blob: 61cab87035ffca2c2ab8748dd0cbbe6579c54d9a [file] [log] [blame]
wdenkfe8c2802002-11-03 00:38:21 +00001/*
2 * (C) Copyright 2002
3 * Custom IDEAS, Inc. <www.cideas.com>
4 * Gerald Van Baren <vanbaren@cideas.com>
5 *
6 * See file CREDITS for list of people who contributed to this
7 * project.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of
12 * the License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22 * MA 02111-1307 USA
23 */
24
wdenkfe8c2802002-11-03 00:38:21 +000025#include <common.h>
Wolfgang Denk20a5f782008-07-03 22:34:08 +020026#include <asm/u-boot.h>
wdenkfe8c2802002-11-03 00:38:21 +000027#include <ioports.h>
28#include <mpc8260.h>
wdenkfe8c2802002-11-03 00:38:21 +000029#include <i2c.h>
30#include <spi.h>
wdenk1f197c62003-09-15 18:00:00 +000031#include <command.h>
wdenkfe8c2802002-11-03 00:38:21 +000032
33#ifdef CONFIG_SHOW_BOOT_PROGRESS
34#include <status_led.h>
35#endif
36
wdenk1f197c62003-09-15 18:00:00 +000037#ifdef CONFIG_ETHER_LOOPBACK_TEST
38extern void eth_loopback_test(void);
39#endif /* CONFIG_ETHER_LOOPBACK_TEST */
40
wdenkfe8c2802002-11-03 00:38:21 +000041#include "clkinit.h"
42#include "ioconfig.h" /* I/O configuration table */
43
44/*
45 * PBI Page Based Interleaving
46 * PSDMR_PBI page based interleaving
47 * 0 bank based interleaving
48 * External Address Multiplexing (EAMUX) adds a clock to address cycles
49 * (this can help with marginal board layouts)
50 * PSDMR_EAMUX adds a clock
51 * 0 no extra clock
52 * Buffer Command (BUFCMD) adds a clock to command cycles.
53 * PSDMR_BUFCMD adds a clock
54 * 0 no extra clock
55 */
56#define CONFIG_PBI PSDMR_PBI
57#define PESSIMISTIC_SDRAM 0
58#define EAMUX 0 /* EST requires EAMUX */
59#define BUFCMD 0
60
61/*
62 * ADC/DAC Defines:
63 */
64#define INITIAL_SAMPLE_RATE 10016 /* Initial Daq sample rate */
65#define INITIAL_RIGHT_JUST 0 /* Initial DAC right justification */
66#define INITIAL_MCLK_DIVIDE 0 /* Initial MCLK Divide */
67#define INITIAL_SAMPLE_64X 1 /* Initial 64x clocking mode */
68#define INITIAL_SAMPLE_128X 0 /* Initial 128x clocking mode */
69
70/*
71 * ADC Defines:
72 */
73#define I2C_ADC_1_ADDR 0x0E /* I2C Address of the ADC #1 */
74#define I2C_ADC_2_ADDR 0x0F /* I2C Address of the ADC #2 */
75
76#define ADC_SDATA1_MASK 0x00020000 /* PA14 - CH12SDATA_PU */
77#define ADC_SDATA2_MASK 0x00010000 /* PA15 - CH34SDATA_PU */
78
79#define ADC_VREF_CAP 100 /* VREF capacitor in uF */
80#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */
81#define ADC_SDATA_DELAY 100 /* ADC SDATA release delay in usec */
82#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500)
wdenk57b2d802003-06-27 21:31:46 +000083 /* Wait at least 4100 LRCLK's */
wdenkfe8c2802002-11-03 00:38:21 +000084
85#define ADC_REG1_FRAME_START 0x80 /* Frame start */
86#define ADC_REG1_GROUND_CAL 0x40 /* Ground calibration enable */
87#define ADC_REG1_ANA_MOD_PDOWN 0x20 /* Analog modulator section in power down */
88#define ADC_REG1_DIG_MOD_PDOWN 0x10 /* Digital modulator section in power down */
89
90#define ADC_REG2_128x 0x80 /* Oversample at 128x */
91#define ADC_REG2_CAL 0x40 /* System calibration enable */
92#define ADC_REG2_CHANGE_SIGN 0x20 /* Change sign enable */
93#define ADC_REG2_LR_DISABLE 0x10 /* Left/Right output disable */
94#define ADC_REG2_HIGH_PASS_DIS 0x08 /* High pass filter disable */
95#define ADC_REG2_SLAVE_MODE 0x04 /* Slave mode */
96#define ADC_REG2_DFS 0x02 /* Digital format select */
97#define ADC_REG2_MUTE 0x01 /* Mute */
98
99#define ADC_REG7_ADDR_ENABLE 0x80 /* Address enable */
100#define ADC_REG7_PEAK_ENABLE 0x40 /* Peak enable */
101#define ADC_REG7_PEAK_UPDATE 0x20 /* Peak update */
102#define ADC_REG7_PEAK_FORMAT 0x10 /* Peak display format */
103#define ADC_REG7_DIG_FILT_PDOWN 0x04 /* Digital filter power down enable */
104#define ADC_REG7_FIR2_IN_EN 0x02 /* External FIR2 input enable */
105#define ADC_REG7_PSYCHO_EN 0x01 /* External pyscho filter input enable */
106
107/*
108 * DAC Defines:
109 */
110
111#define I2C_DAC_ADDR 0x11 /* I2C Address of the DAC */
112
113#define DAC_RST_MASK 0x00008000 /* PA16 - DAC_RST* */
114#define DAC_RESET_DELAY 100 /* DAC reset delay in usec */
115#define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */
116
117#define DAC_REG1_AMUTE 0x80 /* Auto-mute */
118
119#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit */
120#define DAC_REG1_I2S_24_BIT (1 << 4) /* Fmt 1: I2S up to 24 bit */
121#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */
122#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */
123#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */
124#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */
125
126#define DAC_REG1_DEM_NO (0 << 2) /* No De-emphasis */
127#define DAC_REG1_DEM_44KHZ (1 << 2) /* 44.1KHz De-emphasis */
128#define DAC_REG1_DEM_48KHZ (2 << 2) /* 48KHz De-emphasis */
129#define DAC_REG1_DEM_32KHZ (3 << 2) /* 32KHz De-emphasis */
130
131#define DAC_REG1_SINGLE 0 /* 4- 50KHz sample rate */
132#define DAC_REG1_DOUBLE 1 /* 50-100KHz sample rate */
133#define DAC_REG1_QUAD 2 /* 100-200KHz sample rate */
134#define DAC_REG1_DSD 3 /* Direct Stream Data, DSD */
135
136#define DAC_REG5_INVERT_A 0x80 /* Invert channel A */
137#define DAC_REG5_INVERT_B 0x40 /* Invert channel B */
138#define DAC_REG5_I2C_MODE 0x20 /* Control port (I2C) mode */
139#define DAC_REG5_POWER_DOWN 0x10 /* Power down mode */
140#define DAC_REG5_MUTEC_A_B 0x08 /* Mutec A=B */
141#define DAC_REG5_FREEZE 0x04 /* Freeze */
142#define DAC_REG5_MCLK_DIV 0x02 /* MCLK divide by 2 */
143#define DAC_REG5_RESERVED 0x01 /* Reserved */
144
145/* ------------------------------------------------------------------------- */
146
147/*
148 * Check Board Identity:
149 */
150
151int checkboard(void)
152{
153 printf ("SACSng\n");
154
155 return 0;
156}
157
158/* ------------------------------------------------------------------------- */
159
Becky Brucebd99ae72008-06-09 16:03:40 -0500160phys_size_t initdram(int board_type)
wdenkfe8c2802002-11-03 00:38:21 +0000161{
Jean-Christophe PLAGNIOL-VILLARD03836942008-10-16 15:01:15 +0200162 volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
wdenkfe8c2802002-11-03 00:38:21 +0000163 volatile memctl8260_t *memctl = &immap->im_memctl;
164 volatile uchar c = 0;
Jean-Christophe PLAGNIOL-VILLARD03836942008-10-16 15:01:15 +0200165 volatile uchar *ramaddr = (uchar *)(CONFIG_SYS_SDRAM_BASE + 0x8);
166 uint psdmr = CONFIG_SYS_PSDMR;
wdenkfe8c2802002-11-03 00:38:21 +0000167 int i;
168 uint psrt = 14; /* for no SPD */
169 uint chipselects = 1; /* for no SPD */
Jean-Christophe PLAGNIOL-VILLARD03836942008-10-16 15:01:15 +0200170 uint sdram_size = CONFIG_SYS_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */
171 uint or = CONFIG_SYS_OR2_PRELIM; /* for no SPD */
wdenkfe8c2802002-11-03 00:38:21 +0000172#ifdef SDRAM_SPD_ADDR
173 uint data_width;
174 uint rows;
175 uint banks;
176 uint cols;
177 uint caslatency;
178 uint width;
179 uint rowst;
180 uint sdam;
181 uint bsma;
182 uint sda10;
183 u_char spd_size;
184 u_char data;
185 u_char cksum;
186 int j;
187#endif
188
189#ifdef SDRAM_SPD_ADDR
190 /* Keep the compiler from complaining about potentially uninitialized vars */
191 data_width = chipselects = rows = banks = cols = caslatency = psrt = 0;
192
193 /*
194 * Read the SDRAM SPD EEPROM via I2C.
195 */
196 i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
197 spd_size = data;
198 cksum = data;
199 for(j = 1; j < 64; j++) { /* read only the checksummed bytes */
200 /* note: the I2C address autoincrements when alen == 0 */
201 i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
202 if(j == 5) chipselects = data & 0x0F;
203 else if(j == 6) data_width = data;
204 else if(j == 7) data_width |= data << 8;
205 else if(j == 3) rows = data & 0x0F;
206 else if(j == 4) cols = data & 0x0F;
207 else if(j == 12) {
208 /*
wdenk57b2d802003-06-27 21:31:46 +0000209 * Refresh rate: this assumes the prescaler is set to
wdenkfe8c2802002-11-03 00:38:21 +0000210 * approximately 1uSec per tick.
211 */
212 switch(data & 0x7F) {
wdenk57b2d802003-06-27 21:31:46 +0000213 default:
214 case 0: psrt = 14 ; /* 15.625uS */ break;
215 case 1: psrt = 2; /* 3.9uS */ break;
216 case 2: psrt = 6; /* 7.8uS */ break;
217 case 3: psrt = 29; /* 31.3uS */ break;
218 case 4: psrt = 60; /* 62.5uS */ break;
219 case 5: psrt = 120; /* 125uS */ break;
wdenkfe8c2802002-11-03 00:38:21 +0000220 }
221 }
222 else if(j == 17) banks = data;
223 else if(j == 18) {
224 caslatency = 3; /* default CL */
225#if(PESSIMISTIC_SDRAM)
226 if((data & 0x04) != 0) caslatency = 3;
227 else if((data & 0x02) != 0) caslatency = 2;
228 else if((data & 0x01) != 0) caslatency = 1;
229#else
230 if((data & 0x01) != 0) caslatency = 1;
231 else if((data & 0x02) != 0) caslatency = 2;
232 else if((data & 0x04) != 0) caslatency = 3;
233#endif
234 else {
235 printf ("WARNING: Unknown CAS latency 0x%02X, using 3\n",
wdenk57b2d802003-06-27 21:31:46 +0000236 data);
wdenkfe8c2802002-11-03 00:38:21 +0000237 }
238 }
239 else if(j == 63) {
240 if(data != cksum) {
241 printf ("WARNING: Configuration data checksum failure:"
wdenk57b2d802003-06-27 21:31:46 +0000242 " is 0x%02x, calculated 0x%02x\n",
wdenkfe8c2802002-11-03 00:38:21 +0000243 data, cksum);
244 }
245 }
246 cksum += data;
247 }
248
249 /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
250 if(caslatency < 2) {
wdenk1f197c62003-09-15 18:00:00 +0000251 printf("WARNING: CL was %d, forcing to 2\n", caslatency);
wdenkfe8c2802002-11-03 00:38:21 +0000252 caslatency = 2;
253 }
254 if(rows > 14) {
wdenk1f197c62003-09-15 18:00:00 +0000255 printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n", rows);
wdenkfe8c2802002-11-03 00:38:21 +0000256 rows = 14;
257 }
258 if(cols > 11) {
wdenk1f197c62003-09-15 18:00:00 +0000259 printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n", cols);
wdenkfe8c2802002-11-03 00:38:21 +0000260 cols = 11;
261 }
262
263 if((data_width != 64) && (data_width != 72))
264 {
265 printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
266 data_width);
267 }
268 width = 3; /* 2^3 = 8 bytes = 64 bits wide */
269 /*
270 * Convert banks into log2(banks)
271 */
272 if (banks == 2) banks = 1;
273 else if(banks == 4) banks = 2;
274 else if(banks == 8) banks = 3;
275
276 sdram_size = 1 << (rows + cols + banks + width);
277
278#if(CONFIG_PBI == 0) /* bank-based interleaving */
279 rowst = ((32 - 6) - (rows + cols + width)) * 2;
280#else
281 rowst = 32 - (rows + banks + cols + width);
282#endif
283
284 or = ~(sdram_size - 1) | /* SDAM address mask */
285 ((banks-1) << 13) | /* banks per device */
286 (rowst << 9) | /* rowst */
287 ((rows - 9) << 6); /* numr */
288
289 memctl->memc_or2 = or;
290
291 /*
292 * SDAM specifies the number of columns that are multiplexed
293 * (reference AN2165/D), defined to be (columns - 6) for page
294 * interleave, (columns - 8) for bank interleave.
295 *
296 * BSMA is 14 - max(rows, cols). The bank select lines come
297 * into play above the highest "address" line going into the
298 * the SDRAM.
299 */
300#if(CONFIG_PBI == 0) /* bank-based interleaving */
301 sdam = cols - 8;
302 bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
303 sda10 = sdam + 2;
304#else
305 sdam = cols - 6;
306 bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
307 sda10 = sdam;
308#endif
309#if(PESSIMISTIC_SDRAM)
310 psdmr = (CONFIG_PBI |\
311 PSDMR_RFEN |\
312 PSDMR_RFRC_16_CLK |\
313 PSDMR_PRETOACT_8W |\
314 PSDMR_ACTTORW_8W |\
315 PSDMR_WRC_4C |\
316 PSDMR_EAMUX |\
wdenk57b2d802003-06-27 21:31:46 +0000317 PSDMR_BUFCMD) |\
wdenkfe8c2802002-11-03 00:38:21 +0000318 caslatency |\
319 ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \
320 (sdam << 24) |\
321 (bsma << 21) |\
322 (sda10 << 18);
323#else
324 psdmr = (CONFIG_PBI |\
325 PSDMR_RFEN |\
326 PSDMR_RFRC_7_CLK |\
327 PSDMR_PRETOACT_3W | /* 1 for 7E parts (fast PC-133) */ \
328 PSDMR_ACTTORW_2W | /* 1 for 7E parts (fast PC-133) */ \
329 PSDMR_WRC_1C | /* 1 clock + 7nSec */
330 EAMUX |\
wdenk57b2d802003-06-27 21:31:46 +0000331 BUFCMD) |\
wdenkfe8c2802002-11-03 00:38:21 +0000332 caslatency |\
333 ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ \
334 (sdam << 24) |\
335 (bsma << 21) |\
336 (sda10 << 18);
337#endif
338#endif
339
340 /*
341 * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
342 *
343 * "At system reset, initialization software must set up the
344 * programmable parameters in the memory controller banks registers
345 * (ORx, BRx, P/LSDMR). After all memory parameters are configured,
346 * system software should execute the following initialization sequence
347 * for each SDRAM device.
348 *
349 * 1. Issue a PRECHARGE-ALL-BANKS command
350 * 2. Issue eight CBR REFRESH commands
351 * 3. Issue a MODE-SET command to initialize the mode register
352 *
353 * Quote from Micron MT48LC8M16A2 data sheet:
354 *
355 * "...the SDRAM requires a 100uS delay prior to issuing any
356 * command other than a COMMAND INHIBIT or NOP. Starting at some
357 * point during this 100uS period and continuing at least through
358 * the end of this period, COMMAND INHIBIT or NOP commands should
359 * be applied."
360 *
361 * "Once the 100uS delay has been satisfied with at least one COMMAND
362 * INHIBIT or NOP command having been applied, a /PRECHARGE command/
363 * should be applied. All banks must then be precharged, thereby
364 * placing the device in the all banks idle state."
365 *
366 * "Once in the idle state, /two/ AUTO REFRESH cycles must be
367 * performed. After the AUTO REFRESH cycles are complete, the
368 * SDRAM is ready for mode register programming."
369 *
370 * (/emphasis/ mine, gvb)
371 *
372 * The way I interpret this, Micron start up sequence is:
373 * 1. Issue a PRECHARGE-BANK command (initial precharge)
374 * 2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
375 * 3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
376 * 4. Issue a MODE-SET command to initialize the mode register
377 *
378 * --------
379 *
380 * The initial commands are executed by setting P/LSDMR[OP] and
381 * accessing the SDRAM with a single-byte transaction."
382 *
383 * The appropriate BRx/ORx registers have already been set when we
Jean-Christophe PLAGNIOL-VILLARD03836942008-10-16 15:01:15 +0200384 * get here. The SDRAM can be accessed at the address CONFIG_SYS_SDRAM_BASE.
wdenkfe8c2802002-11-03 00:38:21 +0000385 */
386
Jean-Christophe PLAGNIOL-VILLARD03836942008-10-16 15:01:15 +0200387 memctl->memc_mptpr = CONFIG_SYS_MPTPR;
wdenkfe8c2802002-11-03 00:38:21 +0000388 memctl->memc_psrt = psrt;
389
390 memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
391 *ramaddr = c;
392
393 memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
394 for (i = 0; i < 8; i++)
395 *ramaddr = c;
396
397 memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
398 *ramaddr = c;
399
400 memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
401 *ramaddr = c;
402
403 /*
404 * Do it a second time for the second set of chips if the DIMM has
405 * two chip selects (double sided).
406 */
407 if(chipselects > 1) {
wdenk57b2d802003-06-27 21:31:46 +0000408 ramaddr += sdram_size;
wdenkfe8c2802002-11-03 00:38:21 +0000409
Jean-Christophe PLAGNIOL-VILLARD03836942008-10-16 15:01:15 +0200410 memctl->memc_br3 = CONFIG_SYS_BR3_PRELIM + sdram_size;
wdenkfe8c2802002-11-03 00:38:21 +0000411 memctl->memc_or3 = or;
412
413 memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
414 *ramaddr = c;
415
416 memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
417 for (i = 0; i < 8; i++)
418 *ramaddr = c;
419
420 memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
421 *ramaddr = c;
422
423 memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
424 *ramaddr = c;
425 }
426
427 /* return total ram size */
428 return (sdram_size * chipselects);
429}
430
431/*-----------------------------------------------------------------------
432 * Board Control Functions
433 */
434void board_poweroff (void)
435{
436 while (1); /* hang forever */
437}
438
439
440#ifdef CONFIG_MISC_INIT_R
441/* ------------------------------------------------------------------------- */
442int misc_init_r(void)
443{
444 /*
445 * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
446 */
Jean-Christophe PLAGNIOL-VILLARD03836942008-10-16 15:01:15 +0200447 volatile ioport_t *iopa = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0 /* port A */);
448 volatile ioport_t *iop = ioport_addr((immap_t *)CONFIG_SYS_IMMR, I2C_PORT);
wdenkfe8c2802002-11-03 00:38:21 +0000449
450 int reg; /* I2C register value */
451 char *ep; /* Environment pointer */
452 char str_buf[12] ; /* sprintf output buffer */
453 int sample_rate; /* ADC/DAC sample rate */
454 int sample_64x; /* Use 64/4 clocking for the ADC/DAC */
455 int sample_128x; /* Use 128/4 clocking for the ADC/DAC */
456 int right_just; /* Is the data to the DAC right justified? */
457 int mclk_divide; /* MCLK Divide */
wdenk1f197c62003-09-15 18:00:00 +0000458 int quiet; /* Quiet or minimal output mode */
459
460 quiet = 0;
461 if ((ep = getenv("quiet")) != NULL) {
462 quiet = simple_strtol(ep, NULL, 10);
463 }
464 else {
465 setenv("quiet", "0");
466 }
wdenkfe8c2802002-11-03 00:38:21 +0000467
468 /*
469 * SACSng custom initialization:
470 * Start the ADC and DAC clocks, since the Crystal parts do not
471 * work on the I2C bus until the clocks are running.
472 */
473
474 sample_rate = INITIAL_SAMPLE_RATE;
475 if ((ep = getenv("DaqSampleRate")) != NULL) {
wdenk57b2d802003-06-27 21:31:46 +0000476 sample_rate = simple_strtol(ep, NULL, 10);
wdenkfe8c2802002-11-03 00:38:21 +0000477 }
478
479 sample_64x = INITIAL_SAMPLE_64X;
480 sample_128x = INITIAL_SAMPLE_128X;
481 if ((ep = getenv("Daq64xSampling")) != NULL) {
wdenk57b2d802003-06-27 21:31:46 +0000482 sample_64x = simple_strtol(ep, NULL, 10);
wdenkfe8c2802002-11-03 00:38:21 +0000483 if (sample_64x) {
484 sample_128x = 0;
485 }
486 else {
487 sample_128x = 1;
488 }
489 }
490 else {
wdenk57b2d802003-06-27 21:31:46 +0000491 if ((ep = getenv("Daq128xSampling")) != NULL) {
wdenkfe8c2802002-11-03 00:38:21 +0000492 sample_128x = simple_strtol(ep, NULL, 10);
493 if (sample_128x) {
wdenk57b2d802003-06-27 21:31:46 +0000494 sample_64x = 0;
wdenkfe8c2802002-11-03 00:38:21 +0000495 }
496 else {
wdenk57b2d802003-06-27 21:31:46 +0000497 sample_64x = 1;
wdenkfe8c2802002-11-03 00:38:21 +0000498 }
499 }
500 }
501
wdenk57b2d802003-06-27 21:31:46 +0000502 /*
wdenkc217f6d2002-11-11 02:11:37 +0000503 * Stop the clocks and wait for at least 1 LRCLK period
504 * to make sure the clocking has really stopped.
505 */
506 Daq_Stop_Clocks();
507 udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
508
509 /*
510 * Initialize the clocks with the new rates
511 */
wdenkfe8c2802002-11-03 00:38:21 +0000512 Daq_Init_Clocks(sample_rate, sample_64x);
513 sample_rate = Daq_Get_SampleRate();
wdenkc217f6d2002-11-11 02:11:37 +0000514
515 /*
516 * Start the clocks and wait for at least 1 LRCLK period
517 * to make sure the clocking has become stable.
518 */
wdenkfe8c2802002-11-03 00:38:21 +0000519 Daq_Start_Clocks(sample_rate);
wdenkc217f6d2002-11-11 02:11:37 +0000520 udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);
wdenkfe8c2802002-11-03 00:38:21 +0000521
522 sprintf(str_buf, "%d", sample_rate);
523 setenv("DaqSampleRate", str_buf);
524
525 if (sample_64x) {
wdenk57b2d802003-06-27 21:31:46 +0000526 setenv("Daq64xSampling", "1");
527 setenv("Daq128xSampling", NULL);
wdenkfe8c2802002-11-03 00:38:21 +0000528 }
529 else {
wdenk57b2d802003-06-27 21:31:46 +0000530 setenv("Daq64xSampling", NULL);
531 setenv("Daq128xSampling", "1");
wdenkfe8c2802002-11-03 00:38:21 +0000532 }
533
wdenk9c53f402003-10-15 23:53:47 +0000534 /*
535 * Display the ADC/DAC clocking information
wdenk1f197c62003-09-15 18:00:00 +0000536 */
537 if (!quiet) {
wdenk9c53f402003-10-15 23:53:47 +0000538 Daq_Display_Clocks();
wdenk1f197c62003-09-15 18:00:00 +0000539 }
wdenkfe8c2802002-11-03 00:38:21 +0000540
541 /*
542 * Determine the DAC data justification
543 */
544
545 right_just = INITIAL_RIGHT_JUST;
546 if ((ep = getenv("DaqDACRightJustified")) != NULL) {
wdenk57b2d802003-06-27 21:31:46 +0000547 right_just = simple_strtol(ep, NULL, 10);
wdenkfe8c2802002-11-03 00:38:21 +0000548 }
549
550 sprintf(str_buf, "%d", right_just);
551 setenv("DaqDACRightJustified", str_buf);
552
553 /*
554 * Determine the DAC MCLK Divide
555 */
556
557 mclk_divide = INITIAL_MCLK_DIVIDE;
558 if ((ep = getenv("DaqDACMClockDivide")) != NULL) {
wdenk57b2d802003-06-27 21:31:46 +0000559 mclk_divide = simple_strtol(ep, NULL, 10);
wdenkfe8c2802002-11-03 00:38:21 +0000560 }
561
562 sprintf(str_buf, "%d", mclk_divide);
563 setenv("DaqDACMClockDivide", str_buf);
564
565 /*
566 * Initializing the I2C address in the Crystal A/Ds:
567 *
568 * 1) Wait for VREF cap to settle (10uSec per uF)
569 * 2) Release pullup on SDATA
570 * 3) Write the I2C address to register 6
571 * 4) Enable address matching by setting the MSB in register 7
572 */
wdenk9c53f402003-10-15 23:53:47 +0000573
wdenk1f197c62003-09-15 18:00:00 +0000574 if (!quiet) {
wdenk9c53f402003-10-15 23:53:47 +0000575 printf("Initializing the ADC...\n");
wdenk1f197c62003-09-15 18:00:00 +0000576 }
wdenkfe8c2802002-11-03 00:38:21 +0000577 udelay(ADC_INITIAL_DELAY); /* 10uSec per uF of VREF cap */
578
579 iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */
580 udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
581
582 i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR); /* set address */
583 i2c_reg_write(I2C_ADC_1_ADDR, 0x07, /* turn on ADDREN */
584 ADC_REG7_ADDR_ENABLE);
585
586 i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */
587 (sample_64x ? 0 : ADC_REG2_128x) |
588 ADC_REG2_HIGH_PASS_DIS |
589 ADC_REG2_SLAVE_MODE);
590
591 reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
592 if(reg != I2C_ADC_1_ADDR)
593 printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
594 reg, I2C_ADC_1_ADDR);
595
596 iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */
597 udelay(ADC_SDATA_DELAY); /* arbitrary settling time */
598
599 i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR); /* set address (do not set ADDREN yet) */
600
601 i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */
602 (sample_64x ? 0 : ADC_REG2_128x) |
603 ADC_REG2_HIGH_PASS_DIS |
604 ADC_REG2_SLAVE_MODE);
605
606 reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
607 if(reg != I2C_ADC_2_ADDR)
608 printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
609 reg, I2C_ADC_2_ADDR);
610
611 i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */
612 ADC_REG1_FRAME_START |
613 ADC_REG1_GROUND_CAL);
614
615 i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */
616 (sample_64x ? 0 : ADC_REG2_128x) |
617 ADC_REG2_CAL |
618 ADC_REG2_HIGH_PASS_DIS |
619 ADC_REG2_SLAVE_MODE);
620
621 udelay(ADC_CAL_DELAY); /* a minimum of 4100 LRCLKs */
622 i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00); /* remove GNDCAL */
623
624 /*
625 * Now that we have synchronized the ADC's, enable address
626 * selection on the second ADC as well as the first.
627 */
628 i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);
629
630 /*
631 * Initialize the Crystal DAC
632 *
633 * Two of the config lines are used for I2C so we have to set them
634 * to the proper initialization state without inadvertantly
635 * sending an I2C "start" sequence. When we bring the I2C back to
636 * the normal state, we send an I2C "stop" sequence.
637 */
wdenk1f197c62003-09-15 18:00:00 +0000638 if (!quiet) {
639 printf("Initializing the DAC...\n");
640 }
wdenkfe8c2802002-11-03 00:38:21 +0000641
642 /*
643 * Bring the I2C clock and data lines low for initialization
644 */
645 I2C_SCL(0);
646 I2C_DELAY;
647 I2C_SDA(0);
648 I2C_ACTIVE;
649 I2C_DELAY;
650
651 /* Reset the DAC */
652 iopa->pdat &= ~DAC_RST_MASK;
653 udelay(DAC_RESET_DELAY);
654
655 /* Release the DAC reset */
656 iopa->pdat |= DAC_RST_MASK;
657 udelay(DAC_INITIAL_DELAY);
658
659 /*
660 * Cause the DAC to:
661 * Enable control port (I2C mode)
662 * Going into power down
663 */
664 i2c_reg_write(I2C_DAC_ADDR, 0x05,
665 DAC_REG5_I2C_MODE |
666 DAC_REG5_POWER_DOWN);
667
668 /*
669 * Cause the DAC to:
670 * Enable control port (I2C mode)
671 * Going into power down
672 * . MCLK divide by 1
673 * . MCLK divide by 2
674 */
675 i2c_reg_write(I2C_DAC_ADDR, 0x05,
676 DAC_REG5_I2C_MODE |
677 DAC_REG5_POWER_DOWN |
678 (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
679
680 /*
681 * Cause the DAC to:
682 * Auto-mute disabled
683 * . Format 0, left justified 24 bits
684 * . Format 3, right justified 24 bits
685 * No de-emphasis
686 * . Single speed mode
687 * . Double speed mode
688 */
689 i2c_reg_write(I2C_DAC_ADDR, 0x01,
690 (right_just ? DAC_REG1_RIGHT_JUST_24BIT :
wdenk57b2d802003-06-27 21:31:46 +0000691 DAC_REG1_LEFT_JUST_24_BIT) |
wdenkfe8c2802002-11-03 00:38:21 +0000692 DAC_REG1_DEM_NO |
693 (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));
694
695 sprintf(str_buf, "%d",
696 sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
697 setenv("DaqDACFunctionalMode", str_buf);
698
699 /*
700 * Cause the DAC to:
701 * Enable control port (I2C mode)
702 * Remove power down
703 * . MCLK divide by 1
704 * . MCLK divide by 2
705 */
706 i2c_reg_write(I2C_DAC_ADDR, 0x05,
707 DAC_REG5_I2C_MODE |
708 (mclk_divide ? DAC_REG5_MCLK_DIV : 0));
709
710 /*
711 * Create a I2C stop condition:
712 * low->high on data while clock is high.
713 */
714 I2C_SCL(1);
715 I2C_DELAY;
716 I2C_SDA(1);
717 I2C_DELAY;
718 I2C_TRISTATE;
719
wdenk1f197c62003-09-15 18:00:00 +0000720 if (!quiet) {
wdenk9c53f402003-10-15 23:53:47 +0000721 printf("\n");
wdenk1f197c62003-09-15 18:00:00 +0000722 }
723
724#ifdef CONFIG_ETHER_LOOPBACK_TEST
725 /*
726 * Run the Ethernet loopback test
727 */
728 eth_loopback_test ();
729#endif /* CONFIG_ETHER_LOOPBACK_TEST */
wdenkfe8c2802002-11-03 00:38:21 +0000730
731#ifdef CONFIG_SHOW_BOOT_PROGRESS
732 /*
733 * Turn off the RED fail LED now that we are up and running.
734 */
735 status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
736#endif
737
738 return 0;
739}
740
741#ifdef CONFIG_SHOW_BOOT_PROGRESS
742/*
743 * Show boot status: flash the LED if something goes wrong, indicating
744 * that last thing that worked and thus, by implication, what is broken.
745 *
746 * This stores the last OK value in RAM so this will not work properly
747 * before RAM is initialized. Since it is being used for indicating
748 * boot status (i.e. after RAM is initialized), that is OK.
749 */
750static void flash_code(uchar number, uchar modulo, uchar digits)
751{
752 int j;
753
754 /*
755 * Recursively do upper digits.
756 */
757 if(digits > 1) {
wdenk57b2d802003-06-27 21:31:46 +0000758 flash_code(number / modulo, modulo, digits - 1);
wdenkfe8c2802002-11-03 00:38:21 +0000759 }
760
761 number = number % modulo;
762
763 /*
764 * Zero is indicated by one long flash (dash).
765 */
766 if(number == 0) {
wdenk57b2d802003-06-27 21:31:46 +0000767 status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
768 udelay(1000000);
769 status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
770 udelay(200000);
wdenkfe8c2802002-11-03 00:38:21 +0000771 } else {
wdenk57b2d802003-06-27 21:31:46 +0000772 /*
773 * Non-zero is indicated by short flashes, one per count.
774 */
775 for(j = 0; j < number; j++) {
776 status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
777 udelay(100000);
778 status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
779 udelay(200000);
780 }
wdenkfe8c2802002-11-03 00:38:21 +0000781 }
782 /*
783 * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
784 */
785 udelay(700000);
786}
787
788static int last_boot_progress;
789
790void show_boot_progress (int status)
791{
wdenk1f197c62003-09-15 18:00:00 +0000792 int i,j;
793 if(status > 0) {
wdenk57b2d802003-06-27 21:31:46 +0000794 last_boot_progress = status;
wdenkfe8c2802002-11-03 00:38:21 +0000795 } else {
wdenk9c53f402003-10-15 23:53:47 +0000796 /*
wdenk1f197c62003-09-15 18:00:00 +0000797 * If a specific failure code is given, flash this code
798 * else just use the last success code we've seen
799 */
800 if(status < -1)
801 last_boot_progress = -status;
wdenk9c53f402003-10-15 23:53:47 +0000802
803 /*
wdenk1f197c62003-09-15 18:00:00 +0000804 * Flash this code 5 times
805 */
806 for(j=0; j<5; j++) {
807 /*
808 * Houston, we have a problem.
809 * Blink the last OK status which indicates where things failed.
810 */
811 status_led_set(STATUS_LED_RED, STATUS_LED_ON);
812 flash_code(last_boot_progress, 5, 3);
813
wdenk9c53f402003-10-15 23:53:47 +0000814 /*
815 * Delay 5 seconds between repetitions,
816 * with the fault LED blinking
wdenk1f197c62003-09-15 18:00:00 +0000817 */
818 for(i=0; i<5; i++) {
wdenk9c53f402003-10-15 23:53:47 +0000819 status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
820 udelay(500000);
821 status_led_set(STATUS_LED_RED, STATUS_LED_ON);
822 udelay(500000);
wdenk1f197c62003-09-15 18:00:00 +0000823 }
824 }
825
wdenk57b2d802003-06-27 21:31:46 +0000826 /*
wdenk1f197c62003-09-15 18:00:00 +0000827 * Reset the board to retry initialization.
wdenk57b2d802003-06-27 21:31:46 +0000828 */
wdenk1f197c62003-09-15 18:00:00 +0000829 do_reset (NULL, 0, 0, NULL);
wdenkfe8c2802002-11-03 00:38:21 +0000830 }
831}
832#endif /* CONFIG_SHOW_BOOT_PROGRESS */
833
834
835/*
836 * The following are used to control the SPI chip selects for the SPI command.
837 */
Jon Loeligere11c1232007-07-09 18:45:16 -0500838#if defined(CONFIG_CMD_SPI)
wdenkfe8c2802002-11-03 00:38:21 +0000839
840#define SPI_ADC_CS_MASK 0x00000800
841#define SPI_DAC_CS_MASK 0x00001000
842
Haavard Skinnemoend74084a2008-05-16 11:10:31 +0200843static const u32 cs_mask[] = {
844 SPI_ADC_CS_MASK,
845 SPI_DAC_CS_MASK,
846};
847
848int spi_cs_is_valid(unsigned int bus, unsigned int cs)
849{
850 return bus == 0 && cs < sizeof(cs_mask) / sizeof(cs_mask[0]);
851}
852
853void spi_cs_activate(struct spi_slave *slave)
wdenkfe8c2802002-11-03 00:38:21 +0000854{
Jean-Christophe PLAGNIOL-VILLARD03836942008-10-16 15:01:15 +0200855 volatile ioport_t *iopd = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 3 /* port D */);
wdenkfe8c2802002-11-03 00:38:21 +0000856
Haavard Skinnemoend74084a2008-05-16 11:10:31 +0200857 iopd->pdat &= ~cs_mask[slave->cs];
wdenkfe8c2802002-11-03 00:38:21 +0000858}
859
Haavard Skinnemoend74084a2008-05-16 11:10:31 +0200860void spi_cs_deactivate(struct spi_slave *slave)
wdenkfe8c2802002-11-03 00:38:21 +0000861{
Jean-Christophe PLAGNIOL-VILLARD03836942008-10-16 15:01:15 +0200862 volatile ioport_t *iopd = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 3 /* port D */);
wdenkfe8c2802002-11-03 00:38:21 +0000863
Haavard Skinnemoend74084a2008-05-16 11:10:31 +0200864 iopd->pdat |= cs_mask[slave->cs];
wdenkfe8c2802002-11-03 00:38:21 +0000865}
866
Jon Loeliger761ea742007-07-10 10:48:22 -0500867#endif
wdenkfe8c2802002-11-03 00:38:21 +0000868
869#endif /* CONFIG_MISC_INIT_R */