 *
353 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
354 * function should be called before issuing a command to the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000355 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000356int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000357{
Roy Zang28f7a052009-07-31 13:34:02 +0800358 struct e1000_eeprom_info *eeprom = &hw->eeprom;
359 uint32_t eecd, i = 0;
360
Timur Tabiedc45b52009-08-17 15:55:38 -0500361 DEBUGFUNC();
wdenk4e112c12003-06-03 23:54:09 +0000362
Roy Zang28f7a052009-07-31 13:34:02 +0800363 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
364 return -E1000_ERR_SWFW_SYNC;
wdenk4e112c12003-06-03 23:54:09 +0000365 eecd = E1000_READ_REG(hw, EECD);
366
Marek Vasut74a13c22014-08-08 07:41:39 -0700367 if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800368 /* Request EEPROM Access */
369 if (hw->mac_type > e1000_82544) {
370 eecd |= E1000_EECD_REQ;
371 E1000_WRITE_REG(hw, EECD, eecd);
372 eecd = E1000_READ_REG(hw, EECD);
373 while ((!(eecd & E1000_EECD_GNT)) &&
374 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
375 i++;
376 udelay(5);
377 eecd = E1000_READ_REG(hw, EECD);
378 }
379 if (!(eecd & E1000_EECD_GNT)) {
380 eecd &= ~E1000_EECD_REQ;
381 E1000_WRITE_REG(hw, EECD, eecd);
382 DEBUGOUT("Could not acquire EEPROM grant\n");
383 return -E1000_ERR_EEPROM;
384 }
385 }
386 }
wdenk4e112c12003-06-03 23:54:09 +0000387
Roy Zang28f7a052009-07-31 13:34:02 +0800388 /* Setup EEPROM for Read/Write */
wdenk4e112c12003-06-03 23:54:09 +0000389
Roy Zang28f7a052009-07-31 13:34:02 +0800390 if (eeprom->type == e1000_eeprom_microwire) {
391 /* Clear SK and DI */
392 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
393 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000394
Roy Zang28f7a052009-07-31 13:34:02 +0800395 /* Set CS */
396 eecd |= E1000_EECD_CS;
397 E1000_WRITE_REG(hw, EECD, eecd);
398 } else if (eeprom->type == e1000_eeprom_spi) {
399 /* Clear SK and CS */
400 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
401 E1000_WRITE_REG(hw, EECD, eecd);
402 udelay(1);
403 }
404
405 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000406}
407
408/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800409 * Sets up eeprom variables in the hw struct. Must be called after mac_type
410 * is configured. Additionally, if this is ICH8, the flash controller GbE
411 * registers must be mapped, or this will crash.
wdenk4e112c12003-06-03 23:54:09 +0000412 *
413 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000414 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800415static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000416{
Roy Zang28f7a052009-07-31 13:34:02 +0800417 struct e1000_eeprom_info *eeprom = &hw->eeprom;
Marek Vasut74a13c22014-08-08 07:41:39 -0700418 uint32_t eecd;
Roy Zang28f7a052009-07-31 13:34:02 +0800419 int32_t ret_val = E1000_SUCCESS;
420 uint16_t eeprom_size;
wdenk4e112c12003-06-03 23:54:09 +0000421
Marek Vasut74a13c22014-08-08 07:41:39 -0700422 if (hw->mac_type == e1000_igb)
423 eecd = E1000_READ_REG(hw, I210_EECD);
424 else
425 eecd = E1000_READ_REG(hw, EECD);
426
Timur Tabiedc45b52009-08-17 15:55:38 -0500427 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +0800428
429 switch (hw->mac_type) {
430 case e1000_82542_rev2_0:
431 case e1000_82542_rev2_1:
432 case e1000_82543:
433 case e1000_82544:
434 eeprom->type = e1000_eeprom_microwire;
435 eeprom->word_size = 64;
436 eeprom->opcode_bits = 3;
437 eeprom->address_bits = 6;
438 eeprom->delay_usec = 50;
York Sun4a598092013-04-01 11:29:11 -0700439 eeprom->use_eerd = false;
440 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800441 break;
442 case e1000_82540:
443 case e1000_82545:
444 case e1000_82545_rev_3:
445 case e1000_82546:
446 case e1000_82546_rev_3:
447 eeprom->type = e1000_eeprom_microwire;
448 eeprom->opcode_bits = 3;
449 eeprom->delay_usec = 50;
450 if (eecd & E1000_EECD_SIZE) {
451 eeprom->word_size = 256;
452 eeprom->address_bits = 8;
453 } else {
454 eeprom->word_size = 64;
455 eeprom->address_bits = 6;
456 }
York Sun4a598092013-04-01 11:29:11 -0700457 eeprom->use_eerd = false;
458 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800459 break;
460 case e1000_82541:
461 case e1000_82541_rev_2:
462 case e1000_82547:
463 case e1000_82547_rev_2:
464 if (eecd & E1000_EECD_TYPE) {
465 eeprom->type = e1000_eeprom_spi;
466 eeprom->opcode_bits = 8;
467 eeprom->delay_usec = 1;
468 if (eecd & E1000_EECD_ADDR_BITS) {
469 eeprom->page_size = 32;
470 eeprom->address_bits = 16;
471 } else {
472 eeprom->page_size = 8;
473 eeprom->address_bits = 8;
474 }
475 } else {
476 eeprom->type = e1000_eeprom_microwire;
477 eeprom->opcode_bits = 3;
478 eeprom->delay_usec = 50;
479 if (eecd & E1000_EECD_ADDR_BITS) {
480 eeprom->word_size = 256;
481 eeprom->address_bits = 8;
482 } else {
483 eeprom->word_size = 64;
484 eeprom->address_bits = 6;
485 }
486 }
York Sun4a598092013-04-01 11:29:11 -0700487 eeprom->use_eerd = false;
488 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800489 break;
490 case e1000_82571:
491 case e1000_82572:
492 eeprom->type = e1000_eeprom_spi;
493 eeprom->opcode_bits = 8;
494 eeprom->delay_usec = 1;
495 if (eecd & E1000_EECD_ADDR_BITS) {
496 eeprom->page_size = 32;
497 eeprom->address_bits = 16;
498 } else {
499 eeprom->page_size = 8;
500 eeprom->address_bits = 8;
501 }
York Sun4a598092013-04-01 11:29:11 -0700502 eeprom->use_eerd = false;
503 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800504 break;
505 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +0800506 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +0800507 eeprom->type = e1000_eeprom_spi;
508 eeprom->opcode_bits = 8;
509 eeprom->delay_usec = 1;
510 if (eecd & E1000_EECD_ADDR_BITS) {
511 eeprom->page_size = 32;
512 eeprom->address_bits = 16;
513 } else {
514 eeprom->page_size = 8;
515 eeprom->address_bits = 8;
wdenk4e112c12003-06-03 23:54:09 +0000516 }
York Sun4a598092013-04-01 11:29:11 -0700517 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
Marek Vasut74a13c22014-08-08 07:41:39 -0700518 eeprom->use_eerd = true;
519 eeprom->use_eewr = true;
520
Roy Zang28f7a052009-07-31 13:34:02 +0800521 eeprom->type = e1000_eeprom_flash;
522 eeprom->word_size = 2048;
523
524 /* Ensure that the Autonomous FLASH update bit is cleared due to
525 * Flash update issue on parts which use a FLASH for NVM. */
526 eecd &= ~E1000_EECD_AUPDEN;
wdenk4e112c12003-06-03 23:54:09 +0000527 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000528 }
Roy Zang28f7a052009-07-31 13:34:02 +0800529 break;
530 case e1000_80003es2lan:
531 eeprom->type = e1000_eeprom_spi;
532 eeprom->opcode_bits = 8;
533 eeprom->delay_usec = 1;
534 if (eecd & E1000_EECD_ADDR_BITS) {
535 eeprom->page_size = 32;
536 eeprom->address_bits = 16;
537 } else {
538 eeprom->page_size = 8;
539 eeprom->address_bits = 8;
540 }
York Sun4a598092013-04-01 11:29:11 -0700541 eeprom->use_eerd = true;
542 eeprom->use_eewr = false;
Roy Zang28f7a052009-07-31 13:34:02 +0800543 break;
Marek Vasut74a13c22014-08-08 07:41:39 -0700544 case e1000_igb:
545 /* i210 has 4k of iNVM mapped as EEPROM */
546 eeprom->type = e1000_eeprom_invm;
547 eeprom->opcode_bits = 8;
548 eeprom->delay_usec = 1;
549 eeprom->page_size = 32;
550 eeprom->address_bits = 16;
551 eeprom->use_eerd = true;
552 eeprom->use_eewr = false;
553 break;
Roy Zang28f7a052009-07-31 13:34:02 +0800554 default:
555 break;
wdenk4e112c12003-06-03 23:54:09 +0000556 }
557
Marek Vasut74a13c22014-08-08 07:41:39 -0700558 if (eeprom->type == e1000_eeprom_spi ||
559 eeprom->type == e1000_eeprom_invm) {
Roy Zang28f7a052009-07-31 13:34:02 +0800560 /* eeprom_size will be an enum [0..8] that maps
561 * to eeprom sizes 128B to
562 * 32KB (incremented by powers of 2).
563 */
564 if (hw->mac_type <= e1000_82547_rev_2) {
565 /* Set to default value for initial eeprom read. */
566 eeprom->word_size = 64;
567 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
568 &eeprom_size);
569 if (ret_val)
570 return ret_val;
571 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
572 >> EEPROM_SIZE_SHIFT;
573 /* 256B eeprom size was not supported in earlier
574 * hardware, so we bump eeprom_size up one to
575 * ensure that "1" (which maps to 256B) is never
576 * the result used in the shifting logic below. */
577 if (eeprom_size)
578 eeprom_size++;
579 } else {
580 eeprom_size = (uint16_t)((eecd &
581 E1000_EECD_SIZE_EX_MASK) >>
582 E1000_EECD_SIZE_EX_SHIFT);
583 }
584
585 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
586 }
587 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +0000588}
589
Roy Zang28f7a052009-07-31 13:34:02 +0800590/******************************************************************************
591 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
592 *
593 * hw - Struct containing variables accessed by shared code
594 *****************************************************************************/
595static int32_t
596e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
wdenk4e112c12003-06-03 23:54:09 +0000597{
Roy Zang28f7a052009-07-31 13:34:02 +0800598 uint32_t attempts = 100000;
599 uint32_t i, reg = 0;
600 int32_t done = E1000_ERR_EEPROM;
wdenk4e112c12003-06-03 23:54:09 +0000601
Roy Zang28f7a052009-07-31 13:34:02 +0800602 for (i = 0; i < attempts; i++) {
Marek Vasut74a13c22014-08-08 07:41:39 -0700603 if (eerd == E1000_EEPROM_POLL_READ) {
604 if (hw->mac_type == e1000_igb)
605 reg = E1000_READ_REG(hw, I210_EERD);
606 else
607 reg = E1000_READ_REG(hw, EERD);
608 } else {
609 if (hw->mac_type == e1000_igb)
610 reg = E1000_READ_REG(hw, I210_EEWR);
611 else
612 reg = E1000_READ_REG(hw, EEWR);
613 }
Roy Zang28f7a052009-07-31 13:34:02 +0800614
615 if (reg & E1000_EEPROM_RW_REG_DONE) {
616 done = E1000_SUCCESS;
617 break;
618 }
619 udelay(5);
620 }
621
622 return done;
wdenk4e112c12003-06-03 23:54:09 +0000623}
624
Roy Zang28f7a052009-07-31 13:34:02 +0800625/******************************************************************************
626 * Reads a 16 bit word from the EEPROM using the EERD register.
627 *
628 * hw - Struct containing variables accessed by shared code
629 * offset - offset of word in the EEPROM to read
630 * data - word read from the EEPROM
631 * words - number of words to read
632 *****************************************************************************/
633static int32_t
634e1000_read_eeprom_eerd(struct e1000_hw *hw,
635 uint16_t offset,
636 uint16_t words,
637 uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000638{
Roy Zang28f7a052009-07-31 13:34:02 +0800639 uint32_t i, eerd = 0;
640 int32_t error = 0;
wdenk4e112c12003-06-03 23:54:09 +0000641
Roy Zang28f7a052009-07-31 13:34:02 +0800642 for (i = 0; i < words; i++) {
643 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
644 E1000_EEPROM_RW_REG_START;
645
Marek Vasut74a13c22014-08-08 07:41:39 -0700646 if (hw->mac_type == e1000_igb)
647 E1000_WRITE_REG(hw, I210_EERD, eerd);
648 else
649 E1000_WRITE_REG(hw, EERD, eerd);
650
Roy Zang28f7a052009-07-31 13:34:02 +0800651 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
652
653 if (error)
654 break;
Marek Vasut74a13c22014-08-08 07:41:39 -0700655
656 if (hw->mac_type == e1000_igb) {
657 data[i] = (E1000_READ_REG(hw, I210_EERD) >>
Roy Zang28f7a052009-07-31 13:34:02 +0800658 E1000_EEPROM_RW_REG_DATA);
Marek Vasut74a13c22014-08-08 07:41:39 -0700659 } else {
660 data[i] = (E1000_READ_REG(hw, EERD) >>
661 E1000_EEPROM_RW_REG_DATA);
662 }
Roy Zang28f7a052009-07-31 13:34:02 +0800663
wdenk4e112c12003-06-03 23:54:09 +0000664 }
Roy Zang28f7a052009-07-31 13:34:02 +0800665
666 return error;
wdenk4e112c12003-06-03 23:54:09 +0000667}
668
Kyle Moffett142cbf82011-10-18 11:05:28 +0000669void e1000_release_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000670{
671 uint32_t eecd;
wdenk4e112c12003-06-03 23:54:09 +0000672
Roy Zang28f7a052009-07-31 13:34:02 +0800673 DEBUGFUNC();
674
675 eecd = E1000_READ_REG(hw, EECD);
676
677 if (hw->eeprom.type == e1000_eeprom_spi) {
678 eecd |= E1000_EECD_CS; /* Pull CS high */
679 eecd &= ~E1000_EECD_SK; /* Lower SCK */
680
wdenk4e112c12003-06-03 23:54:09 +0000681 E1000_WRITE_REG(hw, EECD, eecd);
Roy Zang28f7a052009-07-31 13:34:02 +0800682
683 udelay(hw->eeprom.delay_usec);
684 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
685 /* cleanup eeprom */
686
687 /* CS on Microwire is active-high */
688 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
689
690 E1000_WRITE_REG(hw, EECD, eecd);
691
692 /* Rising edge of clock */
693 eecd |= E1000_EECD_SK;
694 E1000_WRITE_REG(hw, EECD, eecd);
695 E1000_WRITE_FLUSH(hw);
696 udelay(hw->eeprom.delay_usec);
697
698 /* Falling edge of clock */
699 eecd &= ~E1000_EECD_SK;
700 E1000_WRITE_REG(hw, EECD, eecd);
701 E1000_WRITE_FLUSH(hw);
702 udelay(hw->eeprom.delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000703 }
wdenk4e112c12003-06-03 23:54:09 +0000704
705 /* Stop requesting EEPROM access */
706 if (hw->mac_type > e1000_82544) {
wdenk4e112c12003-06-03 23:54:09 +0000707 eecd &= ~E1000_EECD_REQ;
708 E1000_WRITE_REG(hw, EECD, eecd);
709 }
Tim Harvey5cb59ec2015-05-19 10:01:18 -0700710
711 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
wdenk4e112c12003-06-03 23:54:09 +0000712}
Tim Harvey5cb59ec2015-05-19 10:01:18 -0700713
wdenk4e112c12003-06-03 23:54:09 +0000714/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800715 * Reads a 16 bit word from the EEPROM.
wdenk57b2d802003-06-27 21:31:46 +0000716 *
wdenk4e112c12003-06-03 23:54:09 +0000717 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000718 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800719static int32_t
720e1000_spi_eeprom_ready(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000721{
Roy Zang28f7a052009-07-31 13:34:02 +0800722 uint16_t retry_count = 0;
723 uint8_t spi_stat_reg;
wdenk4e112c12003-06-03 23:54:09 +0000724
725 DEBUGFUNC();
726
Roy Zang28f7a052009-07-31 13:34:02 +0800727 /* Read "Status Register" repeatedly until the LSB is cleared. The
728 * EEPROM will signal that the command has been completed by clearing
729 * bit 0 of the internal status register. If it's not cleared within
730 * 5 milliseconds, then error out.
731 */
732 retry_count = 0;
733 do {
734 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
735 hw->eeprom.opcode_bits);
736 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
737 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
738 break;
wdenk57b2d802003-06-27 21:31:46 +0000739
Roy Zang28f7a052009-07-31 13:34:02 +0800740 udelay(5);
741 retry_count += 5;
742
743 e1000_standby_eeprom(hw);
744 } while (retry_count < EEPROM_MAX_RETRY_SPI);
745
746 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
747 * only 0-5mSec on 5V devices)
748 */
749 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
750 DEBUGOUT("SPI EEPROM Status error\n");
wdenk4e112c12003-06-03 23:54:09 +0000751 return -E1000_ERR_EEPROM;
752 }
Roy Zang28f7a052009-07-31 13:34:02 +0800753
754 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000755}
756
757/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800758 * Reads a 16 bit word from the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000759 *
Roy Zang28f7a052009-07-31 13:34:02 +0800760 * hw - Struct containing variables accessed by shared code
761 * offset - offset of word in the EEPROM to read
762 * data - word read from the EEPROM
wdenk4e112c12003-06-03 23:54:09 +0000763 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800764static int32_t
765e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
766 uint16_t words, uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000767{
Roy Zang28f7a052009-07-31 13:34:02 +0800768 struct e1000_eeprom_info *eeprom = &hw->eeprom;
769 uint32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000770
771 DEBUGFUNC();
772
Roy Zang28f7a052009-07-31 13:34:02 +0800773 /* If eeprom is not yet detected, do so now */
774 if (eeprom->word_size == 0)
775 e1000_init_eeprom_params(hw);
776
777 /* A check for invalid values: offset too large, too many words,
778 * and not enough words.
779 */
780 if ((offset >= eeprom->word_size) ||
781 (words > eeprom->word_size - offset) ||
782 (words == 0)) {
783 DEBUGOUT("\"words\" parameter out of bounds."
784 "Words = %d, size = %d\n", offset, eeprom->word_size);
785 return -E1000_ERR_EEPROM;
786 }
787
788 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
789 * directly. In this case, we need to acquire the EEPROM so that
790 * FW or other port software does not interrupt.
791 */
York Sun4a598092013-04-01 11:29:11 -0700792 if (e1000_is_onboard_nvm_eeprom(hw) == true &&
793 hw->eeprom.use_eerd == false) {
Roy Zang28f7a052009-07-31 13:34:02 +0800794
795 /* Prepare the EEPROM for bit-bang reading */
796 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
797 return -E1000_ERR_EEPROM;
798 }
799
800 /* Eerd register EEPROM access requires no eeprom aquire/release */
York Sun4a598092013-04-01 11:29:11 -0700801 if (eeprom->use_eerd == true)
Roy Zang28f7a052009-07-31 13:34:02 +0800802 return e1000_read_eeprom_eerd(hw, offset, words, data);
803
Roy Zang28f7a052009-07-31 13:34:02 +0800804 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
805 * acquired the EEPROM at this point, so any returns should relase it */
806 if (eeprom->type == e1000_eeprom_spi) {
807 uint16_t word_in;
808 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
809
810 if (e1000_spi_eeprom_ready(hw)) {
811 e1000_release_eeprom(hw);
812 return -E1000_ERR_EEPROM;
813 }
814
815 e1000_standby_eeprom(hw);
816
817 /* Some SPI eeproms use the 8th address bit embedded in
818 * the opcode */
819 if ((eeprom->address_bits == 8) && (offset >= 128))
820 read_opcode |= EEPROM_A8_OPCODE_SPI;
821
822 /* Send the READ command (opcode + addr) */
823 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
824 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
825 eeprom->address_bits);
826
827 /* Read the data. The address of the eeprom internally
828 * increments with each byte (spi) being read, saving on the
829 * overhead of eeprom setup and tear-down. The address
830 * counter will roll over if reading beyond the size of
831 * the eeprom, thus allowing the entire memory to be read
832 * starting from any offset. */
833 for (i = 0; i < words; i++) {
834 word_in = e1000_shift_in_ee_bits(hw, 16);
835 data[i] = (word_in >> 8) | (word_in << 8);
836 }
837 } else if (eeprom->type == e1000_eeprom_microwire) {
838 for (i = 0; i < words; i++) {
839 /* Send the READ command (opcode + addr) */
840 e1000_shift_out_ee_bits(hw,
841 EEPROM_READ_OPCODE_MICROWIRE,
842 eeprom->opcode_bits);
843 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
844 eeprom->address_bits);
845
846 /* Read the data. For microwire, each word requires
847 * the overhead of eeprom setup and tear-down. */
848 data[i] = e1000_shift_in_ee_bits(hw, 16);
849 e1000_standby_eeprom(hw);
850 }
851 }
852
853 /* End this read operation */
854 e1000_release_eeprom(hw);
855
856 return E1000_SUCCESS;
857}
858
859/******************************************************************************
860 * Verifies that the EEPROM has a valid checksum
861 *
862 * hw - Struct containing variables accessed by shared code
863 *
864 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
865 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
866 * valid.
867 *****************************************************************************/
Kyle Moffett70946bc2011-10-18 11:05:27 +0000868static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +0800869{
Kyle Moffett70946bc2011-10-18 11:05:27 +0000870 uint16_t i, checksum, checksum_reg, *buf;
Roy Zang28f7a052009-07-31 13:34:02 +0800871
872 DEBUGFUNC();
873
Kyle Moffett70946bc2011-10-18 11:05:27 +0000874 /* Allocate a temporary buffer */
875 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
876 if (!buf) {
Simon Glassc53abc32015-08-19 09:33:39 -0600877 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
Kyle Moffett70946bc2011-10-18 11:05:27 +0000878 return -E1000_ERR_EEPROM;
Roy Zang28f7a052009-07-31 13:34:02 +0800879 }
880
Kyle Moffett70946bc2011-10-18 11:05:27 +0000881 /* Read the EEPROM */
882 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
Simon Glassc53abc32015-08-19 09:33:39 -0600883 E1000_ERR(hw, "Unable to read EEPROM!\n");
Roy Zang28f7a052009-07-31 13:34:02 +0800884 return -E1000_ERR_EEPROM;
885 }
Kyle Moffett70946bc2011-10-18 11:05:27 +0000886
887 /* Compute the checksum */
Wolfgang Denk15690332011-10-28 07:37:04 +0200888 checksum = 0;
Kyle Moffett70946bc2011-10-18 11:05:27 +0000889 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
890 checksum += buf[i];
891 checksum = ((uint16_t)EEPROM_SUM) - checksum;
892 checksum_reg = buf[i];
893
894 /* Verify it! */
895 if (checksum == checksum_reg)
896 return 0;
897
898 /* Hrm, verification failed, print an error */
Simon Glassc53abc32015-08-19 09:33:39 -0600899 E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
900 E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n",
901 checksum_reg, checksum);
Kyle Moffett70946bc2011-10-18 11:05:27 +0000902
903 return -E1000_ERR_EEPROM;
Roy Zang9b7c4302009-08-11 03:48:05 +0800904}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200905#endif /* CONFIG_E1000_NO_NVM */
Roy Zang9b7c4302009-08-11 03:48:05 +0800906
907/*****************************************************************************
908 * Set PHY to class A mode
909 * Assumes the following operations will follow to enable the new class mode.
910 * 1. Do a PHY soft reset
911 * 2. Restart auto-negotiation or force link.
912 *
913 * hw - Struct containing variables accessed by shared code
914 ****************************************************************************/
915static int32_t
916e1000_set_phy_mode(struct e1000_hw *hw)
917{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200918#ifndef CONFIG_E1000_NO_NVM
Roy Zang9b7c4302009-08-11 03:48:05 +0800919 int32_t ret_val;
920 uint16_t eeprom_data;
921
922 DEBUGFUNC();
923
924 if ((hw->mac_type == e1000_82545_rev_3) &&
925 (hw->media_type == e1000_media_type_copper)) {
926 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
927 1, &eeprom_data);
928 if (ret_val)
929 return ret_val;
930
931 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
932 (eeprom_data & EEPROM_PHY_CLASS_A)) {
933 ret_val = e1000_write_phy_reg(hw,
934 M88E1000_PHY_PAGE_SELECT, 0x000B);
935 if (ret_val)
936 return ret_val;
937 ret_val = e1000_write_phy_reg(hw,
938 M88E1000_PHY_GEN_CONTROL, 0x8104);
939 if (ret_val)
940 return ret_val;
941
York Sun4a598092013-04-01 11:29:11 -0700942 hw->phy_reset_disable = false;
Roy Zang9b7c4302009-08-11 03:48:05 +0800943 }
944 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200945#endif
Roy Zang9b7c4302009-08-11 03:48:05 +0800946 return E1000_SUCCESS;
Roy Zang28f7a052009-07-31 13:34:02 +0800947}
Roy Zang28f7a052009-07-31 13:34:02 +0800948
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200949#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +0800950/***************************************************************************
951 *
952 * Obtaining software semaphore bit (SMBI) before resetting PHY.
953 *
954 * hw: Struct containing variables accessed by shared code
955 *
956 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
957 * E1000_SUCCESS at any other case.
958 *
959 ***************************************************************************/
960static int32_t
961e1000_get_software_semaphore(struct e1000_hw *hw)
962{
963 int32_t timeout = hw->eeprom.word_size + 1;
964 uint32_t swsm;
965
966 DEBUGFUNC();
967
968 if (hw->mac_type != e1000_80003es2lan)
969 return E1000_SUCCESS;
970
971 while (timeout) {
972 swsm = E1000_READ_REG(hw, SWSM);
973 /* If SMBI bit cleared, it is now set and we hold
974 * the semaphore */
975 if (!(swsm & E1000_SWSM_SMBI))
976 break;
977 mdelay(1);
978 timeout--;
979 }
980
981 if (!timeout) {
982 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
983 return -E1000_ERR_RESET;
984 }
985
986 return E1000_SUCCESS;
987}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +0200988#endif
Roy Zang28f7a052009-07-31 13:34:02 +0800989
990/***************************************************************************
991 * This function clears HW semaphore bits.
992 *
993 * hw: Struct containing variables accessed by shared code
994 *
995 * returns: - None.
996 *
997 ***************************************************************************/
998static void
999e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1000{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001001#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001002 uint32_t swsm;
1003
1004 DEBUGFUNC();
1005
1006 if (!hw->eeprom_semaphore_present)
1007 return;
1008
1009 swsm = E1000_READ_REG(hw, SWSM);
1010 if (hw->mac_type == e1000_80003es2lan) {
1011 /* Release both semaphores. */
1012 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1013 } else
1014 swsm &= ~(E1000_SWSM_SWESMBI);
1015 E1000_WRITE_REG(hw, SWSM, swsm);
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001016#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001017}
1018
1019/***************************************************************************
1020 *
1021 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1022 * adapter or Eeprom access.
1023 *
1024 * hw: Struct containing variables accessed by shared code
1025 *
1026 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1027 * E1000_SUCCESS at any other case.
1028 *
1029 ***************************************************************************/
1030static int32_t
1031e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1032{
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001033#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001034 int32_t timeout;
1035 uint32_t swsm;
1036
1037 DEBUGFUNC();
1038
1039 if (!hw->eeprom_semaphore_present)
1040 return E1000_SUCCESS;
1041
1042 if (hw->mac_type == e1000_80003es2lan) {
1043 /* Get the SW semaphore. */
1044 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1045 return -E1000_ERR_EEPROM;
1046 }
1047
1048 /* Get the FW semaphore. */
1049 timeout = hw->eeprom.word_size + 1;
1050 while (timeout) {
1051 swsm = E1000_READ_REG(hw, SWSM);
1052 swsm |= E1000_SWSM_SWESMBI;
1053 E1000_WRITE_REG(hw, SWSM, swsm);
1054 /* if we managed to set the bit we got the semaphore. */
1055 swsm = E1000_READ_REG(hw, SWSM);
1056 if (swsm & E1000_SWSM_SWESMBI)
1057 break;
1058
1059 udelay(50);
1060 timeout--;
1061 }
1062
1063 if (!timeout) {
1064 /* Release semaphores */
1065 e1000_put_hw_eeprom_semaphore(hw);
1066 DEBUGOUT("Driver can't access the Eeprom - "
1067 "SWESMBI bit is set.\n");
1068 return -E1000_ERR_EEPROM;
1069 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001070#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001071 return E1000_SUCCESS;
1072}
1073
Tim Harvey5cb59ec2015-05-19 10:01:18 -07001074/* Take ownership of the PHY */
Roy Zang28f7a052009-07-31 13:34:02 +08001075static int32_t
1076e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1077{
1078 uint32_t swfw_sync = 0;
1079 uint32_t swmask = mask;
1080 uint32_t fwmask = mask << 16;
1081 int32_t timeout = 200;
1082
1083 DEBUGFUNC();
1084 while (timeout) {
1085 if (e1000_get_hw_eeprom_semaphore(hw))
1086 return -E1000_ERR_SWFW_SYNC;
1087
Tim Harveydca35652015-05-19 10:01:19 -07001088 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
York Sun4303a832014-10-17 13:44:06 -07001089 if (!(swfw_sync & (fwmask | swmask)))
Roy Zang28f7a052009-07-31 13:34:02 +08001090 break;
1091
1092 /* firmware currently using resource (fwmask) */
1093 /* or other software thread currently using resource (swmask) */
1094 e1000_put_hw_eeprom_semaphore(hw);
1095 mdelay(5);
1096 timeout--;
1097 }
1098
1099 if (!timeout) {
1100 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1101 return -E1000_ERR_SWFW_SYNC;
1102 }
1103
1104 swfw_sync |= swmask;
1105 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1106
1107 e1000_put_hw_eeprom_semaphore(hw);
1108 return E1000_SUCCESS;
1109}
1110
Tim Harvey5cb59ec2015-05-19 10:01:18 -07001111static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1112{
1113 uint32_t swfw_sync = 0;
1114
1115 DEBUGFUNC();
1116 while (e1000_get_hw_eeprom_semaphore(hw))
1117 ; /* Empty */
1118
1119 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1120 swfw_sync &= ~mask;
1121 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1122
1123 e1000_put_hw_eeprom_semaphore(hw);
1124}
1125
York Sun4a598092013-04-01 11:29:11 -07001126static bool e1000_is_second_port(struct e1000_hw *hw)
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001127{
1128 switch (hw->mac_type) {
1129 case e1000_80003es2lan:
1130 case e1000_82546:
1131 case e1000_82571:
1132 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
York Sun4a598092013-04-01 11:29:11 -07001133 return true;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001134 /* Fallthrough */
1135 default:
York Sun4a598092013-04-01 11:29:11 -07001136 return false;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001137 }
1138}
1139
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001140#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001141/******************************************************************************
1142 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1143 * second function of dual function devices
1144 *
1145 * nic - Struct containing variables accessed by shared code
1146 *****************************************************************************/
1147static int
Simon Glassc53abc32015-08-19 09:33:39 -06001148e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
Roy Zang28f7a052009-07-31 13:34:02 +08001149{
Roy Zang28f7a052009-07-31 13:34:02 +08001150 uint16_t offset;
1151 uint16_t eeprom_data;
Marek Vasut74a13c22014-08-08 07:41:39 -07001152 uint32_t reg_data = 0;
Roy Zang28f7a052009-07-31 13:34:02 +08001153 int i;
1154
1155 DEBUGFUNC();
1156
1157 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
wdenk4e112c12003-06-03 23:54:09 +00001158 offset = i >> 1;
Marek Vasut74a13c22014-08-08 07:41:39 -07001159 if (hw->mac_type == e1000_igb) {
1160 /* i210 preloads MAC address into RAL/RAH registers */
1161 if (offset == 0)
1162 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1163 else if (offset == 1)
1164 reg_data >>= 16;
1165 else if (offset == 2)
1166 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1167 eeprom_data = reg_data & 0xffff;
1168 } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001169 DEBUGOUT("EEPROM Read Error\n");
1170 return -E1000_ERR_EEPROM;
1171 }
Simon Glassc53abc32015-08-19 09:33:39 -06001172 enetaddr[i] = eeprom_data & 0xff;
1173 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
wdenk4e112c12003-06-03 23:54:09 +00001174 }
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001175
1176 /* Invert the last bit if this is the second device */
1177 if (e1000_is_second_port(hw))
Simon Glassc53abc32015-08-19 09:33:39 -06001178 enetaddr[5] ^= 1;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001179
wdenk4e112c12003-06-03 23:54:09 +00001180 return 0;
1181}
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001182#endif
wdenk4e112c12003-06-03 23:54:09 +00001183
1184/******************************************************************************
1185 * Initializes receive address filters.
1186 *
wdenk57b2d802003-06-27 21:31:46 +00001187 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +00001188 *
1189 * Places the MAC address in receive address register 0 and clears the rest
1190 * of the receive addresss registers. Clears the multicast table. Assumes
1191 * the receiver is in reset when the routine is called.
1192 *****************************************************************************/
1193static void
Simon Glassc53abc32015-08-19 09:33:39 -06001194e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
wdenk4e112c12003-06-03 23:54:09 +00001195{
wdenk4e112c12003-06-03 23:54:09 +00001196 uint32_t i;
1197 uint32_t addr_low;
1198 uint32_t addr_high;
1199
1200 DEBUGFUNC();
1201
1202 /* Setup the receive address. */
1203 DEBUGOUT("Programming MAC Address into RAR[0]\n");
Simon Glassc53abc32015-08-19 09:33:39 -06001204 addr_low = (enetaddr[0] |
1205 (enetaddr[1] << 8) |
1206 (enetaddr[2] << 16) | (enetaddr[3] << 24));
wdenk4e112c12003-06-03 23:54:09 +00001207
Simon Glassc53abc32015-08-19 09:33:39 -06001208 addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
wdenk4e112c12003-06-03 23:54:09 +00001209
1210 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1211 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1212
1213 /* Zero out the other 15 receive addresses. */
1214 DEBUGOUT("Clearing RAR[1-15]\n");
1215 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1216 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1217 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1218 }
1219}
1220
1221/******************************************************************************
1222 * Clears the VLAN filer table
1223 *
1224 * hw - Struct containing variables accessed by shared code
1225 *****************************************************************************/
1226static void
1227e1000_clear_vfta(struct e1000_hw *hw)
1228{
1229 uint32_t offset;
1230
1231 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1232 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1233}
1234
1235/******************************************************************************
1236 * Set the mac type member in the hw struct.
wdenk57b2d802003-06-27 21:31:46 +00001237 *
wdenk4e112c12003-06-03 23:54:09 +00001238 * hw - Struct containing variables accessed by shared code
1239 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08001240int32_t
wdenk4e112c12003-06-03 23:54:09 +00001241e1000_set_mac_type(struct e1000_hw *hw)
1242{
1243 DEBUGFUNC();
1244
1245 switch (hw->device_id) {
1246 case E1000_DEV_ID_82542:
1247 switch (hw->revision_id) {
1248 case E1000_82542_2_0_REV_ID:
1249 hw->mac_type = e1000_82542_rev2_0;
1250 break;
1251 case E1000_82542_2_1_REV_ID:
1252 hw->mac_type = e1000_82542_rev2_1;
1253 break;
1254 default:
1255 /* Invalid 82542 revision ID */
1256 return -E1000_ERR_MAC_TYPE;
1257 }
1258 break;
1259 case E1000_DEV_ID_82543GC_FIBER:
1260 case E1000_DEV_ID_82543GC_COPPER:
1261 hw->mac_type = e1000_82543;
1262 break;
1263 case E1000_DEV_ID_82544EI_COPPER:
1264 case E1000_DEV_ID_82544EI_FIBER:
1265 case E1000_DEV_ID_82544GC_COPPER:
1266 case E1000_DEV_ID_82544GC_LOM:
1267 hw->mac_type = e1000_82544;
1268 break;
1269 case E1000_DEV_ID_82540EM:
1270 case E1000_DEV_ID_82540EM_LOM:
Roy Zang28f7a052009-07-31 13:34:02 +08001271 case E1000_DEV_ID_82540EP:
1272 case E1000_DEV_ID_82540EP_LOM:
1273 case E1000_DEV_ID_82540EP_LP:
wdenk4e112c12003-06-03 23:54:09 +00001274 hw->mac_type = e1000_82540;
1275 break;
1276 case E1000_DEV_ID_82545EM_COPPER:
1277 case E1000_DEV_ID_82545EM_FIBER:
1278 hw->mac_type = e1000_82545;
1279 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001280 case E1000_DEV_ID_82545GM_COPPER:
1281 case E1000_DEV_ID_82545GM_FIBER:
1282 case E1000_DEV_ID_82545GM_SERDES:
1283 hw->mac_type = e1000_82545_rev_3;
1284 break;
wdenk4e112c12003-06-03 23:54:09 +00001285 case E1000_DEV_ID_82546EB_COPPER:
1286 case E1000_DEV_ID_82546EB_FIBER:
Roy Zang28f7a052009-07-31 13:34:02 +08001287 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk4e112c12003-06-03 23:54:09 +00001288 hw->mac_type = e1000_82546;
1289 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001290 case E1000_DEV_ID_82546GB_COPPER:
1291 case E1000_DEV_ID_82546GB_FIBER:
1292 case E1000_DEV_ID_82546GB_SERDES:
1293 case E1000_DEV_ID_82546GB_PCIE:
1294 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1295 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1296 hw->mac_type = e1000_82546_rev_3;
1297 break;
1298 case E1000_DEV_ID_82541EI:
1299 case E1000_DEV_ID_82541EI_MOBILE:
1300 case E1000_DEV_ID_82541ER_LOM:
1301 hw->mac_type = e1000_82541;
1302 break;
Andre Schwarz68c2a302008-03-06 16:45:44 +01001303 case E1000_DEV_ID_82541ER:
Roy Zang28f7a052009-07-31 13:34:02 +08001304 case E1000_DEV_ID_82541GI:
Wolfgang Grandegger8562c382008-05-28 19:55:19 +02001305 case E1000_DEV_ID_82541GI_LF:
Roy Zang28f7a052009-07-31 13:34:02 +08001306 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001307 hw->mac_type = e1000_82541_rev_2;
1308 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001309 case E1000_DEV_ID_82547EI:
1310 case E1000_DEV_ID_82547EI_MOBILE:
1311 hw->mac_type = e1000_82547;
1312 break;
1313 case E1000_DEV_ID_82547GI:
1314 hw->mac_type = e1000_82547_rev_2;
1315 break;
1316 case E1000_DEV_ID_82571EB_COPPER:
1317 case E1000_DEV_ID_82571EB_FIBER:
1318 case E1000_DEV_ID_82571EB_SERDES:
1319 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1320 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1321 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1322 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1323 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1324 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1325 hw->mac_type = e1000_82571;
1326 break;
1327 case E1000_DEV_ID_82572EI_COPPER:
1328 case E1000_DEV_ID_82572EI_FIBER:
1329 case E1000_DEV_ID_82572EI_SERDES:
1330 case E1000_DEV_ID_82572EI:
1331 hw->mac_type = e1000_82572;
1332 break;
1333 case E1000_DEV_ID_82573E:
1334 case E1000_DEV_ID_82573E_IAMT:
1335 case E1000_DEV_ID_82573L:
1336 hw->mac_type = e1000_82573;
1337 break;
Roy Zang181119b2011-01-21 11:29:38 +08001338 case E1000_DEV_ID_82574L:
1339 hw->mac_type = e1000_82574;
1340 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001341 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1342 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1343 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1344 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1345 hw->mac_type = e1000_80003es2lan;
1346 break;
1347 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1348 case E1000_DEV_ID_ICH8_IGP_AMT:
1349 case E1000_DEV_ID_ICH8_IGP_C:
1350 case E1000_DEV_ID_ICH8_IFE:
1351 case E1000_DEV_ID_ICH8_IFE_GT:
1352 case E1000_DEV_ID_ICH8_IFE_G:
1353 case E1000_DEV_ID_ICH8_IGP_M:
1354 hw->mac_type = e1000_ich8lan;
1355 break;
Marcel Ziswilerb9f66232014-09-08 00:03:50 +02001356 case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1357 case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
Marek Vasut74a13c22014-08-08 07:41:39 -07001358 case PCI_DEVICE_ID_INTEL_I210_COPPER:
Marcel Ziswilerb9f66232014-09-08 00:03:50 +02001359 case PCI_DEVICE_ID_INTEL_I211_COPPER:
Marek Vasut74a13c22014-08-08 07:41:39 -07001360 case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1361 case PCI_DEVICE_ID_INTEL_I210_SERDES:
1362 case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1363 case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1364 hw->mac_type = e1000_igb;
1365 break;
wdenk4e112c12003-06-03 23:54:09 +00001366 default:
1367 /* Should never have loaded on this device */
1368 return -E1000_ERR_MAC_TYPE;
1369 }
1370 return E1000_SUCCESS;
1371}
1372
1373/******************************************************************************
1374 * Reset the transmit and receive units; mask and clear all interrupts.
1375 *
1376 * hw - Struct containing variables accessed by shared code
1377 *****************************************************************************/
1378void
1379e1000_reset_hw(struct e1000_hw *hw)
1380{
1381 uint32_t ctrl;
1382 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001383 uint32_t manc;
Roy Zang966172e2009-08-22 03:49:52 +08001384 uint32_t pba = 0;
Marek Vasut74a13c22014-08-08 07:41:39 -07001385 uint32_t reg;
wdenk4e112c12003-06-03 23:54:09 +00001386
1387 DEBUGFUNC();
1388
Roy Zang966172e2009-08-22 03:49:52 +08001389 /* get the correct pba value for both PCI and PCIe*/
1390 if (hw->mac_type < e1000_82571)
1391 pba = E1000_DEFAULT_PCI_PBA;
1392 else
1393 pba = E1000_DEFAULT_PCIE_PBA;
1394
wdenk4e112c12003-06-03 23:54:09 +00001395 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1396 if (hw->mac_type == e1000_82542_rev2_0) {
1397 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1398 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zang28f7a052009-07-31 13:34:02 +08001399 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
wdenk4e112c12003-06-03 23:54:09 +00001400 }
1401
1402 /* Clear interrupt mask to stop board from generating interrupts */
1403 DEBUGOUT("Masking off all interrupts\n");
Marek Vasut74a13c22014-08-08 07:41:39 -07001404 if (hw->mac_type == e1000_igb)
1405 E1000_WRITE_REG(hw, I210_IAM, 0);
wdenk4e112c12003-06-03 23:54:09 +00001406 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1407
1408 /* Disable the Transmit and Receive units. Then delay to allow
1409 * any pending transactions to complete before we hit the MAC with
1410 * the global reset.
1411 */
1412 E1000_WRITE_REG(hw, RCTL, 0);
1413 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1414 E1000_WRITE_FLUSH(hw);
1415
1416 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
York Sun4a598092013-04-01 11:29:11 -07001417 hw->tbi_compatibility_on = false;
wdenk4e112c12003-06-03 23:54:09 +00001418
1419 /* Delay to allow any outstanding PCI transactions to complete before
1420 * resetting the device
1421 */
1422 mdelay(10);
1423
1424 /* Issue a global reset to the MAC. This will reset the chip's
1425 * transmit, receive, DMA, and link units. It will not effect
1426 * the current PCI configuration. The global reset bit is self-
1427 * clearing, and should clear within a microsecond.
1428 */
1429 DEBUGOUT("Issuing a global reset to MAC\n");
1430 ctrl = E1000_READ_REG(hw, CTRL);
1431
Roy Zang28f7a052009-07-31 13:34:02 +08001432 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk4e112c12003-06-03 23:54:09 +00001433
1434 /* Force a reload from the EEPROM if necessary */
Marek Vasut74a13c22014-08-08 07:41:39 -07001435 if (hw->mac_type == e1000_igb) {
1436 mdelay(20);
1437 reg = E1000_READ_REG(hw, STATUS);
1438 if (reg & E1000_STATUS_PF_RST_DONE)
1439 DEBUGOUT("PF OK\n");
1440 reg = E1000_READ_REG(hw, I210_EECD);
1441 if (reg & E1000_EECD_AUTO_RD)
1442 DEBUGOUT("EEC OK\n");
1443 } else if (hw->mac_type < e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00001444 /* Wait for reset to complete */
1445 udelay(10);
1446 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1447 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1448 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1449 E1000_WRITE_FLUSH(hw);
1450 /* Wait for EEPROM reload */
1451 mdelay(2);
1452 } else {
1453 /* Wait for EEPROM reload (it happens automatically) */
1454 mdelay(4);
1455 /* Dissable HW ARPs on ASF enabled adapters */
1456 manc = E1000_READ_REG(hw, MANC);
1457 manc &= ~(E1000_MANC_ARP_EN);
1458 E1000_WRITE_REG(hw, MANC, manc);
1459 }
1460
1461 /* Clear interrupt mask to stop board from generating interrupts */
1462 DEBUGOUT("Masking off all interrupts\n");
Marek Vasut74a13c22014-08-08 07:41:39 -07001463 if (hw->mac_type == e1000_igb)
1464 E1000_WRITE_REG(hw, I210_IAM, 0);
wdenk4e112c12003-06-03 23:54:09 +00001465 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1466
1467 /* Clear any pending interrupt events. */
Zang Roy-R61911e36d67c2011-11-06 22:22:36 +00001468 E1000_READ_REG(hw, ICR);
wdenk4e112c12003-06-03 23:54:09 +00001469
1470 /* If MWI was previously enabled, reenable it. */
1471 if (hw->mac_type == e1000_82542_rev2_0) {
1472 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1473 }
Marek Vasut74a13c22014-08-08 07:41:39 -07001474 if (hw->mac_type != e1000_igb)
1475 E1000_WRITE_REG(hw, PBA, pba);
Roy Zang28f7a052009-07-31 13:34:02 +08001476}
1477
1478/******************************************************************************
1479 *
1480 * Initialize a number of hardware-dependent bits
1481 *
1482 * hw: Struct containing variables accessed by shared code
1483 *
1484 * This function contains hardware limitation workarounds for PCI-E adapters
1485 *
1486 *****************************************************************************/
1487static void
1488e1000_initialize_hardware_bits(struct e1000_hw *hw)
1489{
1490 if ((hw->mac_type >= e1000_82571) &&
1491 (!hw->initialize_hw_bits_disable)) {
1492 /* Settings common to all PCI-express silicon */
1493 uint32_t reg_ctrl, reg_ctrl_ext;
1494 uint32_t reg_tarc0, reg_tarc1;
1495 uint32_t reg_tctl;
1496 uint32_t reg_txdctl, reg_txdctl1;
1497
1498 /* link autonegotiation/sync workarounds */
1499 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1500 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1501
1502 /* Enable not-done TX descriptor counting */
1503 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1504 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1505 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1506
1507 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1508 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1509 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1510
Marek Vasut74a13c22014-08-08 07:41:39 -07001511 /* IGB is cool */
1512 if (hw->mac_type == e1000_igb)
1513 return;
1514
Roy Zang28f7a052009-07-31 13:34:02 +08001515 switch (hw->mac_type) {
1516 case e1000_82571:
1517 case e1000_82572:
1518 /* Clear PHY TX compatible mode bits */
1519 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1520 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1521
1522 /* link autonegotiation/sync workarounds */
1523 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1524
1525 /* TX ring control fixes */
1526 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1527
1528 /* Multiple read bit is reversed polarity */
1529 reg_tctl = E1000_READ_REG(hw, TCTL);
1530 if (reg_tctl & E1000_TCTL_MULR)
1531 reg_tarc1 &= ~(1 << 28);
1532 else
1533 reg_tarc1 |= (1 << 28);
1534
1535 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1536 break;
1537 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001538 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08001539 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1540 reg_ctrl_ext &= ~(1 << 23);
1541 reg_ctrl_ext |= (1 << 22);
1542
1543 /* TX byte count fix */
1544 reg_ctrl = E1000_READ_REG(hw, CTRL);
1545 reg_ctrl &= ~(1 << 29);
1546
1547 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1548 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1549 break;
1550 case e1000_80003es2lan:
1551 /* improve small packet performace for fiber/serdes */
1552 if ((hw->media_type == e1000_media_type_fiber)
1553 || (hw->media_type ==
1554 e1000_media_type_internal_serdes)) {
1555 reg_tarc0 &= ~(1 << 20);
1556 }
1557
1558 /* Multiple read bit is reversed polarity */
1559 reg_tctl = E1000_READ_REG(hw, TCTL);
1560 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1561 if (reg_tctl & E1000_TCTL_MULR)
1562 reg_tarc1 &= ~(1 << 28);
1563 else
1564 reg_tarc1 |= (1 << 28);
1565
1566 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1567 break;
1568 case e1000_ich8lan:
1569 /* Reduce concurrent DMA requests to 3 from 4 */
1570 if ((hw->revision_id < 3) ||
1571 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1572 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1573 reg_tarc0 |= ((1 << 29)|(1 << 28));
1574
1575 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1576 reg_ctrl_ext |= (1 << 22);
1577 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1578
1579 /* workaround TX hang with TSO=on */
1580 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1581
1582 /* Multiple read bit is reversed polarity */
1583 reg_tctl = E1000_READ_REG(hw, TCTL);
1584 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1585 if (reg_tctl & E1000_TCTL_MULR)
1586 reg_tarc1 &= ~(1 << 28);
1587 else
1588 reg_tarc1 |= (1 << 28);
1589
1590 /* workaround TX hang with TSO=on */
1591 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1592
1593 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1594 break;
1595 default:
1596 break;
1597 }
1598
1599 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1600 }
wdenk4e112c12003-06-03 23:54:09 +00001601}
1602
1603/******************************************************************************
1604 * Performs basic configuration of the adapter.
1605 *
1606 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001607 *
1608 * Assumes that the controller has previously been reset and is in a
wdenk4e112c12003-06-03 23:54:09 +00001609 * post-reset uninitialized state. Initializes the receive address registers,
1610 * multicast table, and VLAN filter table. Calls routines to setup link
1611 * configuration and flow control settings. Clears all on-chip counters. Leaves
1612 * the transmit and receive units disabled and uninitialized.
1613 *****************************************************************************/
1614static int
Simon Glassc53abc32015-08-19 09:33:39 -06001615e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
wdenk4e112c12003-06-03 23:54:09 +00001616{
Roy Zang28f7a052009-07-31 13:34:02 +08001617 uint32_t ctrl;
wdenk4e112c12003-06-03 23:54:09 +00001618 uint32_t i;
1619 int32_t ret_val;
1620 uint16_t pcix_cmd_word;
1621 uint16_t pcix_stat_hi_word;
1622 uint16_t cmd_mmrbc;
1623 uint16_t stat_mmrbc;
Roy Zang28f7a052009-07-31 13:34:02 +08001624 uint32_t mta_size;
1625 uint32_t reg_data;
1626 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001627 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08001628 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1629 if ((hw->mac_type == e1000_ich8lan) &&
1630 ((hw->revision_id < 3) ||
1631 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1632 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1633 reg_data = E1000_READ_REG(hw, STATUS);
1634 reg_data &= ~0x80000000;
1635 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk4e112c12003-06-03 23:54:09 +00001636 }
Roy Zang28f7a052009-07-31 13:34:02 +08001637 /* Do not need initialize Identification LED */
wdenk4e112c12003-06-03 23:54:09 +00001638
Roy Zang28f7a052009-07-31 13:34:02 +08001639 /* Set the media type and TBI compatibility */
1640 e1000_set_media_type(hw);
1641
1642 /* Must be called after e1000_set_media_type
1643 * because media_type is used */
1644 e1000_initialize_hardware_bits(hw);
wdenk4e112c12003-06-03 23:54:09 +00001645
1646 /* Disabling VLAN filtering. */
1647 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001648 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1649 if (hw->mac_type != e1000_ich8lan) {
1650 if (hw->mac_type < e1000_82545_rev_3)
1651 E1000_WRITE_REG(hw, VET, 0);
1652 e1000_clear_vfta(hw);
1653 }
wdenk4e112c12003-06-03 23:54:09 +00001654
1655 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1656 if (hw->mac_type == e1000_82542_rev2_0) {
1657 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1658 pci_write_config_word(hw->pdev, PCI_COMMAND,
1659 hw->
1660 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1661 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1662 E1000_WRITE_FLUSH(hw);
1663 mdelay(5);
1664 }
1665
1666 /* Setup the receive address. This involves initializing all of the Receive
1667 * Address Registers (RARs 0 - 15).
1668 */
Simon Glassc53abc32015-08-19 09:33:39 -06001669 e1000_init_rx_addrs(hw, enetaddr);
wdenk4e112c12003-06-03 23:54:09 +00001670
1671 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1672 if (hw->mac_type == e1000_82542_rev2_0) {
1673 E1000_WRITE_REG(hw, RCTL, 0);
1674 E1000_WRITE_FLUSH(hw);
1675 mdelay(1);
1676 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1677 }
1678
1679 /* Zero out the Multicast HASH table */
1680 DEBUGOUT("Zeroing the MTA\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001681 mta_size = E1000_MC_TBL_SIZE;
1682 if (hw->mac_type == e1000_ich8lan)
1683 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1684 for (i = 0; i < mta_size; i++) {
wdenk4e112c12003-06-03 23:54:09 +00001685 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zang28f7a052009-07-31 13:34:02 +08001686 /* use write flush to prevent Memory Write Block (MWB) from
1687 * occuring when accessing our register space */
1688 E1000_WRITE_FLUSH(hw);
1689 }
Bin Meng1ba7e952015-11-16 01:19:16 -08001690
Roy Zang28f7a052009-07-31 13:34:02 +08001691 switch (hw->mac_type) {
1692 case e1000_82545_rev_3:
1693 case e1000_82546_rev_3:
Marek Vasut74a13c22014-08-08 07:41:39 -07001694 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08001695 break;
1696 default:
wdenk4e112c12003-06-03 23:54:09 +00001697 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zang28f7a052009-07-31 13:34:02 +08001698 if (hw->bus_type == e1000_bus_type_pcix) {
wdenk4e112c12003-06-03 23:54:09 +00001699 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1700 &pcix_cmd_word);
1701 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1702 &pcix_stat_hi_word);
1703 cmd_mmrbc =
1704 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1705 PCIX_COMMAND_MMRBC_SHIFT;
1706 stat_mmrbc =
1707 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1708 PCIX_STATUS_HI_MMRBC_SHIFT;
1709 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1710 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1711 if (cmd_mmrbc > stat_mmrbc) {
1712 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1713 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1714 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1715 pcix_cmd_word);
1716 }
1717 }
Roy Zang28f7a052009-07-31 13:34:02 +08001718 break;
1719 }
wdenk4e112c12003-06-03 23:54:09 +00001720
Roy Zang28f7a052009-07-31 13:34:02 +08001721 /* More time needed for PHY to initialize */
1722 if (hw->mac_type == e1000_ich8lan)
1723 mdelay(15);
Marek Vasut74a13c22014-08-08 07:41:39 -07001724 if (hw->mac_type == e1000_igb)
1725 mdelay(15);
Roy Zang28f7a052009-07-31 13:34:02 +08001726
wdenk4e112c12003-06-03 23:54:09 +00001727 /* Call a subroutine to configure the link and setup flow control. */
Simon Glassc53abc32015-08-19 09:33:39 -06001728 ret_val = e1000_setup_link(hw);
wdenk4e112c12003-06-03 23:54:09 +00001729
1730 /* Set the transmit descriptor write-back policy */
1731 if (hw->mac_type > e1000_82544) {
1732 ctrl = E1000_READ_REG(hw, TXDCTL);
1733 ctrl =
1734 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1735 E1000_TXDCTL_FULL_TX_DESC_WB;
1736 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1737 }
Roy Zang28f7a052009-07-31 13:34:02 +08001738
Ruchika Guptaed1f72f2012-04-19 02:27:11 +00001739 /* Set the receive descriptor write back policy */
Ruchika Guptaed1f72f2012-04-19 02:27:11 +00001740 if (hw->mac_type >= e1000_82571) {
1741 ctrl = E1000_READ_REG(hw, RXDCTL);
1742 ctrl =
1743 (ctrl & ~E1000_RXDCTL_WTHRESH) |
1744 E1000_RXDCTL_FULL_RX_DESC_WB;
1745 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1746 }
1747
Roy Zang28f7a052009-07-31 13:34:02 +08001748 switch (hw->mac_type) {
1749 default:
1750 break;
1751 case e1000_80003es2lan:
1752 /* Enable retransmit on late collisions */
1753 reg_data = E1000_READ_REG(hw, TCTL);
1754 reg_data |= E1000_TCTL_RTLC;
1755 E1000_WRITE_REG(hw, TCTL, reg_data);
1756
1757 /* Configure Gigabit Carry Extend Padding */
1758 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1759 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1760 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1761 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1762
1763 /* Configure Transmit Inter-Packet Gap */
1764 reg_data = E1000_READ_REG(hw, TIPG);
1765 reg_data &= ~E1000_TIPG_IPGT_MASK;
1766 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1767 E1000_WRITE_REG(hw, TIPG, reg_data);
1768
1769 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1770 reg_data &= ~0x00100000;
1771 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1772 /* Fall through */
1773 case e1000_82571:
1774 case e1000_82572:
1775 case e1000_ich8lan:
1776 ctrl = E1000_READ_REG(hw, TXDCTL1);
1777 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1778 | E1000_TXDCTL_FULL_TX_DESC_WB;
1779 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1780 break;
Roy Zang181119b2011-01-21 11:29:38 +08001781 case e1000_82573:
1782 case e1000_82574:
1783 reg_data = E1000_READ_REG(hw, GCR);
1784 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1785 E1000_WRITE_REG(hw, GCR, reg_data);
Marek Vasut74a13c22014-08-08 07:41:39 -07001786 case e1000_igb:
1787 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001788 }
1789
Roy Zang28f7a052009-07-31 13:34:02 +08001790 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1791 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1792 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1793 /* Relaxed ordering must be disabled to avoid a parity
1794 * error crash in a PCI slot. */
1795 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1796 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1797 }
1798
1799 return ret_val;
1800}
wdenk4e112c12003-06-03 23:54:09 +00001801
1802/******************************************************************************
1803 * Configures flow control and link settings.
wdenk57b2d802003-06-27 21:31:46 +00001804 *
wdenk4e112c12003-06-03 23:54:09 +00001805 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001806 *
wdenk4e112c12003-06-03 23:54:09 +00001807 * Determines which flow control settings to use. Calls the apropriate media-
1808 * specific link configuration function. Configures the flow control settings.
1809 * Assuming the adapter has a valid link partner, a valid link should be
wdenk57b2d802003-06-27 21:31:46 +00001810 * established. Assumes the hardware has previously been reset and the
wdenk4e112c12003-06-03 23:54:09 +00001811 * transmitter and receiver are not enabled.
1812 *****************************************************************************/
1813static int
Simon Glassc53abc32015-08-19 09:33:39 -06001814e1000_setup_link(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00001815{
wdenk4e112c12003-06-03 23:54:09 +00001816 int32_t ret_val;
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001817#ifndef CONFIG_E1000_NO_NVM
1818 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001819 uint16_t eeprom_data;
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001820#endif
wdenk4e112c12003-06-03 23:54:09 +00001821
1822 DEBUGFUNC();
1823
Roy Zang28f7a052009-07-31 13:34:02 +08001824 /* In the case of the phy reset being blocked, we already have a link.
1825 * We do not have to set it up again. */
1826 if (e1000_check_phy_reset_block(hw))
1827 return E1000_SUCCESS;
1828
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001829#ifndef CONFIG_E1000_NO_NVM
wdenk4e112c12003-06-03 23:54:09 +00001830 /* Read and store word 0x0F of the EEPROM. This word contains bits
1831 * that determine the hardware's default PAUSE (flow control) mode,
1832 * a bit that determines whether the HW defaults to enabling or
1833 * disabling auto-negotiation, and the direction of the
1834 * SW defined pins. If there is no SW over-ride of the flow
1835 * control setting, then the variable hw->fc will
1836 * be initialized based on a value in the EEPROM.
1837 */
Roy Zang28f7a052009-07-31 13:34:02 +08001838 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1839 &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001840 DEBUGOUT("EEPROM Read Error\n");
1841 return -E1000_ERR_EEPROM;
1842 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001843#endif
wdenk4e112c12003-06-03 23:54:09 +00001844 if (hw->fc == e1000_fc_default) {
Roy Zang28f7a052009-07-31 13:34:02 +08001845 switch (hw->mac_type) {
1846 case e1000_ich8lan:
1847 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001848 case e1000_82574:
Marek Vasut74a13c22014-08-08 07:41:39 -07001849 case e1000_igb:
wdenk4e112c12003-06-03 23:54:09 +00001850 hw->fc = e1000_fc_full;
Roy Zang28f7a052009-07-31 13:34:02 +08001851 break;
1852 default:
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001853#ifndef CONFIG_E1000_NO_NVM
Roy Zang28f7a052009-07-31 13:34:02 +08001854 ret_val = e1000_read_eeprom(hw,
1855 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1856 if (ret_val) {
1857 DEBUGOUT("EEPROM Read Error\n");
1858 return -E1000_ERR_EEPROM;
1859 }
Roy Zang28f7a052009-07-31 13:34:02 +08001860 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1861 hw->fc = e1000_fc_none;
1862 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1863 EEPROM_WORD0F_ASM_DIR)
1864 hw->fc = e1000_fc_tx_pause;
1865 else
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001866#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001867 hw->fc = e1000_fc_full;
1868 break;
1869 }
wdenk4e112c12003-06-03 23:54:09 +00001870 }
1871
1872 /* We want to save off the original Flow Control configuration just
1873 * in case we get disconnected and then reconnected into a different
1874 * hub or switch with different Flow Control capabilities.
1875 */
1876 if (hw->mac_type == e1000_82542_rev2_0)
1877 hw->fc &= (~e1000_fc_tx_pause);
1878
1879 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1880 hw->fc &= (~e1000_fc_rx_pause);
1881
1882 hw->original_fc = hw->fc;
1883
1884 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1885
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001886#ifndef CONFIG_E1000_NO_NVM
wdenk4e112c12003-06-03 23:54:09 +00001887 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1888 * polarity value for the SW controlled pins, and setup the
1889 * Extended Device Control reg with that info.
1890 * This is needed because one of the SW controlled pins is used for
1891 * signal detection. So this should be done before e1000_setup_pcs_link()
1892 * or e1000_phy_setup() is called.
1893 */
1894 if (hw->mac_type == e1000_82543) {
1895 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1896 SWDPIO__EXT_SHIFT);
1897 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1898 }
Rojhalat Ibrahimbbcd2b02013-10-07 18:30:39 +02001899#endif
wdenk4e112c12003-06-03 23:54:09 +00001900
1901 /* Call the necessary subroutine to configure the link. */
1902 ret_val = (hw->media_type == e1000_media_type_fiber) ?
Simon Glassc53abc32015-08-19 09:33:39 -06001903 e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
wdenk4e112c12003-06-03 23:54:09 +00001904 if (ret_val < 0) {
1905 return ret_val;
1906 }
1907
1908 /* Initialize the flow control address, type, and PAUSE timer
1909 * registers to their default values. This is done even if flow
1910 * control is disabled, because it does not hurt anything to
1911 * initialize these registers.
1912 */
Roy Zang28f7a052009-07-31 13:34:02 +08001913 DEBUGOUT("Initializing the Flow Control address, type"
1914 "and timer regs\n");
1915
1916 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1917 if (hw->mac_type != e1000_ich8lan) {
1918 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1919 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1920 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1921 }
wdenk4e112c12003-06-03 23:54:09 +00001922
wdenk4e112c12003-06-03 23:54:09 +00001923 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1924
1925 /* Set the flow control receive threshold registers. Normally,
1926 * these registers will be set to a default threshold that may be
1927 * adjusted later by the driver's runtime code. However, if the
1928 * ability to transmit pause frames in not enabled, then these
wdenk57b2d802003-06-27 21:31:46 +00001929 * registers will be set to 0.
wdenk4e112c12003-06-03 23:54:09 +00001930 */
1931 if (!(hw->fc & e1000_fc_tx_pause)) {
1932 E1000_WRITE_REG(hw, FCRTL, 0);
1933 E1000_WRITE_REG(hw, FCRTH, 0);
1934 } else {
1935 /* We need to set up the Receive Threshold high and low water marks
1936 * as well as (optionally) enabling the transmission of XON frames.
1937 */
1938 if (hw->fc_send_xon) {
1939 E1000_WRITE_REG(hw, FCRTL,
1940 (hw->fc_low_water | E1000_FCRTL_XONE));
1941 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1942 } else {
1943 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1944 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1945 }
1946 }
1947 return ret_val;
1948}
1949
1950/******************************************************************************
1951 * Sets up link for a fiber based adapter
1952 *
1953 * hw - Struct containing variables accessed by shared code
1954 *
1955 * Manipulates Physical Coding Sublayer functions in order to configure
1956 * link. Assumes the hardware has been previously reset and the transmitter
1957 * and receiver are not enabled.
1958 *****************************************************************************/
1959static int
Simon Glassc53abc32015-08-19 09:33:39 -06001960e1000_setup_fiber_link(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00001961{
wdenk4e112c12003-06-03 23:54:09 +00001962 uint32_t ctrl;
1963 uint32_t status;
1964 uint32_t txcw = 0;
1965 uint32_t i;
1966 uint32_t signal;
1967 int32_t ret_val;
1968
1969 DEBUGFUNC();
wdenk57b2d802003-06-27 21:31:46 +00001970 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1971 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00001972 * cleared when there is a signal
1973 */
1974 ctrl = E1000_READ_REG(hw, CTRL);
1975 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1976 signal = E1000_CTRL_SWDPIN1;
1977 else
1978 signal = 0;
1979
Simon Glassc53abc32015-08-19 09:33:39 -06001980 printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
wdenk4e112c12003-06-03 23:54:09 +00001981 ctrl);
1982 /* Take the link out of reset */
1983 ctrl &= ~(E1000_CTRL_LRST);
1984
1985 e1000_config_collision_dist(hw);
1986
1987 /* Check for a software override of the flow control settings, and setup
1988 * the device accordingly. If auto-negotiation is enabled, then software
1989 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1990 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk57b2d802003-06-27 21:31:46 +00001991 * auto-negotiation is disabled, then software will have to manually
wdenk4e112c12003-06-03 23:54:09 +00001992 * configure the two flow control enable bits in the CTRL register.
1993 *
1994 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001995 * 0: Flow control is completely disabled
1996 * 1: Rx flow control is enabled (we can receive pause frames, but
1997 * not send pause frames).
1998 * 2: Tx flow control is enabled (we can send pause frames but we do
1999 * not support receiving pause frames).
2000 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00002001 */
2002 switch (hw->fc) {
2003 case e1000_fc_none:
2004 /* Flow control is completely disabled by a software over-ride. */
2005 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2006 break;
2007 case e1000_fc_rx_pause:
wdenk57b2d802003-06-27 21:31:46 +00002008 /* RX Flow control is enabled and TX Flow control is disabled by a
2009 * software over-ride. Since there really isn't a way to advertise
wdenk4e112c12003-06-03 23:54:09 +00002010 * that we are capable of RX Pause ONLY, we will advertise that we
2011 * support both symmetric and asymmetric RX PAUSE. Later, we will
2012 * disable the adapter's ability to send PAUSE frames.
2013 */
2014 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2015 break;
2016 case e1000_fc_tx_pause:
wdenk57b2d802003-06-27 21:31:46 +00002017 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk4e112c12003-06-03 23:54:09 +00002018 * software over-ride.
2019 */
2020 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2021 break;
2022 case e1000_fc_full:
2023 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2024 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2025 break;
2026 default:
2027 DEBUGOUT("Flow control param set incorrectly\n");
2028 return -E1000_ERR_CONFIG;
2029 break;
2030 }
2031
2032 /* Since auto-negotiation is enabled, take the link out of reset (the link
2033 * will be in reset, because we previously reset the chip). This will
2034 * restart auto-negotiation. If auto-neogtiation is successful then the
2035 * link-up status bit will be set and the flow control enable bits (RFCE
2036 * and TFCE) will be set according to their negotiated value.
2037 */
2038 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2039
2040 E1000_WRITE_REG(hw, TXCW, txcw);
2041 E1000_WRITE_REG(hw, CTRL, ctrl);
2042 E1000_WRITE_FLUSH(hw);
2043
2044 hw->txcw = txcw;
2045 mdelay(1);
2046
2047 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk57b2d802003-06-27 21:31:46 +00002048 * indication in the Device Status Register. Time-out if a link isn't
2049 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk4e112c12003-06-03 23:54:09 +00002050 * less than 500 milliseconds even if the other end is doing it in SW).
2051 */
2052 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2053 DEBUGOUT("Looking for Link\n");
2054 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2055 mdelay(10);
2056 status = E1000_READ_REG(hw, STATUS);
2057 if (status & E1000_STATUS_LU)
2058 break;
2059 }
2060 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk57b2d802003-06-27 21:31:46 +00002061 /* AutoNeg failed to achieve a link, so we'll call
wdenk4e112c12003-06-03 23:54:09 +00002062 * e1000_check_for_link. This routine will force the link up if we
2063 * detect a signal. This will allow us to communicate with
2064 * non-autonegotiating link partners.
2065 */
2066 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2067 hw->autoneg_failed = 1;
Simon Glassc53abc32015-08-19 09:33:39 -06002068 ret_val = e1000_check_for_link(hw);
wdenk4e112c12003-06-03 23:54:09 +00002069 if (ret_val < 0) {
2070 DEBUGOUT("Error while checking for link\n");
2071 return ret_val;
2072 }
2073 hw->autoneg_failed = 0;
2074 } else {
2075 hw->autoneg_failed = 0;
2076 DEBUGOUT("Valid Link Found\n");
2077 }
2078 } else {
2079 DEBUGOUT("No Signal Detected\n");
2080 return -E1000_ERR_NOLINK;
2081 }
2082 return 0;
2083}
2084
2085/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08002086* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk4e112c12003-06-03 23:54:09 +00002087*
2088* hw - Struct containing variables accessed by shared code
2089******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08002090static int32_t
2091e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002092{
wdenk4e112c12003-06-03 23:54:09 +00002093 uint32_t ctrl;
2094 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002095 uint16_t phy_data;
2096
2097 DEBUGFUNC();
2098
2099 ctrl = E1000_READ_REG(hw, CTRL);
2100 /* With 82543, we need to force speed and duplex on the MAC equal to what
2101 * the PHY speed and duplex configuration is. In addition, we need to
2102 * perform a hardware reset on the PHY to take it out of reset.
2103 */
2104 if (hw->mac_type > e1000_82543) {
2105 ctrl |= E1000_CTRL_SLU;
2106 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2107 E1000_WRITE_REG(hw, CTRL, ctrl);
2108 } else {
Roy Zang28f7a052009-07-31 13:34:02 +08002109 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2110 | E1000_CTRL_SLU);
wdenk4e112c12003-06-03 23:54:09 +00002111 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002112 ret_val = e1000_phy_hw_reset(hw);
2113 if (ret_val)
2114 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002115 }
2116
2117 /* Make sure we have a valid PHY */
2118 ret_val = e1000_detect_gig_phy(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002119 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002120 DEBUGOUT("Error, did not detect valid phy.\n");
2121 return ret_val;
2122 }
Minghuan Lian674bcd52015-03-19 09:43:51 -07002123 DEBUGOUT("Phy ID = %x\n", hw->phy_id);
wdenk4e112c12003-06-03 23:54:09 +00002124
Roy Zang28f7a052009-07-31 13:34:02 +08002125 /* Set PHY to class A mode (if necessary) */
2126 ret_val = e1000_set_phy_mode(hw);
2127 if (ret_val)
2128 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002129 if ((hw->mac_type == e1000_82545_rev_3) ||
2130 (hw->mac_type == e1000_82546_rev_3)) {
2131 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2132 &phy_data);
2133 phy_data |= 0x00000008;
2134 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2135 phy_data);
2136 }
2137
2138 if (hw->mac_type <= e1000_82543 ||
2139 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2140 hw->mac_type == e1000_82541_rev_2
2141 || hw->mac_type == e1000_82547_rev_2)
York Sun4a598092013-04-01 11:29:11 -07002142 hw->phy_reset_disable = false;
Roy Zang28f7a052009-07-31 13:34:02 +08002143
2144 return E1000_SUCCESS;
2145}
2146
2147/*****************************************************************************
2148 *
2149 * This function sets the lplu state according to the active flag. When
2150 * activating lplu this function also disables smart speed and vise versa.
2151 * lplu will not be activated unless the device autonegotiation advertisment
2152 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2153 * hw: Struct containing variables accessed by shared code
2154 * active - true to enable lplu false to disable lplu.
2155 *
2156 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2157 * E1000_SUCCESS at any other case.
2158 *
2159 ****************************************************************************/
2160
2161static int32_t
York Sun4a598092013-04-01 11:29:11 -07002162e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
Roy Zang28f7a052009-07-31 13:34:02 +08002163{
2164 uint32_t phy_ctrl = 0;
2165 int32_t ret_val;
2166 uint16_t phy_data;
2167 DEBUGFUNC();
2168
2169 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2170 && hw->phy_type != e1000_phy_igp_3)
2171 return E1000_SUCCESS;
2172
2173 /* During driver activity LPLU should not be used or it will attain link
2174 * from the lowest speeds starting from 10Mbps. The capability is used
2175 * for Dx transitions and states */
2176 if (hw->mac_type == e1000_82541_rev_2
2177 || hw->mac_type == e1000_82547_rev_2) {
2178 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2179 &phy_data);
2180 if (ret_val)
2181 return ret_val;
2182 } else if (hw->mac_type == e1000_ich8lan) {
2183 /* MAC writes into PHY register based on the state transition
2184 * and start auto-negotiation. SW driver can overwrite the
2185 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2186 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2187 } else {
2188 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2189 &phy_data);
2190 if (ret_val)
2191 return ret_val;
2192 }
2193
2194 if (!active) {
2195 if (hw->mac_type == e1000_82541_rev_2 ||
2196 hw->mac_type == e1000_82547_rev_2) {
2197 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2198 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2199 phy_data);
2200 if (ret_val)
2201 return ret_val;
2202 } else {
2203 if (hw->mac_type == e1000_ich8lan) {
2204 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2205 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2206 } else {
2207 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2208 ret_val = e1000_write_phy_reg(hw,
2209 IGP02E1000_PHY_POWER_MGMT, phy_data);
2210 if (ret_val)
2211 return ret_val;
2212 }
2213 }
2214
2215 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2216 * Dx states where the power conservation is most important. During
2217 * driver activity we should enable SmartSpeed, so performance is
2218 * maintained. */
2219 if (hw->smart_speed == e1000_smart_speed_on) {
2220 ret_val = e1000_read_phy_reg(hw,
2221 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2222 if (ret_val)
2223 return ret_val;
2224
2225 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2226 ret_val = e1000_write_phy_reg(hw,
2227 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2228 if (ret_val)
2229 return ret_val;
2230 } else if (hw->smart_speed == e1000_smart_speed_off) {
2231 ret_val = e1000_read_phy_reg(hw,
2232 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2233 if (ret_val)
2234 return ret_val;
2235
2236 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2237 ret_val = e1000_write_phy_reg(hw,
2238 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2239 if (ret_val)
2240 return ret_val;
2241 }
2242
2243 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2244 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2245 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2246
2247 if (hw->mac_type == e1000_82541_rev_2 ||
2248 hw->mac_type == e1000_82547_rev_2) {
2249 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2250 ret_val = e1000_write_phy_reg(hw,
2251 IGP01E1000_GMII_FIFO, phy_data);
2252 if (ret_val)
2253 return ret_val;
2254 } else {
2255 if (hw->mac_type == e1000_ich8lan) {
2256 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2257 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2258 } else {
2259 phy_data |= IGP02E1000_PM_D3_LPLU;
2260 ret_val = e1000_write_phy_reg(hw,
2261 IGP02E1000_PHY_POWER_MGMT, phy_data);
2262 if (ret_val)
2263 return ret_val;
2264 }
2265 }
2266
2267 /* When LPLU is enabled we should disable SmartSpeed */
2268 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2269 &phy_data);
2270 if (ret_val)
2271 return ret_val;
2272
2273 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2274 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2275 phy_data);
2276 if (ret_val)
2277 return ret_val;
2278 }
2279 return E1000_SUCCESS;
2280}
2281
2282/*****************************************************************************
2283 *
2284 * This function sets the lplu d0 state according to the active flag. When
2285 * activating lplu this function also disables smart speed and vise versa.
2286 * lplu will not be activated unless the device autonegotiation advertisment
2287 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2288 * hw: Struct containing variables accessed by shared code
2289 * active - true to enable lplu false to disable lplu.
2290 *
2291 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2292 * E1000_SUCCESS at any other case.
2293 *
2294 ****************************************************************************/
2295
2296static int32_t
York Sun4a598092013-04-01 11:29:11 -07002297e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
Roy Zang28f7a052009-07-31 13:34:02 +08002298{
2299 uint32_t phy_ctrl = 0;
2300 int32_t ret_val;
2301 uint16_t phy_data;
2302 DEBUGFUNC();
2303
2304 if (hw->mac_type <= e1000_82547_rev_2)
2305 return E1000_SUCCESS;
2306
2307 if (hw->mac_type == e1000_ich8lan) {
2308 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
Marek Vasut74a13c22014-08-08 07:41:39 -07002309 } else if (hw->mac_type == e1000_igb) {
2310 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
Roy Zang28f7a052009-07-31 13:34:02 +08002311 } else {
2312 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2313 &phy_data);
2314 if (ret_val)
2315 return ret_val;
2316 }
2317
2318 if (!active) {
2319 if (hw->mac_type == e1000_ich8lan) {
2320 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2321 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
Marek Vasut74a13c22014-08-08 07:41:39 -07002322 } else if (hw->mac_type == e1000_igb) {
2323 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2324 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002325 } else {
2326 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2327 ret_val = e1000_write_phy_reg(hw,
2328 IGP02E1000_PHY_POWER_MGMT, phy_data);
2329 if (ret_val)
2330 return ret_val;
2331 }
2332
Marek Vasut74a13c22014-08-08 07:41:39 -07002333 if (hw->mac_type == e1000_igb)
2334 return E1000_SUCCESS;
2335
Roy Zang28f7a052009-07-31 13:34:02 +08002336 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2337 * Dx states where the power conservation is most important. During
2338 * driver activity we should enable SmartSpeed, so performance is
2339 * maintained. */
2340 if (hw->smart_speed == e1000_smart_speed_on) {
2341 ret_val = e1000_read_phy_reg(hw,
2342 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2343 if (ret_val)
2344 return ret_val;
2345
2346 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2347 ret_val = e1000_write_phy_reg(hw,
2348 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2349 if (ret_val)
2350 return ret_val;
2351 } else if (hw->smart_speed == e1000_smart_speed_off) {
2352 ret_val = e1000_read_phy_reg(hw,
2353 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2354 if (ret_val)
2355 return ret_val;
2356
2357 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2358 ret_val = e1000_write_phy_reg(hw,
2359 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2360 if (ret_val)
2361 return ret_val;
2362 }
2363
2364
2365 } else {
2366
2367 if (hw->mac_type == e1000_ich8lan) {
2368 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2369 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
Marek Vasut74a13c22014-08-08 07:41:39 -07002370 } else if (hw->mac_type == e1000_igb) {
2371 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2372 E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002373 } else {
2374 phy_data |= IGP02E1000_PM_D0_LPLU;
2375 ret_val = e1000_write_phy_reg(hw,
2376 IGP02E1000_PHY_POWER_MGMT, phy_data);
2377 if (ret_val)
2378 return ret_val;
2379 }
2380
Marek Vasut74a13c22014-08-08 07:41:39 -07002381 if (hw->mac_type == e1000_igb)
2382 return E1000_SUCCESS;
2383
Roy Zang28f7a052009-07-31 13:34:02 +08002384 /* When LPLU is enabled we should disable SmartSpeed */
2385 ret_val = e1000_read_phy_reg(hw,
2386 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2387 if (ret_val)
2388 return ret_val;
2389
2390 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2391 ret_val = e1000_write_phy_reg(hw,
2392 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2393 if (ret_val)
2394 return ret_val;
2395
2396 }
2397 return E1000_SUCCESS;
2398}
2399
2400/********************************************************************
2401* Copper link setup for e1000_phy_igp series.
2402*
2403* hw - Struct containing variables accessed by shared code
2404*********************************************************************/
2405static int32_t
2406e1000_copper_link_igp_setup(struct e1000_hw *hw)
2407{
2408 uint32_t led_ctrl;
2409 int32_t ret_val;
2410 uint16_t phy_data;
2411
Timur Tabiedc45b52009-08-17 15:55:38 -05002412 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08002413
2414 if (hw->phy_reset_disable)
2415 return E1000_SUCCESS;
2416
2417 ret_val = e1000_phy_reset(hw);
2418 if (ret_val) {
2419 DEBUGOUT("Error Resetting the PHY\n");
2420 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002421 }
Roy Zang28f7a052009-07-31 13:34:02 +08002422
2423 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2424 mdelay(15);
2425 if (hw->mac_type != e1000_ich8lan) {
2426 /* Configure activity LED after PHY reset */
2427 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2428 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2429 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2430 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2431 }
2432
2433 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2434 if (hw->phy_type == e1000_phy_igp) {
2435 /* disable lplu d3 during driver init */
York Sun4a598092013-04-01 11:29:11 -07002436 ret_val = e1000_set_d3_lplu_state(hw, false);
Roy Zang28f7a052009-07-31 13:34:02 +08002437 if (ret_val) {
2438 DEBUGOUT("Error Disabling LPLU D3\n");
2439 return ret_val;
2440 }
2441 }
2442
2443 /* disable lplu d0 during driver init */
York Sun4a598092013-04-01 11:29:11 -07002444 ret_val = e1000_set_d0_lplu_state(hw, false);
Roy Zang28f7a052009-07-31 13:34:02 +08002445 if (ret_val) {
2446 DEBUGOUT("Error Disabling LPLU D0\n");
2447 return ret_val;
2448 }
2449 /* Configure mdi-mdix settings */
2450 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2451 if (ret_val)
2452 return ret_val;
2453
2454 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2455 hw->dsp_config_state = e1000_dsp_config_disabled;
2456 /* Force MDI for earlier revs of the IGP PHY */
2457 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2458 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2459 hw->mdix = 1;
2460
2461 } else {
2462 hw->dsp_config_state = e1000_dsp_config_enabled;
2463 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2464
2465 switch (hw->mdix) {
2466 case 1:
2467 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2468 break;
2469 case 2:
2470 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2471 break;
2472 case 0:
2473 default:
2474 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2475 break;
2476 }
2477 }
2478 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2479 if (ret_val)
2480 return ret_val;
2481
2482 /* set auto-master slave resolution settings */
2483 if (hw->autoneg) {
2484 e1000_ms_type phy_ms_setting = hw->master_slave;
2485
2486 if (hw->ffe_config_state == e1000_ffe_config_active)
2487 hw->ffe_config_state = e1000_ffe_config_enabled;
2488
2489 if (hw->dsp_config_state == e1000_dsp_config_activated)
2490 hw->dsp_config_state = e1000_dsp_config_enabled;
2491
2492 /* when autonegotiation advertisment is only 1000Mbps then we
2493 * should disable SmartSpeed and enable Auto MasterSlave
2494 * resolution as hardware default. */
2495 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2496 /* Disable SmartSpeed */
2497 ret_val = e1000_read_phy_reg(hw,
2498 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2499 if (ret_val)
2500 return ret_val;
2501 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2502 ret_val = e1000_write_phy_reg(hw,
2503 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2504 if (ret_val)
2505 return ret_val;
2506 /* Set auto Master/Slave resolution process */
2507 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2508 &phy_data);
2509 if (ret_val)
2510 return ret_val;
2511 phy_data &= ~CR_1000T_MS_ENABLE;
2512 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2513 phy_data);
2514 if (ret_val)
2515 return ret_val;
2516 }
2517
2518 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2519 if (ret_val)
2520 return ret_val;
2521
2522 /* load defaults for future use */
2523 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2524 ((phy_data & CR_1000T_MS_VALUE) ?
2525 e1000_ms_force_master :
2526 e1000_ms_force_slave) :
2527 e1000_ms_auto;
2528
2529 switch (phy_ms_setting) {
2530 case e1000_ms_force_master:
2531 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2532 break;
2533 case e1000_ms_force_slave:
2534 phy_data |= CR_1000T_MS_ENABLE;
2535 phy_data &= ~(CR_1000T_MS_VALUE);
2536 break;
2537 case e1000_ms_auto:
2538 phy_data &= ~CR_1000T_MS_ENABLE;
2539 default:
2540 break;
2541 }
2542 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2543 if (ret_val)
2544 return ret_val;
2545 }
2546
2547 return E1000_SUCCESS;
2548}
2549
2550/*****************************************************************************
2551 * This function checks the mode of the firmware.
2552 *
York Sun4a598092013-04-01 11:29:11 -07002553 * returns - true when the mode is IAMT or false.
Roy Zang28f7a052009-07-31 13:34:02 +08002554 ****************************************************************************/
York Sun4a598092013-04-01 11:29:11 -07002555bool
Roy Zang28f7a052009-07-31 13:34:02 +08002556e1000_check_mng_mode(struct e1000_hw *hw)
2557{
2558 uint32_t fwsm;
2559 DEBUGFUNC();
2560
2561 fwsm = E1000_READ_REG(hw, FWSM);
2562
2563 if (hw->mac_type == e1000_ich8lan) {
2564 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2565 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
York Sun4a598092013-04-01 11:29:11 -07002566 return true;
Roy Zang28f7a052009-07-31 13:34:02 +08002567 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2568 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
York Sun4a598092013-04-01 11:29:11 -07002569 return true;
Roy Zang28f7a052009-07-31 13:34:02 +08002570
York Sun4a598092013-04-01 11:29:11 -07002571 return false;
Roy Zang28f7a052009-07-31 13:34:02 +08002572}
2573
2574static int32_t
2575e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2576{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002577 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002578 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002579 DEBUGFUNC();
2580
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002581 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002582 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002583
Roy Zang28f7a052009-07-31 13:34:02 +08002584 if (e1000_swfw_sync_acquire(hw, swfw))
2585 return -E1000_ERR_SWFW_SYNC;
2586
2587 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2588 & E1000_KUMCTRLSTA_OFFSET) | data;
2589 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2590 udelay(2);
2591
2592 return E1000_SUCCESS;
2593}
2594
2595static int32_t
2596e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2597{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002598 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002599 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002600 DEBUGFUNC();
2601
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002602 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002603 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002604
Marek Vasut74a13c22014-08-08 07:41:39 -07002605 if (e1000_swfw_sync_acquire(hw, swfw)) {
2606 debug("%s[%i]\n", __func__, __LINE__);
Roy Zang28f7a052009-07-31 13:34:02 +08002607 return -E1000_ERR_SWFW_SYNC;
Marek Vasut74a13c22014-08-08 07:41:39 -07002608 }
Roy Zang28f7a052009-07-31 13:34:02 +08002609
2610 /* Write register address */
2611 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2612 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2613 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2614 udelay(2);
2615
2616 /* Read the data returned */
2617 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2618 *data = (uint16_t)reg_val;
2619
2620 return E1000_SUCCESS;
2621}
2622
2623/********************************************************************
2624* Copper link setup for e1000_phy_gg82563 series.
2625*
2626* hw - Struct containing variables accessed by shared code
2627*********************************************************************/
2628static int32_t
2629e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2630{
2631 int32_t ret_val;
2632 uint16_t phy_data;
2633 uint32_t reg_data;
2634
2635 DEBUGFUNC();
2636
2637 if (!hw->phy_reset_disable) {
2638 /* Enable CRS on TX for half-duplex operation. */
2639 ret_val = e1000_read_phy_reg(hw,
2640 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2641 if (ret_val)
2642 return ret_val;
2643
2644 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2645 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2646 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2647
2648 ret_val = e1000_write_phy_reg(hw,
2649 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2650 if (ret_val)
2651 return ret_val;
2652
2653 /* Options:
2654 * MDI/MDI-X = 0 (default)
2655 * 0 - Auto for all speeds
2656 * 1 - MDI mode
2657 * 2 - MDI-X mode
2658 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2659 */
2660 ret_val = e1000_read_phy_reg(hw,
2661 GG82563_PHY_SPEC_CTRL, &phy_data);
2662 if (ret_val)
2663 return ret_val;
2664
2665 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2666
2667 switch (hw->mdix) {
2668 case 1:
2669 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2670 break;
2671 case 2:
2672 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2673 break;
2674 case 0:
2675 default:
2676 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2677 break;
2678 }
2679
2680 /* Options:
2681 * disable_polarity_correction = 0 (default)
2682 * Automatic Correction for Reversed Cable Polarity
2683 * 0 - Disabled
2684 * 1 - Enabled
2685 */
2686 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2687 ret_val = e1000_write_phy_reg(hw,
2688 GG82563_PHY_SPEC_CTRL, phy_data);
2689
2690 if (ret_val)
2691 return ret_val;
2692
2693 /* SW Reset the PHY so all changes take effect */
2694 ret_val = e1000_phy_reset(hw);
2695 if (ret_val) {
2696 DEBUGOUT("Error Resetting the PHY\n");
2697 return ret_val;
2698 }
2699 } /* phy_reset_disable */
2700
2701 if (hw->mac_type == e1000_80003es2lan) {
2702 /* Bypass RX and TX FIFO's */
2703 ret_val = e1000_write_kmrn_reg(hw,
2704 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2705 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2706 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2707 if (ret_val)
2708 return ret_val;
2709
2710 ret_val = e1000_read_phy_reg(hw,
2711 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2712 if (ret_val)
2713 return ret_val;
2714
2715 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2716 ret_val = e1000_write_phy_reg(hw,
2717 GG82563_PHY_SPEC_CTRL_2, phy_data);
2718
2719 if (ret_val)
2720 return ret_val;
2721
2722 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2723 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2724 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2725
2726 ret_val = e1000_read_phy_reg(hw,
2727 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2728 if (ret_val)
2729 return ret_val;
2730
2731 /* Do not init these registers when the HW is in IAMT mode, since the
2732 * firmware will have already initialized them. We only initialize
2733 * them if the HW is not in IAMT mode.
2734 */
York Sun4a598092013-04-01 11:29:11 -07002735 if (e1000_check_mng_mode(hw) == false) {
Roy Zang28f7a052009-07-31 13:34:02 +08002736 /* Enable Electrical Idle on the PHY */
2737 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2738 ret_val = e1000_write_phy_reg(hw,
2739 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2740 if (ret_val)
2741 return ret_val;
2742
2743 ret_val = e1000_read_phy_reg(hw,
2744 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2745 if (ret_val)
2746 return ret_val;
2747
2748 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2749 ret_val = e1000_write_phy_reg(hw,
2750 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2751
2752 if (ret_val)
2753 return ret_val;
2754 }
2755
2756 /* Workaround: Disable padding in Kumeran interface in the MAC
2757 * and in the PHY to avoid CRC errors.
2758 */
2759 ret_val = e1000_read_phy_reg(hw,
2760 GG82563_PHY_INBAND_CTRL, &phy_data);
2761 if (ret_val)
2762 return ret_val;
2763 phy_data |= GG82563_ICR_DIS_PADDING;
2764 ret_val = e1000_write_phy_reg(hw,
2765 GG82563_PHY_INBAND_CTRL, phy_data);
2766 if (ret_val)
2767 return ret_val;
2768 }
2769 return E1000_SUCCESS;
2770}
2771
2772/********************************************************************
2773* Copper link setup for e1000_phy_m88 series.
2774*
2775* hw - Struct containing variables accessed by shared code
2776*********************************************************************/
2777static int32_t
2778e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2779{
2780 int32_t ret_val;
2781 uint16_t phy_data;
2782
2783 DEBUGFUNC();
2784
2785 if (hw->phy_reset_disable)
2786 return E1000_SUCCESS;
2787
2788 /* Enable CRS on TX. This must be set for half-duplex operation. */
2789 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2790 if (ret_val)
2791 return ret_val;
2792
wdenk4e112c12003-06-03 23:54:09 +00002793 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2794
wdenk4e112c12003-06-03 23:54:09 +00002795 /* Options:
2796 * MDI/MDI-X = 0 (default)
2797 * 0 - Auto for all speeds
2798 * 1 - MDI mode
2799 * 2 - MDI-X mode
2800 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2801 */
2802 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zang28f7a052009-07-31 13:34:02 +08002803
wdenk4e112c12003-06-03 23:54:09 +00002804 switch (hw->mdix) {
2805 case 1:
2806 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2807 break;
2808 case 2:
2809 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2810 break;
2811 case 3:
2812 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2813 break;
2814 case 0:
2815 default:
2816 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2817 break;
2818 }
wdenk4e112c12003-06-03 23:54:09 +00002819
wdenk4e112c12003-06-03 23:54:09 +00002820 /* Options:
2821 * disable_polarity_correction = 0 (default)
Roy Zang28f7a052009-07-31 13:34:02 +08002822 * Automatic Correction for Reversed Cable Polarity
wdenk4e112c12003-06-03 23:54:09 +00002823 * 0 - Disabled
2824 * 1 - Enabled
2825 */
2826 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zang28f7a052009-07-31 13:34:02 +08002827 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2828 if (ret_val)
2829 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002830
Roy Zang28f7a052009-07-31 13:34:02 +08002831 if (hw->phy_revision < M88E1011_I_REV_4) {
2832 /* Force TX_CLK in the Extended PHY Specific Control Register
2833 * to 25MHz clock.
2834 */
2835 ret_val = e1000_read_phy_reg(hw,
2836 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2837 if (ret_val)
2838 return ret_val;
2839
2840 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2841
2842 if ((hw->phy_revision == E1000_REVISION_2) &&
2843 (hw->phy_id == M88E1111_I_PHY_ID)) {
2844 /* Vidalia Phy, set the downshift counter to 5x */
2845 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2846 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2847 ret_val = e1000_write_phy_reg(hw,
2848 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2849 if (ret_val)
2850 return ret_val;
2851 } else {
2852 /* Configure Master and Slave downshift values */
2853 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2854 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2855 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2856 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2857 ret_val = e1000_write_phy_reg(hw,
2858 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2859 if (ret_val)
2860 return ret_val;
2861 }
wdenk4e112c12003-06-03 23:54:09 +00002862 }
2863
2864 /* SW Reset the PHY so all changes take effect */
2865 ret_val = e1000_phy_reset(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002866 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002867 DEBUGOUT("Error Resetting the PHY\n");
2868 return ret_val;
2869 }
2870
Roy Zang28f7a052009-07-31 13:34:02 +08002871 return E1000_SUCCESS;
2872}
wdenk4e112c12003-06-03 23:54:09 +00002873
Roy Zang28f7a052009-07-31 13:34:02 +08002874/********************************************************************
2875* Setup auto-negotiation and flow control advertisements,
2876* and then perform auto-negotiation.
2877*
2878* hw - Struct containing variables accessed by shared code
2879*********************************************************************/
2880static int32_t
2881e1000_copper_link_autoneg(struct e1000_hw *hw)
2882{
2883 int32_t ret_val;
2884 uint16_t phy_data;
2885
2886 DEBUGFUNC();
2887
wdenk4e112c12003-06-03 23:54:09 +00002888 /* Perform some bounds checking on the hw->autoneg_advertised
2889 * parameter. If this variable is zero, then set it to the default.
2890 */
2891 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2892
2893 /* If autoneg_advertised is zero, we assume it was not defaulted
2894 * by the calling code so we set to advertise full capability.
2895 */
2896 if (hw->autoneg_advertised == 0)
2897 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2898
Roy Zang28f7a052009-07-31 13:34:02 +08002899 /* IFE phy only supports 10/100 */
2900 if (hw->phy_type == e1000_phy_ife)
2901 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2902
wdenk4e112c12003-06-03 23:54:09 +00002903 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2904 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002905 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002906 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2907 return ret_val;
2908 }
2909 DEBUGOUT("Restarting Auto-Neg\n");
2910
2911 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2912 * the Auto Neg Restart bit in the PHY control register.
2913 */
Roy Zang28f7a052009-07-31 13:34:02 +08002914 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2915 if (ret_val)
2916 return ret_val;
2917
wdenk4e112c12003-06-03 23:54:09 +00002918 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zang28f7a052009-07-31 13:34:02 +08002919 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2920 if (ret_val)
2921 return ret_val;
2922
wdenk4e112c12003-06-03 23:54:09 +00002923 /* Does the user want to wait for Auto-Neg to complete here, or
2924 * check at a later time (for example, callback routine).
2925 */
Roy Zang28f7a052009-07-31 13:34:02 +08002926 /* If we do not wait for autonegtation to complete I
2927 * do not see a valid link status.
2928 * wait_autoneg_complete = 1 .
2929 */
wdenk4e112c12003-06-03 23:54:09 +00002930 if (hw->wait_autoneg_complete) {
2931 ret_val = e1000_wait_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002932 if (ret_val) {
2933 DEBUGOUT("Error while waiting for autoneg"
2934 "to complete\n");
wdenk4e112c12003-06-03 23:54:09 +00002935 return ret_val;
2936 }
2937 }
Roy Zang28f7a052009-07-31 13:34:02 +08002938
York Sun4a598092013-04-01 11:29:11 -07002939 hw->get_link_status = true;
Roy Zang28f7a052009-07-31 13:34:02 +08002940
2941 return E1000_SUCCESS;
2942}
2943
2944/******************************************************************************
2945* Config the MAC and the PHY after link is up.
2946* 1) Set up the MAC to the current PHY speed/duplex
2947* if we are on 82543. If we
2948* are on newer silicon, we only need to configure
2949* collision distance in the Transmit Control Register.
2950* 2) Set up flow control on the MAC to that established with
2951* the link partner.
2952* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2953*
2954* hw - Struct containing variables accessed by shared code
2955******************************************************************************/
2956static int32_t
2957e1000_copper_link_postconfig(struct e1000_hw *hw)
2958{
2959 int32_t ret_val;
2960 DEBUGFUNC();
2961
2962 if (hw->mac_type >= e1000_82544) {
2963 e1000_config_collision_dist(hw);
2964 } else {
2965 ret_val = e1000_config_mac_to_phy(hw);
2966 if (ret_val) {
2967 DEBUGOUT("Error configuring MAC to PHY settings\n");
2968 return ret_val;
2969 }
2970 }
2971 ret_val = e1000_config_fc_after_link_up(hw);
2972 if (ret_val) {
2973 DEBUGOUT("Error Configuring Flow Control\n");
wdenk4e112c12003-06-03 23:54:09 +00002974 return ret_val;
2975 }
Roy Zang28f7a052009-07-31 13:34:02 +08002976 return E1000_SUCCESS;
2977}
2978
2979/******************************************************************************
2980* Detects which PHY is present and setup the speed and duplex
2981*
2982* hw - Struct containing variables accessed by shared code
2983******************************************************************************/
2984static int
Simon Glassc53abc32015-08-19 09:33:39 -06002985e1000_setup_copper_link(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +08002986{
Roy Zang28f7a052009-07-31 13:34:02 +08002987 int32_t ret_val;
2988 uint16_t i;
2989 uint16_t phy_data;
2990 uint16_t reg_data;
2991
2992 DEBUGFUNC();
2993
2994 switch (hw->mac_type) {
2995 case e1000_80003es2lan:
2996 case e1000_ich8lan:
2997 /* Set the mac to wait the maximum time between each
2998 * iteration and increase the max iterations when
2999 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3000 ret_val = e1000_write_kmrn_reg(hw,
3001 GG82563_REG(0x34, 4), 0xFFFF);
3002 if (ret_val)
3003 return ret_val;
3004 ret_val = e1000_read_kmrn_reg(hw,
3005 GG82563_REG(0x34, 9), &reg_data);
3006 if (ret_val)
3007 return ret_val;
3008 reg_data |= 0x3F;
3009 ret_val = e1000_write_kmrn_reg(hw,
3010 GG82563_REG(0x34, 9), reg_data);
3011 if (ret_val)
3012 return ret_val;
3013 default:
3014 break;
3015 }
3016
3017 /* Check if it is a valid PHY and set PHY mode if necessary. */
3018 ret_val = e1000_copper_link_preconfig(hw);
3019 if (ret_val)
3020 return ret_val;
3021 switch (hw->mac_type) {
3022 case e1000_80003es2lan:
3023 /* Kumeran registers are written-only */
3024 reg_data =
3025 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3026 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3027 ret_val = e1000_write_kmrn_reg(hw,
3028 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3029 if (ret_val)
3030 return ret_val;
3031 break;
3032 default:
3033 break;
3034 }
3035
3036 if (hw->phy_type == e1000_phy_igp ||
3037 hw->phy_type == e1000_phy_igp_3 ||
3038 hw->phy_type == e1000_phy_igp_2) {
3039 ret_val = e1000_copper_link_igp_setup(hw);
3040 if (ret_val)
3041 return ret_val;
Marek Vasut74a13c22014-08-08 07:41:39 -07003042 } else if (hw->phy_type == e1000_phy_m88 ||
3043 hw->phy_type == e1000_phy_igb) {
Roy Zang28f7a052009-07-31 13:34:02 +08003044 ret_val = e1000_copper_link_mgp_setup(hw);
3045 if (ret_val)
3046 return ret_val;
3047 } else if (hw->phy_type == e1000_phy_gg82563) {
3048 ret_val = e1000_copper_link_ggp_setup(hw);
3049 if (ret_val)
3050 return ret_val;
3051 }
3052
3053 /* always auto */
3054 /* Setup autoneg and flow control advertisement
3055 * and perform autonegotiation */
3056 ret_val = e1000_copper_link_autoneg(hw);
3057 if (ret_val)
3058 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003059
3060 /* Check link status. Wait up to 100 microseconds for link to become
3061 * valid.
3062 */
3063 for (i = 0; i < 10; i++) {
Roy Zang28f7a052009-07-31 13:34:02 +08003064 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3065 if (ret_val)
3066 return ret_val;
3067 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3068 if (ret_val)
3069 return ret_val;
3070
wdenk4e112c12003-06-03 23:54:09 +00003071 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zang28f7a052009-07-31 13:34:02 +08003072 /* Config the MAC and PHY after link is up */
3073 ret_val = e1000_copper_link_postconfig(hw);
3074 if (ret_val)
wdenk4e112c12003-06-03 23:54:09 +00003075 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08003076
wdenk4e112c12003-06-03 23:54:09 +00003077 DEBUGOUT("Valid link established!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003078 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003079 }
3080 udelay(10);
3081 }
3082
3083 DEBUGOUT("Unable to establish link!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003084 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003085}
3086
3087/******************************************************************************
3088* Configures PHY autoneg and flow control advertisement settings
3089*
3090* hw - Struct containing variables accessed by shared code
3091******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003092int32_t
wdenk4e112c12003-06-03 23:54:09 +00003093e1000_phy_setup_autoneg(struct e1000_hw *hw)
3094{
Roy Zang28f7a052009-07-31 13:34:02 +08003095 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003096 uint16_t mii_autoneg_adv_reg;
3097 uint16_t mii_1000t_ctrl_reg;
3098
3099 DEBUGFUNC();
3100
3101 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zang28f7a052009-07-31 13:34:02 +08003102 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3103 if (ret_val)
3104 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003105
Roy Zang28f7a052009-07-31 13:34:02 +08003106 if (hw->phy_type != e1000_phy_ife) {
3107 /* Read the MII 1000Base-T Control Register (Address 9). */
3108 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3109 &mii_1000t_ctrl_reg);
3110 if (ret_val)
3111 return ret_val;
3112 } else
3113 mii_1000t_ctrl_reg = 0;
wdenk4e112c12003-06-03 23:54:09 +00003114
3115 /* Need to parse both autoneg_advertised and fc and set up
3116 * the appropriate PHY registers. First we will parse for
3117 * autoneg_advertised software override. Since we can advertise
3118 * a plethora of combinations, we need to check each bit
3119 * individually.
3120 */
3121
3122 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3123 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zang28f7a052009-07-31 13:34:02 +08003124 * the 1000Base-T Control Register (Address 9).
wdenk4e112c12003-06-03 23:54:09 +00003125 */
3126 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3127 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3128
3129 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3130
3131 /* Do we want to advertise 10 Mb Half Duplex? */
3132 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3133 DEBUGOUT("Advertise 10mb Half duplex\n");
3134 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3135 }
3136
3137 /* Do we want to advertise 10 Mb Full Duplex? */
3138 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3139 DEBUGOUT("Advertise 10mb Full duplex\n");
3140 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3141 }
3142
3143 /* Do we want to advertise 100 Mb Half Duplex? */
3144 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3145 DEBUGOUT("Advertise 100mb Half duplex\n");
3146 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3147 }
3148
3149 /* Do we want to advertise 100 Mb Full Duplex? */
3150 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3151 DEBUGOUT("Advertise 100mb Full duplex\n");
3152 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3153 }
3154
3155 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3156 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3157 DEBUGOUT
3158 ("Advertise 1000mb Half duplex requested, request denied!\n");
3159 }
3160
3161 /* Do we want to advertise 1000 Mb Full Duplex? */
3162 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3163 DEBUGOUT("Advertise 1000mb Full duplex\n");
3164 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3165 }
3166
3167 /* Check for a software override of the flow control settings, and
3168 * setup the PHY advertisement registers accordingly. If
3169 * auto-negotiation is enabled, then software will have to set the
3170 * "PAUSE" bits to the correct value in the Auto-Negotiation
3171 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3172 *
3173 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003174 * 0: Flow control is completely disabled
3175 * 1: Rx flow control is enabled (we can receive pause frames
3176 * but not send pause frames).
3177 * 2: Tx flow control is enabled (we can send pause frames
3178 * but we do not support receiving pause frames).
3179 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00003180 * other: No software override. The flow control configuration
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003181 * in the EEPROM is used.
wdenk4e112c12003-06-03 23:54:09 +00003182 */
3183 switch (hw->fc) {
3184 case e1000_fc_none: /* 0 */
3185 /* Flow control (RX & TX) is completely disabled by a
3186 * software over-ride.
3187 */
3188 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3189 break;
3190 case e1000_fc_rx_pause: /* 1 */
3191 /* RX Flow control is enabled, and TX Flow control is
3192 * disabled, by a software over-ride.
3193 */
3194 /* Since there really isn't a way to advertise that we are
3195 * capable of RX Pause ONLY, we will advertise that we
3196 * support both symmetric and asymmetric RX PAUSE. Later
3197 * (in e1000_config_fc_after_link_up) we will disable the
3198 *hw's ability to send PAUSE frames.
3199 */
3200 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3201 break;
3202 case e1000_fc_tx_pause: /* 2 */
3203 /* TX Flow control is enabled, and RX Flow control is
3204 * disabled, by a software over-ride.
3205 */
3206 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3207 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3208 break;
3209 case e1000_fc_full: /* 3 */
3210 /* Flow control (both RX and TX) is enabled by a software
3211 * over-ride.
3212 */
3213 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3214 break;
3215 default:
3216 DEBUGOUT("Flow control param set incorrectly\n");
3217 return -E1000_ERR_CONFIG;
3218 }
3219
Roy Zang28f7a052009-07-31 13:34:02 +08003220 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3221 if (ret_val)
3222 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003223
3224 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3225
Roy Zang28f7a052009-07-31 13:34:02 +08003226 if (hw->phy_type != e1000_phy_ife) {
3227 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3228 mii_1000t_ctrl_reg);
3229 if (ret_val)
3230 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003231 }
Roy Zang28f7a052009-07-31 13:34:02 +08003232
3233 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003234}
3235
3236/******************************************************************************
3237* Sets the collision distance in the Transmit Control register
3238*
3239* hw - Struct containing variables accessed by shared code
3240*
3241* Link should have been established previously. Reads the speed and duplex
3242* information from the Device Status register.
3243******************************************************************************/
3244static void
3245e1000_config_collision_dist(struct e1000_hw *hw)
3246{
Roy Zang28f7a052009-07-31 13:34:02 +08003247 uint32_t tctl, coll_dist;
3248
3249 DEBUGFUNC();
3250
3251 if (hw->mac_type < e1000_82543)
3252 coll_dist = E1000_COLLISION_DISTANCE_82542;
3253 else
3254 coll_dist = E1000_COLLISION_DISTANCE;
wdenk4e112c12003-06-03 23:54:09 +00003255
3256 tctl = E1000_READ_REG(hw, TCTL);
3257
3258 tctl &= ~E1000_TCTL_COLD;
Roy Zang28f7a052009-07-31 13:34:02 +08003259 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00003260
3261 E1000_WRITE_REG(hw, TCTL, tctl);
3262 E1000_WRITE_FLUSH(hw);
3263}
3264
3265/******************************************************************************
3266* Sets MAC speed and duplex settings to reflect the those in the PHY
3267*
3268* hw - Struct containing variables accessed by shared code
3269* mii_reg - data to write to the MII control register
3270*
3271* The contents of the PHY register containing the needed information need to
3272* be passed in.
3273******************************************************************************/
3274static int
3275e1000_config_mac_to_phy(struct e1000_hw *hw)
3276{
3277 uint32_t ctrl;
3278 uint16_t phy_data;
3279
3280 DEBUGFUNC();
3281
3282 /* Read the Device Control Register and set the bits to Force Speed
3283 * and Duplex.
3284 */
3285 ctrl = E1000_READ_REG(hw, CTRL);
3286 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
Marek Vasut74a13c22014-08-08 07:41:39 -07003287 ctrl &= ~(E1000_CTRL_ILOS);
3288 ctrl |= (E1000_CTRL_SPD_SEL);
wdenk4e112c12003-06-03 23:54:09 +00003289
3290 /* Set up duplex in the Device Control and Transmit Control
3291 * registers depending on negotiated values.
3292 */
3293 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3294 DEBUGOUT("PHY Read Error\n");
3295 return -E1000_ERR_PHY;
3296 }
3297 if (phy_data & M88E1000_PSSR_DPLX)
3298 ctrl |= E1000_CTRL_FD;
3299 else
3300 ctrl &= ~E1000_CTRL_FD;
3301
3302 e1000_config_collision_dist(hw);
3303
3304 /* Set up speed in the Device Control register depending on
3305 * negotiated values.
3306 */
3307 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3308 ctrl |= E1000_CTRL_SPD_1000;
3309 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3310 ctrl |= E1000_CTRL_SPD_100;
3311 /* Write the configured values back to the Device Control Reg. */
3312 E1000_WRITE_REG(hw, CTRL, ctrl);
3313 return 0;
3314}
3315
3316/******************************************************************************
3317 * Forces the MAC's flow control settings.
wdenk57b2d802003-06-27 21:31:46 +00003318 *
wdenk4e112c12003-06-03 23:54:09 +00003319 * hw - Struct containing variables accessed by shared code
3320 *
3321 * Sets the TFCE and RFCE bits in the device control register to reflect
3322 * the adapter settings. TFCE and RFCE need to be explicitly set by
3323 * software when a Copper PHY is used because autonegotiation is managed
3324 * by the PHY rather than the MAC. Software must also configure these
3325 * bits when link is forced on a fiber connection.
3326 *****************************************************************************/
3327static int
3328e1000_force_mac_fc(struct e1000_hw *hw)
3329{
3330 uint32_t ctrl;
3331
3332 DEBUGFUNC();
3333
3334 /* Get the current configuration of the Device Control Register */
3335 ctrl = E1000_READ_REG(hw, CTRL);
3336
3337 /* Because we didn't get link via the internal auto-negotiation
3338 * mechanism (we either forced link or we got link via PHY
3339 * auto-neg), we have to manually enable/disable transmit an
3340 * receive flow control.
3341 *
3342 * The "Case" statement below enables/disable flow control
3343 * according to the "hw->fc" parameter.
3344 *
3345 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003346 * 0: Flow control is completely disabled
3347 * 1: Rx flow control is enabled (we can receive pause
3348 * frames but not send pause frames).
3349 * 2: Tx flow control is enabled (we can send pause frames
3350 * frames but we do not receive pause frames).
3351 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk4e112c12003-06-03 23:54:09 +00003352 * other: No other values should be possible at this point.
3353 */
3354
3355 switch (hw->fc) {
3356 case e1000_fc_none:
3357 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3358 break;
3359 case e1000_fc_rx_pause:
3360 ctrl &= (~E1000_CTRL_TFCE);
3361 ctrl |= E1000_CTRL_RFCE;
3362 break;
3363 case e1000_fc_tx_pause:
3364 ctrl &= (~E1000_CTRL_RFCE);
3365 ctrl |= E1000_CTRL_TFCE;
3366 break;
3367 case e1000_fc_full:
3368 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3369 break;
3370 default:
3371 DEBUGOUT("Flow control param set incorrectly\n");
3372 return -E1000_ERR_CONFIG;
3373 }
3374
3375 /* Disable TX Flow Control for 82542 (rev 2.0) */
3376 if (hw->mac_type == e1000_82542_rev2_0)
3377 ctrl &= (~E1000_CTRL_TFCE);
3378
3379 E1000_WRITE_REG(hw, CTRL, ctrl);
3380 return 0;
3381}
3382
3383/******************************************************************************
3384 * Configures flow control settings after link is established
wdenk57b2d802003-06-27 21:31:46 +00003385 *
wdenk4e112c12003-06-03 23:54:09 +00003386 * hw - Struct containing variables accessed by shared code
3387 *
3388 * Should be called immediately after a valid link has been established.
3389 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3390 * and autonegotiation is enabled, the MAC flow control settings will be set
3391 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3392 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3393 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003394static int32_t
wdenk4e112c12003-06-03 23:54:09 +00003395e1000_config_fc_after_link_up(struct e1000_hw *hw)
3396{
3397 int32_t ret_val;
3398 uint16_t mii_status_reg;
3399 uint16_t mii_nway_adv_reg;
3400 uint16_t mii_nway_lp_ability_reg;
3401 uint16_t speed;
3402 uint16_t duplex;
3403
3404 DEBUGFUNC();
3405
3406 /* Check for the case where we have fiber media and auto-neg failed
3407 * so we had to force link. In this case, we need to force the
3408 * configuration of the MAC to match the "fc" parameter.
3409 */
Roy Zang28f7a052009-07-31 13:34:02 +08003410 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3411 || ((hw->media_type == e1000_media_type_internal_serdes)
3412 && (hw->autoneg_failed))
3413 || ((hw->media_type == e1000_media_type_copper)
3414 && (!hw->autoneg))) {
wdenk4e112c12003-06-03 23:54:09 +00003415 ret_val = e1000_force_mac_fc(hw);
3416 if (ret_val < 0) {
3417 DEBUGOUT("Error forcing flow control settings\n");
3418 return ret_val;
3419 }
3420 }
3421
3422 /* Check for the case where we have copper media and auto-neg is
3423 * enabled. In this case, we need to check and see if Auto-Neg
3424 * has completed, and if so, how the PHY and link partner has
3425 * flow control configured.
3426 */
3427 if (hw->media_type == e1000_media_type_copper) {
3428 /* Read the MII Status Register and check to see if AutoNeg
3429 * has completed. We read this twice because this reg has
3430 * some "sticky" (latched) bits.
3431 */
3432 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
Minghuan Lian674bcd52015-03-19 09:43:51 -07003433 DEBUGOUT("PHY Read Error\n");
wdenk4e112c12003-06-03 23:54:09 +00003434 return -E1000_ERR_PHY;
3435 }
3436 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
Minghuan Lian674bcd52015-03-19 09:43:51 -07003437 DEBUGOUT("PHY Read Error\n");
wdenk4e112c12003-06-03 23:54:09 +00003438 return -E1000_ERR_PHY;
3439 }
3440
3441 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3442 /* The AutoNeg process has completed, so we now need to
3443 * read both the Auto Negotiation Advertisement Register
3444 * (Address 4) and the Auto_Negotiation Base Page Ability
3445 * Register (Address 5) to determine how flow control was
3446 * negotiated.
3447 */
3448 if (e1000_read_phy_reg
3449 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3450 DEBUGOUT("PHY Read Error\n");
3451 return -E1000_ERR_PHY;
3452 }
3453 if (e1000_read_phy_reg
3454 (hw, PHY_LP_ABILITY,
3455 &mii_nway_lp_ability_reg) < 0) {
3456 DEBUGOUT("PHY Read Error\n");
3457 return -E1000_ERR_PHY;
3458 }
3459
3460 /* Two bits in the Auto Negotiation Advertisement Register
3461 * (Address 4) and two bits in the Auto Negotiation Base
3462 * Page Ability Register (Address 5) determine flow control
3463 * for both the PHY and the link partner. The following
3464 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3465 * 1999, describes these PAUSE resolution bits and how flow
3466 * control is determined based upon these settings.
3467 * NOTE: DC = Don't Care
3468 *
3469 * LOCAL DEVICE | LINK PARTNER
3470 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3471 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003472 * 0 | 0 | DC | DC | e1000_fc_none
3473 * 0 | 1 | 0 | DC | e1000_fc_none
3474 * 0 | 1 | 1 | 0 | e1000_fc_none
3475 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3476 * 1 | 0 | 0 | DC | e1000_fc_none
3477 * 1 | DC | 1 | DC | e1000_fc_full
3478 * 1 | 1 | 0 | 0 | e1000_fc_none
3479 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003480 *
3481 */
3482 /* Are both PAUSE bits set to 1? If so, this implies
3483 * Symmetric Flow Control is enabled at both ends. The
3484 * ASM_DIR bits are irrelevant per the spec.
3485 *
3486 * For Symmetric Flow Control:
3487 *
3488 * LOCAL DEVICE | LINK PARTNER
3489 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3490 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003491 * 1 | DC | 1 | DC | e1000_fc_full
wdenk4e112c12003-06-03 23:54:09 +00003492 *
3493 */
3494 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3495 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3496 /* Now we need to check if the user selected RX ONLY
3497 * of pause frames. In this case, we had to advertise
3498 * FULL flow control because we could not advertise RX
3499 * ONLY. Hence, we must now check to see if we need to
3500 * turn OFF the TRANSMISSION of PAUSE frames.
3501 */
3502 if (hw->original_fc == e1000_fc_full) {
3503 hw->fc = e1000_fc_full;
3504 DEBUGOUT("Flow Control = FULL.\r\n");
3505 } else {
3506 hw->fc = e1000_fc_rx_pause;
3507 DEBUGOUT
3508 ("Flow Control = RX PAUSE frames only.\r\n");
3509 }
3510 }
3511 /* For receiving PAUSE frames ONLY.
3512 *
3513 * LOCAL DEVICE | LINK PARTNER
3514 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3515 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003516 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk4e112c12003-06-03 23:54:09 +00003517 *
3518 */
3519 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3520 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3521 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3522 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3523 {
3524 hw->fc = e1000_fc_tx_pause;
3525 DEBUGOUT
3526 ("Flow Control = TX PAUSE frames only.\r\n");
3527 }
3528 /* For transmitting PAUSE frames ONLY.
3529 *
3530 * LOCAL DEVICE | LINK PARTNER
3531 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3532 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003533 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003534 *
3535 */
3536 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3537 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3538 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3539 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3540 {
3541 hw->fc = e1000_fc_rx_pause;
3542 DEBUGOUT
3543 ("Flow Control = RX PAUSE frames only.\r\n");
3544 }
3545 /* Per the IEEE spec, at this point flow control should be
3546 * disabled. However, we want to consider that we could
3547 * be connected to a legacy switch that doesn't advertise
3548 * desired flow control, but can be forced on the link
3549 * partner. So if we advertised no flow control, that is
3550 * what we will resolve to. If we advertised some kind of
3551 * receive capability (Rx Pause Only or Full Flow Control)
3552 * and the link partner advertised none, we will configure
3553 * ourselves to enable Rx Flow Control only. We can do
3554 * this safely for two reasons: If the link partner really
3555 * didn't want flow control enabled, and we enable Rx, no
3556 * harm done since we won't be receiving any PAUSE frames
3557 * anyway. If the intent on the link partner was to have
3558 * flow control enabled, then by us enabling RX only, we
3559 * can at least receive pause frames and process them.
3560 * This is a good idea because in most cases, since we are
3561 * predominantly a server NIC, more times than not we will
3562 * be asked to delay transmission of packets than asking
3563 * our link partner to pause transmission of frames.
3564 */
3565 else if (hw->original_fc == e1000_fc_none ||
3566 hw->original_fc == e1000_fc_tx_pause) {
3567 hw->fc = e1000_fc_none;
3568 DEBUGOUT("Flow Control = NONE.\r\n");
3569 } else {
3570 hw->fc = e1000_fc_rx_pause;
3571 DEBUGOUT
3572 ("Flow Control = RX PAUSE frames only.\r\n");
3573 }
3574
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003575 /* Now we need to do one last check... If we auto-
wdenk4e112c12003-06-03 23:54:09 +00003576 * negotiated to HALF DUPLEX, flow control should not be
3577 * enabled per IEEE 802.3 spec.
3578 */
3579 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3580
3581 if (duplex == HALF_DUPLEX)
3582 hw->fc = e1000_fc_none;
3583
3584 /* Now we call a subroutine to actually force the MAC
3585 * controller to use the correct flow control settings.
3586 */
3587 ret_val = e1000_force_mac_fc(hw);
3588 if (ret_val < 0) {
3589 DEBUGOUT
3590 ("Error forcing flow control settings\n");
3591 return ret_val;
3592 }
3593 } else {
3594 DEBUGOUT
3595 ("Copper PHY and Auto Neg has not completed.\r\n");
3596 }
3597 }
Roy Zang28f7a052009-07-31 13:34:02 +08003598 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003599}
3600
3601/******************************************************************************
3602 * Checks to see if the link status of the hardware has changed.
3603 *
3604 * hw - Struct containing variables accessed by shared code
3605 *
3606 * Called by any function that needs to check the link status of the adapter.
3607 *****************************************************************************/
3608static int
Simon Glassc53abc32015-08-19 09:33:39 -06003609e1000_check_for_link(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00003610{
wdenk4e112c12003-06-03 23:54:09 +00003611 uint32_t rxcw;
3612 uint32_t ctrl;
3613 uint32_t status;
3614 uint32_t rctl;
3615 uint32_t signal;
3616 int32_t ret_val;
3617 uint16_t phy_data;
3618 uint16_t lp_capability;
3619
3620 DEBUGFUNC();
3621
wdenk57b2d802003-06-27 21:31:46 +00003622 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3623 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00003624 * cleared when there is a signal
3625 */
3626 ctrl = E1000_READ_REG(hw, CTRL);
3627 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3628 signal = E1000_CTRL_SWDPIN1;
3629 else
3630 signal = 0;
3631
3632 status = E1000_READ_REG(hw, STATUS);
3633 rxcw = E1000_READ_REG(hw, RXCW);
3634 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3635
3636 /* If we have a copper PHY then we only want to go out to the PHY
3637 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003638 * status has changed. The get_link_status flag will be set if we
wdenk4e112c12003-06-03 23:54:09 +00003639 * receive a Link Status Change interrupt or we have Rx Sequence
3640 * Errors.
3641 */
3642 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3643 /* First we want to see if the MII Status Register reports
3644 * link. If so, then we want to get the current speed/duplex
3645 * of the PHY.
3646 * Read the register twice since the link bit is sticky.
3647 */
3648 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3649 DEBUGOUT("PHY Read Error\n");
3650 return -E1000_ERR_PHY;
3651 }
3652 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3653 DEBUGOUT("PHY Read Error\n");
3654 return -E1000_ERR_PHY;
3655 }
3656
3657 if (phy_data & MII_SR_LINK_STATUS) {
York Sun4a598092013-04-01 11:29:11 -07003658 hw->get_link_status = false;
wdenk4e112c12003-06-03 23:54:09 +00003659 } else {
3660 /* No link detected */
3661 return -E1000_ERR_NOLINK;
3662 }
3663
3664 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3665 * have Si on board that is 82544 or newer, Auto
3666 * Speed Detection takes care of MAC speed/duplex
3667 * configuration. So we only need to configure Collision
3668 * Distance in the MAC. Otherwise, we need to force
3669 * speed/duplex on the MAC to the current PHY speed/duplex
3670 * settings.
3671 */
3672 if (hw->mac_type >= e1000_82544)
3673 e1000_config_collision_dist(hw);
3674 else {
3675 ret_val = e1000_config_mac_to_phy(hw);
3676 if (ret_val < 0) {
3677 DEBUGOUT
3678 ("Error configuring MAC to PHY settings\n");
3679 return ret_val;
3680 }
3681 }
3682
wdenk57b2d802003-06-27 21:31:46 +00003683 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk4e112c12003-06-03 23:54:09 +00003684 * need to restore the desired flow control settings because we may
3685 * have had to re-autoneg with a different link partner.
3686 */
3687 ret_val = e1000_config_fc_after_link_up(hw);
3688 if (ret_val < 0) {
3689 DEBUGOUT("Error configuring flow control\n");
3690 return ret_val;
3691 }
3692
3693 /* At this point we know that we are on copper and we have
3694 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003695 * parter capability register. We use the link partner capability to
wdenk4e112c12003-06-03 23:54:09 +00003696 * determine if TBI Compatibility needs to be turned on or off. If
3697 * the link partner advertises any speed in addition to Gigabit, then
3698 * we assume that they are GMII-based, and TBI compatibility is not
3699 * needed. If no other speeds are advertised, we assume the link
3700 * partner is TBI-based, and we turn on TBI Compatibility.
3701 */
3702 if (hw->tbi_compatibility_en) {
3703 if (e1000_read_phy_reg
3704 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3705 DEBUGOUT("PHY Read Error\n");
3706 return -E1000_ERR_PHY;
3707 }
3708 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3709 NWAY_LPAR_10T_FD_CAPS |
3710 NWAY_LPAR_100TX_HD_CAPS |
3711 NWAY_LPAR_100TX_FD_CAPS |
3712 NWAY_LPAR_100T4_CAPS)) {
wdenk57b2d802003-06-27 21:31:46 +00003713 /* If our link partner advertises anything in addition to
wdenk4e112c12003-06-03 23:54:09 +00003714 * gigabit, we do not need to enable TBI compatibility.
3715 */
3716 if (hw->tbi_compatibility_on) {
3717 /* If we previously were in the mode, turn it off. */
3718 rctl = E1000_READ_REG(hw, RCTL);
3719 rctl &= ~E1000_RCTL_SBP;
3720 E1000_WRITE_REG(hw, RCTL, rctl);
York Sun4a598092013-04-01 11:29:11 -07003721 hw->tbi_compatibility_on = false;
wdenk4e112c12003-06-03 23:54:09 +00003722 }
3723 } else {
3724 /* If TBI compatibility is was previously off, turn it on. For
3725 * compatibility with a TBI link partner, we will store bad
3726 * packets. Some frames have an additional byte on the end and
3727 * will look like CRC errors to to the hardware.
3728 */
3729 if (!hw->tbi_compatibility_on) {
York Sun4a598092013-04-01 11:29:11 -07003730 hw->tbi_compatibility_on = true;
wdenk4e112c12003-06-03 23:54:09 +00003731 rctl = E1000_READ_REG(hw, RCTL);
3732 rctl |= E1000_RCTL_SBP;
3733 E1000_WRITE_REG(hw, RCTL, rctl);
3734 }
3735 }
3736 }
3737 }
3738 /* If we don't have link (auto-negotiation failed or link partner cannot
3739 * auto-negotiate), the cable is plugged in (we have signal), and our
3740 * link partner is not trying to auto-negotiate with us (we are receiving
3741 * idles or data), we need to force link up. We also need to give
3742 * auto-negotiation time to complete, in case the cable was just plugged
3743 * in. The autoneg_failed flag does this.
3744 */
3745 else if ((hw->media_type == e1000_media_type_fiber) &&
3746 (!(status & E1000_STATUS_LU)) &&
3747 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3748 (!(rxcw & E1000_RXCW_C))) {
3749 if (hw->autoneg_failed == 0) {
3750 hw->autoneg_failed = 1;
3751 return 0;
3752 }
3753 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3754
3755 /* Disable auto-negotiation in the TXCW register */
3756 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3757
3758 /* Force link-up and also force full-duplex. */
3759 ctrl = E1000_READ_REG(hw, CTRL);
3760 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3761 E1000_WRITE_REG(hw, CTRL, ctrl);
3762
3763 /* Configure Flow Control after forcing link up. */
3764 ret_val = e1000_config_fc_after_link_up(hw);
3765 if (ret_val < 0) {
3766 DEBUGOUT("Error configuring flow control\n");
3767 return ret_val;
3768 }
3769 }
3770 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3771 * auto-negotiation in the TXCW register and disable forced link in the
3772 * Device Control register in an attempt to auto-negotiate with our link
3773 * partner.
3774 */
3775 else if ((hw->media_type == e1000_media_type_fiber) &&
3776 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3777 DEBUGOUT
3778 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3779 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3780 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3781 }
3782 return 0;
3783}
3784
3785/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08003786* Configure the MAC-to-PHY interface for 10/100Mbps
3787*
3788* hw - Struct containing variables accessed by shared code
3789******************************************************************************/
3790static int32_t
3791e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3792{
3793 int32_t ret_val = E1000_SUCCESS;
3794 uint32_t tipg;
3795 uint16_t reg_data;
3796
3797 DEBUGFUNC();
3798
3799 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3800 ret_val = e1000_write_kmrn_reg(hw,
3801 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3802 if (ret_val)
3803 return ret_val;
3804
3805 /* Configure Transmit Inter-Packet Gap */
3806 tipg = E1000_READ_REG(hw, TIPG);
3807 tipg &= ~E1000_TIPG_IPGT_MASK;
3808 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3809 E1000_WRITE_REG(hw, TIPG, tipg);
3810
3811 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3812
3813 if (ret_val)
3814 return ret_val;
3815
3816 if (duplex == HALF_DUPLEX)
3817 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3818 else
3819 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3820
3821 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3822
3823 return ret_val;
3824}
3825
3826static int32_t
3827e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3828{
3829 int32_t ret_val = E1000_SUCCESS;
3830 uint16_t reg_data;
3831 uint32_t tipg;
3832
3833 DEBUGFUNC();
3834
3835 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3836 ret_val = e1000_write_kmrn_reg(hw,
3837 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3838 if (ret_val)
3839 return ret_val;
3840
3841 /* Configure Transmit Inter-Packet Gap */
3842 tipg = E1000_READ_REG(hw, TIPG);
3843 tipg &= ~E1000_TIPG_IPGT_MASK;
3844 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3845 E1000_WRITE_REG(hw, TIPG, tipg);
3846
3847 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3848
3849 if (ret_val)
3850 return ret_val;
3851
3852 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3853 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3854
3855 return ret_val;
3856}
3857
3858/******************************************************************************
wdenk4e112c12003-06-03 23:54:09 +00003859 * Detects the current speed and duplex settings of the hardware.
3860 *
3861 * hw - Struct containing variables accessed by shared code
3862 * speed - Speed of the connection
3863 * duplex - Duplex setting of the connection
3864 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003865static int
3866e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3867 uint16_t *duplex)
wdenk4e112c12003-06-03 23:54:09 +00003868{
3869 uint32_t status;
Roy Zang28f7a052009-07-31 13:34:02 +08003870 int32_t ret_val;
3871 uint16_t phy_data;
wdenk4e112c12003-06-03 23:54:09 +00003872
3873 DEBUGFUNC();
3874
3875 if (hw->mac_type >= e1000_82543) {
3876 status = E1000_READ_REG(hw, STATUS);
3877 if (status & E1000_STATUS_SPEED_1000) {
3878 *speed = SPEED_1000;
3879 DEBUGOUT("1000 Mbs, ");
3880 } else if (status & E1000_STATUS_SPEED_100) {
3881 *speed = SPEED_100;
3882 DEBUGOUT("100 Mbs, ");
3883 } else {
3884 *speed = SPEED_10;
3885 DEBUGOUT("10 Mbs, ");
3886 }
3887
3888 if (status & E1000_STATUS_FD) {
3889 *duplex = FULL_DUPLEX;
3890 DEBUGOUT("Full Duplex\r\n");
3891 } else {
3892 *duplex = HALF_DUPLEX;
3893 DEBUGOUT(" Half Duplex\r\n");
3894 }
3895 } else {
3896 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3897 *speed = SPEED_1000;
3898 *duplex = FULL_DUPLEX;
3899 }
Roy Zang28f7a052009-07-31 13:34:02 +08003900
3901 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3902 * even if it is operating at half duplex. Here we set the duplex
3903 * settings to match the duplex in the link partner's capabilities.
3904 */
3905 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3906 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3907 if (ret_val)
3908 return ret_val;
3909
3910 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3911 *duplex = HALF_DUPLEX;
3912 else {
3913 ret_val = e1000_read_phy_reg(hw,
3914 PHY_LP_ABILITY, &phy_data);
3915 if (ret_val)
3916 return ret_val;
3917 if ((*speed == SPEED_100 &&
3918 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3919 || (*speed == SPEED_10
3920 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3921 *duplex = HALF_DUPLEX;
3922 }
3923 }
3924
3925 if ((hw->mac_type == e1000_80003es2lan) &&
3926 (hw->media_type == e1000_media_type_copper)) {
3927 if (*speed == SPEED_1000)
3928 ret_val = e1000_configure_kmrn_for_1000(hw);
3929 else
3930 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3931 if (ret_val)
3932 return ret_val;
3933 }
3934 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003935}
3936
3937/******************************************************************************
3938* Blocks until autoneg completes or times out (~4.5 seconds)
3939*
3940* hw - Struct containing variables accessed by shared code
3941******************************************************************************/
3942static int
3943e1000_wait_autoneg(struct e1000_hw *hw)
3944{
3945 uint16_t i;
3946 uint16_t phy_data;
3947
3948 DEBUGFUNC();
3949 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3950
Stefan Roese497c7312015-08-11 17:12:44 +02003951 /* We will wait for autoneg to complete or timeout to expire. */
wdenk4e112c12003-06-03 23:54:09 +00003952 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3953 /* Read the MII Status Register and wait for Auto-Neg
3954 * Complete bit to be set.
3955 */
3956 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3957 DEBUGOUT("PHY Read Error\n");
3958 return -E1000_ERR_PHY;
3959 }
3960 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3961 DEBUGOUT("PHY Read Error\n");
3962 return -E1000_ERR_PHY;
3963 }
3964 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3965 DEBUGOUT("Auto-Neg complete.\n");
3966 return 0;
3967 }
3968 mdelay(100);
3969 }
3970 DEBUGOUT("Auto-Neg timedout.\n");
3971 return -E1000_ERR_TIMEOUT;
3972}
3973
3974/******************************************************************************
3975* Raises the Management Data Clock
3976*
3977* hw - Struct containing variables accessed by shared code
3978* ctrl - Device control register's current value
3979******************************************************************************/
3980static void
3981e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3982{
3983 /* Raise the clock input to the Management Data Clock (by setting the MDC
3984 * bit), and then delay 2 microseconds.
3985 */
3986 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3987 E1000_WRITE_FLUSH(hw);
3988 udelay(2);
3989}
3990
3991/******************************************************************************
3992* Lowers the Management Data Clock
3993*
3994* hw - Struct containing variables accessed by shared code
3995* ctrl - Device control register's current value
3996******************************************************************************/
3997static void
3998e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3999{
4000 /* Lower the clock input to the Management Data Clock (by clearing the MDC
4001 * bit), and then delay 2 microseconds.
4002 */
4003 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4004 E1000_WRITE_FLUSH(hw);
4005 udelay(2);
4006}
4007
4008/******************************************************************************
4009* Shifts data bits out to the PHY
4010*
4011* hw - Struct containing variables accessed by shared code
4012* data - Data to send out to the PHY
4013* count - Number of bits to shift out
4014*
4015* Bits are shifted out in MSB to LSB order.
4016******************************************************************************/
4017static void
4018e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4019{
4020 uint32_t ctrl;
4021 uint32_t mask;
4022
4023 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk57b2d802003-06-27 21:31:46 +00004024 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk4e112c12003-06-03 23:54:09 +00004025 * time. In order to do this, "data" must be broken down into bits.
4026 */
4027 mask = 0x01;
4028 mask <<= (count - 1);
4029
4030 ctrl = E1000_READ_REG(hw, CTRL);
4031
4032 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4033 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4034
4035 while (mask) {
4036 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4037 * then raising and lowering the Management Data Clock. A "0" is
4038 * shifted out to the PHY by setting the MDIO bit to "0" and then
4039 * raising and lowering the clock.
4040 */
4041 if (data & mask)
4042 ctrl |= E1000_CTRL_MDIO;
4043 else
4044 ctrl &= ~E1000_CTRL_MDIO;
4045
4046 E1000_WRITE_REG(hw, CTRL, ctrl);
4047 E1000_WRITE_FLUSH(hw);
4048
4049 udelay(2);
4050
4051 e1000_raise_mdi_clk(hw, &ctrl);
4052 e1000_lower_mdi_clk(hw, &ctrl);
4053
4054 mask = mask >> 1;
4055 }
4056}
4057
4058/******************************************************************************
4059* Shifts data bits in from the PHY
4060*
4061* hw - Struct containing variables accessed by shared code
4062*
wdenk57b2d802003-06-27 21:31:46 +00004063* Bits are shifted in in MSB to LSB order.
wdenk4e112c12003-06-03 23:54:09 +00004064******************************************************************************/
4065static uint16_t
4066e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4067{
4068 uint32_t ctrl;
4069 uint16_t data = 0;
4070 uint8_t i;
4071
4072 /* In order to read a register from the PHY, we need to shift in a total
4073 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4074 * to avoid contention on the MDIO pin when a read operation is performed.
4075 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4076 * by raising the input to the Management Data Clock (setting the MDC bit),
4077 * and then reading the value of the MDIO bit.
4078 */
4079 ctrl = E1000_READ_REG(hw, CTRL);
4080
4081 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4082 ctrl &= ~E1000_CTRL_MDIO_DIR;
4083 ctrl &= ~E1000_CTRL_MDIO;
4084
4085 E1000_WRITE_REG(hw, CTRL, ctrl);
4086 E1000_WRITE_FLUSH(hw);
4087
4088 /* Raise and Lower the clock before reading in the data. This accounts for
4089 * the turnaround bits. The first clock occurred when we clocked out the
4090 * last bit of the Register Address.
4091 */
4092 e1000_raise_mdi_clk(hw, &ctrl);
4093 e1000_lower_mdi_clk(hw, &ctrl);
4094
4095 for (data = 0, i = 0; i < 16; i++) {
4096 data = data << 1;
4097 e1000_raise_mdi_clk(hw, &ctrl);
4098 ctrl = E1000_READ_REG(hw, CTRL);
4099 /* Check to see if we shifted in a "1". */
4100 if (ctrl & E1000_CTRL_MDIO)
4101 data |= 1;
4102 e1000_lower_mdi_clk(hw, &ctrl);
4103 }
4104
4105 e1000_raise_mdi_clk(hw, &ctrl);
4106 e1000_lower_mdi_clk(hw, &ctrl);
4107
4108 return data;
4109}
4110
4111/*****************************************************************************
4112* Reads the value from a PHY register
4113*
4114* hw - Struct containing variables accessed by shared code
4115* reg_addr - address of the PHY register to read
4116******************************************************************************/
4117static int
4118e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4119{
4120 uint32_t i;
4121 uint32_t mdic = 0;
4122 const uint32_t phy_addr = 1;
4123
4124 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4125 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4126 return -E1000_ERR_PARAM;
4127 }
4128
4129 if (hw->mac_type > e1000_82543) {
4130 /* Set up Op-code, Phy Address, and register address in the MDI
4131 * Control register. The MAC will take care of interfacing with the
4132 * PHY to retrieve the desired data.
4133 */
4134 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4135 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4136 (E1000_MDIC_OP_READ));
4137
4138 E1000_WRITE_REG(hw, MDIC, mdic);
4139
4140 /* Poll the ready bit to see if the MDI read completed */
4141 for (i = 0; i < 64; i++) {
4142 udelay(10);
4143 mdic = E1000_READ_REG(hw, MDIC);
4144 if (mdic & E1000_MDIC_READY)
4145 break;
4146 }
4147 if (!(mdic & E1000_MDIC_READY)) {
4148 DEBUGOUT("MDI Read did not complete\n");
4149 return -E1000_ERR_PHY;
4150 }
4151 if (mdic & E1000_MDIC_ERROR) {
4152 DEBUGOUT("MDI Error\n");
4153 return -E1000_ERR_PHY;
4154 }
4155 *phy_data = (uint16_t) mdic;
4156 } else {
4157 /* We must first send a preamble through the MDIO pin to signal the
4158 * beginning of an MII instruction. This is done by sending 32
4159 * consecutive "1" bits.
4160 */
4161 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4162
4163 /* Now combine the next few fields that are required for a read
4164 * operation. We use this method instead of calling the
4165 * e1000_shift_out_mdi_bits routine five different times. The format of
4166 * a MII read instruction consists of a shift out of 14 bits and is
4167 * defined as follows:
4168 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4169 * followed by a shift in of 18 bits. This first two bits shifted in
4170 * are TurnAround bits used to avoid contention on the MDIO pin when a
4171 * READ operation is performed. These two bits are thrown away
4172 * followed by a shift in of 16 bits which contains the desired data.
4173 */
4174 mdic = ((reg_addr) | (phy_addr << 5) |
4175 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4176
4177 e1000_shift_out_mdi_bits(hw, mdic, 14);
4178
4179 /* Now that we've shifted out the read command to the MII, we need to
4180 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4181 * register address.
4182 */
4183 *phy_data = e1000_shift_in_mdi_bits(hw);
4184 }
4185 return 0;
4186}
4187
4188/******************************************************************************
4189* Writes a value to a PHY register
4190*
4191* hw - Struct containing variables accessed by shared code
4192* reg_addr - address of the PHY register to write
4193* data - data to write to the PHY
4194******************************************************************************/
4195static int
4196e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4197{
4198 uint32_t i;
4199 uint32_t mdic = 0;
4200 const uint32_t phy_addr = 1;
4201
4202 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4203 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4204 return -E1000_ERR_PARAM;
4205 }
4206
4207 if (hw->mac_type > e1000_82543) {
4208 /* Set up Op-code, Phy Address, register address, and data intended
4209 * for the PHY register in the MDI Control register. The MAC will take
4210 * care of interfacing with the PHY to send the desired data.
4211 */
4212 mdic = (((uint32_t) phy_data) |
4213 (reg_addr << E1000_MDIC_REG_SHIFT) |
4214 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4215 (E1000_MDIC_OP_WRITE));
4216
4217 E1000_WRITE_REG(hw, MDIC, mdic);
4218
4219 /* Poll the ready bit to see if the MDI read completed */
4220 for (i = 0; i < 64; i++) {
4221 udelay(10);
4222 mdic = E1000_READ_REG(hw, MDIC);
4223 if (mdic & E1000_MDIC_READY)
4224 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004225 }
4226 if (!(mdic & E1000_MDIC_READY)) {
4227 DEBUGOUT("MDI Write did not complete\n");
4228 return -E1000_ERR_PHY;
4229 }
4230 } else {
4231 /* We'll need to use the SW defined pins to shift the write command
4232 * out to the PHY. We first send a preamble to the PHY to signal the
4233 * beginning of the MII instruction. This is done by sending 32
4234 * consecutive "1" bits.
4235 */
4236 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4237
4238 /* Now combine the remaining required fields that will indicate a
4239 * write operation. We use this method instead of calling the
4240 * e1000_shift_out_mdi_bits routine for each field in the command. The
4241 * format of a MII write instruction is as follows:
4242 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4243 */
4244 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4245 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4246 mdic <<= 16;
4247 mdic |= (uint32_t) phy_data;
4248
4249 e1000_shift_out_mdi_bits(hw, mdic, 32);
4250 }
4251 return 0;
4252}
4253
4254/******************************************************************************
4255 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4256 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4257 * the caller to figure out how to deal with it.
4258 *
4259 * hw - Struct containing variables accessed by shared code
4260 *
4261 * returns: - E1000_BLK_PHY_RESET
4262 * E1000_SUCCESS
4263 *
4264 *****************************************************************************/
4265int32_t
4266e1000_check_phy_reset_block(struct e1000_hw *hw)
4267{
4268 uint32_t manc = 0;
4269 uint32_t fwsm = 0;
4270
4271 if (hw->mac_type == e1000_ich8lan) {
4272 fwsm = E1000_READ_REG(hw, FWSM);
4273 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4274 : E1000_BLK_PHY_RESET;
4275 }
4276
4277 if (hw->mac_type > e1000_82547_rev_2)
4278 manc = E1000_READ_REG(hw, MANC);
4279 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4280 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4281}
4282
4283/***************************************************************************
4284 * Checks if the PHY configuration is done
4285 *
4286 * hw: Struct containing variables accessed by shared code
4287 *
4288 * returns: - E1000_ERR_RESET if fail to reset MAC
4289 * E1000_SUCCESS at any other case.
4290 *
4291 ***************************************************************************/
4292static int32_t
4293e1000_get_phy_cfg_done(struct e1000_hw *hw)
4294{
4295 int32_t timeout = PHY_CFG_TIMEOUT;
4296 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4297
4298 DEBUGFUNC();
4299
4300 switch (hw->mac_type) {
4301 default:
4302 mdelay(10);
4303 break;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004304
Roy Zang28f7a052009-07-31 13:34:02 +08004305 case e1000_80003es2lan:
4306 /* Separate *_CFG_DONE_* bit for each port */
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004307 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004308 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004309 /* Fall Through */
4310
Roy Zang28f7a052009-07-31 13:34:02 +08004311 case e1000_82571:
4312 case e1000_82572:
Marek Vasut74a13c22014-08-08 07:41:39 -07004313 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08004314 while (timeout) {
Marek Vasut74a13c22014-08-08 07:41:39 -07004315 if (hw->mac_type == e1000_igb) {
4316 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4317 break;
4318 } else {
4319 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4320 break;
4321 }
4322 mdelay(1);
Roy Zang28f7a052009-07-31 13:34:02 +08004323 timeout--;
wdenk4e112c12003-06-03 23:54:09 +00004324 }
Roy Zang28f7a052009-07-31 13:34:02 +08004325 if (!timeout) {
4326 DEBUGOUT("MNG configuration cycle has not "
4327 "completed.\n");
4328 return -E1000_ERR_RESET;
wdenk4e112c12003-06-03 23:54:09 +00004329 }
Roy Zang28f7a052009-07-31 13:34:02 +08004330 break;
wdenk4e112c12003-06-03 23:54:09 +00004331 }
Roy Zang28f7a052009-07-31 13:34:02 +08004332
4333 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004334}
4335
4336/******************************************************************************
4337* Returns the PHY to the power-on reset state
4338*
4339* hw - Struct containing variables accessed by shared code
4340******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004341int32_t
wdenk4e112c12003-06-03 23:54:09 +00004342e1000_phy_hw_reset(struct e1000_hw *hw)
4343{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004344 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08004345 uint32_t ctrl, ctrl_ext;
4346 uint32_t led_ctrl;
4347 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004348
4349 DEBUGFUNC();
4350
Roy Zang28f7a052009-07-31 13:34:02 +08004351 /* In the case of the phy reset being blocked, it's not an error, we
4352 * simply return success without performing the reset. */
4353 ret_val = e1000_check_phy_reset_block(hw);
4354 if (ret_val)
4355 return E1000_SUCCESS;
4356
wdenk4e112c12003-06-03 23:54:09 +00004357 DEBUGOUT("Resetting Phy...\n");
4358
4359 if (hw->mac_type > e1000_82543) {
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004360 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004361 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004362
Roy Zang28f7a052009-07-31 13:34:02 +08004363 if (e1000_swfw_sync_acquire(hw, swfw)) {
4364 DEBUGOUT("Unable to acquire swfw sync\n");
4365 return -E1000_ERR_SWFW_SYNC;
4366 }
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004367
wdenk4e112c12003-06-03 23:54:09 +00004368 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4369 * bit. Then, take it out of reset.
4370 */
4371 ctrl = E1000_READ_REG(hw, CTRL);
4372 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4373 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004374
4375 if (hw->mac_type < e1000_82571)
4376 udelay(10);
4377 else
4378 udelay(100);
4379
wdenk4e112c12003-06-03 23:54:09 +00004380 E1000_WRITE_REG(hw, CTRL, ctrl);
4381 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004382
4383 if (hw->mac_type >= e1000_82571)
4384 mdelay(10);
Tim Harveydca35652015-05-19 10:01:19 -07004385
wdenk4e112c12003-06-03 23:54:09 +00004386 } else {
4387 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4388 * bit to put the PHY into reset. Then, take it out of reset.
4389 */
4390 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4391 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4392 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4393 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4394 E1000_WRITE_FLUSH(hw);
4395 mdelay(10);
4396 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4397 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4398 E1000_WRITE_FLUSH(hw);
4399 }
4400 udelay(150);
Roy Zang28f7a052009-07-31 13:34:02 +08004401
4402 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4403 /* Configure activity LED after PHY reset */
4404 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4405 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4406 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4407 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4408 }
4409
Tim Harvey5cb59ec2015-05-19 10:01:18 -07004410 e1000_swfw_sync_release(hw, swfw);
4411
Roy Zang28f7a052009-07-31 13:34:02 +08004412 /* Wait for FW to finish PHY configuration. */
4413 ret_val = e1000_get_phy_cfg_done(hw);
4414 if (ret_val != E1000_SUCCESS)
4415 return ret_val;
4416
4417 return ret_val;
4418}
4419
4420/******************************************************************************
4421 * IGP phy init script - initializes the GbE PHY
4422 *
4423 * hw - Struct containing variables accessed by shared code
4424 *****************************************************************************/
4425static void
4426e1000_phy_init_script(struct e1000_hw *hw)
4427{
4428 uint32_t ret_val;
4429 uint16_t phy_saved_data;
4430 DEBUGFUNC();
4431
4432 if (hw->phy_init_script) {
4433 mdelay(20);
4434
4435 /* Save off the current value of register 0x2F5B to be
4436 * restored at the end of this routine. */
4437 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4438
4439 /* Disabled the PHY transmitter */
4440 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4441
4442 mdelay(20);
4443
4444 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4445
4446 mdelay(5);
4447
4448 switch (hw->mac_type) {
4449 case e1000_82541:
4450 case e1000_82547:
4451 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4452
4453 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4454
4455 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4456
4457 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4458
4459 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4460
4461 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4462
4463 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4464
4465 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4466
4467 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4468 break;
4469
4470 case e1000_82541_rev_2:
4471 case e1000_82547_rev_2:
4472 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4473 break;
4474 default:
4475 break;
4476 }
4477
4478 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4479
4480 mdelay(20);
4481
4482 /* Now enable the transmitter */
Zang Roy-R61911e36d67c2011-11-06 22:22:36 +00004483 if (!ret_val)
4484 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Roy Zang28f7a052009-07-31 13:34:02 +08004485
4486 if (hw->mac_type == e1000_82547) {
4487 uint16_t fused, fine, coarse;
4488
4489 /* Move to analog registers page */
4490 e1000_read_phy_reg(hw,
4491 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4492
4493 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4494 e1000_read_phy_reg(hw,
4495 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4496
4497 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4498 coarse = fused
4499 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4500
4501 if (coarse >
4502 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4503 coarse -=
4504 IGP01E1000_ANALOG_FUSE_COARSE_10;
4505 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4506 } else if (coarse
4507 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4508 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4509
4510 fused = (fused
4511 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4512 (fine
4513 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4514 (coarse
4515 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4516
4517 e1000_write_phy_reg(hw,
4518 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4519 e1000_write_phy_reg(hw,
4520 IGP01E1000_ANALOG_FUSE_BYPASS,
4521 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4522 }
4523 }
4524 }
wdenk4e112c12003-06-03 23:54:09 +00004525}
4526
4527/******************************************************************************
4528* Resets the PHY
4529*
4530* hw - Struct containing variables accessed by shared code
4531*
Roy Zang28f7a052009-07-31 13:34:02 +08004532* Sets bit 15 of the MII Control register
wdenk4e112c12003-06-03 23:54:09 +00004533******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004534int32_t
wdenk4e112c12003-06-03 23:54:09 +00004535e1000_phy_reset(struct e1000_hw *hw)
4536{
Roy Zang28f7a052009-07-31 13:34:02 +08004537 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004538 uint16_t phy_data;
4539
4540 DEBUGFUNC();
4541
Roy Zang28f7a052009-07-31 13:34:02 +08004542 /* In the case of the phy reset being blocked, it's not an error, we
4543 * simply return success without performing the reset. */
4544 ret_val = e1000_check_phy_reset_block(hw);
4545 if (ret_val)
4546 return E1000_SUCCESS;
4547
4548 switch (hw->phy_type) {
4549 case e1000_phy_igp:
4550 case e1000_phy_igp_2:
4551 case e1000_phy_igp_3:
4552 case e1000_phy_ife:
Marek Vasut74a13c22014-08-08 07:41:39 -07004553 case e1000_phy_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08004554 ret_val = e1000_phy_hw_reset(hw);
4555 if (ret_val)
4556 return ret_val;
4557 break;
4558 default:
4559 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4560 if (ret_val)
4561 return ret_val;
4562
4563 phy_data |= MII_CR_RESET;
4564 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4565 if (ret_val)
4566 return ret_val;
4567
4568 udelay(1);
4569 break;
wdenk4e112c12003-06-03 23:54:09 +00004570 }
Roy Zang28f7a052009-07-31 13:34:02 +08004571
4572 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4573 e1000_phy_init_script(hw);
4574
4575 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004576}
4577
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004578static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarz68c2a302008-03-06 16:45:44 +01004579{
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004580 DEBUGFUNC ();
Andre Schwarz68c2a302008-03-06 16:45:44 +01004581
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004582 if (hw->mac_type == e1000_undefined)
4583 return -E1000_ERR_PHY_TYPE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004584
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004585 switch (hw->phy_id) {
4586 case M88E1000_E_PHY_ID:
4587 case M88E1000_I_PHY_ID:
4588 case M88E1011_I_PHY_ID:
Roy Zang28f7a052009-07-31 13:34:02 +08004589 case M88E1111_I_PHY_ID:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004590 hw->phy_type = e1000_phy_m88;
4591 break;
4592 case IGP01E1000_I_PHY_ID:
4593 if (hw->mac_type == e1000_82541 ||
Roy Zang28f7a052009-07-31 13:34:02 +08004594 hw->mac_type == e1000_82541_rev_2 ||
4595 hw->mac_type == e1000_82547 ||
4596 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004597 hw->phy_type = e1000_phy_igp;
Roy Zang28f7a052009-07-31 13:34:02 +08004598 break;
4599 }
4600 case IGP03E1000_E_PHY_ID:
4601 hw->phy_type = e1000_phy_igp_3;
4602 break;
4603 case IFE_E_PHY_ID:
4604 case IFE_PLUS_E_PHY_ID:
4605 case IFE_C_E_PHY_ID:
4606 hw->phy_type = e1000_phy_ife;
4607 break;
4608 case GG82563_E_PHY_ID:
4609 if (hw->mac_type == e1000_80003es2lan) {
4610 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004611 break;
4612 }
Roy Zang181119b2011-01-21 11:29:38 +08004613 case BME1000_E_PHY_ID:
4614 hw->phy_type = e1000_phy_bm;
4615 break;
Marek Vasut74a13c22014-08-08 07:41:39 -07004616 case I210_I_PHY_ID:
4617 hw->phy_type = e1000_phy_igb;
4618 break;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004619 /* Fall Through */
4620 default:
4621 /* Should never have loaded on this device */
4622 hw->phy_type = e1000_phy_undefined;
4623 return -E1000_ERR_PHY_TYPE;
4624 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004625
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004626 return E1000_SUCCESS;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004627}
4628
wdenk4e112c12003-06-03 23:54:09 +00004629/******************************************************************************
4630* Probes the expected PHY address for known PHY IDs
4631*
4632* hw - Struct containing variables accessed by shared code
4633******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004634static int32_t
wdenk4e112c12003-06-03 23:54:09 +00004635e1000_detect_gig_phy(struct e1000_hw *hw)
4636{
Roy Zang28f7a052009-07-31 13:34:02 +08004637 int32_t phy_init_status, ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004638 uint16_t phy_id_high, phy_id_low;
York Sun4a598092013-04-01 11:29:11 -07004639 bool match = false;
wdenk4e112c12003-06-03 23:54:09 +00004640
4641 DEBUGFUNC();
4642
Roy Zang28f7a052009-07-31 13:34:02 +08004643 /* The 82571 firmware may still be configuring the PHY. In this
4644 * case, we cannot access the PHY until the configuration is done. So
4645 * we explicitly set the PHY values. */
4646 if (hw->mac_type == e1000_82571 ||
4647 hw->mac_type == e1000_82572) {
4648 hw->phy_id = IGP01E1000_I_PHY_ID;
4649 hw->phy_type = e1000_phy_igp_2;
4650 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004651 }
Roy Zang28f7a052009-07-31 13:34:02 +08004652
4653 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4654 * work- around that forces PHY page 0 to be set or the reads fail.
4655 * The rest of the code in this routine uses e1000_read_phy_reg to
4656 * read the PHY ID. So for ESB-2 we need to have this set so our
4657 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4658 * the routines below will figure this out as well. */
4659 if (hw->mac_type == e1000_80003es2lan)
4660 hw->phy_type = e1000_phy_gg82563;
4661
4662 /* Read the PHY ID Registers to identify which PHY is onboard. */
4663 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4664 if (ret_val)
4665 return ret_val;
4666
wdenk4e112c12003-06-03 23:54:09 +00004667 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zang28f7a052009-07-31 13:34:02 +08004668 udelay(20);
4669 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4670 if (ret_val)
4671 return ret_val;
4672
wdenk4e112c12003-06-03 23:54:09 +00004673 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zang28f7a052009-07-31 13:34:02 +08004674 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk4e112c12003-06-03 23:54:09 +00004675
4676 switch (hw->mac_type) {
4677 case e1000_82543:
4678 if (hw->phy_id == M88E1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004679 match = true;
wdenk4e112c12003-06-03 23:54:09 +00004680 break;
4681 case e1000_82544:
4682 if (hw->phy_id == M88E1000_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004683 match = true;
wdenk4e112c12003-06-03 23:54:09 +00004684 break;
4685 case e1000_82540:
4686 case e1000_82545:
Roy Zang28f7a052009-07-31 13:34:02 +08004687 case e1000_82545_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004688 case e1000_82546:
Roy Zang28f7a052009-07-31 13:34:02 +08004689 case e1000_82546_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004690 if (hw->phy_id == M88E1011_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004691 match = true;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004692 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004693 case e1000_82541:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004694 case e1000_82541_rev_2:
Roy Zang28f7a052009-07-31 13:34:02 +08004695 case e1000_82547:
4696 case e1000_82547_rev_2:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004697 if(hw->phy_id == IGP01E1000_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004698 match = true;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004699
wdenk4e112c12003-06-03 23:54:09 +00004700 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004701 case e1000_82573:
4702 if (hw->phy_id == M88E1111_I_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004703 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004704 break;
Roy Zang181119b2011-01-21 11:29:38 +08004705 case e1000_82574:
4706 if (hw->phy_id == BME1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004707 match = true;
Roy Zang181119b2011-01-21 11:29:38 +08004708 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004709 case e1000_80003es2lan:
4710 if (hw->phy_id == GG82563_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004711 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004712 break;
4713 case e1000_ich8lan:
4714 if (hw->phy_id == IGP03E1000_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004715 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004716 if (hw->phy_id == IFE_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004717 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004718 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004719 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004720 if (hw->phy_id == IFE_C_E_PHY_ID)
York Sun4a598092013-04-01 11:29:11 -07004721 match = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004722 break;
Marek Vasut74a13c22014-08-08 07:41:39 -07004723 case e1000_igb:
4724 if (hw->phy_id == I210_I_PHY_ID)
4725 match = true;
4726 break;
wdenk4e112c12003-06-03 23:54:09 +00004727 default:
4728 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4729 return -E1000_ERR_CONFIG;
4730 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004731
4732 phy_init_status = e1000_set_phy_type(hw);
4733
4734 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk4e112c12003-06-03 23:54:09 +00004735 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4736 return 0;
4737 }
4738 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4739 return -E1000_ERR_PHY;
4740}
4741
Roy Zang28f7a052009-07-31 13:34:02 +08004742/*****************************************************************************
4743 * Set media type and TBI compatibility.
4744 *
4745 * hw - Struct containing variables accessed by shared code
4746 * **************************************************************************/
4747void
4748e1000_set_media_type(struct e1000_hw *hw)
4749{
4750 uint32_t status;
4751
4752 DEBUGFUNC();
4753
4754 if (hw->mac_type != e1000_82543) {
4755 /* tbi_compatibility is only valid on 82543 */
York Sun4a598092013-04-01 11:29:11 -07004756 hw->tbi_compatibility_en = false;
Roy Zang28f7a052009-07-31 13:34:02 +08004757 }
4758
4759 switch (hw->device_id) {
4760 case E1000_DEV_ID_82545GM_SERDES:
4761 case E1000_DEV_ID_82546GB_SERDES:
4762 case E1000_DEV_ID_82571EB_SERDES:
4763 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4764 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4765 case E1000_DEV_ID_82572EI_SERDES:
4766 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4767 hw->media_type = e1000_media_type_internal_serdes;
4768 break;
4769 default:
4770 switch (hw->mac_type) {
4771 case e1000_82542_rev2_0:
4772 case e1000_82542_rev2_1:
4773 hw->media_type = e1000_media_type_fiber;
4774 break;
4775 case e1000_ich8lan:
4776 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08004777 case e1000_82574:
Marek Vasut74a13c22014-08-08 07:41:39 -07004778 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08004779 /* The STATUS_TBIMODE bit is reserved or reused
4780 * for the this device.
4781 */
4782 hw->media_type = e1000_media_type_copper;
4783 break;
4784 default:
4785 status = E1000_READ_REG(hw, STATUS);
4786 if (status & E1000_STATUS_TBIMODE) {
4787 hw->media_type = e1000_media_type_fiber;
4788 /* tbi_compatibility not valid on fiber */
York Sun4a598092013-04-01 11:29:11 -07004789 hw->tbi_compatibility_en = false;
Roy Zang28f7a052009-07-31 13:34:02 +08004790 } else {
4791 hw->media_type = e1000_media_type_copper;
4792 }
4793 break;
4794 }
4795 }
4796}
4797
wdenk4e112c12003-06-03 23:54:09 +00004798/**
4799 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4800 *
4801 * e1000_sw_init initializes the Adapter private data structure.
4802 * Fields are initialized based on PCI device information and
4803 * OS network device settings (MTU size).
4804 **/
4805
4806static int
Simon Glassc53abc32015-08-19 09:33:39 -06004807e1000_sw_init(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00004808{
wdenk4e112c12003-06-03 23:54:09 +00004809 int result;
4810
4811 /* PCI config space info */
4812 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4813 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4814 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4815 &hw->subsystem_vendor_id);
4816 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4817
4818 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4819 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4820
4821 /* identify the MAC */
4822 result = e1000_set_mac_type(hw);
4823 if (result) {
Simon Glassc53abc32015-08-19 09:33:39 -06004824 E1000_ERR(hw, "Unknown MAC Type\n");
wdenk4e112c12003-06-03 23:54:09 +00004825 return result;
4826 }
4827
Roy Zang28f7a052009-07-31 13:34:02 +08004828 switch (hw->mac_type) {
4829 default:
4830 break;
4831 case e1000_82541:
4832 case e1000_82547:
4833 case e1000_82541_rev_2:
4834 case e1000_82547_rev_2:
4835 hw->phy_init_script = 1;
4836 break;
4837 }
4838
wdenk4e112c12003-06-03 23:54:09 +00004839 /* flow control settings */
4840 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4841 hw->fc_low_water = E1000_FC_LOW_THRESH;
4842 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4843 hw->fc_send_xon = 1;
4844
4845 /* Media type - copper or fiber */
Marek Vasut74a13c22014-08-08 07:41:39 -07004846 hw->tbi_compatibility_en = true;
Roy Zang28f7a052009-07-31 13:34:02 +08004847 e1000_set_media_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00004848
4849 if (hw->mac_type >= e1000_82543) {
4850 uint32_t status = E1000_READ_REG(hw, STATUS);
4851
4852 if (status & E1000_STATUS_TBIMODE) {
4853 DEBUGOUT("fiber interface\n");
4854 hw->media_type = e1000_media_type_fiber;
4855 } else {
4856 DEBUGOUT("copper interface\n");
4857 hw->media_type = e1000_media_type_copper;
4858 }
4859 } else {
4860 hw->media_type = e1000_media_type_fiber;
4861 }
4862
York Sun4a598092013-04-01 11:29:11 -07004863 hw->wait_autoneg_complete = true;
wdenk4e112c12003-06-03 23:54:09 +00004864 if (hw->mac_type < e1000_82543)
4865 hw->report_tx_early = 0;
4866 else
4867 hw->report_tx_early = 1;
4868
wdenk4e112c12003-06-03 23:54:09 +00004869 return E1000_SUCCESS;
4870}
4871
4872void
4873fill_rx(struct e1000_hw *hw)
4874{
4875 struct e1000_rx_desc *rd;
Minghuan Liane2e4b782015-01-22 13:21:54 +08004876 unsigned long flush_start, flush_end;
wdenk4e112c12003-06-03 23:54:09 +00004877
4878 rx_last = rx_tail;
4879 rd = rx_base + rx_tail;
4880 rx_tail = (rx_tail + 1) % 8;
4881 memset(rd, 0, 16);
Minghuan Liane2e4b782015-01-22 13:21:54 +08004882 rd->buffer_addr = cpu_to_le64((unsigned long)packet);
Marek Vasut742c5c22014-08-08 07:41:38 -07004883
4884 /*
4885 * Make sure there are no stale data in WB over this area, which
4886 * might get written into the memory while the e1000 also writes
4887 * into the same memory area.
4888 */
Minghuan Liane2e4b782015-01-22 13:21:54 +08004889 invalidate_dcache_range((unsigned long)packet,
4890 (unsigned long)packet + 4096);
Marek Vasut742c5c22014-08-08 07:41:38 -07004891 /* Dump the DMA descriptor into RAM. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08004892 flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut742c5c22014-08-08 07:41:38 -07004893 flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4894 flush_dcache_range(flush_start, flush_end);
4895
wdenk4e112c12003-06-03 23:54:09 +00004896 E1000_WRITE_REG(hw, RDT, rx_tail);
4897}
4898
4899/**
4900 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4901 * @adapter: board private structure
4902 *
4903 * Configure the Tx unit of the MAC after a reset.
4904 **/
4905
4906static void
4907e1000_configure_tx(struct e1000_hw *hw)
4908{
wdenk4e112c12003-06-03 23:54:09 +00004909 unsigned long tctl;
Roy Zang28f7a052009-07-31 13:34:02 +08004910 unsigned long tipg, tarc;
4911 uint32_t ipgr1, ipgr2;
wdenk4e112c12003-06-03 23:54:09 +00004912
Bin Mengd0ee7d02015-08-26 06:17:27 -07004913 E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
4914 E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
wdenk4e112c12003-06-03 23:54:09 +00004915
4916 E1000_WRITE_REG(hw, TDLEN, 128);
4917
4918 /* Setup the HW Tx Head and Tail descriptor pointers */
4919 E1000_WRITE_REG(hw, TDH, 0);
4920 E1000_WRITE_REG(hw, TDT, 0);
4921 tx_tail = 0;
4922
4923 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zang28f7a052009-07-31 13:34:02 +08004924 if (hw->mac_type <= e1000_82547_rev_2 &&
4925 (hw->media_type == e1000_media_type_fiber ||
4926 hw->media_type == e1000_media_type_internal_serdes))
4927 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4928 else
4929 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4930
4931 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk4e112c12003-06-03 23:54:09 +00004932 switch (hw->mac_type) {
4933 case e1000_82542_rev2_0:
4934 case e1000_82542_rev2_1:
4935 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zang28f7a052009-07-31 13:34:02 +08004936 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4937 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4938 break;
4939 case e1000_80003es2lan:
4940 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4941 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk4e112c12003-06-03 23:54:09 +00004942 break;
4943 default:
Roy Zang28f7a052009-07-31 13:34:02 +08004944 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4945 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4946 break;
wdenk4e112c12003-06-03 23:54:09 +00004947 }
Roy Zang28f7a052009-07-31 13:34:02 +08004948 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4949 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00004950 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk4e112c12003-06-03 23:54:09 +00004951 /* Program the Transmit Control Register */
4952 tctl = E1000_READ_REG(hw, TCTL);
4953 tctl &= ~E1000_TCTL_CT;
4954 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4955 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zang28f7a052009-07-31 13:34:02 +08004956
4957 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4958 tarc = E1000_READ_REG(hw, TARC0);
4959 /* set the speed mode bit, we'll clear it if we're not at
4960 * gigabit link later */
4961 /* git bit can be set to 1*/
4962 } else if (hw->mac_type == e1000_80003es2lan) {
4963 tarc = E1000_READ_REG(hw, TARC0);
4964 tarc |= 1;
4965 E1000_WRITE_REG(hw, TARC0, tarc);
4966 tarc = E1000_READ_REG(hw, TARC1);
4967 tarc |= 1;
4968 E1000_WRITE_REG(hw, TARC1, tarc);
4969 }
4970
wdenk4e112c12003-06-03 23:54:09 +00004971
4972 e1000_config_collision_dist(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004973 /* Setup Transmit Descriptor Settings for eop descriptor */
4974 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk4e112c12003-06-03 23:54:09 +00004975
Roy Zang28f7a052009-07-31 13:34:02 +08004976 /* Need to set up RS bit */
4977 if (hw->mac_type < e1000_82543)
4978 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk4e112c12003-06-03 23:54:09 +00004979 else
Roy Zang28f7a052009-07-31 13:34:02 +08004980 hw->txd_cmd |= E1000_TXD_CMD_RS;
Marek Vasut74a13c22014-08-08 07:41:39 -07004981
4982
4983 if (hw->mac_type == e1000_igb) {
4984 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
4985
4986 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
4987 reg_txdctl |= 1 << 25;
4988 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
4989 mdelay(20);
4990 }
4991
4992
4993
Roy Zang28f7a052009-07-31 13:34:02 +08004994 E1000_WRITE_REG(hw, TCTL, tctl);
Marek Vasut74a13c22014-08-08 07:41:39 -07004995
4996
wdenk4e112c12003-06-03 23:54:09 +00004997}
4998
4999/**
5000 * e1000_setup_rctl - configure the receive control register
5001 * @adapter: Board private structure
5002 **/
5003static void
5004e1000_setup_rctl(struct e1000_hw *hw)
5005{
5006 uint32_t rctl;
5007
5008 rctl = E1000_READ_REG(hw, RCTL);
5009
5010 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5011
Roy Zang28f7a052009-07-31 13:34:02 +08005012 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5013 | E1000_RCTL_RDMTS_HALF; /* |
5014 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk4e112c12003-06-03 23:54:09 +00005015
5016 if (hw->tbi_compatibility_on == 1)
5017 rctl |= E1000_RCTL_SBP;
5018 else
5019 rctl &= ~E1000_RCTL_SBP;
5020
5021 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk4e112c12003-06-03 23:54:09 +00005022 rctl |= E1000_RCTL_SZ_2048;
5023 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk4e112c12003-06-03 23:54:09 +00005024 E1000_WRITE_REG(hw, RCTL, rctl);
5025}
5026
5027/**
5028 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5029 * @adapter: board private structure
5030 *
5031 * Configure the Rx unit of the MAC after a reset.
5032 **/
5033static void
5034e1000_configure_rx(struct e1000_hw *hw)
5035{
Roy Zang28f7a052009-07-31 13:34:02 +08005036 unsigned long rctl, ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00005037 rx_tail = 0;
Bin Mengd0ee7d02015-08-26 06:17:27 -07005038
wdenk4e112c12003-06-03 23:54:09 +00005039 /* make sure receives are disabled while setting up the descriptors */
5040 rctl = E1000_READ_REG(hw, RCTL);
5041 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk4e112c12003-06-03 23:54:09 +00005042 if (hw->mac_type >= e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00005043 /* Set the interrupt throttling rate. Value is calculated
5044 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk35f734f2008-04-13 09:59:26 -07005045#define MAX_INTS_PER_SEC 8000
5046#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk4e112c12003-06-03 23:54:09 +00005047 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5048 }
5049
Roy Zang28f7a052009-07-31 13:34:02 +08005050 if (hw->mac_type >= e1000_82571) {
5051 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5052 /* Reset delay timers after every interrupt */
5053 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5054 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5055 E1000_WRITE_FLUSH(hw);
5056 }
wdenk4e112c12003-06-03 23:54:09 +00005057 /* Setup the Base and Length of the Rx Descriptor Ring */
Bin Mengd0ee7d02015-08-26 06:17:27 -07005058 E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5059 E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
wdenk4e112c12003-06-03 23:54:09 +00005060
5061 E1000_WRITE_REG(hw, RDLEN, 128);
5062
5063 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5064 E1000_WRITE_REG(hw, RDH, 0);
5065 E1000_WRITE_REG(hw, RDT, 0);
wdenk4e112c12003-06-03 23:54:09 +00005066 /* Enable Receives */
5067
Marek Vasut74a13c22014-08-08 07:41:39 -07005068 if (hw->mac_type == e1000_igb) {
5069
5070 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5071 reg_rxdctl |= 1 << 25;
5072 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5073 mdelay(20);
5074 }
5075
wdenk4e112c12003-06-03 23:54:09 +00005076 E1000_WRITE_REG(hw, RCTL, rctl);
Marek Vasut74a13c22014-08-08 07:41:39 -07005077
wdenk4e112c12003-06-03 23:54:09 +00005078 fill_rx(hw);
5079}
5080
5081/**************************************************************************
5082POLL - Wait for a frame
5083***************************************************************************/
5084static int
Simon Glassc53abc32015-08-19 09:33:39 -06005085_e1000_poll(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00005086{
wdenk4e112c12003-06-03 23:54:09 +00005087 struct e1000_rx_desc *rd;
Minghuan Liane2e4b782015-01-22 13:21:54 +08005088 unsigned long inval_start, inval_end;
Marek Vasut742c5c22014-08-08 07:41:38 -07005089 uint32_t len;
5090
wdenk4e112c12003-06-03 23:54:09 +00005091 /* return true if there's an ethernet packet ready to read */
5092 rd = rx_base + rx_last;
Marek Vasut742c5c22014-08-08 07:41:38 -07005093
5094 /* Re-load the descriptor from RAM. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005095 inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut742c5c22014-08-08 07:41:38 -07005096 inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5097 invalidate_dcache_range(inval_start, inval_end);
5098
Miao Yan41a084a2015-12-21 02:07:02 -08005099 if (!(rd->status & E1000_RXD_STAT_DD))
wdenk4e112c12003-06-03 23:54:09 +00005100 return 0;
Minghuan Lian674bcd52015-03-19 09:43:51 -07005101 /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
Marek Vasut742c5c22014-08-08 07:41:38 -07005102 /* Packet received, make sure the data are re-loaded from RAM. */
Miao Yan41a084a2015-12-21 02:07:02 -08005103 len = le16_to_cpu(rd->length);
Minghuan Liane2e4b782015-01-22 13:21:54 +08005104 invalidate_dcache_range((unsigned long)packet,
5105 (unsigned long)packet +
5106 roundup(len, ARCH_DMA_MINALIGN));
Simon Glassc53abc32015-08-19 09:33:39 -06005107 return len;
wdenk4e112c12003-06-03 23:54:09 +00005108}
5109
Simon Glassc53abc32015-08-19 09:33:39 -06005110static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
wdenk4e112c12003-06-03 23:54:09 +00005111{
Marek Vasut742c5c22014-08-08 07:41:38 -07005112 void *nv_packet = (void *)txpacket;
wdenk4e112c12003-06-03 23:54:09 +00005113 struct e1000_tx_desc *txp;
5114 int i = 0;
Minghuan Liane2e4b782015-01-22 13:21:54 +08005115 unsigned long flush_start, flush_end;
wdenk4e112c12003-06-03 23:54:09 +00005116
5117 txp = tx_base + tx_tail;
5118 tx_tail = (tx_tail + 1) % 8;
5119
Wolfgang Denkf83102e2010-11-22 09:48:45 +01005120 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
Roy Zang28f7a052009-07-31 13:34:02 +08005121 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk4e112c12003-06-03 23:54:09 +00005122 txp->upper.data = 0;
Marek Vasut742c5c22014-08-08 07:41:38 -07005123
5124 /* Dump the packet into RAM so e1000 can pick them. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005125 flush_dcache_range((unsigned long)nv_packet,
5126 (unsigned long)nv_packet +
5127 roundup(length, ARCH_DMA_MINALIGN));
Marek Vasut742c5c22014-08-08 07:41:38 -07005128 /* Dump the descriptor into RAM as well. */
Minghuan Liane2e4b782015-01-22 13:21:54 +08005129 flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
Marek Vasut742c5c22014-08-08 07:41:38 -07005130 flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5131 flush_dcache_range(flush_start, flush_end);
5132
wdenk4e112c12003-06-03 23:54:09 +00005133 E1000_WRITE_REG(hw, TDT, tx_tail);
5134
Roy Zang28f7a052009-07-31 13:34:02 +08005135 E1000_WRITE_FLUSH(hw);
Marek Vasut742c5c22014-08-08 07:41:38 -07005136 while (1) {
5137 invalidate_dcache_range(flush_start, flush_end);
5138 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5139 break;
wdenk4e112c12003-06-03 23:54:09 +00005140 if (i++ > TOUT_LOOP) {
5141 DEBUGOUT("e1000: tx timeout\n");
5142 return 0;
5143 }
5144 udelay(10); /* give the nic a chance to write to the register */
5145 }
5146 return 1;
5147}
5148
wdenk4e112c12003-06-03 23:54:09 +00005149static void
Simon Glassc53abc32015-08-19 09:33:39 -06005150_e1000_disable(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00005151{
wdenk4e112c12003-06-03 23:54:09 +00005152 /* Turn off the ethernet interface */
5153 E1000_WRITE_REG(hw, RCTL, 0);
5154 E1000_WRITE_REG(hw, TCTL, 0);
5155
5156 /* Clear the transmit ring */
5157 E1000_WRITE_REG(hw, TDH, 0);
5158 E1000_WRITE_REG(hw, TDT, 0);
5159
5160 /* Clear the receive ring */
5161 E1000_WRITE_REG(hw, RDH, 0);
5162 E1000_WRITE_REG(hw, RDT, 0);
5163
wdenk4e112c12003-06-03 23:54:09 +00005164 mdelay(10);
Simon Glassc53abc32015-08-19 09:33:39 -06005165}
wdenk4e112c12003-06-03 23:54:09 +00005166
Simon Glassc53abc32015-08-19 09:33:39 -06005167/*reset function*/
5168static inline int
5169e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5170{
5171 e1000_reset_hw(hw);
5172 if (hw->mac_type >= e1000_82544)
5173 E1000_WRITE_REG(hw, WUC, 0);
5174
5175 return e1000_init_hw(hw, enetaddr);
wdenk4e112c12003-06-03 23:54:09 +00005176}
5177
wdenk4e112c12003-06-03 23:54:09 +00005178static int
Simon Glassc53abc32015-08-19 09:33:39 -06005179_e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
wdenk4e112c12003-06-03 23:54:09 +00005180{
wdenk4e112c12003-06-03 23:54:09 +00005181 int ret_val = 0;
5182
Simon Glassc53abc32015-08-19 09:33:39 -06005183 ret_val = e1000_reset(hw, enetaddr);
wdenk4e112c12003-06-03 23:54:09 +00005184 if (ret_val < 0) {
5185 if ((ret_val == -E1000_ERR_NOLINK) ||
5186 (ret_val == -E1000_ERR_TIMEOUT)) {
Simon Glassc53abc32015-08-19 09:33:39 -06005187 E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
wdenk4e112c12003-06-03 23:54:09 +00005188 } else {
Simon Glassc53abc32015-08-19 09:33:39 -06005189 E1000_ERR(hw, "Hardware Initialization Failed\n");
wdenk4e112c12003-06-03 23:54:09 +00005190 }
Simon Glassc53abc32015-08-19 09:33:39 -06005191 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00005192 }
5193 e1000_configure_tx(hw);
5194 e1000_setup_rctl(hw);
5195 e1000_configure_rx(hw);
Simon Glassc53abc32015-08-19 09:33:39 -06005196 return 0;
wdenk4e112c12003-06-03 23:54:09 +00005197}
5198
Roy Zang28f7a052009-07-31 13:34:02 +08005199/******************************************************************************
5200 * Gets the current PCI bus type of hardware
5201 *
5202 * hw - Struct containing variables accessed by shared code
5203 *****************************************************************************/
5204void e1000_get_bus_type(struct e1000_hw *hw)
5205{
5206 uint32_t status;
5207
5208 switch (hw->mac_type) {
5209 case e1000_82542_rev2_0:
5210 case e1000_82542_rev2_1:
5211 hw->bus_type = e1000_bus_type_pci;
5212 break;
5213 case e1000_82571:
5214 case e1000_82572:
5215 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08005216 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08005217 case e1000_80003es2lan:
Roy Zang28f7a052009-07-31 13:34:02 +08005218 case e1000_ich8lan:
Marek Vasut74a13c22014-08-08 07:41:39 -07005219 case e1000_igb:
Roy Zang28f7a052009-07-31 13:34:02 +08005220 hw->bus_type = e1000_bus_type_pci_express;
5221 break;
5222 default:
5223 status = E1000_READ_REG(hw, STATUS);
5224 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5225 e1000_bus_type_pcix : e1000_bus_type_pci;
5226 break;
5227 }
5228}
5229
Simon Glass9f86b382015-08-19 09:33:40 -06005230#ifndef CONFIG_DM_ETH
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005231/* A list of all registered e1000 devices */
5232static LIST_HEAD(e1000_hw_list);
Simon Glass9f86b382015-08-19 09:33:40 -06005233#endif
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005234
Simon Glassc53abc32015-08-19 09:33:39 -06005235static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5236 unsigned char enetaddr[6])
5237{
5238 u32 val;
5239
5240 /* Assign the passed-in values */
5241 hw->pdev = devno;
5242 hw->cardnum = cardnum;
5243
5244 /* Print a debug message with the IO base address */
5245 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5246 E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5247
5248 /* Try to enable I/O accesses and bus-mastering */
5249 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5250 pci_write_config_dword(devno, PCI_COMMAND, val);
5251
5252 /* Make sure it worked */
5253 pci_read_config_dword(devno, PCI_COMMAND, &val);
5254 if (!(val & PCI_COMMAND_MEMORY)) {
5255 E1000_ERR(hw, "Can't enable I/O memory\n");
5256 return -ENOSPC;
5257 }
5258 if (!(val & PCI_COMMAND_MASTER)) {
5259 E1000_ERR(hw, "Can't enable bus-mastering\n");
5260 return -EPERM;
5261 }
5262
5263 /* Are these variables needed? */
5264 hw->fc = e1000_fc_default;
5265 hw->original_fc = e1000_fc_default;
5266 hw->autoneg_failed = 0;
5267 hw->autoneg = 1;
5268 hw->get_link_status = true;
5269#ifndef CONFIG_E1000_NO_NVM
5270 hw->eeprom_semaphore_present = true;
5271#endif
5272 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5273 PCI_REGION_MEM);
5274 hw->mac_type = e1000_undefined;
5275
5276 /* MAC and Phy settings */
5277 if (e1000_sw_init(hw) < 0) {
5278 E1000_ERR(hw, "Software init failed\n");
5279 return -EIO;
5280 }
5281 if (e1000_check_phy_reset_block(hw))
5282 E1000_ERR(hw, "PHY Reset is blocked!\n");
5283
5284 /* Basic init was OK, reset the hardware and allow SPI access */
5285 e1000_reset_hw(hw);
5286
5287#ifndef CONFIG_E1000_NO_NVM
5288 /* Validate the EEPROM and get chipset information */
Simon Glassc53abc32015-08-19 09:33:39 -06005289 if (e1000_init_eeprom_params(hw)) {
5290 E1000_ERR(hw, "EEPROM is invalid!\n");
5291 return -EINVAL;
5292 }
5293 if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5294 e1000_validate_eeprom_checksum(hw))
5295 return -ENXIO;
Simon Glassc53abc32015-08-19 09:33:39 -06005296 e1000_read_mac_addr(hw, enetaddr);
5297#endif
5298 e1000_get_bus_type(hw);
5299
5300#ifndef CONFIG_E1000_NO_NVM
5301 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
5302 enetaddr[0], enetaddr[1], enetaddr[2],
5303 enetaddr[3], enetaddr[4], enetaddr[5]);
5304#else
5305 memset(enetaddr, 0, 6);
5306 printf("e1000: no NVM\n");
5307#endif
5308
5309 return 0;
5310}
5311
5312/* Put the name of a device in a string */
5313static void e1000_name(char *str, int cardnum)
5314{
5315 sprintf(str, "e1000#%u", cardnum);
5316}
5317
Simon Glass9f86b382015-08-19 09:33:40 -06005318#ifndef CONFIG_DM_ETH
Simon Glassc53abc32015-08-19 09:33:39 -06005319/**************************************************************************
5320TRANSMIT - Transmit a frame
5321***************************************************************************/
5322static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5323{
5324 struct e1000_hw *hw = nic->priv;
5325
5326 return _e1000_transmit(hw, txpacket, length);
5327}
5328
5329/**************************************************************************
5330DISABLE - Turn off ethernet interface
5331***************************************************************************/
5332static void
5333e1000_disable(struct eth_device *nic)
5334{
5335 struct e1000_hw *hw = nic->priv;
5336
5337 _e1000_disable(hw);
5338}
5339
5340/**************************************************************************
5341INIT - set up ethernet interface(s)
5342***************************************************************************/
5343static int
5344e1000_init(struct eth_device *nic, bd_t *bis)
5345{
5346 struct e1000_hw *hw = nic->priv;
5347
5348 return _e1000_init(hw, nic->enetaddr);
5349}
5350
5351static int
5352e1000_poll(struct eth_device *nic)
5353{
5354 struct e1000_hw *hw = nic->priv;
5355 int len;
5356
5357 len = _e1000_poll(hw);
5358 if (len) {
5359 net_process_received_packet((uchar *)packet, len);
5360 fill_rx(hw);
5361 }
5362
5363 return len ? 1 : 0;
5364}
5365
wdenk4e112c12003-06-03 23:54:09 +00005366/**************************************************************************
5367PROBE - Look for an adapter, this routine's visible to the outside
5368You should omit the last argument struct pci_device * for a non-PCI NIC
5369***************************************************************************/
5370int
5371e1000_initialize(bd_t * bis)
5372{
Kyle Moffett7b698d52011-10-18 11:05:26 +00005373 unsigned int i;
wdenk4e112c12003-06-03 23:54:09 +00005374 pci_dev_t devno;
Simon Glassc53abc32015-08-19 09:33:39 -06005375 int ret;
wdenk4e112c12003-06-03 23:54:09 +00005376
Timur Tabiedc45b52009-08-17 15:55:38 -05005377 DEBUGFUNC();
5378
Kyle Moffett7b698d52011-10-18 11:05:26 +00005379 /* Find and probe all the matching PCI devices */
5380 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005381 /*
5382 * These will never get freed due to errors, this allows us to
5383 * perform SPI EEPROM programming from U-boot, for example.
5384 */
5385 struct eth_device *nic = malloc(sizeof(*nic));
5386 struct e1000_hw *hw = malloc(sizeof(*hw));
5387 if (!nic || !hw) {
5388 printf("e1000#%u: Out of Memory!\n", i);
Kumar Gala76933572010-11-12 04:13:06 -06005389 free(nic);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005390 free(hw);
5391 continue;
Kumar Gala76933572010-11-12 04:13:06 -06005392 }
5393
Kyle Moffett7b698d52011-10-18 11:05:26 +00005394 /* Make sure all of the fields are initially zeroed */
Matthew McClintock5761ce42010-11-15 18:02:53 -06005395 memset(nic, 0, sizeof(*nic));
Kumar Gala76933572010-11-12 04:13:06 -06005396 memset(hw, 0, sizeof(*hw));
wdenk4e112c12003-06-03 23:54:09 +00005397 nic->priv = hw;
wdenk4e112c12003-06-03 23:54:09 +00005398
Kyle Moffett7b698d52011-10-18 11:05:26 +00005399 /* Generate a card name */
Simon Glassc53abc32015-08-19 09:33:39 -06005400 e1000_name(nic->name, i);
5401 hw->name = nic->name;
wdenk4e112c12003-06-03 23:54:09 +00005402
Simon Glassc53abc32015-08-19 09:33:39 -06005403 ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5404 if (ret)
Kyle Moffett7b698d52011-10-18 11:05:26 +00005405 continue;
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005406 list_add_tail(&hw->list_node, &e1000_hw_list);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005407
Simon Glassc53abc32015-08-19 09:33:39 -06005408 hw->nic = nic;
wdenk4e112c12003-06-03 23:54:09 +00005409
Kyle Moffett7b698d52011-10-18 11:05:26 +00005410 /* Set up the function pointers and register the device */
wdenk4e112c12003-06-03 23:54:09 +00005411 nic->init = e1000_init;
5412 nic->recv = e1000_poll;
5413 nic->send = e1000_transmit;
5414 nic->halt = e1000_disable;
wdenk4e112c12003-06-03 23:54:09 +00005415 eth_register(nic);
wdenk4e112c12003-06-03 23:54:09 +00005416 }
Kyle Moffett7b698d52011-10-18 11:05:26 +00005417
5418 return i;
wdenk4e112c12003-06-03 23:54:09 +00005419}
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005420
5421struct e1000_hw *e1000_find_card(unsigned int cardnum)
5422{
5423 struct e1000_hw *hw;
5424
5425 list_for_each_entry(hw, &e1000_hw_list, list_node)
5426 if (hw->cardnum == cardnum)
5427 return hw;
5428
5429 return NULL;
5430}
Simon Glass9f86b382015-08-19 09:33:40 -06005431#endif /* !CONFIG_DM_ETH */
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005432
5433#ifdef CONFIG_CMD_E1000
5434static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5435 int argc, char * const argv[])
5436{
Simon Glassc53abc32015-08-19 09:33:39 -06005437 unsigned char *mac = NULL;
Simon Glass9f86b382015-08-19 09:33:40 -06005438#ifdef CONFIG_DM_ETH
5439 struct eth_pdata *plat;
5440 struct udevice *dev;
5441 char name[30];
5442 int ret;
5443#else
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005444 struct e1000_hw *hw;
Simon Glass9f86b382015-08-19 09:33:40 -06005445#endif
5446 int cardnum;
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005447
5448 if (argc < 3) {
5449 cmd_usage(cmdtp);
5450 return 1;
5451 }
5452
5453 /* Make sure we can find the requested e1000 card */
Simon Glassc53abc32015-08-19 09:33:39 -06005454 cardnum = simple_strtoul(argv[1], NULL, 10);
Simon Glass9f86b382015-08-19 09:33:40 -06005455#ifdef CONFIG_DM_ETH
5456 e1000_name(name, cardnum);
5457 ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5458 if (!ret) {
5459 plat = dev_get_platdata(dev);
5460 mac = plat->enetaddr;
5461 }
5462#else
Simon Glassc53abc32015-08-19 09:33:39 -06005463 hw = e1000_find_card(cardnum);
5464 if (hw)
5465 mac = hw->nic->enetaddr;
Simon Glass9f86b382015-08-19 09:33:40 -06005466#endif
Simon Glassc53abc32015-08-19 09:33:39 -06005467 if (!mac) {
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005468 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5469 return 1;
5470 }
5471
5472 if (!strcmp(argv[2], "print-mac-address")) {
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005473 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5474 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5475 return 0;
5476 }
5477
5478#ifdef CONFIG_E1000_SPI
5479 /* Handle the "SPI" subcommand */
5480 if (!strcmp(argv[2], "spi"))
5481 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5482#endif
5483
5484 cmd_usage(cmdtp);
5485 return 1;
5486}
5487
5488U_BOOT_CMD(
5489 e1000, 7, 0, do_e1000,
5490 "Intel e1000 controller management",
5491 /* */"<card#> print-mac-address\n"
5492#ifdef CONFIG_E1000_SPI
5493 "e1000 <card#> spi show [<offset> [<length>]]\n"
5494 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5495 "e1000 <card#> spi program <addr> <offset> <length>\n"
5496 "e1000 <card#> spi checksum [update]\n"
5497#endif
5498 " - Manage the Intel E1000 PCI device"
5499);
5500#endif /* not CONFIG_CMD_E1000 */
Simon Glass9f86b382015-08-19 09:33:40 -06005501
5502#ifdef CONFIG_DM_ETH
5503static int e1000_eth_start(struct udevice *dev)
5504{
5505 struct eth_pdata *plat = dev_get_platdata(dev);
5506 struct e1000_hw *hw = dev_get_priv(dev);
5507
5508 return _e1000_init(hw, plat->enetaddr);
5509}
5510
5511static void e1000_eth_stop(struct udevice *dev)
5512{
5513 struct e1000_hw *hw = dev_get_priv(dev);
5514
5515 _e1000_disable(hw);
5516}
5517
5518static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5519{
5520 struct e1000_hw *hw = dev_get_priv(dev);
5521 int ret;
5522
5523 ret = _e1000_transmit(hw, packet, length);
5524
5525 return ret ? 0 : -ETIMEDOUT;
5526}
5527
5528static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5529{
5530 struct e1000_hw *hw = dev_get_priv(dev);
5531 int len;
5532
5533 len = _e1000_poll(hw);
5534 if (len)
5535 *packetp = packet;
5536
5537 return len ? len : -EAGAIN;
5538}
5539
5540static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5541{
5542 struct e1000_hw *hw = dev_get_priv(dev);
5543
5544 fill_rx(hw);
5545
5546 return 0;
5547}
5548
5549static int e1000_eth_probe(struct udevice *dev)
5550{
5551 struct eth_pdata *plat = dev_get_platdata(dev);
5552 struct e1000_hw *hw = dev_get_priv(dev);
5553 int ret;
5554
5555 hw->name = dev->name;
Simon Glasseaa14892015-11-29 13:17:47 -07005556 ret = e1000_init_one(hw, trailing_strtol(dev->name),
5557 dm_pci_get_bdf(dev), plat->enetaddr);
Simon Glass9f86b382015-08-19 09:33:40 -06005558 if (ret < 0) {
5559 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5560 return ret;
5561 }
5562
5563 return 0;
5564}
5565
5566static int e1000_eth_bind(struct udevice *dev)
5567{
5568 char name[20];
5569
5570 /*
5571 * A simple way to number the devices. When device tree is used this
5572 * is unnecessary, but when the device is just discovered on the PCI
5573 * bus we need a name. We could instead have the uclass figure out
5574 * which devices are different and number them.
5575 */
5576 e1000_name(name, num_cards++);
5577
5578 return device_set_name(dev, name);
5579}
5580
5581static const struct eth_ops e1000_eth_ops = {
5582 .start = e1000_eth_start,
5583 .send = e1000_eth_send,
5584 .recv = e1000_eth_recv,
5585 .stop = e1000_eth_stop,
5586 .free_pkt = e1000_free_pkt,
5587};
5588
5589static const struct udevice_id e1000_eth_ids[] = {
5590 { .compatible = "intel,e1000" },
5591 { }
5592};
5593
5594U_BOOT_DRIVER(eth_e1000) = {
5595 .name = "eth_e1000",
5596 .id = UCLASS_ETH,
5597 .of_match = e1000_eth_ids,
5598 .bind = e1000_eth_bind,
5599 .probe = e1000_eth_probe,
5600 .ops = &e1000_eth_ops,
5601 .priv_auto_alloc_size = sizeof(struct e1000_hw),
5602 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5603};
5604
5605U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5606#endif