blob: 6eab7b2cfb091b1e9a4f6135435fa141d9ec9c22 [file] [log] [blame]
wdenk4e112c12003-06-03 23:54:09 +00001/**************************************************************************
Andre Schwarz68c2a302008-03-06 16:45:44 +01002Intel Pro 1000 for ppcboot/das-u-boot
wdenk4e112c12003-06-03 23:54:09 +00003Drivers are port from Intel's Linux driver e1000-4.3.15
4and from Etherboot pro 1000 driver by mrakes at vivato dot net
5tested on both gig copper and gig fiber boards
6***************************************************************************/
7/*******************************************************************************
8
wdenk57b2d802003-06-27 21:31:46 +00009
wdenk4e112c12003-06-03 23:54:09 +000010 Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
wdenk57b2d802003-06-27 21:31:46 +000011
12 This program is free software; you can redistribute it and/or modify it
13 under the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 2 of the License, or (at your option)
wdenk4e112c12003-06-03 23:54:09 +000015 any later version.
wdenk57b2d802003-06-27 21:31:46 +000016
17 This program is distributed in the hope that it will be useful, but WITHOUT
18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
wdenk4e112c12003-06-03 23:54:09 +000020 more details.
wdenk57b2d802003-06-27 21:31:46 +000021
wdenk4e112c12003-06-03 23:54:09 +000022 You should have received a copy of the GNU General Public License along with
wdenk57b2d802003-06-27 21:31:46 +000023 this program; if not, write to the Free Software Foundation, Inc., 59
Wolfgang Denk35f734f2008-04-13 09:59:26 -070024 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
wdenk57b2d802003-06-27 21:31:46 +000025
wdenk4e112c12003-06-03 23:54:09 +000026 The full GNU General Public License is included in this distribution in the
27 file called LICENSE.
wdenk57b2d802003-06-27 21:31:46 +000028
wdenk4e112c12003-06-03 23:54:09 +000029 Contact Information:
30 Linux NICS <linux.nics@intel.com>
31 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32
33*******************************************************************************/
34/*
35 * Copyright (C) Archway Digital Solutions.
36 *
37 * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
38 * 2/9/2002
39 *
40 * Copyright (C) Linux Networx.
41 * Massive upgrade to work with the new intel gigabit NICs.
42 * <ebiederman at lnxi dot com>
Roy Zang181119b2011-01-21 11:29:38 +080043 *
44 * Copyright 2011 Freescale Semiconductor, Inc.
wdenk4e112c12003-06-03 23:54:09 +000045 */
46
47#include "e1000.h"
48
wdenk4e112c12003-06-03 23:54:09 +000049#define TOUT_LOOP 100000
50
Timur Tabiedc45b52009-08-17 15:55:38 -050051#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
wdenk4e112c12003-06-03 23:54:09 +000052#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
wdenk4e112c12003-06-03 23:54:09 +000053
Roy Zang966172e2009-08-22 03:49:52 +080054#define E1000_DEFAULT_PCI_PBA 0x00000030
55#define E1000_DEFAULT_PCIE_PBA 0x000a0026
wdenk4e112c12003-06-03 23:54:09 +000056
57/* NIC specific static variables go here */
58
59static char tx_pool[128 + 16];
60static char rx_pool[128 + 16];
61static char packet[2096];
62
63static struct e1000_tx_desc *tx_base;
64static struct e1000_rx_desc *rx_base;
65
66static int tx_tail;
67static int rx_tail, rx_last;
68
Kyle Moffett7b698d52011-10-18 11:05:26 +000069static struct pci_device_id e1000_supported[] = {
wdenk4e112c12003-06-03 23:54:09 +000070 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
71 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
72 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
73 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
74 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
75 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
76 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
77 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
78 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
Paul Gortmaker7d13b8d2008-07-09 17:50:45 -040079 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
wdenk4e112c12003-06-03 23:54:09 +000080 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
81 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
82 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
Reinhard Arlt1140ea52009-12-04 09:52:17 +010083 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER},
wdenk4e112c12003-06-03 23:54:09 +000084 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
Andre Schwarz68c2a302008-03-06 16:45:44 +010085 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
Wolfgang Grandegger8562c382008-05-28 19:55:19 +020086 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
Roy Zang28f7a052009-07-31 13:34:02 +080087 /* E1000 PCIe card */
88 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER},
89 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER },
90 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES },
91 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER},
92 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER},
93 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER},
94 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE},
95 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL},
96 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD},
97 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER},
98 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER},
99 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES},
100 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI},
101 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E},
102 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT},
103 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L},
Roy Zang181119b2011-01-21 11:29:38 +0800104 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L},
Roy Zang28f7a052009-07-31 13:34:02 +0800105 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3},
106 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT},
107 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT},
108 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT},
109 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT},
Stefan Althoeferbc6d2fc2008-12-20 19:40:41 +0100110 {}
wdenk4e112c12003-06-03 23:54:09 +0000111};
112
113/* Function forward declarations */
114static int e1000_setup_link(struct eth_device *nic);
115static int e1000_setup_fiber_link(struct eth_device *nic);
116static int e1000_setup_copper_link(struct eth_device *nic);
117static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
118static void e1000_config_collision_dist(struct e1000_hw *hw);
119static int e1000_config_mac_to_phy(struct e1000_hw *hw);
120static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
121static int e1000_check_for_link(struct eth_device *nic);
122static int e1000_wait_autoneg(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800123static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
wdenk4e112c12003-06-03 23:54:09 +0000124 uint16_t * duplex);
125static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
126 uint16_t * phy_data);
127static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
128 uint16_t phy_data);
Roy Zang28f7a052009-07-31 13:34:02 +0800129static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000130static int e1000_phy_reset(struct e1000_hw *hw);
131static int e1000_detect_gig_phy(struct e1000_hw *hw);
Roy Zang28f7a052009-07-31 13:34:02 +0800132static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
133static void e1000_set_media_type(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000134
Roy Zang28f7a052009-07-31 13:34:02 +0800135static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
136static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
wdenk4e112c12003-06-03 23:54:09 +0000137
Wolfgang Denk56811f62005-10-09 01:04:33 +0200138#ifndef CONFIG_AP1000 /* remove for warnings */
Roy Zang9b7c4302009-08-11 03:48:05 +0800139static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
140 uint16_t words,
141 uint16_t *data);
wdenk4e112c12003-06-03 23:54:09 +0000142/******************************************************************************
143 * Raises the EEPROM's clock input.
144 *
145 * hw - Struct containing variables accessed by shared code
146 * eecd - EECD's current value
147 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000148void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000149{
150 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
151 * wait 50 microseconds.
152 */
153 *eecd = *eecd | E1000_EECD_SK;
154 E1000_WRITE_REG(hw, EECD, *eecd);
155 E1000_WRITE_FLUSH(hw);
156 udelay(50);
157}
158
159/******************************************************************************
160 * Lowers the EEPROM's clock input.
161 *
wdenk57b2d802003-06-27 21:31:46 +0000162 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000163 * eecd - EECD's current value
164 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000165void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
wdenk4e112c12003-06-03 23:54:09 +0000166{
wdenk57b2d802003-06-27 21:31:46 +0000167 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
168 * wait 50 microseconds.
wdenk4e112c12003-06-03 23:54:09 +0000169 */
170 *eecd = *eecd & ~E1000_EECD_SK;
171 E1000_WRITE_REG(hw, EECD, *eecd);
172 E1000_WRITE_FLUSH(hw);
173 udelay(50);
174}
175
176/******************************************************************************
177 * Shift data bits out to the EEPROM.
178 *
179 * hw - Struct containing variables accessed by shared code
180 * data - data to send to the EEPROM
181 * count - number of bits to shift out
182 *****************************************************************************/
183static void
184e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
185{
186 uint32_t eecd;
187 uint32_t mask;
188
189 /* We need to shift "count" bits out to the EEPROM. So, value in the
190 * "data" parameter will be shifted out to the EEPROM one bit at a time.
wdenk57b2d802003-06-27 21:31:46 +0000191 * In order to do this, "data" must be broken down into bits.
wdenk4e112c12003-06-03 23:54:09 +0000192 */
193 mask = 0x01 << (count - 1);
194 eecd = E1000_READ_REG(hw, EECD);
195 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
196 do {
197 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
198 * and then raising and then lowering the clock (the SK bit controls
199 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
200 * by setting "DI" to "0" and then raising and then lowering the clock.
201 */
202 eecd &= ~E1000_EECD_DI;
203
204 if (data & mask)
205 eecd |= E1000_EECD_DI;
206
207 E1000_WRITE_REG(hw, EECD, eecd);
208 E1000_WRITE_FLUSH(hw);
209
210 udelay(50);
211
212 e1000_raise_ee_clk(hw, &eecd);
213 e1000_lower_ee_clk(hw, &eecd);
214
215 mask = mask >> 1;
216
217 } while (mask);
218
219 /* We leave the "DI" bit set to "0" when we leave this routine. */
220 eecd &= ~E1000_EECD_DI;
221 E1000_WRITE_REG(hw, EECD, eecd);
222}
223
224/******************************************************************************
225 * Shift data bits in from the EEPROM
226 *
227 * hw - Struct containing variables accessed by shared code
228 *****************************************************************************/
229static uint16_t
Roy Zang28f7a052009-07-31 13:34:02 +0800230e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
wdenk4e112c12003-06-03 23:54:09 +0000231{
232 uint32_t eecd;
233 uint32_t i;
234 uint16_t data;
235
Roy Zang28f7a052009-07-31 13:34:02 +0800236 /* In order to read a register from the EEPROM, we need to shift 'count'
237 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
238 * input to the EEPROM (setting the SK bit), and then reading the
239 * value of the "DO" bit. During this "shifting in" process the
240 * "DI" bit should always be clear.
wdenk4e112c12003-06-03 23:54:09 +0000241 */
242
243 eecd = E1000_READ_REG(hw, EECD);
244
245 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
246 data = 0;
247
Roy Zang28f7a052009-07-31 13:34:02 +0800248 for (i = 0; i < count; i++) {
wdenk4e112c12003-06-03 23:54:09 +0000249 data = data << 1;
250 e1000_raise_ee_clk(hw, &eecd);
251
252 eecd = E1000_READ_REG(hw, EECD);
253
254 eecd &= ~(E1000_EECD_DI);
255 if (eecd & E1000_EECD_DO)
256 data |= 1;
257
258 e1000_lower_ee_clk(hw, &eecd);
259 }
260
261 return data;
262}
263
264/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800265 * Returns EEPROM to a "standby" state
wdenk4e112c12003-06-03 23:54:09 +0000266 *
267 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000268 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000269void e1000_standby_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000270{
Roy Zang28f7a052009-07-31 13:34:02 +0800271 struct e1000_eeprom_info *eeprom = &hw->eeprom;
wdenk4e112c12003-06-03 23:54:09 +0000272 uint32_t eecd;
273
274 eecd = E1000_READ_REG(hw, EECD);
275
Roy Zang28f7a052009-07-31 13:34:02 +0800276 if (eeprom->type == e1000_eeprom_microwire) {
277 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278 E1000_WRITE_REG(hw, EECD, eecd);
279 E1000_WRITE_FLUSH(hw);
280 udelay(eeprom->delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000281
Roy Zang28f7a052009-07-31 13:34:02 +0800282 /* Clock high */
283 eecd |= E1000_EECD_SK;
284 E1000_WRITE_REG(hw, EECD, eecd);
285 E1000_WRITE_FLUSH(hw);
286 udelay(eeprom->delay_usec);
287
288 /* Select EEPROM */
289 eecd |= E1000_EECD_CS;
290 E1000_WRITE_REG(hw, EECD, eecd);
291 E1000_WRITE_FLUSH(hw);
292 udelay(eeprom->delay_usec);
293
294 /* Clock low */
295 eecd &= ~E1000_EECD_SK;
296 E1000_WRITE_REG(hw, EECD, eecd);
297 E1000_WRITE_FLUSH(hw);
298 udelay(eeprom->delay_usec);
299 } else if (eeprom->type == e1000_eeprom_spi) {
300 /* Toggle CS to flush commands */
301 eecd |= E1000_EECD_CS;
302 E1000_WRITE_REG(hw, EECD, eecd);
303 E1000_WRITE_FLUSH(hw);
304 udelay(eeprom->delay_usec);
305 eecd &= ~E1000_EECD_CS;
306 E1000_WRITE_REG(hw, EECD, eecd);
307 E1000_WRITE_FLUSH(hw);
308 udelay(eeprom->delay_usec);
309 }
310}
311
312/***************************************************************************
313* Description: Determines if the onboard NVM is FLASH or EEPROM.
314*
315* hw - Struct containing variables accessed by shared code
316****************************************************************************/
317static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
318{
319 uint32_t eecd = 0;
320
321 DEBUGFUNC();
322
323 if (hw->mac_type == e1000_ich8lan)
324 return FALSE;
325
Roy Zang181119b2011-01-21 11:29:38 +0800326 if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800327 eecd = E1000_READ_REG(hw, EECD);
328
329 /* Isolate bits 15 & 16 */
330 eecd = ((eecd >> 15) & 0x03);
331
332 /* If both bits are set, device is Flash type */
333 if (eecd == 0x03)
334 return FALSE;
335 }
336 return TRUE;
wdenk4e112c12003-06-03 23:54:09 +0000337}
338
339/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800340 * Prepares EEPROM for access
wdenk57b2d802003-06-27 21:31:46 +0000341 *
wdenk4e112c12003-06-03 23:54:09 +0000342 * hw - Struct containing variables accessed by shared code
Roy Zang28f7a052009-07-31 13:34:02 +0800343 *
344 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
345 * function should be called before issuing a command to the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000346 *****************************************************************************/
Kyle Moffett142cbf82011-10-18 11:05:28 +0000347int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000348{
Roy Zang28f7a052009-07-31 13:34:02 +0800349 struct e1000_eeprom_info *eeprom = &hw->eeprom;
350 uint32_t eecd, i = 0;
351
Timur Tabiedc45b52009-08-17 15:55:38 -0500352 DEBUGFUNC();
wdenk4e112c12003-06-03 23:54:09 +0000353
Roy Zang28f7a052009-07-31 13:34:02 +0800354 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
355 return -E1000_ERR_SWFW_SYNC;
wdenk4e112c12003-06-03 23:54:09 +0000356 eecd = E1000_READ_REG(hw, EECD);
357
Roy Zang181119b2011-01-21 11:29:38 +0800358 if (hw->mac_type != e1000_82573 || hw->mac_type != e1000_82574) {
Roy Zang28f7a052009-07-31 13:34:02 +0800359 /* Request EEPROM Access */
360 if (hw->mac_type > e1000_82544) {
361 eecd |= E1000_EECD_REQ;
362 E1000_WRITE_REG(hw, EECD, eecd);
363 eecd = E1000_READ_REG(hw, EECD);
364 while ((!(eecd & E1000_EECD_GNT)) &&
365 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
366 i++;
367 udelay(5);
368 eecd = E1000_READ_REG(hw, EECD);
369 }
370 if (!(eecd & E1000_EECD_GNT)) {
371 eecd &= ~E1000_EECD_REQ;
372 E1000_WRITE_REG(hw, EECD, eecd);
373 DEBUGOUT("Could not acquire EEPROM grant\n");
374 return -E1000_ERR_EEPROM;
375 }
376 }
377 }
wdenk4e112c12003-06-03 23:54:09 +0000378
Roy Zang28f7a052009-07-31 13:34:02 +0800379 /* Setup EEPROM for Read/Write */
wdenk4e112c12003-06-03 23:54:09 +0000380
Roy Zang28f7a052009-07-31 13:34:02 +0800381 if (eeprom->type == e1000_eeprom_microwire) {
382 /* Clear SK and DI */
383 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
384 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000385
Roy Zang28f7a052009-07-31 13:34:02 +0800386 /* Set CS */
387 eecd |= E1000_EECD_CS;
388 E1000_WRITE_REG(hw, EECD, eecd);
389 } else if (eeprom->type == e1000_eeprom_spi) {
390 /* Clear SK and CS */
391 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
392 E1000_WRITE_REG(hw, EECD, eecd);
393 udelay(1);
394 }
395
396 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000397}
398
399/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800400 * Sets up eeprom variables in the hw struct. Must be called after mac_type
401 * is configured. Additionally, if this is ICH8, the flash controller GbE
402 * registers must be mapped, or this will crash.
wdenk4e112c12003-06-03 23:54:09 +0000403 *
404 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000405 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800406static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000407{
Roy Zang28f7a052009-07-31 13:34:02 +0800408 struct e1000_eeprom_info *eeprom = &hw->eeprom;
409 uint32_t eecd = E1000_READ_REG(hw, EECD);
410 int32_t ret_val = E1000_SUCCESS;
411 uint16_t eeprom_size;
wdenk4e112c12003-06-03 23:54:09 +0000412
Timur Tabiedc45b52009-08-17 15:55:38 -0500413 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +0800414
415 switch (hw->mac_type) {
416 case e1000_82542_rev2_0:
417 case e1000_82542_rev2_1:
418 case e1000_82543:
419 case e1000_82544:
420 eeprom->type = e1000_eeprom_microwire;
421 eeprom->word_size = 64;
422 eeprom->opcode_bits = 3;
423 eeprom->address_bits = 6;
424 eeprom->delay_usec = 50;
425 eeprom->use_eerd = FALSE;
426 eeprom->use_eewr = FALSE;
427 break;
428 case e1000_82540:
429 case e1000_82545:
430 case e1000_82545_rev_3:
431 case e1000_82546:
432 case e1000_82546_rev_3:
433 eeprom->type = e1000_eeprom_microwire;
434 eeprom->opcode_bits = 3;
435 eeprom->delay_usec = 50;
436 if (eecd & E1000_EECD_SIZE) {
437 eeprom->word_size = 256;
438 eeprom->address_bits = 8;
439 } else {
440 eeprom->word_size = 64;
441 eeprom->address_bits = 6;
442 }
443 eeprom->use_eerd = FALSE;
444 eeprom->use_eewr = FALSE;
445 break;
446 case e1000_82541:
447 case e1000_82541_rev_2:
448 case e1000_82547:
449 case e1000_82547_rev_2:
450 if (eecd & E1000_EECD_TYPE) {
451 eeprom->type = e1000_eeprom_spi;
452 eeprom->opcode_bits = 8;
453 eeprom->delay_usec = 1;
454 if (eecd & E1000_EECD_ADDR_BITS) {
455 eeprom->page_size = 32;
456 eeprom->address_bits = 16;
457 } else {
458 eeprom->page_size = 8;
459 eeprom->address_bits = 8;
460 }
461 } else {
462 eeprom->type = e1000_eeprom_microwire;
463 eeprom->opcode_bits = 3;
464 eeprom->delay_usec = 50;
465 if (eecd & E1000_EECD_ADDR_BITS) {
466 eeprom->word_size = 256;
467 eeprom->address_bits = 8;
468 } else {
469 eeprom->word_size = 64;
470 eeprom->address_bits = 6;
471 }
472 }
473 eeprom->use_eerd = FALSE;
474 eeprom->use_eewr = FALSE;
475 break;
476 case e1000_82571:
477 case e1000_82572:
478 eeprom->type = e1000_eeprom_spi;
479 eeprom->opcode_bits = 8;
480 eeprom->delay_usec = 1;
481 if (eecd & E1000_EECD_ADDR_BITS) {
482 eeprom->page_size = 32;
483 eeprom->address_bits = 16;
484 } else {
485 eeprom->page_size = 8;
486 eeprom->address_bits = 8;
487 }
488 eeprom->use_eerd = FALSE;
489 eeprom->use_eewr = FALSE;
490 break;
491 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +0800492 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +0800493 eeprom->type = e1000_eeprom_spi;
494 eeprom->opcode_bits = 8;
495 eeprom->delay_usec = 1;
496 if (eecd & E1000_EECD_ADDR_BITS) {
497 eeprom->page_size = 32;
498 eeprom->address_bits = 16;
499 } else {
500 eeprom->page_size = 8;
501 eeprom->address_bits = 8;
wdenk4e112c12003-06-03 23:54:09 +0000502 }
Roy Zang28f7a052009-07-31 13:34:02 +0800503 eeprom->use_eerd = TRUE;
504 eeprom->use_eewr = TRUE;
505 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
506 eeprom->type = e1000_eeprom_flash;
507 eeprom->word_size = 2048;
508
509 /* Ensure that the Autonomous FLASH update bit is cleared due to
510 * Flash update issue on parts which use a FLASH for NVM. */
511 eecd &= ~E1000_EECD_AUPDEN;
wdenk4e112c12003-06-03 23:54:09 +0000512 E1000_WRITE_REG(hw, EECD, eecd);
wdenk4e112c12003-06-03 23:54:09 +0000513 }
Roy Zang28f7a052009-07-31 13:34:02 +0800514 break;
515 case e1000_80003es2lan:
516 eeprom->type = e1000_eeprom_spi;
517 eeprom->opcode_bits = 8;
518 eeprom->delay_usec = 1;
519 if (eecd & E1000_EECD_ADDR_BITS) {
520 eeprom->page_size = 32;
521 eeprom->address_bits = 16;
522 } else {
523 eeprom->page_size = 8;
524 eeprom->address_bits = 8;
525 }
526 eeprom->use_eerd = TRUE;
527 eeprom->use_eewr = FALSE;
528 break;
wdenk4e112c12003-06-03 23:54:09 +0000529
Roy Zang28f7a052009-07-31 13:34:02 +0800530 /* ich8lan does not support currently. if needed, please
531 * add corresponding code and functions.
532 */
533#if 0
534 case e1000_ich8lan:
535 {
536 int32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000537
Roy Zang28f7a052009-07-31 13:34:02 +0800538 eeprom->type = e1000_eeprom_ich8;
539 eeprom->use_eerd = FALSE;
540 eeprom->use_eewr = FALSE;
541 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
542 uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw,
543 ICH_FLASH_GFPREG);
544 /* Zero the shadow RAM structure. But don't load it from NVM
545 * so as to save time for driver init */
546 if (hw->eeprom_shadow_ram != NULL) {
547 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
548 hw->eeprom_shadow_ram[i].modified = FALSE;
549 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
550 }
551 }
wdenk4e112c12003-06-03 23:54:09 +0000552
Roy Zang28f7a052009-07-31 13:34:02 +0800553 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
554 ICH_FLASH_SECTOR_SIZE;
wdenk4e112c12003-06-03 23:54:09 +0000555
Roy Zang28f7a052009-07-31 13:34:02 +0800556 hw->flash_bank_size = ((flash_size >> 16)
557 & ICH_GFPREG_BASE_MASK) + 1;
558 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
wdenk4e112c12003-06-03 23:54:09 +0000559
Roy Zang28f7a052009-07-31 13:34:02 +0800560 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
561
562 hw->flash_bank_size /= 2 * sizeof(uint16_t);
563 break;
564 }
565#endif
566 default:
567 break;
wdenk4e112c12003-06-03 23:54:09 +0000568 }
569
Roy Zang28f7a052009-07-31 13:34:02 +0800570 if (eeprom->type == e1000_eeprom_spi) {
571 /* eeprom_size will be an enum [0..8] that maps
572 * to eeprom sizes 128B to
573 * 32KB (incremented by powers of 2).
574 */
575 if (hw->mac_type <= e1000_82547_rev_2) {
576 /* Set to default value for initial eeprom read. */
577 eeprom->word_size = 64;
578 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
579 &eeprom_size);
580 if (ret_val)
581 return ret_val;
582 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
583 >> EEPROM_SIZE_SHIFT;
584 /* 256B eeprom size was not supported in earlier
585 * hardware, so we bump eeprom_size up one to
586 * ensure that "1" (which maps to 256B) is never
587 * the result used in the shifting logic below. */
588 if (eeprom_size)
589 eeprom_size++;
590 } else {
591 eeprom_size = (uint16_t)((eecd &
592 E1000_EECD_SIZE_EX_MASK) >>
593 E1000_EECD_SIZE_EX_SHIFT);
594 }
595
596 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
597 }
598 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +0000599}
600
Roy Zang28f7a052009-07-31 13:34:02 +0800601/******************************************************************************
602 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
603 *
604 * hw - Struct containing variables accessed by shared code
605 *****************************************************************************/
606static int32_t
607e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
wdenk4e112c12003-06-03 23:54:09 +0000608{
Roy Zang28f7a052009-07-31 13:34:02 +0800609 uint32_t attempts = 100000;
610 uint32_t i, reg = 0;
611 int32_t done = E1000_ERR_EEPROM;
wdenk4e112c12003-06-03 23:54:09 +0000612
Roy Zang28f7a052009-07-31 13:34:02 +0800613 for (i = 0; i < attempts; i++) {
614 if (eerd == E1000_EEPROM_POLL_READ)
615 reg = E1000_READ_REG(hw, EERD);
616 else
617 reg = E1000_READ_REG(hw, EEWR);
618
619 if (reg & E1000_EEPROM_RW_REG_DONE) {
620 done = E1000_SUCCESS;
621 break;
622 }
623 udelay(5);
624 }
625
626 return done;
wdenk4e112c12003-06-03 23:54:09 +0000627}
628
Roy Zang28f7a052009-07-31 13:34:02 +0800629/******************************************************************************
630 * Reads a 16 bit word from the EEPROM using the EERD register.
631 *
632 * hw - Struct containing variables accessed by shared code
633 * offset - offset of word in the EEPROM to read
634 * data - word read from the EEPROM
635 * words - number of words to read
636 *****************************************************************************/
637static int32_t
638e1000_read_eeprom_eerd(struct e1000_hw *hw,
639 uint16_t offset,
640 uint16_t words,
641 uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000642{
Roy Zang28f7a052009-07-31 13:34:02 +0800643 uint32_t i, eerd = 0;
644 int32_t error = 0;
wdenk4e112c12003-06-03 23:54:09 +0000645
Roy Zang28f7a052009-07-31 13:34:02 +0800646 for (i = 0; i < words; i++) {
647 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
648 E1000_EEPROM_RW_REG_START;
649
650 E1000_WRITE_REG(hw, EERD, eerd);
651 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
652
653 if (error)
654 break;
655 data[i] = (E1000_READ_REG(hw, EERD) >>
656 E1000_EEPROM_RW_REG_DATA);
657
wdenk4e112c12003-06-03 23:54:09 +0000658 }
Roy Zang28f7a052009-07-31 13:34:02 +0800659
660 return error;
wdenk4e112c12003-06-03 23:54:09 +0000661}
662
Kyle Moffett142cbf82011-10-18 11:05:28 +0000663void e1000_release_eeprom(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000664{
665 uint32_t eecd;
wdenk4e112c12003-06-03 23:54:09 +0000666
Roy Zang28f7a052009-07-31 13:34:02 +0800667 DEBUGFUNC();
668
669 eecd = E1000_READ_REG(hw, EECD);
670
671 if (hw->eeprom.type == e1000_eeprom_spi) {
672 eecd |= E1000_EECD_CS; /* Pull CS high */
673 eecd &= ~E1000_EECD_SK; /* Lower SCK */
674
wdenk4e112c12003-06-03 23:54:09 +0000675 E1000_WRITE_REG(hw, EECD, eecd);
Roy Zang28f7a052009-07-31 13:34:02 +0800676
677 udelay(hw->eeprom.delay_usec);
678 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
679 /* cleanup eeprom */
680
681 /* CS on Microwire is active-high */
682 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
683
684 E1000_WRITE_REG(hw, EECD, eecd);
685
686 /* Rising edge of clock */
687 eecd |= E1000_EECD_SK;
688 E1000_WRITE_REG(hw, EECD, eecd);
689 E1000_WRITE_FLUSH(hw);
690 udelay(hw->eeprom.delay_usec);
691
692 /* Falling edge of clock */
693 eecd &= ~E1000_EECD_SK;
694 E1000_WRITE_REG(hw, EECD, eecd);
695 E1000_WRITE_FLUSH(hw);
696 udelay(hw->eeprom.delay_usec);
wdenk4e112c12003-06-03 23:54:09 +0000697 }
wdenk4e112c12003-06-03 23:54:09 +0000698
699 /* Stop requesting EEPROM access */
700 if (hw->mac_type > e1000_82544) {
wdenk4e112c12003-06-03 23:54:09 +0000701 eecd &= ~E1000_EECD_REQ;
702 E1000_WRITE_REG(hw, EECD, eecd);
703 }
wdenk4e112c12003-06-03 23:54:09 +0000704}
wdenk4e112c12003-06-03 23:54:09 +0000705/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800706 * Reads a 16 bit word from the EEPROM.
wdenk57b2d802003-06-27 21:31:46 +0000707 *
wdenk4e112c12003-06-03 23:54:09 +0000708 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +0000709 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800710static int32_t
711e1000_spi_eeprom_ready(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +0000712{
Roy Zang28f7a052009-07-31 13:34:02 +0800713 uint16_t retry_count = 0;
714 uint8_t spi_stat_reg;
wdenk4e112c12003-06-03 23:54:09 +0000715
716 DEBUGFUNC();
717
Roy Zang28f7a052009-07-31 13:34:02 +0800718 /* Read "Status Register" repeatedly until the LSB is cleared. The
719 * EEPROM will signal that the command has been completed by clearing
720 * bit 0 of the internal status register. If it's not cleared within
721 * 5 milliseconds, then error out.
722 */
723 retry_count = 0;
724 do {
725 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
726 hw->eeprom.opcode_bits);
727 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
728 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
729 break;
wdenk57b2d802003-06-27 21:31:46 +0000730
Roy Zang28f7a052009-07-31 13:34:02 +0800731 udelay(5);
732 retry_count += 5;
733
734 e1000_standby_eeprom(hw);
735 } while (retry_count < EEPROM_MAX_RETRY_SPI);
736
737 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
738 * only 0-5mSec on 5V devices)
739 */
740 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
741 DEBUGOUT("SPI EEPROM Status error\n");
wdenk4e112c12003-06-03 23:54:09 +0000742 return -E1000_ERR_EEPROM;
743 }
Roy Zang28f7a052009-07-31 13:34:02 +0800744
745 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +0000746}
747
748/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +0800749 * Reads a 16 bit word from the EEPROM.
wdenk4e112c12003-06-03 23:54:09 +0000750 *
Roy Zang28f7a052009-07-31 13:34:02 +0800751 * hw - Struct containing variables accessed by shared code
752 * offset - offset of word in the EEPROM to read
753 * data - word read from the EEPROM
wdenk4e112c12003-06-03 23:54:09 +0000754 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +0800755static int32_t
756e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
757 uint16_t words, uint16_t *data)
wdenk4e112c12003-06-03 23:54:09 +0000758{
Roy Zang28f7a052009-07-31 13:34:02 +0800759 struct e1000_eeprom_info *eeprom = &hw->eeprom;
760 uint32_t i = 0;
wdenk4e112c12003-06-03 23:54:09 +0000761
762 DEBUGFUNC();
763
Roy Zang28f7a052009-07-31 13:34:02 +0800764 /* If eeprom is not yet detected, do so now */
765 if (eeprom->word_size == 0)
766 e1000_init_eeprom_params(hw);
767
768 /* A check for invalid values: offset too large, too many words,
769 * and not enough words.
770 */
771 if ((offset >= eeprom->word_size) ||
772 (words > eeprom->word_size - offset) ||
773 (words == 0)) {
774 DEBUGOUT("\"words\" parameter out of bounds."
775 "Words = %d, size = %d\n", offset, eeprom->word_size);
776 return -E1000_ERR_EEPROM;
777 }
778
779 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
780 * directly. In this case, we need to acquire the EEPROM so that
781 * FW or other port software does not interrupt.
782 */
783 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
784 hw->eeprom.use_eerd == FALSE) {
785
786 /* Prepare the EEPROM for bit-bang reading */
787 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
788 return -E1000_ERR_EEPROM;
789 }
790
791 /* Eerd register EEPROM access requires no eeprom aquire/release */
792 if (eeprom->use_eerd == TRUE)
793 return e1000_read_eeprom_eerd(hw, offset, words, data);
794
795 /* ich8lan does not support currently. if needed, please
796 * add corresponding code and functions.
797 */
798#if 0
799 /* ICH EEPROM access is done via the ICH flash controller */
800 if (eeprom->type == e1000_eeprom_ich8)
801 return e1000_read_eeprom_ich8(hw, offset, words, data);
802#endif
803 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
804 * acquired the EEPROM at this point, so any returns should relase it */
805 if (eeprom->type == e1000_eeprom_spi) {
806 uint16_t word_in;
807 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
808
809 if (e1000_spi_eeprom_ready(hw)) {
810 e1000_release_eeprom(hw);
811 return -E1000_ERR_EEPROM;
812 }
813
814 e1000_standby_eeprom(hw);
815
816 /* Some SPI eeproms use the 8th address bit embedded in
817 * the opcode */
818 if ((eeprom->address_bits == 8) && (offset >= 128))
819 read_opcode |= EEPROM_A8_OPCODE_SPI;
820
821 /* Send the READ command (opcode + addr) */
822 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
823 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
824 eeprom->address_bits);
825
826 /* Read the data. The address of the eeprom internally
827 * increments with each byte (spi) being read, saving on the
828 * overhead of eeprom setup and tear-down. The address
829 * counter will roll over if reading beyond the size of
830 * the eeprom, thus allowing the entire memory to be read
831 * starting from any offset. */
832 for (i = 0; i < words; i++) {
833 word_in = e1000_shift_in_ee_bits(hw, 16);
834 data[i] = (word_in >> 8) | (word_in << 8);
835 }
836 } else if (eeprom->type == e1000_eeprom_microwire) {
837 for (i = 0; i < words; i++) {
838 /* Send the READ command (opcode + addr) */
839 e1000_shift_out_ee_bits(hw,
840 EEPROM_READ_OPCODE_MICROWIRE,
841 eeprom->opcode_bits);
842 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
843 eeprom->address_bits);
844
845 /* Read the data. For microwire, each word requires
846 * the overhead of eeprom setup and tear-down. */
847 data[i] = e1000_shift_in_ee_bits(hw, 16);
848 e1000_standby_eeprom(hw);
849 }
850 }
851
852 /* End this read operation */
853 e1000_release_eeprom(hw);
854
855 return E1000_SUCCESS;
856}
857
858/******************************************************************************
859 * Verifies that the EEPROM has a valid checksum
860 *
861 * hw - Struct containing variables accessed by shared code
862 *
863 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
864 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
865 * valid.
866 *****************************************************************************/
Kyle Moffett70946bc2011-10-18 11:05:27 +0000867static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
Roy Zang28f7a052009-07-31 13:34:02 +0800868{
Kyle Moffett70946bc2011-10-18 11:05:27 +0000869 uint16_t i, checksum, checksum_reg, *buf;
Roy Zang28f7a052009-07-31 13:34:02 +0800870
871 DEBUGFUNC();
872
Kyle Moffett70946bc2011-10-18 11:05:27 +0000873 /* Allocate a temporary buffer */
874 buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
875 if (!buf) {
876 E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
877 return -E1000_ERR_EEPROM;
Roy Zang28f7a052009-07-31 13:34:02 +0800878 }
879
Kyle Moffett70946bc2011-10-18 11:05:27 +0000880 /* Read the EEPROM */
881 if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
882 E1000_ERR(hw->nic, "Unable to read EEPROM!\n");
Roy Zang28f7a052009-07-31 13:34:02 +0800883 return -E1000_ERR_EEPROM;
884 }
Kyle Moffett70946bc2011-10-18 11:05:27 +0000885
886 /* Compute the checksum */
Wolfgang Denk15690332011-10-28 07:37:04 +0200887 checksum = 0;
Kyle Moffett70946bc2011-10-18 11:05:27 +0000888 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
889 checksum += buf[i];
890 checksum = ((uint16_t)EEPROM_SUM) - checksum;
891 checksum_reg = buf[i];
892
893 /* Verify it! */
894 if (checksum == checksum_reg)
895 return 0;
896
897 /* Hrm, verification failed, print an error */
898 E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
899 E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
900 checksum_reg, checksum);
901
902 return -E1000_ERR_EEPROM;
Roy Zang9b7c4302009-08-11 03:48:05 +0800903}
904
905/*****************************************************************************
906 * Set PHY to class A mode
907 * Assumes the following operations will follow to enable the new class mode.
908 * 1. Do a PHY soft reset
909 * 2. Restart auto-negotiation or force link.
910 *
911 * hw - Struct containing variables accessed by shared code
912 ****************************************************************************/
913static int32_t
914e1000_set_phy_mode(struct e1000_hw *hw)
915{
916 int32_t ret_val;
917 uint16_t eeprom_data;
918
919 DEBUGFUNC();
920
921 if ((hw->mac_type == e1000_82545_rev_3) &&
922 (hw->media_type == e1000_media_type_copper)) {
923 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
924 1, &eeprom_data);
925 if (ret_val)
926 return ret_val;
927
928 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
929 (eeprom_data & EEPROM_PHY_CLASS_A)) {
930 ret_val = e1000_write_phy_reg(hw,
931 M88E1000_PHY_PAGE_SELECT, 0x000B);
932 if (ret_val)
933 return ret_val;
934 ret_val = e1000_write_phy_reg(hw,
935 M88E1000_PHY_GEN_CONTROL, 0x8104);
936 if (ret_val)
937 return ret_val;
938
939 hw->phy_reset_disable = FALSE;
940 }
941 }
942
943 return E1000_SUCCESS;
Roy Zang28f7a052009-07-31 13:34:02 +0800944}
945#endif /* #ifndef CONFIG_AP1000 */
946
947/***************************************************************************
948 *
949 * Obtaining software semaphore bit (SMBI) before resetting PHY.
950 *
951 * hw: Struct containing variables accessed by shared code
952 *
953 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
954 * E1000_SUCCESS at any other case.
955 *
956 ***************************************************************************/
957static int32_t
958e1000_get_software_semaphore(struct e1000_hw *hw)
959{
960 int32_t timeout = hw->eeprom.word_size + 1;
961 uint32_t swsm;
962
963 DEBUGFUNC();
964
965 if (hw->mac_type != e1000_80003es2lan)
966 return E1000_SUCCESS;
967
968 while (timeout) {
969 swsm = E1000_READ_REG(hw, SWSM);
970 /* If SMBI bit cleared, it is now set and we hold
971 * the semaphore */
972 if (!(swsm & E1000_SWSM_SMBI))
973 break;
974 mdelay(1);
975 timeout--;
976 }
977
978 if (!timeout) {
979 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
980 return -E1000_ERR_RESET;
981 }
982
983 return E1000_SUCCESS;
984}
985
986/***************************************************************************
987 * This function clears HW semaphore bits.
988 *
989 * hw: Struct containing variables accessed by shared code
990 *
991 * returns: - None.
992 *
993 ***************************************************************************/
994static void
995e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
996{
997 uint32_t swsm;
998
999 DEBUGFUNC();
1000
1001 if (!hw->eeprom_semaphore_present)
1002 return;
1003
1004 swsm = E1000_READ_REG(hw, SWSM);
1005 if (hw->mac_type == e1000_80003es2lan) {
1006 /* Release both semaphores. */
1007 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1008 } else
1009 swsm &= ~(E1000_SWSM_SWESMBI);
1010 E1000_WRITE_REG(hw, SWSM, swsm);
1011}
1012
1013/***************************************************************************
1014 *
1015 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1016 * adapter or Eeprom access.
1017 *
1018 * hw: Struct containing variables accessed by shared code
1019 *
1020 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1021 * E1000_SUCCESS at any other case.
1022 *
1023 ***************************************************************************/
1024static int32_t
1025e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1026{
1027 int32_t timeout;
1028 uint32_t swsm;
1029
1030 DEBUGFUNC();
1031
1032 if (!hw->eeprom_semaphore_present)
1033 return E1000_SUCCESS;
1034
1035 if (hw->mac_type == e1000_80003es2lan) {
1036 /* Get the SW semaphore. */
1037 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1038 return -E1000_ERR_EEPROM;
1039 }
1040
1041 /* Get the FW semaphore. */
1042 timeout = hw->eeprom.word_size + 1;
1043 while (timeout) {
1044 swsm = E1000_READ_REG(hw, SWSM);
1045 swsm |= E1000_SWSM_SWESMBI;
1046 E1000_WRITE_REG(hw, SWSM, swsm);
1047 /* if we managed to set the bit we got the semaphore. */
1048 swsm = E1000_READ_REG(hw, SWSM);
1049 if (swsm & E1000_SWSM_SWESMBI)
1050 break;
1051
1052 udelay(50);
1053 timeout--;
1054 }
1055
1056 if (!timeout) {
1057 /* Release semaphores */
1058 e1000_put_hw_eeprom_semaphore(hw);
1059 DEBUGOUT("Driver can't access the Eeprom - "
1060 "SWESMBI bit is set.\n");
1061 return -E1000_ERR_EEPROM;
1062 }
1063
1064 return E1000_SUCCESS;
1065}
1066
1067static int32_t
1068e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1069{
1070 uint32_t swfw_sync = 0;
1071 uint32_t swmask = mask;
1072 uint32_t fwmask = mask << 16;
1073 int32_t timeout = 200;
1074
1075 DEBUGFUNC();
1076 while (timeout) {
1077 if (e1000_get_hw_eeprom_semaphore(hw))
1078 return -E1000_ERR_SWFW_SYNC;
1079
1080 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1081 if (!(swfw_sync & (fwmask | swmask)))
1082 break;
1083
1084 /* firmware currently using resource (fwmask) */
1085 /* or other software thread currently using resource (swmask) */
1086 e1000_put_hw_eeprom_semaphore(hw);
1087 mdelay(5);
1088 timeout--;
1089 }
1090
1091 if (!timeout) {
1092 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1093 return -E1000_ERR_SWFW_SYNC;
1094 }
1095
1096 swfw_sync |= swmask;
1097 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1098
1099 e1000_put_hw_eeprom_semaphore(hw);
1100 return E1000_SUCCESS;
1101}
1102
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001103static boolean_t e1000_is_second_port(struct e1000_hw *hw)
1104{
1105 switch (hw->mac_type) {
1106 case e1000_80003es2lan:
1107 case e1000_82546:
1108 case e1000_82571:
1109 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1110 return TRUE;
1111 /* Fallthrough */
1112 default:
1113 return FALSE;
1114 }
1115}
1116
Roy Zang28f7a052009-07-31 13:34:02 +08001117/******************************************************************************
1118 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1119 * second function of dual function devices
1120 *
1121 * nic - Struct containing variables accessed by shared code
1122 *****************************************************************************/
1123static int
1124e1000_read_mac_addr(struct eth_device *nic)
1125{
1126#ifndef CONFIG_AP1000
1127 struct e1000_hw *hw = nic->priv;
1128 uint16_t offset;
1129 uint16_t eeprom_data;
1130 int i;
1131
1132 DEBUGFUNC();
1133
1134 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
wdenk4e112c12003-06-03 23:54:09 +00001135 offset = i >> 1;
Roy Zang28f7a052009-07-31 13:34:02 +08001136 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001137 DEBUGOUT("EEPROM Read Error\n");
1138 return -E1000_ERR_EEPROM;
1139 }
1140 nic->enetaddr[i] = eeprom_data & 0xff;
1141 nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1142 }
Kyle Moffett7376f8d2010-09-13 05:52:22 +00001143
1144 /* Invert the last bit if this is the second device */
1145 if (e1000_is_second_port(hw))
1146 nic->enetaddr[5] ^= 1;
1147
Andre Schwarz68c2a302008-03-06 16:45:44 +01001148#ifdef CONFIG_E1000_FALLBACK_MAC
Stefan Roese37628252008-08-06 14:05:38 +02001149 if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
1150 unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
1151
1152 memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
1153 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01001154#endif
Wolfgang Denk56811f62005-10-09 01:04:33 +02001155#else
1156 /*
1157 * The AP1000's e1000 has no eeprom; the MAC address is stored in the
1158 * environment variables. Currently this does not support the addition
1159 * of a PMC e1000 card, which is certainly a possibility, so this should
1160 * be updated to properly use the env variable only for the onboard e1000
1161 */
1162
1163 int ii;
1164 char *s, *e;
1165
1166 DEBUGFUNC();
1167
1168 s = getenv ("ethaddr");
Stefan Roese37628252008-08-06 14:05:38 +02001169 if (s == NULL) {
Wolfgang Denk56811f62005-10-09 01:04:33 +02001170 return -E1000_ERR_EEPROM;
Stefan Roese37628252008-08-06 14:05:38 +02001171 } else {
Wolfgang Denk56811f62005-10-09 01:04:33 +02001172 for(ii = 0; ii < 6; ii++) {
1173 nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
1174 if (s){
1175 s = (*e) ? e + 1 : e;
1176 }
1177 }
1178 }
1179#endif
wdenk4e112c12003-06-03 23:54:09 +00001180 return 0;
1181}
1182
1183/******************************************************************************
1184 * Initializes receive address filters.
1185 *
wdenk57b2d802003-06-27 21:31:46 +00001186 * hw - Struct containing variables accessed by shared code
wdenk4e112c12003-06-03 23:54:09 +00001187 *
1188 * Places the MAC address in receive address register 0 and clears the rest
1189 * of the receive addresss registers. Clears the multicast table. Assumes
1190 * the receiver is in reset when the routine is called.
1191 *****************************************************************************/
1192static void
1193e1000_init_rx_addrs(struct eth_device *nic)
1194{
1195 struct e1000_hw *hw = nic->priv;
1196 uint32_t i;
1197 uint32_t addr_low;
1198 uint32_t addr_high;
1199
1200 DEBUGFUNC();
1201
1202 /* Setup the receive address. */
1203 DEBUGOUT("Programming MAC Address into RAR[0]\n");
1204 addr_low = (nic->enetaddr[0] |
1205 (nic->enetaddr[1] << 8) |
1206 (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
1207
1208 addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
1209
1210 E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1211 E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1212
1213 /* Zero out the other 15 receive addresses. */
1214 DEBUGOUT("Clearing RAR[1-15]\n");
1215 for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1216 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1217 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1218 }
1219}
1220
1221/******************************************************************************
1222 * Clears the VLAN filer table
1223 *
1224 * hw - Struct containing variables accessed by shared code
1225 *****************************************************************************/
1226static void
1227e1000_clear_vfta(struct e1000_hw *hw)
1228{
1229 uint32_t offset;
1230
1231 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1232 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1233}
1234
1235/******************************************************************************
1236 * Set the mac type member in the hw struct.
wdenk57b2d802003-06-27 21:31:46 +00001237 *
wdenk4e112c12003-06-03 23:54:09 +00001238 * hw - Struct containing variables accessed by shared code
1239 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08001240int32_t
wdenk4e112c12003-06-03 23:54:09 +00001241e1000_set_mac_type(struct e1000_hw *hw)
1242{
1243 DEBUGFUNC();
1244
1245 switch (hw->device_id) {
1246 case E1000_DEV_ID_82542:
1247 switch (hw->revision_id) {
1248 case E1000_82542_2_0_REV_ID:
1249 hw->mac_type = e1000_82542_rev2_0;
1250 break;
1251 case E1000_82542_2_1_REV_ID:
1252 hw->mac_type = e1000_82542_rev2_1;
1253 break;
1254 default:
1255 /* Invalid 82542 revision ID */
1256 return -E1000_ERR_MAC_TYPE;
1257 }
1258 break;
1259 case E1000_DEV_ID_82543GC_FIBER:
1260 case E1000_DEV_ID_82543GC_COPPER:
1261 hw->mac_type = e1000_82543;
1262 break;
1263 case E1000_DEV_ID_82544EI_COPPER:
1264 case E1000_DEV_ID_82544EI_FIBER:
1265 case E1000_DEV_ID_82544GC_COPPER:
1266 case E1000_DEV_ID_82544GC_LOM:
1267 hw->mac_type = e1000_82544;
1268 break;
1269 case E1000_DEV_ID_82540EM:
1270 case E1000_DEV_ID_82540EM_LOM:
Roy Zang28f7a052009-07-31 13:34:02 +08001271 case E1000_DEV_ID_82540EP:
1272 case E1000_DEV_ID_82540EP_LOM:
1273 case E1000_DEV_ID_82540EP_LP:
wdenk4e112c12003-06-03 23:54:09 +00001274 hw->mac_type = e1000_82540;
1275 break;
1276 case E1000_DEV_ID_82545EM_COPPER:
1277 case E1000_DEV_ID_82545EM_FIBER:
1278 hw->mac_type = e1000_82545;
1279 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001280 case E1000_DEV_ID_82545GM_COPPER:
1281 case E1000_DEV_ID_82545GM_FIBER:
1282 case E1000_DEV_ID_82545GM_SERDES:
1283 hw->mac_type = e1000_82545_rev_3;
1284 break;
wdenk4e112c12003-06-03 23:54:09 +00001285 case E1000_DEV_ID_82546EB_COPPER:
1286 case E1000_DEV_ID_82546EB_FIBER:
Roy Zang28f7a052009-07-31 13:34:02 +08001287 case E1000_DEV_ID_82546EB_QUAD_COPPER:
wdenk4e112c12003-06-03 23:54:09 +00001288 hw->mac_type = e1000_82546;
1289 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001290 case E1000_DEV_ID_82546GB_COPPER:
1291 case E1000_DEV_ID_82546GB_FIBER:
1292 case E1000_DEV_ID_82546GB_SERDES:
1293 case E1000_DEV_ID_82546GB_PCIE:
1294 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1295 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1296 hw->mac_type = e1000_82546_rev_3;
1297 break;
1298 case E1000_DEV_ID_82541EI:
1299 case E1000_DEV_ID_82541EI_MOBILE:
1300 case E1000_DEV_ID_82541ER_LOM:
1301 hw->mac_type = e1000_82541;
1302 break;
Andre Schwarz68c2a302008-03-06 16:45:44 +01001303 case E1000_DEV_ID_82541ER:
Roy Zang28f7a052009-07-31 13:34:02 +08001304 case E1000_DEV_ID_82541GI:
Wolfgang Grandegger8562c382008-05-28 19:55:19 +02001305 case E1000_DEV_ID_82541GI_LF:
Roy Zang28f7a052009-07-31 13:34:02 +08001306 case E1000_DEV_ID_82541GI_MOBILE:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001307 hw->mac_type = e1000_82541_rev_2;
1308 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001309 case E1000_DEV_ID_82547EI:
1310 case E1000_DEV_ID_82547EI_MOBILE:
1311 hw->mac_type = e1000_82547;
1312 break;
1313 case E1000_DEV_ID_82547GI:
1314 hw->mac_type = e1000_82547_rev_2;
1315 break;
1316 case E1000_DEV_ID_82571EB_COPPER:
1317 case E1000_DEV_ID_82571EB_FIBER:
1318 case E1000_DEV_ID_82571EB_SERDES:
1319 case E1000_DEV_ID_82571EB_SERDES_DUAL:
1320 case E1000_DEV_ID_82571EB_SERDES_QUAD:
1321 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1322 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1323 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1324 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1325 hw->mac_type = e1000_82571;
1326 break;
1327 case E1000_DEV_ID_82572EI_COPPER:
1328 case E1000_DEV_ID_82572EI_FIBER:
1329 case E1000_DEV_ID_82572EI_SERDES:
1330 case E1000_DEV_ID_82572EI:
1331 hw->mac_type = e1000_82572;
1332 break;
1333 case E1000_DEV_ID_82573E:
1334 case E1000_DEV_ID_82573E_IAMT:
1335 case E1000_DEV_ID_82573L:
1336 hw->mac_type = e1000_82573;
1337 break;
Roy Zang181119b2011-01-21 11:29:38 +08001338 case E1000_DEV_ID_82574L:
1339 hw->mac_type = e1000_82574;
1340 break;
Roy Zang28f7a052009-07-31 13:34:02 +08001341 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1342 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1343 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1344 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1345 hw->mac_type = e1000_80003es2lan;
1346 break;
1347 case E1000_DEV_ID_ICH8_IGP_M_AMT:
1348 case E1000_DEV_ID_ICH8_IGP_AMT:
1349 case E1000_DEV_ID_ICH8_IGP_C:
1350 case E1000_DEV_ID_ICH8_IFE:
1351 case E1000_DEV_ID_ICH8_IFE_GT:
1352 case E1000_DEV_ID_ICH8_IFE_G:
1353 case E1000_DEV_ID_ICH8_IGP_M:
1354 hw->mac_type = e1000_ich8lan;
1355 break;
wdenk4e112c12003-06-03 23:54:09 +00001356 default:
1357 /* Should never have loaded on this device */
1358 return -E1000_ERR_MAC_TYPE;
1359 }
1360 return E1000_SUCCESS;
1361}
1362
1363/******************************************************************************
1364 * Reset the transmit and receive units; mask and clear all interrupts.
1365 *
1366 * hw - Struct containing variables accessed by shared code
1367 *****************************************************************************/
1368void
1369e1000_reset_hw(struct e1000_hw *hw)
1370{
1371 uint32_t ctrl;
1372 uint32_t ctrl_ext;
1373 uint32_t icr;
1374 uint32_t manc;
Roy Zang966172e2009-08-22 03:49:52 +08001375 uint32_t pba = 0;
wdenk4e112c12003-06-03 23:54:09 +00001376
1377 DEBUGFUNC();
1378
Roy Zang966172e2009-08-22 03:49:52 +08001379 /* get the correct pba value for both PCI and PCIe*/
1380 if (hw->mac_type < e1000_82571)
1381 pba = E1000_DEFAULT_PCI_PBA;
1382 else
1383 pba = E1000_DEFAULT_PCIE_PBA;
1384
wdenk4e112c12003-06-03 23:54:09 +00001385 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1386 if (hw->mac_type == e1000_82542_rev2_0) {
1387 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1388 pci_write_config_word(hw->pdev, PCI_COMMAND,
Roy Zang28f7a052009-07-31 13:34:02 +08001389 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
wdenk4e112c12003-06-03 23:54:09 +00001390 }
1391
1392 /* Clear interrupt mask to stop board from generating interrupts */
1393 DEBUGOUT("Masking off all interrupts\n");
1394 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1395
1396 /* Disable the Transmit and Receive units. Then delay to allow
1397 * any pending transactions to complete before we hit the MAC with
1398 * the global reset.
1399 */
1400 E1000_WRITE_REG(hw, RCTL, 0);
1401 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1402 E1000_WRITE_FLUSH(hw);
1403
1404 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1405 hw->tbi_compatibility_on = FALSE;
1406
1407 /* Delay to allow any outstanding PCI transactions to complete before
1408 * resetting the device
1409 */
1410 mdelay(10);
1411
1412 /* Issue a global reset to the MAC. This will reset the chip's
1413 * transmit, receive, DMA, and link units. It will not effect
1414 * the current PCI configuration. The global reset bit is self-
1415 * clearing, and should clear within a microsecond.
1416 */
1417 DEBUGOUT("Issuing a global reset to MAC\n");
1418 ctrl = E1000_READ_REG(hw, CTRL);
1419
Roy Zang28f7a052009-07-31 13:34:02 +08001420 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
wdenk4e112c12003-06-03 23:54:09 +00001421
1422 /* Force a reload from the EEPROM if necessary */
1423 if (hw->mac_type < e1000_82540) {
1424 /* Wait for reset to complete */
1425 udelay(10);
1426 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1427 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1428 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1429 E1000_WRITE_FLUSH(hw);
1430 /* Wait for EEPROM reload */
1431 mdelay(2);
1432 } else {
1433 /* Wait for EEPROM reload (it happens automatically) */
1434 mdelay(4);
1435 /* Dissable HW ARPs on ASF enabled adapters */
1436 manc = E1000_READ_REG(hw, MANC);
1437 manc &= ~(E1000_MANC_ARP_EN);
1438 E1000_WRITE_REG(hw, MANC, manc);
1439 }
1440
1441 /* Clear interrupt mask to stop board from generating interrupts */
1442 DEBUGOUT("Masking off all interrupts\n");
1443 E1000_WRITE_REG(hw, IMC, 0xffffffff);
1444
1445 /* Clear any pending interrupt events. */
1446 icr = E1000_READ_REG(hw, ICR);
1447
1448 /* If MWI was previously enabled, reenable it. */
1449 if (hw->mac_type == e1000_82542_rev2_0) {
1450 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1451 }
Roy Zang966172e2009-08-22 03:49:52 +08001452 E1000_WRITE_REG(hw, PBA, pba);
Roy Zang28f7a052009-07-31 13:34:02 +08001453}
1454
1455/******************************************************************************
1456 *
1457 * Initialize a number of hardware-dependent bits
1458 *
1459 * hw: Struct containing variables accessed by shared code
1460 *
1461 * This function contains hardware limitation workarounds for PCI-E adapters
1462 *
1463 *****************************************************************************/
1464static void
1465e1000_initialize_hardware_bits(struct e1000_hw *hw)
1466{
1467 if ((hw->mac_type >= e1000_82571) &&
1468 (!hw->initialize_hw_bits_disable)) {
1469 /* Settings common to all PCI-express silicon */
1470 uint32_t reg_ctrl, reg_ctrl_ext;
1471 uint32_t reg_tarc0, reg_tarc1;
1472 uint32_t reg_tctl;
1473 uint32_t reg_txdctl, reg_txdctl1;
1474
1475 /* link autonegotiation/sync workarounds */
1476 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1477 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1478
1479 /* Enable not-done TX descriptor counting */
1480 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1481 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1482 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1483
1484 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1485 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1486 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1487
1488 switch (hw->mac_type) {
1489 case e1000_82571:
1490 case e1000_82572:
1491 /* Clear PHY TX compatible mode bits */
1492 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1493 reg_tarc1 &= ~((1 << 30)|(1 << 29));
1494
1495 /* link autonegotiation/sync workarounds */
1496 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1497
1498 /* TX ring control fixes */
1499 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1500
1501 /* Multiple read bit is reversed polarity */
1502 reg_tctl = E1000_READ_REG(hw, TCTL);
1503 if (reg_tctl & E1000_TCTL_MULR)
1504 reg_tarc1 &= ~(1 << 28);
1505 else
1506 reg_tarc1 |= (1 << 28);
1507
1508 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1509 break;
1510 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001511 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08001512 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1513 reg_ctrl_ext &= ~(1 << 23);
1514 reg_ctrl_ext |= (1 << 22);
1515
1516 /* TX byte count fix */
1517 reg_ctrl = E1000_READ_REG(hw, CTRL);
1518 reg_ctrl &= ~(1 << 29);
1519
1520 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1521 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1522 break;
1523 case e1000_80003es2lan:
1524 /* improve small packet performace for fiber/serdes */
1525 if ((hw->media_type == e1000_media_type_fiber)
1526 || (hw->media_type ==
1527 e1000_media_type_internal_serdes)) {
1528 reg_tarc0 &= ~(1 << 20);
1529 }
1530
1531 /* Multiple read bit is reversed polarity */
1532 reg_tctl = E1000_READ_REG(hw, TCTL);
1533 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1534 if (reg_tctl & E1000_TCTL_MULR)
1535 reg_tarc1 &= ~(1 << 28);
1536 else
1537 reg_tarc1 |= (1 << 28);
1538
1539 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1540 break;
1541 case e1000_ich8lan:
1542 /* Reduce concurrent DMA requests to 3 from 4 */
1543 if ((hw->revision_id < 3) ||
1544 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1545 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1546 reg_tarc0 |= ((1 << 29)|(1 << 28));
1547
1548 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1549 reg_ctrl_ext |= (1 << 22);
1550 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1551
1552 /* workaround TX hang with TSO=on */
1553 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1554
1555 /* Multiple read bit is reversed polarity */
1556 reg_tctl = E1000_READ_REG(hw, TCTL);
1557 reg_tarc1 = E1000_READ_REG(hw, TARC1);
1558 if (reg_tctl & E1000_TCTL_MULR)
1559 reg_tarc1 &= ~(1 << 28);
1560 else
1561 reg_tarc1 |= (1 << 28);
1562
1563 /* workaround TX hang with TSO=on */
1564 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1565
1566 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1567 break;
1568 default:
1569 break;
1570 }
1571
1572 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1573 }
wdenk4e112c12003-06-03 23:54:09 +00001574}
1575
1576/******************************************************************************
1577 * Performs basic configuration of the adapter.
1578 *
1579 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001580 *
1581 * Assumes that the controller has previously been reset and is in a
wdenk4e112c12003-06-03 23:54:09 +00001582 * post-reset uninitialized state. Initializes the receive address registers,
1583 * multicast table, and VLAN filter table. Calls routines to setup link
1584 * configuration and flow control settings. Clears all on-chip counters. Leaves
1585 * the transmit and receive units disabled and uninitialized.
1586 *****************************************************************************/
1587static int
1588e1000_init_hw(struct eth_device *nic)
1589{
1590 struct e1000_hw *hw = nic->priv;
Roy Zang28f7a052009-07-31 13:34:02 +08001591 uint32_t ctrl;
wdenk4e112c12003-06-03 23:54:09 +00001592 uint32_t i;
1593 int32_t ret_val;
1594 uint16_t pcix_cmd_word;
1595 uint16_t pcix_stat_hi_word;
1596 uint16_t cmd_mmrbc;
1597 uint16_t stat_mmrbc;
Roy Zang28f7a052009-07-31 13:34:02 +08001598 uint32_t mta_size;
1599 uint32_t reg_data;
1600 uint32_t ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00001601 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08001602 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1603 if ((hw->mac_type == e1000_ich8lan) &&
1604 ((hw->revision_id < 3) ||
1605 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1606 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1607 reg_data = E1000_READ_REG(hw, STATUS);
1608 reg_data &= ~0x80000000;
1609 E1000_WRITE_REG(hw, STATUS, reg_data);
wdenk4e112c12003-06-03 23:54:09 +00001610 }
Roy Zang28f7a052009-07-31 13:34:02 +08001611 /* Do not need initialize Identification LED */
wdenk4e112c12003-06-03 23:54:09 +00001612
Roy Zang28f7a052009-07-31 13:34:02 +08001613 /* Set the media type and TBI compatibility */
1614 e1000_set_media_type(hw);
1615
1616 /* Must be called after e1000_set_media_type
1617 * because media_type is used */
1618 e1000_initialize_hardware_bits(hw);
wdenk4e112c12003-06-03 23:54:09 +00001619
1620 /* Disabling VLAN filtering. */
1621 DEBUGOUT("Initializing the IEEE VLAN\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001622 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1623 if (hw->mac_type != e1000_ich8lan) {
1624 if (hw->mac_type < e1000_82545_rev_3)
1625 E1000_WRITE_REG(hw, VET, 0);
1626 e1000_clear_vfta(hw);
1627 }
wdenk4e112c12003-06-03 23:54:09 +00001628
1629 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1630 if (hw->mac_type == e1000_82542_rev2_0) {
1631 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1632 pci_write_config_word(hw->pdev, PCI_COMMAND,
1633 hw->
1634 pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1635 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1636 E1000_WRITE_FLUSH(hw);
1637 mdelay(5);
1638 }
1639
1640 /* Setup the receive address. This involves initializing all of the Receive
1641 * Address Registers (RARs 0 - 15).
1642 */
1643 e1000_init_rx_addrs(nic);
1644
1645 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1646 if (hw->mac_type == e1000_82542_rev2_0) {
1647 E1000_WRITE_REG(hw, RCTL, 0);
1648 E1000_WRITE_FLUSH(hw);
1649 mdelay(1);
1650 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1651 }
1652
1653 /* Zero out the Multicast HASH table */
1654 DEBUGOUT("Zeroing the MTA\n");
Roy Zang28f7a052009-07-31 13:34:02 +08001655 mta_size = E1000_MC_TBL_SIZE;
1656 if (hw->mac_type == e1000_ich8lan)
1657 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1658 for (i = 0; i < mta_size; i++) {
wdenk4e112c12003-06-03 23:54:09 +00001659 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Roy Zang28f7a052009-07-31 13:34:02 +08001660 /* use write flush to prevent Memory Write Block (MWB) from
1661 * occuring when accessing our register space */
1662 E1000_WRITE_FLUSH(hw);
1663 }
wdenk4e112c12003-06-03 23:54:09 +00001664#if 0
1665 /* Set the PCI priority bit correctly in the CTRL register. This
1666 * determines if the adapter gives priority to receives, or if it
Roy Zang28f7a052009-07-31 13:34:02 +08001667 * gives equal priority to transmits and receives. Valid only on
1668 * 82542 and 82543 silicon.
wdenk4e112c12003-06-03 23:54:09 +00001669 */
Roy Zang28f7a052009-07-31 13:34:02 +08001670 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
wdenk4e112c12003-06-03 23:54:09 +00001671 ctrl = E1000_READ_REG(hw, CTRL);
1672 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
1673 }
1674#endif
Roy Zang28f7a052009-07-31 13:34:02 +08001675 switch (hw->mac_type) {
1676 case e1000_82545_rev_3:
1677 case e1000_82546_rev_3:
1678 break;
1679 default:
wdenk4e112c12003-06-03 23:54:09 +00001680 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Roy Zang28f7a052009-07-31 13:34:02 +08001681 if (hw->bus_type == e1000_bus_type_pcix) {
wdenk4e112c12003-06-03 23:54:09 +00001682 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1683 &pcix_cmd_word);
1684 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1685 &pcix_stat_hi_word);
1686 cmd_mmrbc =
1687 (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1688 PCIX_COMMAND_MMRBC_SHIFT;
1689 stat_mmrbc =
1690 (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1691 PCIX_STATUS_HI_MMRBC_SHIFT;
1692 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1693 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1694 if (cmd_mmrbc > stat_mmrbc) {
1695 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1696 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1697 pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1698 pcix_cmd_word);
1699 }
1700 }
Roy Zang28f7a052009-07-31 13:34:02 +08001701 break;
1702 }
wdenk4e112c12003-06-03 23:54:09 +00001703
Roy Zang28f7a052009-07-31 13:34:02 +08001704 /* More time needed for PHY to initialize */
1705 if (hw->mac_type == e1000_ich8lan)
1706 mdelay(15);
1707
wdenk4e112c12003-06-03 23:54:09 +00001708 /* Call a subroutine to configure the link and setup flow control. */
1709 ret_val = e1000_setup_link(nic);
1710
1711 /* Set the transmit descriptor write-back policy */
1712 if (hw->mac_type > e1000_82544) {
1713 ctrl = E1000_READ_REG(hw, TXDCTL);
1714 ctrl =
1715 (ctrl & ~E1000_TXDCTL_WTHRESH) |
1716 E1000_TXDCTL_FULL_TX_DESC_WB;
1717 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1718 }
Roy Zang28f7a052009-07-31 13:34:02 +08001719
1720 switch (hw->mac_type) {
1721 default:
1722 break;
1723 case e1000_80003es2lan:
1724 /* Enable retransmit on late collisions */
1725 reg_data = E1000_READ_REG(hw, TCTL);
1726 reg_data |= E1000_TCTL_RTLC;
1727 E1000_WRITE_REG(hw, TCTL, reg_data);
1728
1729 /* Configure Gigabit Carry Extend Padding */
1730 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1731 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1732 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1733 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1734
1735 /* Configure Transmit Inter-Packet Gap */
1736 reg_data = E1000_READ_REG(hw, TIPG);
1737 reg_data &= ~E1000_TIPG_IPGT_MASK;
1738 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1739 E1000_WRITE_REG(hw, TIPG, reg_data);
1740
1741 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1742 reg_data &= ~0x00100000;
1743 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1744 /* Fall through */
1745 case e1000_82571:
1746 case e1000_82572:
1747 case e1000_ich8lan:
1748 ctrl = E1000_READ_REG(hw, TXDCTL1);
1749 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1750 | E1000_TXDCTL_FULL_TX_DESC_WB;
1751 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1752 break;
Roy Zang181119b2011-01-21 11:29:38 +08001753 case e1000_82573:
1754 case e1000_82574:
1755 reg_data = E1000_READ_REG(hw, GCR);
1756 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1757 E1000_WRITE_REG(hw, GCR, reg_data);
Roy Zang28f7a052009-07-31 13:34:02 +08001758 }
1759
wdenk4e112c12003-06-03 23:54:09 +00001760#if 0
1761 /* Clear all of the statistics registers (clear on read). It is
1762 * important that we do this after we have tried to establish link
1763 * because the symbol error count will increment wildly if there
1764 * is no link.
1765 */
1766 e1000_clear_hw_cntrs(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08001767
1768 /* ICH8 No-snoop bits are opposite polarity.
1769 * Set to snoop by default after reset. */
1770 if (hw->mac_type == e1000_ich8lan)
1771 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
wdenk4e112c12003-06-03 23:54:09 +00001772#endif
1773
Roy Zang28f7a052009-07-31 13:34:02 +08001774 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1775 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1776 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1777 /* Relaxed ordering must be disabled to avoid a parity
1778 * error crash in a PCI slot. */
1779 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1780 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1781 }
1782
1783 return ret_val;
1784}
wdenk4e112c12003-06-03 23:54:09 +00001785
1786/******************************************************************************
1787 * Configures flow control and link settings.
wdenk57b2d802003-06-27 21:31:46 +00001788 *
wdenk4e112c12003-06-03 23:54:09 +00001789 * hw - Struct containing variables accessed by shared code
wdenk57b2d802003-06-27 21:31:46 +00001790 *
wdenk4e112c12003-06-03 23:54:09 +00001791 * Determines which flow control settings to use. Calls the apropriate media-
1792 * specific link configuration function. Configures the flow control settings.
1793 * Assuming the adapter has a valid link partner, a valid link should be
wdenk57b2d802003-06-27 21:31:46 +00001794 * established. Assumes the hardware has previously been reset and the
wdenk4e112c12003-06-03 23:54:09 +00001795 * transmitter and receiver are not enabled.
1796 *****************************************************************************/
1797static int
1798e1000_setup_link(struct eth_device *nic)
1799{
1800 struct e1000_hw *hw = nic->priv;
1801 uint32_t ctrl_ext;
1802 int32_t ret_val;
1803 uint16_t eeprom_data;
1804
1805 DEBUGFUNC();
1806
Roy Zang28f7a052009-07-31 13:34:02 +08001807 /* In the case of the phy reset being blocked, we already have a link.
1808 * We do not have to set it up again. */
1809 if (e1000_check_phy_reset_block(hw))
1810 return E1000_SUCCESS;
1811
Wolfgang Denk56811f62005-10-09 01:04:33 +02001812#ifndef CONFIG_AP1000
wdenk4e112c12003-06-03 23:54:09 +00001813 /* Read and store word 0x0F of the EEPROM. This word contains bits
1814 * that determine the hardware's default PAUSE (flow control) mode,
1815 * a bit that determines whether the HW defaults to enabling or
1816 * disabling auto-negotiation, and the direction of the
1817 * SW defined pins. If there is no SW over-ride of the flow
1818 * control setting, then the variable hw->fc will
1819 * be initialized based on a value in the EEPROM.
1820 */
Roy Zang28f7a052009-07-31 13:34:02 +08001821 if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1822 &eeprom_data) < 0) {
wdenk4e112c12003-06-03 23:54:09 +00001823 DEBUGOUT("EEPROM Read Error\n");
1824 return -E1000_ERR_EEPROM;
1825 }
Wolfgang Denk56811f62005-10-09 01:04:33 +02001826#else
1827 /* we have to hardcode the proper value for our hardware. */
1828 /* this value is for the 82540EM pci card used for prototyping, and it works. */
1829 eeprom_data = 0xb220;
1830#endif
wdenk4e112c12003-06-03 23:54:09 +00001831
1832 if (hw->fc == e1000_fc_default) {
Roy Zang28f7a052009-07-31 13:34:02 +08001833 switch (hw->mac_type) {
1834 case e1000_ich8lan:
1835 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08001836 case e1000_82574:
wdenk4e112c12003-06-03 23:54:09 +00001837 hw->fc = e1000_fc_full;
Roy Zang28f7a052009-07-31 13:34:02 +08001838 break;
1839 default:
1840#ifndef CONFIG_AP1000
1841 ret_val = e1000_read_eeprom(hw,
1842 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1843 if (ret_val) {
1844 DEBUGOUT("EEPROM Read Error\n");
1845 return -E1000_ERR_EEPROM;
1846 }
1847#else
1848 eeprom_data = 0xb220;
1849#endif
1850 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1851 hw->fc = e1000_fc_none;
1852 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1853 EEPROM_WORD0F_ASM_DIR)
1854 hw->fc = e1000_fc_tx_pause;
1855 else
1856 hw->fc = e1000_fc_full;
1857 break;
1858 }
wdenk4e112c12003-06-03 23:54:09 +00001859 }
1860
1861 /* We want to save off the original Flow Control configuration just
1862 * in case we get disconnected and then reconnected into a different
1863 * hub or switch with different Flow Control capabilities.
1864 */
1865 if (hw->mac_type == e1000_82542_rev2_0)
1866 hw->fc &= (~e1000_fc_tx_pause);
1867
1868 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1869 hw->fc &= (~e1000_fc_rx_pause);
1870
1871 hw->original_fc = hw->fc;
1872
1873 DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1874
1875 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1876 * polarity value for the SW controlled pins, and setup the
1877 * Extended Device Control reg with that info.
1878 * This is needed because one of the SW controlled pins is used for
1879 * signal detection. So this should be done before e1000_setup_pcs_link()
1880 * or e1000_phy_setup() is called.
1881 */
1882 if (hw->mac_type == e1000_82543) {
1883 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1884 SWDPIO__EXT_SHIFT);
1885 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1886 }
1887
1888 /* Call the necessary subroutine to configure the link. */
1889 ret_val = (hw->media_type == e1000_media_type_fiber) ?
1890 e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
1891 if (ret_val < 0) {
1892 return ret_val;
1893 }
1894
1895 /* Initialize the flow control address, type, and PAUSE timer
1896 * registers to their default values. This is done even if flow
1897 * control is disabled, because it does not hurt anything to
1898 * initialize these registers.
1899 */
Roy Zang28f7a052009-07-31 13:34:02 +08001900 DEBUGOUT("Initializing the Flow Control address, type"
1901 "and timer regs\n");
1902
1903 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1904 if (hw->mac_type != e1000_ich8lan) {
1905 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1906 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1907 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1908 }
wdenk4e112c12003-06-03 23:54:09 +00001909
wdenk4e112c12003-06-03 23:54:09 +00001910 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1911
1912 /* Set the flow control receive threshold registers. Normally,
1913 * these registers will be set to a default threshold that may be
1914 * adjusted later by the driver's runtime code. However, if the
1915 * ability to transmit pause frames in not enabled, then these
wdenk57b2d802003-06-27 21:31:46 +00001916 * registers will be set to 0.
wdenk4e112c12003-06-03 23:54:09 +00001917 */
1918 if (!(hw->fc & e1000_fc_tx_pause)) {
1919 E1000_WRITE_REG(hw, FCRTL, 0);
1920 E1000_WRITE_REG(hw, FCRTH, 0);
1921 } else {
1922 /* We need to set up the Receive Threshold high and low water marks
1923 * as well as (optionally) enabling the transmission of XON frames.
1924 */
1925 if (hw->fc_send_xon) {
1926 E1000_WRITE_REG(hw, FCRTL,
1927 (hw->fc_low_water | E1000_FCRTL_XONE));
1928 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1929 } else {
1930 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1931 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1932 }
1933 }
1934 return ret_val;
1935}
1936
1937/******************************************************************************
1938 * Sets up link for a fiber based adapter
1939 *
1940 * hw - Struct containing variables accessed by shared code
1941 *
1942 * Manipulates Physical Coding Sublayer functions in order to configure
1943 * link. Assumes the hardware has been previously reset and the transmitter
1944 * and receiver are not enabled.
1945 *****************************************************************************/
1946static int
1947e1000_setup_fiber_link(struct eth_device *nic)
1948{
1949 struct e1000_hw *hw = nic->priv;
1950 uint32_t ctrl;
1951 uint32_t status;
1952 uint32_t txcw = 0;
1953 uint32_t i;
1954 uint32_t signal;
1955 int32_t ret_val;
1956
1957 DEBUGFUNC();
wdenk57b2d802003-06-27 21:31:46 +00001958 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
1959 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00001960 * cleared when there is a signal
1961 */
1962 ctrl = E1000_READ_REG(hw, CTRL);
1963 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
1964 signal = E1000_CTRL_SWDPIN1;
1965 else
1966 signal = 0;
1967
1968 printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
1969 ctrl);
1970 /* Take the link out of reset */
1971 ctrl &= ~(E1000_CTRL_LRST);
1972
1973 e1000_config_collision_dist(hw);
1974
1975 /* Check for a software override of the flow control settings, and setup
1976 * the device accordingly. If auto-negotiation is enabled, then software
1977 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1978 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
wdenk57b2d802003-06-27 21:31:46 +00001979 * auto-negotiation is disabled, then software will have to manually
wdenk4e112c12003-06-03 23:54:09 +00001980 * configure the two flow control enable bits in the CTRL register.
1981 *
1982 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07001983 * 0: Flow control is completely disabled
1984 * 1: Rx flow control is enabled (we can receive pause frames, but
1985 * not send pause frames).
1986 * 2: Tx flow control is enabled (we can send pause frames but we do
1987 * not support receiving pause frames).
1988 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00001989 */
1990 switch (hw->fc) {
1991 case e1000_fc_none:
1992 /* Flow control is completely disabled by a software over-ride. */
1993 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1994 break;
1995 case e1000_fc_rx_pause:
wdenk57b2d802003-06-27 21:31:46 +00001996 /* RX Flow control is enabled and TX Flow control is disabled by a
1997 * software over-ride. Since there really isn't a way to advertise
wdenk4e112c12003-06-03 23:54:09 +00001998 * that we are capable of RX Pause ONLY, we will advertise that we
1999 * support both symmetric and asymmetric RX PAUSE. Later, we will
2000 * disable the adapter's ability to send PAUSE frames.
2001 */
2002 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2003 break;
2004 case e1000_fc_tx_pause:
wdenk57b2d802003-06-27 21:31:46 +00002005 /* TX Flow control is enabled, and RX Flow control is disabled, by a
wdenk4e112c12003-06-03 23:54:09 +00002006 * software over-ride.
2007 */
2008 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2009 break;
2010 case e1000_fc_full:
2011 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2012 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2013 break;
2014 default:
2015 DEBUGOUT("Flow control param set incorrectly\n");
2016 return -E1000_ERR_CONFIG;
2017 break;
2018 }
2019
2020 /* Since auto-negotiation is enabled, take the link out of reset (the link
2021 * will be in reset, because we previously reset the chip). This will
2022 * restart auto-negotiation. If auto-neogtiation is successful then the
2023 * link-up status bit will be set and the flow control enable bits (RFCE
2024 * and TFCE) will be set according to their negotiated value.
2025 */
2026 DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2027
2028 E1000_WRITE_REG(hw, TXCW, txcw);
2029 E1000_WRITE_REG(hw, CTRL, ctrl);
2030 E1000_WRITE_FLUSH(hw);
2031
2032 hw->txcw = txcw;
2033 mdelay(1);
2034
2035 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
wdenk57b2d802003-06-27 21:31:46 +00002036 * indication in the Device Status Register. Time-out if a link isn't
2037 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
wdenk4e112c12003-06-03 23:54:09 +00002038 * less than 500 milliseconds even if the other end is doing it in SW).
2039 */
2040 if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2041 DEBUGOUT("Looking for Link\n");
2042 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2043 mdelay(10);
2044 status = E1000_READ_REG(hw, STATUS);
2045 if (status & E1000_STATUS_LU)
2046 break;
2047 }
2048 if (i == (LINK_UP_TIMEOUT / 10)) {
wdenk57b2d802003-06-27 21:31:46 +00002049 /* AutoNeg failed to achieve a link, so we'll call
wdenk4e112c12003-06-03 23:54:09 +00002050 * e1000_check_for_link. This routine will force the link up if we
2051 * detect a signal. This will allow us to communicate with
2052 * non-autonegotiating link partners.
2053 */
2054 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2055 hw->autoneg_failed = 1;
2056 ret_val = e1000_check_for_link(nic);
2057 if (ret_val < 0) {
2058 DEBUGOUT("Error while checking for link\n");
2059 return ret_val;
2060 }
2061 hw->autoneg_failed = 0;
2062 } else {
2063 hw->autoneg_failed = 0;
2064 DEBUGOUT("Valid Link Found\n");
2065 }
2066 } else {
2067 DEBUGOUT("No Signal Detected\n");
2068 return -E1000_ERR_NOLINK;
2069 }
2070 return 0;
2071}
2072
2073/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08002074* Make sure we have a valid PHY and change PHY mode before link setup.
wdenk4e112c12003-06-03 23:54:09 +00002075*
2076* hw - Struct containing variables accessed by shared code
2077******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08002078static int32_t
2079e1000_copper_link_preconfig(struct e1000_hw *hw)
wdenk4e112c12003-06-03 23:54:09 +00002080{
wdenk4e112c12003-06-03 23:54:09 +00002081 uint32_t ctrl;
2082 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002083 uint16_t phy_data;
2084
2085 DEBUGFUNC();
2086
2087 ctrl = E1000_READ_REG(hw, CTRL);
2088 /* With 82543, we need to force speed and duplex on the MAC equal to what
2089 * the PHY speed and duplex configuration is. In addition, we need to
2090 * perform a hardware reset on the PHY to take it out of reset.
2091 */
2092 if (hw->mac_type > e1000_82543) {
2093 ctrl |= E1000_CTRL_SLU;
2094 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2095 E1000_WRITE_REG(hw, CTRL, ctrl);
2096 } else {
Roy Zang28f7a052009-07-31 13:34:02 +08002097 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2098 | E1000_CTRL_SLU);
wdenk4e112c12003-06-03 23:54:09 +00002099 E1000_WRITE_REG(hw, CTRL, ctrl);
Roy Zang28f7a052009-07-31 13:34:02 +08002100 ret_val = e1000_phy_hw_reset(hw);
2101 if (ret_val)
2102 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002103 }
2104
2105 /* Make sure we have a valid PHY */
2106 ret_val = e1000_detect_gig_phy(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002107 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002108 DEBUGOUT("Error, did not detect valid phy.\n");
2109 return ret_val;
2110 }
2111 DEBUGOUT("Phy ID = %x \n", hw->phy_id);
2112
Roy Zang28f7a052009-07-31 13:34:02 +08002113#ifndef CONFIG_AP1000
2114 /* Set PHY to class A mode (if necessary) */
2115 ret_val = e1000_set_phy_mode(hw);
2116 if (ret_val)
2117 return ret_val;
2118#endif
2119 if ((hw->mac_type == e1000_82545_rev_3) ||
2120 (hw->mac_type == e1000_82546_rev_3)) {
2121 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2122 &phy_data);
2123 phy_data |= 0x00000008;
2124 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2125 phy_data);
2126 }
2127
2128 if (hw->mac_type <= e1000_82543 ||
2129 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2130 hw->mac_type == e1000_82541_rev_2
2131 || hw->mac_type == e1000_82547_rev_2)
2132 hw->phy_reset_disable = FALSE;
2133
2134 return E1000_SUCCESS;
2135}
2136
2137/*****************************************************************************
2138 *
2139 * This function sets the lplu state according to the active flag. When
2140 * activating lplu this function also disables smart speed and vise versa.
2141 * lplu will not be activated unless the device autonegotiation advertisment
2142 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2143 * hw: Struct containing variables accessed by shared code
2144 * active - true to enable lplu false to disable lplu.
2145 *
2146 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2147 * E1000_SUCCESS at any other case.
2148 *
2149 ****************************************************************************/
2150
2151static int32_t
2152e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active)
2153{
2154 uint32_t phy_ctrl = 0;
2155 int32_t ret_val;
2156 uint16_t phy_data;
2157 DEBUGFUNC();
2158
2159 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2160 && hw->phy_type != e1000_phy_igp_3)
2161 return E1000_SUCCESS;
2162
2163 /* During driver activity LPLU should not be used or it will attain link
2164 * from the lowest speeds starting from 10Mbps. The capability is used
2165 * for Dx transitions and states */
2166 if (hw->mac_type == e1000_82541_rev_2
2167 || hw->mac_type == e1000_82547_rev_2) {
2168 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2169 &phy_data);
2170 if (ret_val)
2171 return ret_val;
2172 } else if (hw->mac_type == e1000_ich8lan) {
2173 /* MAC writes into PHY register based on the state transition
2174 * and start auto-negotiation. SW driver can overwrite the
2175 * settings in CSR PHY power control E1000_PHY_CTRL register. */
2176 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2177 } else {
2178 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2179 &phy_data);
2180 if (ret_val)
2181 return ret_val;
2182 }
2183
2184 if (!active) {
2185 if (hw->mac_type == e1000_82541_rev_2 ||
2186 hw->mac_type == e1000_82547_rev_2) {
2187 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2188 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2189 phy_data);
2190 if (ret_val)
2191 return ret_val;
2192 } else {
2193 if (hw->mac_type == e1000_ich8lan) {
2194 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2195 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2196 } else {
2197 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2198 ret_val = e1000_write_phy_reg(hw,
2199 IGP02E1000_PHY_POWER_MGMT, phy_data);
2200 if (ret_val)
2201 return ret_val;
2202 }
2203 }
2204
2205 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2206 * Dx states where the power conservation is most important. During
2207 * driver activity we should enable SmartSpeed, so performance is
2208 * maintained. */
2209 if (hw->smart_speed == e1000_smart_speed_on) {
2210 ret_val = e1000_read_phy_reg(hw,
2211 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2212 if (ret_val)
2213 return ret_val;
2214
2215 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2216 ret_val = e1000_write_phy_reg(hw,
2217 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2218 if (ret_val)
2219 return ret_val;
2220 } else if (hw->smart_speed == e1000_smart_speed_off) {
2221 ret_val = e1000_read_phy_reg(hw,
2222 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2223 if (ret_val)
2224 return ret_val;
2225
2226 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2227 ret_val = e1000_write_phy_reg(hw,
2228 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2229 if (ret_val)
2230 return ret_val;
2231 }
2232
2233 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2234 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2235 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2236
2237 if (hw->mac_type == e1000_82541_rev_2 ||
2238 hw->mac_type == e1000_82547_rev_2) {
2239 phy_data |= IGP01E1000_GMII_FLEX_SPD;
2240 ret_val = e1000_write_phy_reg(hw,
2241 IGP01E1000_GMII_FIFO, phy_data);
2242 if (ret_val)
2243 return ret_val;
2244 } else {
2245 if (hw->mac_type == e1000_ich8lan) {
2246 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2247 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2248 } else {
2249 phy_data |= IGP02E1000_PM_D3_LPLU;
2250 ret_val = e1000_write_phy_reg(hw,
2251 IGP02E1000_PHY_POWER_MGMT, phy_data);
2252 if (ret_val)
2253 return ret_val;
2254 }
2255 }
2256
2257 /* When LPLU is enabled we should disable SmartSpeed */
2258 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2259 &phy_data);
2260 if (ret_val)
2261 return ret_val;
2262
2263 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2264 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2265 phy_data);
2266 if (ret_val)
2267 return ret_val;
2268 }
2269 return E1000_SUCCESS;
2270}
2271
2272/*****************************************************************************
2273 *
2274 * This function sets the lplu d0 state according to the active flag. When
2275 * activating lplu this function also disables smart speed and vise versa.
2276 * lplu will not be activated unless the device autonegotiation advertisment
2277 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2278 * hw: Struct containing variables accessed by shared code
2279 * active - true to enable lplu false to disable lplu.
2280 *
2281 * returns: - E1000_ERR_PHY if fail to read/write the PHY
2282 * E1000_SUCCESS at any other case.
2283 *
2284 ****************************************************************************/
2285
2286static int32_t
2287e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active)
2288{
2289 uint32_t phy_ctrl = 0;
2290 int32_t ret_val;
2291 uint16_t phy_data;
2292 DEBUGFUNC();
2293
2294 if (hw->mac_type <= e1000_82547_rev_2)
2295 return E1000_SUCCESS;
2296
2297 if (hw->mac_type == e1000_ich8lan) {
2298 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2299 } else {
2300 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2301 &phy_data);
2302 if (ret_val)
2303 return ret_val;
2304 }
2305
2306 if (!active) {
2307 if (hw->mac_type == e1000_ich8lan) {
2308 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2309 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2310 } else {
2311 phy_data &= ~IGP02E1000_PM_D0_LPLU;
2312 ret_val = e1000_write_phy_reg(hw,
2313 IGP02E1000_PHY_POWER_MGMT, phy_data);
2314 if (ret_val)
2315 return ret_val;
2316 }
2317
2318 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
2319 * Dx states where the power conservation is most important. During
2320 * driver activity we should enable SmartSpeed, so performance is
2321 * maintained. */
2322 if (hw->smart_speed == e1000_smart_speed_on) {
2323 ret_val = e1000_read_phy_reg(hw,
2324 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2325 if (ret_val)
2326 return ret_val;
2327
2328 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2329 ret_val = e1000_write_phy_reg(hw,
2330 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2331 if (ret_val)
2332 return ret_val;
2333 } else if (hw->smart_speed == e1000_smart_speed_off) {
2334 ret_val = e1000_read_phy_reg(hw,
2335 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2336 if (ret_val)
2337 return ret_val;
2338
2339 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2340 ret_val = e1000_write_phy_reg(hw,
2341 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2342 if (ret_val)
2343 return ret_val;
2344 }
2345
2346
2347 } else {
2348
2349 if (hw->mac_type == e1000_ich8lan) {
2350 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2351 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2352 } else {
2353 phy_data |= IGP02E1000_PM_D0_LPLU;
2354 ret_val = e1000_write_phy_reg(hw,
2355 IGP02E1000_PHY_POWER_MGMT, phy_data);
2356 if (ret_val)
2357 return ret_val;
2358 }
2359
2360 /* When LPLU is enabled we should disable SmartSpeed */
2361 ret_val = e1000_read_phy_reg(hw,
2362 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2363 if (ret_val)
2364 return ret_val;
2365
2366 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2367 ret_val = e1000_write_phy_reg(hw,
2368 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2369 if (ret_val)
2370 return ret_val;
2371
2372 }
2373 return E1000_SUCCESS;
2374}
2375
2376/********************************************************************
2377* Copper link setup for e1000_phy_igp series.
2378*
2379* hw - Struct containing variables accessed by shared code
2380*********************************************************************/
2381static int32_t
2382e1000_copper_link_igp_setup(struct e1000_hw *hw)
2383{
2384 uint32_t led_ctrl;
2385 int32_t ret_val;
2386 uint16_t phy_data;
2387
Timur Tabiedc45b52009-08-17 15:55:38 -05002388 DEBUGFUNC();
Roy Zang28f7a052009-07-31 13:34:02 +08002389
2390 if (hw->phy_reset_disable)
2391 return E1000_SUCCESS;
2392
2393 ret_val = e1000_phy_reset(hw);
2394 if (ret_val) {
2395 DEBUGOUT("Error Resetting the PHY\n");
2396 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002397 }
Roy Zang28f7a052009-07-31 13:34:02 +08002398
2399 /* Wait 15ms for MAC to configure PHY from eeprom settings */
2400 mdelay(15);
2401 if (hw->mac_type != e1000_ich8lan) {
2402 /* Configure activity LED after PHY reset */
2403 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2404 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2405 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2406 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2407 }
2408
2409 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2410 if (hw->phy_type == e1000_phy_igp) {
2411 /* disable lplu d3 during driver init */
2412 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
2413 if (ret_val) {
2414 DEBUGOUT("Error Disabling LPLU D3\n");
2415 return ret_val;
2416 }
2417 }
2418
2419 /* disable lplu d0 during driver init */
2420 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
2421 if (ret_val) {
2422 DEBUGOUT("Error Disabling LPLU D0\n");
2423 return ret_val;
2424 }
2425 /* Configure mdi-mdix settings */
2426 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2427 if (ret_val)
2428 return ret_val;
2429
2430 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2431 hw->dsp_config_state = e1000_dsp_config_disabled;
2432 /* Force MDI for earlier revs of the IGP PHY */
2433 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2434 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2435 hw->mdix = 1;
2436
2437 } else {
2438 hw->dsp_config_state = e1000_dsp_config_enabled;
2439 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2440
2441 switch (hw->mdix) {
2442 case 1:
2443 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2444 break;
2445 case 2:
2446 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2447 break;
2448 case 0:
2449 default:
2450 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2451 break;
2452 }
2453 }
2454 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2455 if (ret_val)
2456 return ret_val;
2457
2458 /* set auto-master slave resolution settings */
2459 if (hw->autoneg) {
2460 e1000_ms_type phy_ms_setting = hw->master_slave;
2461
2462 if (hw->ffe_config_state == e1000_ffe_config_active)
2463 hw->ffe_config_state = e1000_ffe_config_enabled;
2464
2465 if (hw->dsp_config_state == e1000_dsp_config_activated)
2466 hw->dsp_config_state = e1000_dsp_config_enabled;
2467
2468 /* when autonegotiation advertisment is only 1000Mbps then we
2469 * should disable SmartSpeed and enable Auto MasterSlave
2470 * resolution as hardware default. */
2471 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2472 /* Disable SmartSpeed */
2473 ret_val = e1000_read_phy_reg(hw,
2474 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2475 if (ret_val)
2476 return ret_val;
2477 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2478 ret_val = e1000_write_phy_reg(hw,
2479 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2480 if (ret_val)
2481 return ret_val;
2482 /* Set auto Master/Slave resolution process */
2483 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2484 &phy_data);
2485 if (ret_val)
2486 return ret_val;
2487 phy_data &= ~CR_1000T_MS_ENABLE;
2488 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2489 phy_data);
2490 if (ret_val)
2491 return ret_val;
2492 }
2493
2494 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2495 if (ret_val)
2496 return ret_val;
2497
2498 /* load defaults for future use */
2499 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2500 ((phy_data & CR_1000T_MS_VALUE) ?
2501 e1000_ms_force_master :
2502 e1000_ms_force_slave) :
2503 e1000_ms_auto;
2504
2505 switch (phy_ms_setting) {
2506 case e1000_ms_force_master:
2507 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2508 break;
2509 case e1000_ms_force_slave:
2510 phy_data |= CR_1000T_MS_ENABLE;
2511 phy_data &= ~(CR_1000T_MS_VALUE);
2512 break;
2513 case e1000_ms_auto:
2514 phy_data &= ~CR_1000T_MS_ENABLE;
2515 default:
2516 break;
2517 }
2518 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2519 if (ret_val)
2520 return ret_val;
2521 }
2522
2523 return E1000_SUCCESS;
2524}
2525
2526/*****************************************************************************
2527 * This function checks the mode of the firmware.
2528 *
2529 * returns - TRUE when the mode is IAMT or FALSE.
2530 ****************************************************************************/
2531boolean_t
2532e1000_check_mng_mode(struct e1000_hw *hw)
2533{
2534 uint32_t fwsm;
2535 DEBUGFUNC();
2536
2537 fwsm = E1000_READ_REG(hw, FWSM);
2538
2539 if (hw->mac_type == e1000_ich8lan) {
2540 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2541 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2542 return TRUE;
2543 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2544 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2545 return TRUE;
2546
2547 return FALSE;
2548}
2549
2550static int32_t
2551e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2552{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002553 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002554 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002555 DEBUGFUNC();
2556
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002557 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002558 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002559
Roy Zang28f7a052009-07-31 13:34:02 +08002560 if (e1000_swfw_sync_acquire(hw, swfw))
2561 return -E1000_ERR_SWFW_SYNC;
2562
2563 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2564 & E1000_KUMCTRLSTA_OFFSET) | data;
2565 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2566 udelay(2);
2567
2568 return E1000_SUCCESS;
2569}
2570
2571static int32_t
2572e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2573{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002574 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08002575 uint32_t reg_val;
Roy Zang28f7a052009-07-31 13:34:02 +08002576 DEBUGFUNC();
2577
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002578 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08002579 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00002580
Roy Zang28f7a052009-07-31 13:34:02 +08002581 if (e1000_swfw_sync_acquire(hw, swfw))
2582 return -E1000_ERR_SWFW_SYNC;
2583
2584 /* Write register address */
2585 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2586 E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2587 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2588 udelay(2);
2589
2590 /* Read the data returned */
2591 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2592 *data = (uint16_t)reg_val;
2593
2594 return E1000_SUCCESS;
2595}
2596
2597/********************************************************************
2598* Copper link setup for e1000_phy_gg82563 series.
2599*
2600* hw - Struct containing variables accessed by shared code
2601*********************************************************************/
2602static int32_t
2603e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2604{
2605 int32_t ret_val;
2606 uint16_t phy_data;
2607 uint32_t reg_data;
2608
2609 DEBUGFUNC();
2610
2611 if (!hw->phy_reset_disable) {
2612 /* Enable CRS on TX for half-duplex operation. */
2613 ret_val = e1000_read_phy_reg(hw,
2614 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2615 if (ret_val)
2616 return ret_val;
2617
2618 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2619 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2620 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2621
2622 ret_val = e1000_write_phy_reg(hw,
2623 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2624 if (ret_val)
2625 return ret_val;
2626
2627 /* Options:
2628 * MDI/MDI-X = 0 (default)
2629 * 0 - Auto for all speeds
2630 * 1 - MDI mode
2631 * 2 - MDI-X mode
2632 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2633 */
2634 ret_val = e1000_read_phy_reg(hw,
2635 GG82563_PHY_SPEC_CTRL, &phy_data);
2636 if (ret_val)
2637 return ret_val;
2638
2639 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2640
2641 switch (hw->mdix) {
2642 case 1:
2643 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2644 break;
2645 case 2:
2646 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2647 break;
2648 case 0:
2649 default:
2650 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2651 break;
2652 }
2653
2654 /* Options:
2655 * disable_polarity_correction = 0 (default)
2656 * Automatic Correction for Reversed Cable Polarity
2657 * 0 - Disabled
2658 * 1 - Enabled
2659 */
2660 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2661 ret_val = e1000_write_phy_reg(hw,
2662 GG82563_PHY_SPEC_CTRL, phy_data);
2663
2664 if (ret_val)
2665 return ret_val;
2666
2667 /* SW Reset the PHY so all changes take effect */
2668 ret_val = e1000_phy_reset(hw);
2669 if (ret_val) {
2670 DEBUGOUT("Error Resetting the PHY\n");
2671 return ret_val;
2672 }
2673 } /* phy_reset_disable */
2674
2675 if (hw->mac_type == e1000_80003es2lan) {
2676 /* Bypass RX and TX FIFO's */
2677 ret_val = e1000_write_kmrn_reg(hw,
2678 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2679 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2680 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2681 if (ret_val)
2682 return ret_val;
2683
2684 ret_val = e1000_read_phy_reg(hw,
2685 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2686 if (ret_val)
2687 return ret_val;
2688
2689 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2690 ret_val = e1000_write_phy_reg(hw,
2691 GG82563_PHY_SPEC_CTRL_2, phy_data);
2692
2693 if (ret_val)
2694 return ret_val;
2695
2696 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2697 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2698 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2699
2700 ret_val = e1000_read_phy_reg(hw,
2701 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2702 if (ret_val)
2703 return ret_val;
2704
2705 /* Do not init these registers when the HW is in IAMT mode, since the
2706 * firmware will have already initialized them. We only initialize
2707 * them if the HW is not in IAMT mode.
2708 */
2709 if (e1000_check_mng_mode(hw) == FALSE) {
2710 /* Enable Electrical Idle on the PHY */
2711 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2712 ret_val = e1000_write_phy_reg(hw,
2713 GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2714 if (ret_val)
2715 return ret_val;
2716
2717 ret_val = e1000_read_phy_reg(hw,
2718 GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2719 if (ret_val)
2720 return ret_val;
2721
2722 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2723 ret_val = e1000_write_phy_reg(hw,
2724 GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2725
2726 if (ret_val)
2727 return ret_val;
2728 }
2729
2730 /* Workaround: Disable padding in Kumeran interface in the MAC
2731 * and in the PHY to avoid CRC errors.
2732 */
2733 ret_val = e1000_read_phy_reg(hw,
2734 GG82563_PHY_INBAND_CTRL, &phy_data);
2735 if (ret_val)
2736 return ret_val;
2737 phy_data |= GG82563_ICR_DIS_PADDING;
2738 ret_val = e1000_write_phy_reg(hw,
2739 GG82563_PHY_INBAND_CTRL, phy_data);
2740 if (ret_val)
2741 return ret_val;
2742 }
2743 return E1000_SUCCESS;
2744}
2745
2746/********************************************************************
2747* Copper link setup for e1000_phy_m88 series.
2748*
2749* hw - Struct containing variables accessed by shared code
2750*********************************************************************/
2751static int32_t
2752e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2753{
2754 int32_t ret_val;
2755 uint16_t phy_data;
2756
2757 DEBUGFUNC();
2758
2759 if (hw->phy_reset_disable)
2760 return E1000_SUCCESS;
2761
2762 /* Enable CRS on TX. This must be set for half-duplex operation. */
2763 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2764 if (ret_val)
2765 return ret_val;
2766
wdenk4e112c12003-06-03 23:54:09 +00002767 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2768
wdenk4e112c12003-06-03 23:54:09 +00002769 /* Options:
2770 * MDI/MDI-X = 0 (default)
2771 * 0 - Auto for all speeds
2772 * 1 - MDI mode
2773 * 2 - MDI-X mode
2774 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2775 */
2776 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Roy Zang28f7a052009-07-31 13:34:02 +08002777
wdenk4e112c12003-06-03 23:54:09 +00002778 switch (hw->mdix) {
2779 case 1:
2780 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2781 break;
2782 case 2:
2783 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2784 break;
2785 case 3:
2786 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2787 break;
2788 case 0:
2789 default:
2790 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2791 break;
2792 }
wdenk4e112c12003-06-03 23:54:09 +00002793
wdenk4e112c12003-06-03 23:54:09 +00002794 /* Options:
2795 * disable_polarity_correction = 0 (default)
Roy Zang28f7a052009-07-31 13:34:02 +08002796 * Automatic Correction for Reversed Cable Polarity
wdenk4e112c12003-06-03 23:54:09 +00002797 * 0 - Disabled
2798 * 1 - Enabled
2799 */
2800 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Roy Zang28f7a052009-07-31 13:34:02 +08002801 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2802 if (ret_val)
2803 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00002804
Roy Zang28f7a052009-07-31 13:34:02 +08002805 if (hw->phy_revision < M88E1011_I_REV_4) {
2806 /* Force TX_CLK in the Extended PHY Specific Control Register
2807 * to 25MHz clock.
2808 */
2809 ret_val = e1000_read_phy_reg(hw,
2810 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2811 if (ret_val)
2812 return ret_val;
2813
2814 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2815
2816 if ((hw->phy_revision == E1000_REVISION_2) &&
2817 (hw->phy_id == M88E1111_I_PHY_ID)) {
2818 /* Vidalia Phy, set the downshift counter to 5x */
2819 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2820 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2821 ret_val = e1000_write_phy_reg(hw,
2822 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2823 if (ret_val)
2824 return ret_val;
2825 } else {
2826 /* Configure Master and Slave downshift values */
2827 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2828 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2829 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2830 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2831 ret_val = e1000_write_phy_reg(hw,
2832 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2833 if (ret_val)
2834 return ret_val;
2835 }
wdenk4e112c12003-06-03 23:54:09 +00002836 }
2837
2838 /* SW Reset the PHY so all changes take effect */
2839 ret_val = e1000_phy_reset(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002840 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002841 DEBUGOUT("Error Resetting the PHY\n");
2842 return ret_val;
2843 }
2844
Roy Zang28f7a052009-07-31 13:34:02 +08002845 return E1000_SUCCESS;
2846}
wdenk4e112c12003-06-03 23:54:09 +00002847
Roy Zang28f7a052009-07-31 13:34:02 +08002848/********************************************************************
2849* Setup auto-negotiation and flow control advertisements,
2850* and then perform auto-negotiation.
2851*
2852* hw - Struct containing variables accessed by shared code
2853*********************************************************************/
2854static int32_t
2855e1000_copper_link_autoneg(struct e1000_hw *hw)
2856{
2857 int32_t ret_val;
2858 uint16_t phy_data;
2859
2860 DEBUGFUNC();
2861
wdenk4e112c12003-06-03 23:54:09 +00002862 /* Perform some bounds checking on the hw->autoneg_advertised
2863 * parameter. If this variable is zero, then set it to the default.
2864 */
2865 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2866
2867 /* If autoneg_advertised is zero, we assume it was not defaulted
2868 * by the calling code so we set to advertise full capability.
2869 */
2870 if (hw->autoneg_advertised == 0)
2871 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2872
Roy Zang28f7a052009-07-31 13:34:02 +08002873 /* IFE phy only supports 10/100 */
2874 if (hw->phy_type == e1000_phy_ife)
2875 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2876
wdenk4e112c12003-06-03 23:54:09 +00002877 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2878 ret_val = e1000_phy_setup_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002879 if (ret_val) {
wdenk4e112c12003-06-03 23:54:09 +00002880 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2881 return ret_val;
2882 }
2883 DEBUGOUT("Restarting Auto-Neg\n");
2884
2885 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2886 * the Auto Neg Restart bit in the PHY control register.
2887 */
Roy Zang28f7a052009-07-31 13:34:02 +08002888 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2889 if (ret_val)
2890 return ret_val;
2891
wdenk4e112c12003-06-03 23:54:09 +00002892 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
Roy Zang28f7a052009-07-31 13:34:02 +08002893 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2894 if (ret_val)
2895 return ret_val;
2896
wdenk4e112c12003-06-03 23:54:09 +00002897 /* Does the user want to wait for Auto-Neg to complete here, or
2898 * check at a later time (for example, callback routine).
2899 */
Roy Zang28f7a052009-07-31 13:34:02 +08002900 /* If we do not wait for autonegtation to complete I
2901 * do not see a valid link status.
2902 * wait_autoneg_complete = 1 .
2903 */
wdenk4e112c12003-06-03 23:54:09 +00002904 if (hw->wait_autoneg_complete) {
2905 ret_val = e1000_wait_autoneg(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08002906 if (ret_val) {
2907 DEBUGOUT("Error while waiting for autoneg"
2908 "to complete\n");
wdenk4e112c12003-06-03 23:54:09 +00002909 return ret_val;
2910 }
2911 }
Roy Zang28f7a052009-07-31 13:34:02 +08002912
2913 hw->get_link_status = TRUE;
2914
2915 return E1000_SUCCESS;
2916}
2917
2918/******************************************************************************
2919* Config the MAC and the PHY after link is up.
2920* 1) Set up the MAC to the current PHY speed/duplex
2921* if we are on 82543. If we
2922* are on newer silicon, we only need to configure
2923* collision distance in the Transmit Control Register.
2924* 2) Set up flow control on the MAC to that established with
2925* the link partner.
2926* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
2927*
2928* hw - Struct containing variables accessed by shared code
2929******************************************************************************/
2930static int32_t
2931e1000_copper_link_postconfig(struct e1000_hw *hw)
2932{
2933 int32_t ret_val;
2934 DEBUGFUNC();
2935
2936 if (hw->mac_type >= e1000_82544) {
2937 e1000_config_collision_dist(hw);
2938 } else {
2939 ret_val = e1000_config_mac_to_phy(hw);
2940 if (ret_val) {
2941 DEBUGOUT("Error configuring MAC to PHY settings\n");
2942 return ret_val;
2943 }
2944 }
2945 ret_val = e1000_config_fc_after_link_up(hw);
2946 if (ret_val) {
2947 DEBUGOUT("Error Configuring Flow Control\n");
wdenk4e112c12003-06-03 23:54:09 +00002948 return ret_val;
2949 }
Roy Zang28f7a052009-07-31 13:34:02 +08002950 return E1000_SUCCESS;
2951}
2952
2953/******************************************************************************
2954* Detects which PHY is present and setup the speed and duplex
2955*
2956* hw - Struct containing variables accessed by shared code
2957******************************************************************************/
2958static int
2959e1000_setup_copper_link(struct eth_device *nic)
2960{
2961 struct e1000_hw *hw = nic->priv;
2962 int32_t ret_val;
2963 uint16_t i;
2964 uint16_t phy_data;
2965 uint16_t reg_data;
2966
2967 DEBUGFUNC();
2968
2969 switch (hw->mac_type) {
2970 case e1000_80003es2lan:
2971 case e1000_ich8lan:
2972 /* Set the mac to wait the maximum time between each
2973 * iteration and increase the max iterations when
2974 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
2975 ret_val = e1000_write_kmrn_reg(hw,
2976 GG82563_REG(0x34, 4), 0xFFFF);
2977 if (ret_val)
2978 return ret_val;
2979 ret_val = e1000_read_kmrn_reg(hw,
2980 GG82563_REG(0x34, 9), &reg_data);
2981 if (ret_val)
2982 return ret_val;
2983 reg_data |= 0x3F;
2984 ret_val = e1000_write_kmrn_reg(hw,
2985 GG82563_REG(0x34, 9), reg_data);
2986 if (ret_val)
2987 return ret_val;
2988 default:
2989 break;
2990 }
2991
2992 /* Check if it is a valid PHY and set PHY mode if necessary. */
2993 ret_val = e1000_copper_link_preconfig(hw);
2994 if (ret_val)
2995 return ret_val;
2996 switch (hw->mac_type) {
2997 case e1000_80003es2lan:
2998 /* Kumeran registers are written-only */
2999 reg_data =
3000 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3001 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3002 ret_val = e1000_write_kmrn_reg(hw,
3003 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3004 if (ret_val)
3005 return ret_val;
3006 break;
3007 default:
3008 break;
3009 }
3010
3011 if (hw->phy_type == e1000_phy_igp ||
3012 hw->phy_type == e1000_phy_igp_3 ||
3013 hw->phy_type == e1000_phy_igp_2) {
3014 ret_val = e1000_copper_link_igp_setup(hw);
3015 if (ret_val)
3016 return ret_val;
3017 } else if (hw->phy_type == e1000_phy_m88) {
3018 ret_val = e1000_copper_link_mgp_setup(hw);
3019 if (ret_val)
3020 return ret_val;
3021 } else if (hw->phy_type == e1000_phy_gg82563) {
3022 ret_val = e1000_copper_link_ggp_setup(hw);
3023 if (ret_val)
3024 return ret_val;
3025 }
3026
3027 /* always auto */
3028 /* Setup autoneg and flow control advertisement
3029 * and perform autonegotiation */
3030 ret_val = e1000_copper_link_autoneg(hw);
3031 if (ret_val)
3032 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003033
3034 /* Check link status. Wait up to 100 microseconds for link to become
3035 * valid.
3036 */
3037 for (i = 0; i < 10; i++) {
Roy Zang28f7a052009-07-31 13:34:02 +08003038 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3039 if (ret_val)
3040 return ret_val;
3041 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3042 if (ret_val)
3043 return ret_val;
3044
wdenk4e112c12003-06-03 23:54:09 +00003045 if (phy_data & MII_SR_LINK_STATUS) {
Roy Zang28f7a052009-07-31 13:34:02 +08003046 /* Config the MAC and PHY after link is up */
3047 ret_val = e1000_copper_link_postconfig(hw);
3048 if (ret_val)
wdenk4e112c12003-06-03 23:54:09 +00003049 return ret_val;
Roy Zang28f7a052009-07-31 13:34:02 +08003050
wdenk4e112c12003-06-03 23:54:09 +00003051 DEBUGOUT("Valid link established!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003052 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003053 }
3054 udelay(10);
3055 }
3056
3057 DEBUGOUT("Unable to establish link!!!\n");
Roy Zang28f7a052009-07-31 13:34:02 +08003058 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003059}
3060
3061/******************************************************************************
3062* Configures PHY autoneg and flow control advertisement settings
3063*
3064* hw - Struct containing variables accessed by shared code
3065******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003066int32_t
wdenk4e112c12003-06-03 23:54:09 +00003067e1000_phy_setup_autoneg(struct e1000_hw *hw)
3068{
Roy Zang28f7a052009-07-31 13:34:02 +08003069 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003070 uint16_t mii_autoneg_adv_reg;
3071 uint16_t mii_1000t_ctrl_reg;
3072
3073 DEBUGFUNC();
3074
3075 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
Roy Zang28f7a052009-07-31 13:34:02 +08003076 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3077 if (ret_val)
3078 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003079
Roy Zang28f7a052009-07-31 13:34:02 +08003080 if (hw->phy_type != e1000_phy_ife) {
3081 /* Read the MII 1000Base-T Control Register (Address 9). */
3082 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3083 &mii_1000t_ctrl_reg);
3084 if (ret_val)
3085 return ret_val;
3086 } else
3087 mii_1000t_ctrl_reg = 0;
wdenk4e112c12003-06-03 23:54:09 +00003088
3089 /* Need to parse both autoneg_advertised and fc and set up
3090 * the appropriate PHY registers. First we will parse for
3091 * autoneg_advertised software override. Since we can advertise
3092 * a plethora of combinations, we need to check each bit
3093 * individually.
3094 */
3095
3096 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3097 * Advertisement Register (Address 4) and the 1000 mb speed bits in
Roy Zang28f7a052009-07-31 13:34:02 +08003098 * the 1000Base-T Control Register (Address 9).
wdenk4e112c12003-06-03 23:54:09 +00003099 */
3100 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3101 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3102
3103 DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3104
3105 /* Do we want to advertise 10 Mb Half Duplex? */
3106 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3107 DEBUGOUT("Advertise 10mb Half duplex\n");
3108 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3109 }
3110
3111 /* Do we want to advertise 10 Mb Full Duplex? */
3112 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3113 DEBUGOUT("Advertise 10mb Full duplex\n");
3114 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3115 }
3116
3117 /* Do we want to advertise 100 Mb Half Duplex? */
3118 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3119 DEBUGOUT("Advertise 100mb Half duplex\n");
3120 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3121 }
3122
3123 /* Do we want to advertise 100 Mb Full Duplex? */
3124 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3125 DEBUGOUT("Advertise 100mb Full duplex\n");
3126 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3127 }
3128
3129 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3130 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3131 DEBUGOUT
3132 ("Advertise 1000mb Half duplex requested, request denied!\n");
3133 }
3134
3135 /* Do we want to advertise 1000 Mb Full Duplex? */
3136 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3137 DEBUGOUT("Advertise 1000mb Full duplex\n");
3138 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3139 }
3140
3141 /* Check for a software override of the flow control settings, and
3142 * setup the PHY advertisement registers accordingly. If
3143 * auto-negotiation is enabled, then software will have to set the
3144 * "PAUSE" bits to the correct value in the Auto-Negotiation
3145 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3146 *
3147 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003148 * 0: Flow control is completely disabled
3149 * 1: Rx flow control is enabled (we can receive pause frames
3150 * but not send pause frames).
3151 * 2: Tx flow control is enabled (we can send pause frames
3152 * but we do not support receiving pause frames).
3153 * 3: Both Rx and TX flow control (symmetric) are enabled.
wdenk4e112c12003-06-03 23:54:09 +00003154 * other: No software override. The flow control configuration
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003155 * in the EEPROM is used.
wdenk4e112c12003-06-03 23:54:09 +00003156 */
3157 switch (hw->fc) {
3158 case e1000_fc_none: /* 0 */
3159 /* Flow control (RX & TX) is completely disabled by a
3160 * software over-ride.
3161 */
3162 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3163 break;
3164 case e1000_fc_rx_pause: /* 1 */
3165 /* RX Flow control is enabled, and TX Flow control is
3166 * disabled, by a software over-ride.
3167 */
3168 /* Since there really isn't a way to advertise that we are
3169 * capable of RX Pause ONLY, we will advertise that we
3170 * support both symmetric and asymmetric RX PAUSE. Later
3171 * (in e1000_config_fc_after_link_up) we will disable the
3172 *hw's ability to send PAUSE frames.
3173 */
3174 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3175 break;
3176 case e1000_fc_tx_pause: /* 2 */
3177 /* TX Flow control is enabled, and RX Flow control is
3178 * disabled, by a software over-ride.
3179 */
3180 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3181 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3182 break;
3183 case e1000_fc_full: /* 3 */
3184 /* Flow control (both RX and TX) is enabled by a software
3185 * over-ride.
3186 */
3187 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3188 break;
3189 default:
3190 DEBUGOUT("Flow control param set incorrectly\n");
3191 return -E1000_ERR_CONFIG;
3192 }
3193
Roy Zang28f7a052009-07-31 13:34:02 +08003194 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3195 if (ret_val)
3196 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003197
3198 DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3199
Roy Zang28f7a052009-07-31 13:34:02 +08003200 if (hw->phy_type != e1000_phy_ife) {
3201 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3202 mii_1000t_ctrl_reg);
3203 if (ret_val)
3204 return ret_val;
wdenk4e112c12003-06-03 23:54:09 +00003205 }
Roy Zang28f7a052009-07-31 13:34:02 +08003206
3207 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003208}
3209
3210/******************************************************************************
3211* Sets the collision distance in the Transmit Control register
3212*
3213* hw - Struct containing variables accessed by shared code
3214*
3215* Link should have been established previously. Reads the speed and duplex
3216* information from the Device Status register.
3217******************************************************************************/
3218static void
3219e1000_config_collision_dist(struct e1000_hw *hw)
3220{
Roy Zang28f7a052009-07-31 13:34:02 +08003221 uint32_t tctl, coll_dist;
3222
3223 DEBUGFUNC();
3224
3225 if (hw->mac_type < e1000_82543)
3226 coll_dist = E1000_COLLISION_DISTANCE_82542;
3227 else
3228 coll_dist = E1000_COLLISION_DISTANCE;
wdenk4e112c12003-06-03 23:54:09 +00003229
3230 tctl = E1000_READ_REG(hw, TCTL);
3231
3232 tctl &= ~E1000_TCTL_COLD;
Roy Zang28f7a052009-07-31 13:34:02 +08003233 tctl |= coll_dist << E1000_COLD_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00003234
3235 E1000_WRITE_REG(hw, TCTL, tctl);
3236 E1000_WRITE_FLUSH(hw);
3237}
3238
3239/******************************************************************************
3240* Sets MAC speed and duplex settings to reflect the those in the PHY
3241*
3242* hw - Struct containing variables accessed by shared code
3243* mii_reg - data to write to the MII control register
3244*
3245* The contents of the PHY register containing the needed information need to
3246* be passed in.
3247******************************************************************************/
3248static int
3249e1000_config_mac_to_phy(struct e1000_hw *hw)
3250{
3251 uint32_t ctrl;
3252 uint16_t phy_data;
3253
3254 DEBUGFUNC();
3255
3256 /* Read the Device Control Register and set the bits to Force Speed
3257 * and Duplex.
3258 */
3259 ctrl = E1000_READ_REG(hw, CTRL);
3260 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3261 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
3262
3263 /* Set up duplex in the Device Control and Transmit Control
3264 * registers depending on negotiated values.
3265 */
3266 if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3267 DEBUGOUT("PHY Read Error\n");
3268 return -E1000_ERR_PHY;
3269 }
3270 if (phy_data & M88E1000_PSSR_DPLX)
3271 ctrl |= E1000_CTRL_FD;
3272 else
3273 ctrl &= ~E1000_CTRL_FD;
3274
3275 e1000_config_collision_dist(hw);
3276
3277 /* Set up speed in the Device Control register depending on
3278 * negotiated values.
3279 */
3280 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3281 ctrl |= E1000_CTRL_SPD_1000;
3282 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3283 ctrl |= E1000_CTRL_SPD_100;
3284 /* Write the configured values back to the Device Control Reg. */
3285 E1000_WRITE_REG(hw, CTRL, ctrl);
3286 return 0;
3287}
3288
3289/******************************************************************************
3290 * Forces the MAC's flow control settings.
wdenk57b2d802003-06-27 21:31:46 +00003291 *
wdenk4e112c12003-06-03 23:54:09 +00003292 * hw - Struct containing variables accessed by shared code
3293 *
3294 * Sets the TFCE and RFCE bits in the device control register to reflect
3295 * the adapter settings. TFCE and RFCE need to be explicitly set by
3296 * software when a Copper PHY is used because autonegotiation is managed
3297 * by the PHY rather than the MAC. Software must also configure these
3298 * bits when link is forced on a fiber connection.
3299 *****************************************************************************/
3300static int
3301e1000_force_mac_fc(struct e1000_hw *hw)
3302{
3303 uint32_t ctrl;
3304
3305 DEBUGFUNC();
3306
3307 /* Get the current configuration of the Device Control Register */
3308 ctrl = E1000_READ_REG(hw, CTRL);
3309
3310 /* Because we didn't get link via the internal auto-negotiation
3311 * mechanism (we either forced link or we got link via PHY
3312 * auto-neg), we have to manually enable/disable transmit an
3313 * receive flow control.
3314 *
3315 * The "Case" statement below enables/disable flow control
3316 * according to the "hw->fc" parameter.
3317 *
3318 * The possible values of the "fc" parameter are:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003319 * 0: Flow control is completely disabled
3320 * 1: Rx flow control is enabled (we can receive pause
3321 * frames but not send pause frames).
3322 * 2: Tx flow control is enabled (we can send pause frames
3323 * frames but we do not receive pause frames).
3324 * 3: Both Rx and TX flow control (symmetric) is enabled.
wdenk4e112c12003-06-03 23:54:09 +00003325 * other: No other values should be possible at this point.
3326 */
3327
3328 switch (hw->fc) {
3329 case e1000_fc_none:
3330 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3331 break;
3332 case e1000_fc_rx_pause:
3333 ctrl &= (~E1000_CTRL_TFCE);
3334 ctrl |= E1000_CTRL_RFCE;
3335 break;
3336 case e1000_fc_tx_pause:
3337 ctrl &= (~E1000_CTRL_RFCE);
3338 ctrl |= E1000_CTRL_TFCE;
3339 break;
3340 case e1000_fc_full:
3341 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3342 break;
3343 default:
3344 DEBUGOUT("Flow control param set incorrectly\n");
3345 return -E1000_ERR_CONFIG;
3346 }
3347
3348 /* Disable TX Flow Control for 82542 (rev 2.0) */
3349 if (hw->mac_type == e1000_82542_rev2_0)
3350 ctrl &= (~E1000_CTRL_TFCE);
3351
3352 E1000_WRITE_REG(hw, CTRL, ctrl);
3353 return 0;
3354}
3355
3356/******************************************************************************
3357 * Configures flow control settings after link is established
wdenk57b2d802003-06-27 21:31:46 +00003358 *
wdenk4e112c12003-06-03 23:54:09 +00003359 * hw - Struct containing variables accessed by shared code
3360 *
3361 * Should be called immediately after a valid link has been established.
3362 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3363 * and autonegotiation is enabled, the MAC flow control settings will be set
3364 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3365 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3366 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003367static int32_t
wdenk4e112c12003-06-03 23:54:09 +00003368e1000_config_fc_after_link_up(struct e1000_hw *hw)
3369{
3370 int32_t ret_val;
3371 uint16_t mii_status_reg;
3372 uint16_t mii_nway_adv_reg;
3373 uint16_t mii_nway_lp_ability_reg;
3374 uint16_t speed;
3375 uint16_t duplex;
3376
3377 DEBUGFUNC();
3378
3379 /* Check for the case where we have fiber media and auto-neg failed
3380 * so we had to force link. In this case, we need to force the
3381 * configuration of the MAC to match the "fc" parameter.
3382 */
Roy Zang28f7a052009-07-31 13:34:02 +08003383 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3384 || ((hw->media_type == e1000_media_type_internal_serdes)
3385 && (hw->autoneg_failed))
3386 || ((hw->media_type == e1000_media_type_copper)
3387 && (!hw->autoneg))) {
wdenk4e112c12003-06-03 23:54:09 +00003388 ret_val = e1000_force_mac_fc(hw);
3389 if (ret_val < 0) {
3390 DEBUGOUT("Error forcing flow control settings\n");
3391 return ret_val;
3392 }
3393 }
3394
3395 /* Check for the case where we have copper media and auto-neg is
3396 * enabled. In this case, we need to check and see if Auto-Neg
3397 * has completed, and if so, how the PHY and link partner has
3398 * flow control configured.
3399 */
3400 if (hw->media_type == e1000_media_type_copper) {
3401 /* Read the MII Status Register and check to see if AutoNeg
3402 * has completed. We read this twice because this reg has
3403 * some "sticky" (latched) bits.
3404 */
3405 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3406 DEBUGOUT("PHY Read Error \n");
3407 return -E1000_ERR_PHY;
3408 }
3409 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3410 DEBUGOUT("PHY Read Error \n");
3411 return -E1000_ERR_PHY;
3412 }
3413
3414 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3415 /* The AutoNeg process has completed, so we now need to
3416 * read both the Auto Negotiation Advertisement Register
3417 * (Address 4) and the Auto_Negotiation Base Page Ability
3418 * Register (Address 5) to determine how flow control was
3419 * negotiated.
3420 */
3421 if (e1000_read_phy_reg
3422 (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3423 DEBUGOUT("PHY Read Error\n");
3424 return -E1000_ERR_PHY;
3425 }
3426 if (e1000_read_phy_reg
3427 (hw, PHY_LP_ABILITY,
3428 &mii_nway_lp_ability_reg) < 0) {
3429 DEBUGOUT("PHY Read Error\n");
3430 return -E1000_ERR_PHY;
3431 }
3432
3433 /* Two bits in the Auto Negotiation Advertisement Register
3434 * (Address 4) and two bits in the Auto Negotiation Base
3435 * Page Ability Register (Address 5) determine flow control
3436 * for both the PHY and the link partner. The following
3437 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3438 * 1999, describes these PAUSE resolution bits and how flow
3439 * control is determined based upon these settings.
3440 * NOTE: DC = Don't Care
3441 *
3442 * LOCAL DEVICE | LINK PARTNER
3443 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3444 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003445 * 0 | 0 | DC | DC | e1000_fc_none
3446 * 0 | 1 | 0 | DC | e1000_fc_none
3447 * 0 | 1 | 1 | 0 | e1000_fc_none
3448 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
3449 * 1 | 0 | 0 | DC | e1000_fc_none
3450 * 1 | DC | 1 | DC | e1000_fc_full
3451 * 1 | 1 | 0 | 0 | e1000_fc_none
3452 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003453 *
3454 */
3455 /* Are both PAUSE bits set to 1? If so, this implies
3456 * Symmetric Flow Control is enabled at both ends. The
3457 * ASM_DIR bits are irrelevant per the spec.
3458 *
3459 * For Symmetric Flow Control:
3460 *
3461 * LOCAL DEVICE | LINK PARTNER
3462 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3463 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003464 * 1 | DC | 1 | DC | e1000_fc_full
wdenk4e112c12003-06-03 23:54:09 +00003465 *
3466 */
3467 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3468 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3469 /* Now we need to check if the user selected RX ONLY
3470 * of pause frames. In this case, we had to advertise
3471 * FULL flow control because we could not advertise RX
3472 * ONLY. Hence, we must now check to see if we need to
3473 * turn OFF the TRANSMISSION of PAUSE frames.
3474 */
3475 if (hw->original_fc == e1000_fc_full) {
3476 hw->fc = e1000_fc_full;
3477 DEBUGOUT("Flow Control = FULL.\r\n");
3478 } else {
3479 hw->fc = e1000_fc_rx_pause;
3480 DEBUGOUT
3481 ("Flow Control = RX PAUSE frames only.\r\n");
3482 }
3483 }
3484 /* For receiving PAUSE frames ONLY.
3485 *
3486 * LOCAL DEVICE | LINK PARTNER
3487 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3488 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003489 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
wdenk4e112c12003-06-03 23:54:09 +00003490 *
3491 */
3492 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3493 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3494 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3495 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3496 {
3497 hw->fc = e1000_fc_tx_pause;
3498 DEBUGOUT
3499 ("Flow Control = TX PAUSE frames only.\r\n");
3500 }
3501 /* For transmitting PAUSE frames ONLY.
3502 *
3503 * LOCAL DEVICE | LINK PARTNER
3504 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3505 *-------|---------|-------|---------|--------------------
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003506 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
wdenk4e112c12003-06-03 23:54:09 +00003507 *
3508 */
3509 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3510 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3511 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3512 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3513 {
3514 hw->fc = e1000_fc_rx_pause;
3515 DEBUGOUT
3516 ("Flow Control = RX PAUSE frames only.\r\n");
3517 }
3518 /* Per the IEEE spec, at this point flow control should be
3519 * disabled. However, we want to consider that we could
3520 * be connected to a legacy switch that doesn't advertise
3521 * desired flow control, but can be forced on the link
3522 * partner. So if we advertised no flow control, that is
3523 * what we will resolve to. If we advertised some kind of
3524 * receive capability (Rx Pause Only or Full Flow Control)
3525 * and the link partner advertised none, we will configure
3526 * ourselves to enable Rx Flow Control only. We can do
3527 * this safely for two reasons: If the link partner really
3528 * didn't want flow control enabled, and we enable Rx, no
3529 * harm done since we won't be receiving any PAUSE frames
3530 * anyway. If the intent on the link partner was to have
3531 * flow control enabled, then by us enabling RX only, we
3532 * can at least receive pause frames and process them.
3533 * This is a good idea because in most cases, since we are
3534 * predominantly a server NIC, more times than not we will
3535 * be asked to delay transmission of packets than asking
3536 * our link partner to pause transmission of frames.
3537 */
3538 else if (hw->original_fc == e1000_fc_none ||
3539 hw->original_fc == e1000_fc_tx_pause) {
3540 hw->fc = e1000_fc_none;
3541 DEBUGOUT("Flow Control = NONE.\r\n");
3542 } else {
3543 hw->fc = e1000_fc_rx_pause;
3544 DEBUGOUT
3545 ("Flow Control = RX PAUSE frames only.\r\n");
3546 }
3547
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003548 /* Now we need to do one last check... If we auto-
wdenk4e112c12003-06-03 23:54:09 +00003549 * negotiated to HALF DUPLEX, flow control should not be
3550 * enabled per IEEE 802.3 spec.
3551 */
3552 e1000_get_speed_and_duplex(hw, &speed, &duplex);
3553
3554 if (duplex == HALF_DUPLEX)
3555 hw->fc = e1000_fc_none;
3556
3557 /* Now we call a subroutine to actually force the MAC
3558 * controller to use the correct flow control settings.
3559 */
3560 ret_val = e1000_force_mac_fc(hw);
3561 if (ret_val < 0) {
3562 DEBUGOUT
3563 ("Error forcing flow control settings\n");
3564 return ret_val;
3565 }
3566 } else {
3567 DEBUGOUT
3568 ("Copper PHY and Auto Neg has not completed.\r\n");
3569 }
3570 }
Roy Zang28f7a052009-07-31 13:34:02 +08003571 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003572}
3573
3574/******************************************************************************
3575 * Checks to see if the link status of the hardware has changed.
3576 *
3577 * hw - Struct containing variables accessed by shared code
3578 *
3579 * Called by any function that needs to check the link status of the adapter.
3580 *****************************************************************************/
3581static int
3582e1000_check_for_link(struct eth_device *nic)
3583{
3584 struct e1000_hw *hw = nic->priv;
3585 uint32_t rxcw;
3586 uint32_t ctrl;
3587 uint32_t status;
3588 uint32_t rctl;
3589 uint32_t signal;
3590 int32_t ret_val;
3591 uint16_t phy_data;
3592 uint16_t lp_capability;
3593
3594 DEBUGFUNC();
3595
wdenk57b2d802003-06-27 21:31:46 +00003596 /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3597 * set when the optics detect a signal. On older adapters, it will be
wdenk4e112c12003-06-03 23:54:09 +00003598 * cleared when there is a signal
3599 */
3600 ctrl = E1000_READ_REG(hw, CTRL);
3601 if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3602 signal = E1000_CTRL_SWDPIN1;
3603 else
3604 signal = 0;
3605
3606 status = E1000_READ_REG(hw, STATUS);
3607 rxcw = E1000_READ_REG(hw, RXCW);
3608 DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3609
3610 /* If we have a copper PHY then we only want to go out to the PHY
3611 * registers to see if Auto-Neg has completed and/or if our link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003612 * status has changed. The get_link_status flag will be set if we
wdenk4e112c12003-06-03 23:54:09 +00003613 * receive a Link Status Change interrupt or we have Rx Sequence
3614 * Errors.
3615 */
3616 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3617 /* First we want to see if the MII Status Register reports
3618 * link. If so, then we want to get the current speed/duplex
3619 * of the PHY.
3620 * Read the register twice since the link bit is sticky.
3621 */
3622 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3623 DEBUGOUT("PHY Read Error\n");
3624 return -E1000_ERR_PHY;
3625 }
3626 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3627 DEBUGOUT("PHY Read Error\n");
3628 return -E1000_ERR_PHY;
3629 }
3630
3631 if (phy_data & MII_SR_LINK_STATUS) {
3632 hw->get_link_status = FALSE;
3633 } else {
3634 /* No link detected */
3635 return -E1000_ERR_NOLINK;
3636 }
3637
3638 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
3639 * have Si on board that is 82544 or newer, Auto
3640 * Speed Detection takes care of MAC speed/duplex
3641 * configuration. So we only need to configure Collision
3642 * Distance in the MAC. Otherwise, we need to force
3643 * speed/duplex on the MAC to the current PHY speed/duplex
3644 * settings.
3645 */
3646 if (hw->mac_type >= e1000_82544)
3647 e1000_config_collision_dist(hw);
3648 else {
3649 ret_val = e1000_config_mac_to_phy(hw);
3650 if (ret_val < 0) {
3651 DEBUGOUT
3652 ("Error configuring MAC to PHY settings\n");
3653 return ret_val;
3654 }
3655 }
3656
wdenk57b2d802003-06-27 21:31:46 +00003657 /* Configure Flow Control now that Auto-Neg has completed. First, we
wdenk4e112c12003-06-03 23:54:09 +00003658 * need to restore the desired flow control settings because we may
3659 * have had to re-autoneg with a different link partner.
3660 */
3661 ret_val = e1000_config_fc_after_link_up(hw);
3662 if (ret_val < 0) {
3663 DEBUGOUT("Error configuring flow control\n");
3664 return ret_val;
3665 }
3666
3667 /* At this point we know that we are on copper and we have
3668 * auto-negotiated link. These are conditions for checking the link
Wolfgang Denk35f734f2008-04-13 09:59:26 -07003669 * parter capability register. We use the link partner capability to
wdenk4e112c12003-06-03 23:54:09 +00003670 * determine if TBI Compatibility needs to be turned on or off. If
3671 * the link partner advertises any speed in addition to Gigabit, then
3672 * we assume that they are GMII-based, and TBI compatibility is not
3673 * needed. If no other speeds are advertised, we assume the link
3674 * partner is TBI-based, and we turn on TBI Compatibility.
3675 */
3676 if (hw->tbi_compatibility_en) {
3677 if (e1000_read_phy_reg
3678 (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3679 DEBUGOUT("PHY Read Error\n");
3680 return -E1000_ERR_PHY;
3681 }
3682 if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3683 NWAY_LPAR_10T_FD_CAPS |
3684 NWAY_LPAR_100TX_HD_CAPS |
3685 NWAY_LPAR_100TX_FD_CAPS |
3686 NWAY_LPAR_100T4_CAPS)) {
wdenk57b2d802003-06-27 21:31:46 +00003687 /* If our link partner advertises anything in addition to
wdenk4e112c12003-06-03 23:54:09 +00003688 * gigabit, we do not need to enable TBI compatibility.
3689 */
3690 if (hw->tbi_compatibility_on) {
3691 /* If we previously were in the mode, turn it off. */
3692 rctl = E1000_READ_REG(hw, RCTL);
3693 rctl &= ~E1000_RCTL_SBP;
3694 E1000_WRITE_REG(hw, RCTL, rctl);
3695 hw->tbi_compatibility_on = FALSE;
3696 }
3697 } else {
3698 /* If TBI compatibility is was previously off, turn it on. For
3699 * compatibility with a TBI link partner, we will store bad
3700 * packets. Some frames have an additional byte on the end and
3701 * will look like CRC errors to to the hardware.
3702 */
3703 if (!hw->tbi_compatibility_on) {
3704 hw->tbi_compatibility_on = TRUE;
3705 rctl = E1000_READ_REG(hw, RCTL);
3706 rctl |= E1000_RCTL_SBP;
3707 E1000_WRITE_REG(hw, RCTL, rctl);
3708 }
3709 }
3710 }
3711 }
3712 /* If we don't have link (auto-negotiation failed or link partner cannot
3713 * auto-negotiate), the cable is plugged in (we have signal), and our
3714 * link partner is not trying to auto-negotiate with us (we are receiving
3715 * idles or data), we need to force link up. We also need to give
3716 * auto-negotiation time to complete, in case the cable was just plugged
3717 * in. The autoneg_failed flag does this.
3718 */
3719 else if ((hw->media_type == e1000_media_type_fiber) &&
3720 (!(status & E1000_STATUS_LU)) &&
3721 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3722 (!(rxcw & E1000_RXCW_C))) {
3723 if (hw->autoneg_failed == 0) {
3724 hw->autoneg_failed = 1;
3725 return 0;
3726 }
3727 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3728
3729 /* Disable auto-negotiation in the TXCW register */
3730 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3731
3732 /* Force link-up and also force full-duplex. */
3733 ctrl = E1000_READ_REG(hw, CTRL);
3734 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3735 E1000_WRITE_REG(hw, CTRL, ctrl);
3736
3737 /* Configure Flow Control after forcing link up. */
3738 ret_val = e1000_config_fc_after_link_up(hw);
3739 if (ret_val < 0) {
3740 DEBUGOUT("Error configuring flow control\n");
3741 return ret_val;
3742 }
3743 }
3744 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3745 * auto-negotiation in the TXCW register and disable forced link in the
3746 * Device Control register in an attempt to auto-negotiate with our link
3747 * partner.
3748 */
3749 else if ((hw->media_type == e1000_media_type_fiber) &&
3750 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3751 DEBUGOUT
3752 ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3753 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3754 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3755 }
3756 return 0;
3757}
3758
3759/******************************************************************************
Roy Zang28f7a052009-07-31 13:34:02 +08003760* Configure the MAC-to-PHY interface for 10/100Mbps
3761*
3762* hw - Struct containing variables accessed by shared code
3763******************************************************************************/
3764static int32_t
3765e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3766{
3767 int32_t ret_val = E1000_SUCCESS;
3768 uint32_t tipg;
3769 uint16_t reg_data;
3770
3771 DEBUGFUNC();
3772
3773 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3774 ret_val = e1000_write_kmrn_reg(hw,
3775 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3776 if (ret_val)
3777 return ret_val;
3778
3779 /* Configure Transmit Inter-Packet Gap */
3780 tipg = E1000_READ_REG(hw, TIPG);
3781 tipg &= ~E1000_TIPG_IPGT_MASK;
3782 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3783 E1000_WRITE_REG(hw, TIPG, tipg);
3784
3785 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3786
3787 if (ret_val)
3788 return ret_val;
3789
3790 if (duplex == HALF_DUPLEX)
3791 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3792 else
3793 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3794
3795 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3796
3797 return ret_val;
3798}
3799
3800static int32_t
3801e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3802{
3803 int32_t ret_val = E1000_SUCCESS;
3804 uint16_t reg_data;
3805 uint32_t tipg;
3806
3807 DEBUGFUNC();
3808
3809 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3810 ret_val = e1000_write_kmrn_reg(hw,
3811 E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3812 if (ret_val)
3813 return ret_val;
3814
3815 /* Configure Transmit Inter-Packet Gap */
3816 tipg = E1000_READ_REG(hw, TIPG);
3817 tipg &= ~E1000_TIPG_IPGT_MASK;
3818 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3819 E1000_WRITE_REG(hw, TIPG, tipg);
3820
3821 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3822
3823 if (ret_val)
3824 return ret_val;
3825
3826 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3827 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3828
3829 return ret_val;
3830}
3831
3832/******************************************************************************
wdenk4e112c12003-06-03 23:54:09 +00003833 * Detects the current speed and duplex settings of the hardware.
3834 *
3835 * hw - Struct containing variables accessed by shared code
3836 * speed - Speed of the connection
3837 * duplex - Duplex setting of the connection
3838 *****************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08003839static int
3840e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3841 uint16_t *duplex)
wdenk4e112c12003-06-03 23:54:09 +00003842{
3843 uint32_t status;
Roy Zang28f7a052009-07-31 13:34:02 +08003844 int32_t ret_val;
3845 uint16_t phy_data;
wdenk4e112c12003-06-03 23:54:09 +00003846
3847 DEBUGFUNC();
3848
3849 if (hw->mac_type >= e1000_82543) {
3850 status = E1000_READ_REG(hw, STATUS);
3851 if (status & E1000_STATUS_SPEED_1000) {
3852 *speed = SPEED_1000;
3853 DEBUGOUT("1000 Mbs, ");
3854 } else if (status & E1000_STATUS_SPEED_100) {
3855 *speed = SPEED_100;
3856 DEBUGOUT("100 Mbs, ");
3857 } else {
3858 *speed = SPEED_10;
3859 DEBUGOUT("10 Mbs, ");
3860 }
3861
3862 if (status & E1000_STATUS_FD) {
3863 *duplex = FULL_DUPLEX;
3864 DEBUGOUT("Full Duplex\r\n");
3865 } else {
3866 *duplex = HALF_DUPLEX;
3867 DEBUGOUT(" Half Duplex\r\n");
3868 }
3869 } else {
3870 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3871 *speed = SPEED_1000;
3872 *duplex = FULL_DUPLEX;
3873 }
Roy Zang28f7a052009-07-31 13:34:02 +08003874
3875 /* IGP01 PHY may advertise full duplex operation after speed downgrade
3876 * even if it is operating at half duplex. Here we set the duplex
3877 * settings to match the duplex in the link partner's capabilities.
3878 */
3879 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3880 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3881 if (ret_val)
3882 return ret_val;
3883
3884 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3885 *duplex = HALF_DUPLEX;
3886 else {
3887 ret_val = e1000_read_phy_reg(hw,
3888 PHY_LP_ABILITY, &phy_data);
3889 if (ret_val)
3890 return ret_val;
3891 if ((*speed == SPEED_100 &&
3892 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3893 || (*speed == SPEED_10
3894 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3895 *duplex = HALF_DUPLEX;
3896 }
3897 }
3898
3899 if ((hw->mac_type == e1000_80003es2lan) &&
3900 (hw->media_type == e1000_media_type_copper)) {
3901 if (*speed == SPEED_1000)
3902 ret_val = e1000_configure_kmrn_for_1000(hw);
3903 else
3904 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3905 if (ret_val)
3906 return ret_val;
3907 }
3908 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00003909}
3910
3911/******************************************************************************
3912* Blocks until autoneg completes or times out (~4.5 seconds)
3913*
3914* hw - Struct containing variables accessed by shared code
3915******************************************************************************/
3916static int
3917e1000_wait_autoneg(struct e1000_hw *hw)
3918{
3919 uint16_t i;
3920 uint16_t phy_data;
3921
3922 DEBUGFUNC();
3923 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3924
3925 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
3926 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3927 /* Read the MII Status Register and wait for Auto-Neg
3928 * Complete bit to be set.
3929 */
3930 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3931 DEBUGOUT("PHY Read Error\n");
3932 return -E1000_ERR_PHY;
3933 }
3934 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3935 DEBUGOUT("PHY Read Error\n");
3936 return -E1000_ERR_PHY;
3937 }
3938 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
3939 DEBUGOUT("Auto-Neg complete.\n");
3940 return 0;
3941 }
3942 mdelay(100);
3943 }
3944 DEBUGOUT("Auto-Neg timedout.\n");
3945 return -E1000_ERR_TIMEOUT;
3946}
3947
3948/******************************************************************************
3949* Raises the Management Data Clock
3950*
3951* hw - Struct containing variables accessed by shared code
3952* ctrl - Device control register's current value
3953******************************************************************************/
3954static void
3955e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3956{
3957 /* Raise the clock input to the Management Data Clock (by setting the MDC
3958 * bit), and then delay 2 microseconds.
3959 */
3960 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3961 E1000_WRITE_FLUSH(hw);
3962 udelay(2);
3963}
3964
3965/******************************************************************************
3966* Lowers the Management Data Clock
3967*
3968* hw - Struct containing variables accessed by shared code
3969* ctrl - Device control register's current value
3970******************************************************************************/
3971static void
3972e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
3973{
3974 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3975 * bit), and then delay 2 microseconds.
3976 */
3977 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3978 E1000_WRITE_FLUSH(hw);
3979 udelay(2);
3980}
3981
3982/******************************************************************************
3983* Shifts data bits out to the PHY
3984*
3985* hw - Struct containing variables accessed by shared code
3986* data - Data to send out to the PHY
3987* count - Number of bits to shift out
3988*
3989* Bits are shifted out in MSB to LSB order.
3990******************************************************************************/
3991static void
3992e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
3993{
3994 uint32_t ctrl;
3995 uint32_t mask;
3996
3997 /* We need to shift "count" number of bits out to the PHY. So, the value
wdenk57b2d802003-06-27 21:31:46 +00003998 * in the "data" parameter will be shifted out to the PHY one bit at a
wdenk4e112c12003-06-03 23:54:09 +00003999 * time. In order to do this, "data" must be broken down into bits.
4000 */
4001 mask = 0x01;
4002 mask <<= (count - 1);
4003
4004 ctrl = E1000_READ_REG(hw, CTRL);
4005
4006 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4007 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4008
4009 while (mask) {
4010 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4011 * then raising and lowering the Management Data Clock. A "0" is
4012 * shifted out to the PHY by setting the MDIO bit to "0" and then
4013 * raising and lowering the clock.
4014 */
4015 if (data & mask)
4016 ctrl |= E1000_CTRL_MDIO;
4017 else
4018 ctrl &= ~E1000_CTRL_MDIO;
4019
4020 E1000_WRITE_REG(hw, CTRL, ctrl);
4021 E1000_WRITE_FLUSH(hw);
4022
4023 udelay(2);
4024
4025 e1000_raise_mdi_clk(hw, &ctrl);
4026 e1000_lower_mdi_clk(hw, &ctrl);
4027
4028 mask = mask >> 1;
4029 }
4030}
4031
4032/******************************************************************************
4033* Shifts data bits in from the PHY
4034*
4035* hw - Struct containing variables accessed by shared code
4036*
wdenk57b2d802003-06-27 21:31:46 +00004037* Bits are shifted in in MSB to LSB order.
wdenk4e112c12003-06-03 23:54:09 +00004038******************************************************************************/
4039static uint16_t
4040e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4041{
4042 uint32_t ctrl;
4043 uint16_t data = 0;
4044 uint8_t i;
4045
4046 /* In order to read a register from the PHY, we need to shift in a total
4047 * of 18 bits from the PHY. The first two bit (turnaround) times are used
4048 * to avoid contention on the MDIO pin when a read operation is performed.
4049 * These two bits are ignored by us and thrown away. Bits are "shifted in"
4050 * by raising the input to the Management Data Clock (setting the MDC bit),
4051 * and then reading the value of the MDIO bit.
4052 */
4053 ctrl = E1000_READ_REG(hw, CTRL);
4054
4055 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4056 ctrl &= ~E1000_CTRL_MDIO_DIR;
4057 ctrl &= ~E1000_CTRL_MDIO;
4058
4059 E1000_WRITE_REG(hw, CTRL, ctrl);
4060 E1000_WRITE_FLUSH(hw);
4061
4062 /* Raise and Lower the clock before reading in the data. This accounts for
4063 * the turnaround bits. The first clock occurred when we clocked out the
4064 * last bit of the Register Address.
4065 */
4066 e1000_raise_mdi_clk(hw, &ctrl);
4067 e1000_lower_mdi_clk(hw, &ctrl);
4068
4069 for (data = 0, i = 0; i < 16; i++) {
4070 data = data << 1;
4071 e1000_raise_mdi_clk(hw, &ctrl);
4072 ctrl = E1000_READ_REG(hw, CTRL);
4073 /* Check to see if we shifted in a "1". */
4074 if (ctrl & E1000_CTRL_MDIO)
4075 data |= 1;
4076 e1000_lower_mdi_clk(hw, &ctrl);
4077 }
4078
4079 e1000_raise_mdi_clk(hw, &ctrl);
4080 e1000_lower_mdi_clk(hw, &ctrl);
4081
4082 return data;
4083}
4084
4085/*****************************************************************************
4086* Reads the value from a PHY register
4087*
4088* hw - Struct containing variables accessed by shared code
4089* reg_addr - address of the PHY register to read
4090******************************************************************************/
4091static int
4092e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4093{
4094 uint32_t i;
4095 uint32_t mdic = 0;
4096 const uint32_t phy_addr = 1;
4097
4098 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4099 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4100 return -E1000_ERR_PARAM;
4101 }
4102
4103 if (hw->mac_type > e1000_82543) {
4104 /* Set up Op-code, Phy Address, and register address in the MDI
4105 * Control register. The MAC will take care of interfacing with the
4106 * PHY to retrieve the desired data.
4107 */
4108 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4109 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4110 (E1000_MDIC_OP_READ));
4111
4112 E1000_WRITE_REG(hw, MDIC, mdic);
4113
4114 /* Poll the ready bit to see if the MDI read completed */
4115 for (i = 0; i < 64; i++) {
4116 udelay(10);
4117 mdic = E1000_READ_REG(hw, MDIC);
4118 if (mdic & E1000_MDIC_READY)
4119 break;
4120 }
4121 if (!(mdic & E1000_MDIC_READY)) {
4122 DEBUGOUT("MDI Read did not complete\n");
4123 return -E1000_ERR_PHY;
4124 }
4125 if (mdic & E1000_MDIC_ERROR) {
4126 DEBUGOUT("MDI Error\n");
4127 return -E1000_ERR_PHY;
4128 }
4129 *phy_data = (uint16_t) mdic;
4130 } else {
4131 /* We must first send a preamble through the MDIO pin to signal the
4132 * beginning of an MII instruction. This is done by sending 32
4133 * consecutive "1" bits.
4134 */
4135 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4136
4137 /* Now combine the next few fields that are required for a read
4138 * operation. We use this method instead of calling the
4139 * e1000_shift_out_mdi_bits routine five different times. The format of
4140 * a MII read instruction consists of a shift out of 14 bits and is
4141 * defined as follows:
4142 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4143 * followed by a shift in of 18 bits. This first two bits shifted in
4144 * are TurnAround bits used to avoid contention on the MDIO pin when a
4145 * READ operation is performed. These two bits are thrown away
4146 * followed by a shift in of 16 bits which contains the desired data.
4147 */
4148 mdic = ((reg_addr) | (phy_addr << 5) |
4149 (PHY_OP_READ << 10) | (PHY_SOF << 12));
4150
4151 e1000_shift_out_mdi_bits(hw, mdic, 14);
4152
4153 /* Now that we've shifted out the read command to the MII, we need to
4154 * "shift in" the 16-bit value (18 total bits) of the requested PHY
4155 * register address.
4156 */
4157 *phy_data = e1000_shift_in_mdi_bits(hw);
4158 }
4159 return 0;
4160}
4161
4162/******************************************************************************
4163* Writes a value to a PHY register
4164*
4165* hw - Struct containing variables accessed by shared code
4166* reg_addr - address of the PHY register to write
4167* data - data to write to the PHY
4168******************************************************************************/
4169static int
4170e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4171{
4172 uint32_t i;
4173 uint32_t mdic = 0;
4174 const uint32_t phy_addr = 1;
4175
4176 if (reg_addr > MAX_PHY_REG_ADDRESS) {
4177 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4178 return -E1000_ERR_PARAM;
4179 }
4180
4181 if (hw->mac_type > e1000_82543) {
4182 /* Set up Op-code, Phy Address, register address, and data intended
4183 * for the PHY register in the MDI Control register. The MAC will take
4184 * care of interfacing with the PHY to send the desired data.
4185 */
4186 mdic = (((uint32_t) phy_data) |
4187 (reg_addr << E1000_MDIC_REG_SHIFT) |
4188 (phy_addr << E1000_MDIC_PHY_SHIFT) |
4189 (E1000_MDIC_OP_WRITE));
4190
4191 E1000_WRITE_REG(hw, MDIC, mdic);
4192
4193 /* Poll the ready bit to see if the MDI read completed */
4194 for (i = 0; i < 64; i++) {
4195 udelay(10);
4196 mdic = E1000_READ_REG(hw, MDIC);
4197 if (mdic & E1000_MDIC_READY)
4198 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004199 }
4200 if (!(mdic & E1000_MDIC_READY)) {
4201 DEBUGOUT("MDI Write did not complete\n");
4202 return -E1000_ERR_PHY;
4203 }
4204 } else {
4205 /* We'll need to use the SW defined pins to shift the write command
4206 * out to the PHY. We first send a preamble to the PHY to signal the
4207 * beginning of the MII instruction. This is done by sending 32
4208 * consecutive "1" bits.
4209 */
4210 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4211
4212 /* Now combine the remaining required fields that will indicate a
4213 * write operation. We use this method instead of calling the
4214 * e1000_shift_out_mdi_bits routine for each field in the command. The
4215 * format of a MII write instruction is as follows:
4216 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4217 */
4218 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4219 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4220 mdic <<= 16;
4221 mdic |= (uint32_t) phy_data;
4222
4223 e1000_shift_out_mdi_bits(hw, mdic, 32);
4224 }
4225 return 0;
4226}
4227
4228/******************************************************************************
4229 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4230 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
4231 * the caller to figure out how to deal with it.
4232 *
4233 * hw - Struct containing variables accessed by shared code
4234 *
4235 * returns: - E1000_BLK_PHY_RESET
4236 * E1000_SUCCESS
4237 *
4238 *****************************************************************************/
4239int32_t
4240e1000_check_phy_reset_block(struct e1000_hw *hw)
4241{
4242 uint32_t manc = 0;
4243 uint32_t fwsm = 0;
4244
4245 if (hw->mac_type == e1000_ich8lan) {
4246 fwsm = E1000_READ_REG(hw, FWSM);
4247 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4248 : E1000_BLK_PHY_RESET;
4249 }
4250
4251 if (hw->mac_type > e1000_82547_rev_2)
4252 manc = E1000_READ_REG(hw, MANC);
4253 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4254 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4255}
4256
4257/***************************************************************************
4258 * Checks if the PHY configuration is done
4259 *
4260 * hw: Struct containing variables accessed by shared code
4261 *
4262 * returns: - E1000_ERR_RESET if fail to reset MAC
4263 * E1000_SUCCESS at any other case.
4264 *
4265 ***************************************************************************/
4266static int32_t
4267e1000_get_phy_cfg_done(struct e1000_hw *hw)
4268{
4269 int32_t timeout = PHY_CFG_TIMEOUT;
4270 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4271
4272 DEBUGFUNC();
4273
4274 switch (hw->mac_type) {
4275 default:
4276 mdelay(10);
4277 break;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004278
Roy Zang28f7a052009-07-31 13:34:02 +08004279 case e1000_80003es2lan:
4280 /* Separate *_CFG_DONE_* bit for each port */
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004281 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004282 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004283 /* Fall Through */
4284
Roy Zang28f7a052009-07-31 13:34:02 +08004285 case e1000_82571:
4286 case e1000_82572:
4287 while (timeout) {
4288 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4289 break;
4290 else
4291 mdelay(1);
4292 timeout--;
wdenk4e112c12003-06-03 23:54:09 +00004293 }
Roy Zang28f7a052009-07-31 13:34:02 +08004294 if (!timeout) {
4295 DEBUGOUT("MNG configuration cycle has not "
4296 "completed.\n");
4297 return -E1000_ERR_RESET;
wdenk4e112c12003-06-03 23:54:09 +00004298 }
Roy Zang28f7a052009-07-31 13:34:02 +08004299 break;
wdenk4e112c12003-06-03 23:54:09 +00004300 }
Roy Zang28f7a052009-07-31 13:34:02 +08004301
4302 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004303}
4304
4305/******************************************************************************
4306* Returns the PHY to the power-on reset state
4307*
4308* hw - Struct containing variables accessed by shared code
4309******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004310int32_t
wdenk4e112c12003-06-03 23:54:09 +00004311e1000_phy_hw_reset(struct e1000_hw *hw)
4312{
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004313 uint16_t swfw = E1000_SWFW_PHY0_SM;
Roy Zang28f7a052009-07-31 13:34:02 +08004314 uint32_t ctrl, ctrl_ext;
4315 uint32_t led_ctrl;
4316 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004317
4318 DEBUGFUNC();
4319
Roy Zang28f7a052009-07-31 13:34:02 +08004320 /* In the case of the phy reset being blocked, it's not an error, we
4321 * simply return success without performing the reset. */
4322 ret_val = e1000_check_phy_reset_block(hw);
4323 if (ret_val)
4324 return E1000_SUCCESS;
4325
wdenk4e112c12003-06-03 23:54:09 +00004326 DEBUGOUT("Resetting Phy...\n");
4327
4328 if (hw->mac_type > e1000_82543) {
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004329 if (e1000_is_second_port(hw))
Roy Zang28f7a052009-07-31 13:34:02 +08004330 swfw = E1000_SWFW_PHY1_SM;
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004331
Roy Zang28f7a052009-07-31 13:34:02 +08004332 if (e1000_swfw_sync_acquire(hw, swfw)) {
4333 DEBUGOUT("Unable to acquire swfw sync\n");
4334 return -E1000_ERR_SWFW_SYNC;
4335 }
Kyle Moffett7376f8d2010-09-13 05:52:22 +00004336
wdenk4e112c12003-06-03 23:54:09 +00004337 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4338 * bit. Then, take it out of reset.
4339 */
4340 ctrl = E1000_READ_REG(hw, CTRL);
4341 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4342 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004343
4344 if (hw->mac_type < e1000_82571)
4345 udelay(10);
4346 else
4347 udelay(100);
4348
wdenk4e112c12003-06-03 23:54:09 +00004349 E1000_WRITE_REG(hw, CTRL, ctrl);
4350 E1000_WRITE_FLUSH(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004351
4352 if (hw->mac_type >= e1000_82571)
4353 mdelay(10);
4354
wdenk4e112c12003-06-03 23:54:09 +00004355 } else {
4356 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4357 * bit to put the PHY into reset. Then, take it out of reset.
4358 */
4359 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4360 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4361 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4362 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4363 E1000_WRITE_FLUSH(hw);
4364 mdelay(10);
4365 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4366 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4367 E1000_WRITE_FLUSH(hw);
4368 }
4369 udelay(150);
Roy Zang28f7a052009-07-31 13:34:02 +08004370
4371 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4372 /* Configure activity LED after PHY reset */
4373 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4374 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4375 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4376 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4377 }
4378
4379 /* Wait for FW to finish PHY configuration. */
4380 ret_val = e1000_get_phy_cfg_done(hw);
4381 if (ret_val != E1000_SUCCESS)
4382 return ret_val;
4383
4384 return ret_val;
4385}
4386
4387/******************************************************************************
4388 * IGP phy init script - initializes the GbE PHY
4389 *
4390 * hw - Struct containing variables accessed by shared code
4391 *****************************************************************************/
4392static void
4393e1000_phy_init_script(struct e1000_hw *hw)
4394{
4395 uint32_t ret_val;
4396 uint16_t phy_saved_data;
4397 DEBUGFUNC();
4398
4399 if (hw->phy_init_script) {
4400 mdelay(20);
4401
4402 /* Save off the current value of register 0x2F5B to be
4403 * restored at the end of this routine. */
4404 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4405
4406 /* Disabled the PHY transmitter */
4407 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4408
4409 mdelay(20);
4410
4411 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4412
4413 mdelay(5);
4414
4415 switch (hw->mac_type) {
4416 case e1000_82541:
4417 case e1000_82547:
4418 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4419
4420 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4421
4422 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4423
4424 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4425
4426 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4427
4428 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4429
4430 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4431
4432 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4433
4434 e1000_write_phy_reg(hw, 0x2010, 0x0008);
4435 break;
4436
4437 case e1000_82541_rev_2:
4438 case e1000_82547_rev_2:
4439 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4440 break;
4441 default:
4442 break;
4443 }
4444
4445 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4446
4447 mdelay(20);
4448
4449 /* Now enable the transmitter */
4450 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4451
4452 if (hw->mac_type == e1000_82547) {
4453 uint16_t fused, fine, coarse;
4454
4455 /* Move to analog registers page */
4456 e1000_read_phy_reg(hw,
4457 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4458
4459 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4460 e1000_read_phy_reg(hw,
4461 IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4462
4463 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4464 coarse = fused
4465 & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4466
4467 if (coarse >
4468 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4469 coarse -=
4470 IGP01E1000_ANALOG_FUSE_COARSE_10;
4471 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4472 } else if (coarse
4473 == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4474 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4475
4476 fused = (fused
4477 & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4478 (fine
4479 & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4480 (coarse
4481 & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4482
4483 e1000_write_phy_reg(hw,
4484 IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4485 e1000_write_phy_reg(hw,
4486 IGP01E1000_ANALOG_FUSE_BYPASS,
4487 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4488 }
4489 }
4490 }
wdenk4e112c12003-06-03 23:54:09 +00004491}
4492
4493/******************************************************************************
4494* Resets the PHY
4495*
4496* hw - Struct containing variables accessed by shared code
4497*
Roy Zang28f7a052009-07-31 13:34:02 +08004498* Sets bit 15 of the MII Control register
wdenk4e112c12003-06-03 23:54:09 +00004499******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004500int32_t
wdenk4e112c12003-06-03 23:54:09 +00004501e1000_phy_reset(struct e1000_hw *hw)
4502{
Roy Zang28f7a052009-07-31 13:34:02 +08004503 int32_t ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004504 uint16_t phy_data;
4505
4506 DEBUGFUNC();
4507
Roy Zang28f7a052009-07-31 13:34:02 +08004508 /* In the case of the phy reset being blocked, it's not an error, we
4509 * simply return success without performing the reset. */
4510 ret_val = e1000_check_phy_reset_block(hw);
4511 if (ret_val)
4512 return E1000_SUCCESS;
4513
4514 switch (hw->phy_type) {
4515 case e1000_phy_igp:
4516 case e1000_phy_igp_2:
4517 case e1000_phy_igp_3:
4518 case e1000_phy_ife:
4519 ret_val = e1000_phy_hw_reset(hw);
4520 if (ret_val)
4521 return ret_val;
4522 break;
4523 default:
4524 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4525 if (ret_val)
4526 return ret_val;
4527
4528 phy_data |= MII_CR_RESET;
4529 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4530 if (ret_val)
4531 return ret_val;
4532
4533 udelay(1);
4534 break;
wdenk4e112c12003-06-03 23:54:09 +00004535 }
Roy Zang28f7a052009-07-31 13:34:02 +08004536
4537 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4538 e1000_phy_init_script(hw);
4539
4540 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004541}
4542
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004543static int e1000_set_phy_type (struct e1000_hw *hw)
Andre Schwarz68c2a302008-03-06 16:45:44 +01004544{
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004545 DEBUGFUNC ();
Andre Schwarz68c2a302008-03-06 16:45:44 +01004546
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004547 if (hw->mac_type == e1000_undefined)
4548 return -E1000_ERR_PHY_TYPE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004549
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004550 switch (hw->phy_id) {
4551 case M88E1000_E_PHY_ID:
4552 case M88E1000_I_PHY_ID:
4553 case M88E1011_I_PHY_ID:
Roy Zang28f7a052009-07-31 13:34:02 +08004554 case M88E1111_I_PHY_ID:
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004555 hw->phy_type = e1000_phy_m88;
4556 break;
4557 case IGP01E1000_I_PHY_ID:
4558 if (hw->mac_type == e1000_82541 ||
Roy Zang28f7a052009-07-31 13:34:02 +08004559 hw->mac_type == e1000_82541_rev_2 ||
4560 hw->mac_type == e1000_82547 ||
4561 hw->mac_type == e1000_82547_rev_2) {
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004562 hw->phy_type = e1000_phy_igp;
Roy Zang28f7a052009-07-31 13:34:02 +08004563 hw->phy_type = e1000_phy_igp;
4564 break;
4565 }
4566 case IGP03E1000_E_PHY_ID:
4567 hw->phy_type = e1000_phy_igp_3;
4568 break;
4569 case IFE_E_PHY_ID:
4570 case IFE_PLUS_E_PHY_ID:
4571 case IFE_C_E_PHY_ID:
4572 hw->phy_type = e1000_phy_ife;
4573 break;
4574 case GG82563_E_PHY_ID:
4575 if (hw->mac_type == e1000_80003es2lan) {
4576 hw->phy_type = e1000_phy_gg82563;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004577 break;
4578 }
Roy Zang181119b2011-01-21 11:29:38 +08004579 case BME1000_E_PHY_ID:
4580 hw->phy_type = e1000_phy_bm;
4581 break;
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004582 /* Fall Through */
4583 default:
4584 /* Should never have loaded on this device */
4585 hw->phy_type = e1000_phy_undefined;
4586 return -E1000_ERR_PHY_TYPE;
4587 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004588
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004589 return E1000_SUCCESS;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004590}
4591
wdenk4e112c12003-06-03 23:54:09 +00004592/******************************************************************************
4593* Probes the expected PHY address for known PHY IDs
4594*
4595* hw - Struct containing variables accessed by shared code
4596******************************************************************************/
Roy Zang28f7a052009-07-31 13:34:02 +08004597static int32_t
wdenk4e112c12003-06-03 23:54:09 +00004598e1000_detect_gig_phy(struct e1000_hw *hw)
4599{
Roy Zang28f7a052009-07-31 13:34:02 +08004600 int32_t phy_init_status, ret_val;
wdenk4e112c12003-06-03 23:54:09 +00004601 uint16_t phy_id_high, phy_id_low;
Roy Zang28f7a052009-07-31 13:34:02 +08004602 boolean_t match = FALSE;
wdenk4e112c12003-06-03 23:54:09 +00004603
4604 DEBUGFUNC();
4605
Roy Zang28f7a052009-07-31 13:34:02 +08004606 /* The 82571 firmware may still be configuring the PHY. In this
4607 * case, we cannot access the PHY until the configuration is done. So
4608 * we explicitly set the PHY values. */
4609 if (hw->mac_type == e1000_82571 ||
4610 hw->mac_type == e1000_82572) {
4611 hw->phy_id = IGP01E1000_I_PHY_ID;
4612 hw->phy_type = e1000_phy_igp_2;
4613 return E1000_SUCCESS;
wdenk4e112c12003-06-03 23:54:09 +00004614 }
Roy Zang28f7a052009-07-31 13:34:02 +08004615
4616 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4617 * work- around that forces PHY page 0 to be set or the reads fail.
4618 * The rest of the code in this routine uses e1000_read_phy_reg to
4619 * read the PHY ID. So for ESB-2 we need to have this set so our
4620 * reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
4621 * the routines below will figure this out as well. */
4622 if (hw->mac_type == e1000_80003es2lan)
4623 hw->phy_type = e1000_phy_gg82563;
4624
4625 /* Read the PHY ID Registers to identify which PHY is onboard. */
4626 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4627 if (ret_val)
4628 return ret_val;
4629
wdenk4e112c12003-06-03 23:54:09 +00004630 hw->phy_id = (uint32_t) (phy_id_high << 16);
Roy Zang28f7a052009-07-31 13:34:02 +08004631 udelay(20);
4632 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4633 if (ret_val)
4634 return ret_val;
4635
wdenk4e112c12003-06-03 23:54:09 +00004636 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
Roy Zang28f7a052009-07-31 13:34:02 +08004637 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
wdenk4e112c12003-06-03 23:54:09 +00004638
4639 switch (hw->mac_type) {
4640 case e1000_82543:
4641 if (hw->phy_id == M88E1000_E_PHY_ID)
4642 match = TRUE;
4643 break;
4644 case e1000_82544:
4645 if (hw->phy_id == M88E1000_I_PHY_ID)
4646 match = TRUE;
4647 break;
4648 case e1000_82540:
4649 case e1000_82545:
Roy Zang28f7a052009-07-31 13:34:02 +08004650 case e1000_82545_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004651 case e1000_82546:
Roy Zang28f7a052009-07-31 13:34:02 +08004652 case e1000_82546_rev_3:
wdenk4e112c12003-06-03 23:54:09 +00004653 if (hw->phy_id == M88E1011_I_PHY_ID)
4654 match = TRUE;
Andre Schwarz68c2a302008-03-06 16:45:44 +01004655 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004656 case e1000_82541:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004657 case e1000_82541_rev_2:
Roy Zang28f7a052009-07-31 13:34:02 +08004658 case e1000_82547:
4659 case e1000_82547_rev_2:
Andre Schwarz68c2a302008-03-06 16:45:44 +01004660 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4661 match = TRUE;
4662
wdenk4e112c12003-06-03 23:54:09 +00004663 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004664 case e1000_82573:
4665 if (hw->phy_id == M88E1111_I_PHY_ID)
4666 match = TRUE;
4667 break;
Roy Zang181119b2011-01-21 11:29:38 +08004668 case e1000_82574:
4669 if (hw->phy_id == BME1000_E_PHY_ID)
4670 match = TRUE;
4671 break;
Roy Zang28f7a052009-07-31 13:34:02 +08004672 case e1000_80003es2lan:
4673 if (hw->phy_id == GG82563_E_PHY_ID)
4674 match = TRUE;
4675 break;
4676 case e1000_ich8lan:
4677 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4678 match = TRUE;
4679 if (hw->phy_id == IFE_E_PHY_ID)
4680 match = TRUE;
4681 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4682 match = TRUE;
4683 if (hw->phy_id == IFE_C_E_PHY_ID)
4684 match = TRUE;
4685 break;
wdenk4e112c12003-06-03 23:54:09 +00004686 default:
4687 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4688 return -E1000_ERR_CONFIG;
4689 }
Andre Schwarz68c2a302008-03-06 16:45:44 +01004690
4691 phy_init_status = e1000_set_phy_type(hw);
4692
4693 if ((match) && (phy_init_status == E1000_SUCCESS)) {
wdenk4e112c12003-06-03 23:54:09 +00004694 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4695 return 0;
4696 }
4697 DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4698 return -E1000_ERR_PHY;
4699}
4700
Roy Zang28f7a052009-07-31 13:34:02 +08004701/*****************************************************************************
4702 * Set media type and TBI compatibility.
4703 *
4704 * hw - Struct containing variables accessed by shared code
4705 * **************************************************************************/
4706void
4707e1000_set_media_type(struct e1000_hw *hw)
4708{
4709 uint32_t status;
4710
4711 DEBUGFUNC();
4712
4713 if (hw->mac_type != e1000_82543) {
4714 /* tbi_compatibility is only valid on 82543 */
4715 hw->tbi_compatibility_en = FALSE;
4716 }
4717
4718 switch (hw->device_id) {
4719 case E1000_DEV_ID_82545GM_SERDES:
4720 case E1000_DEV_ID_82546GB_SERDES:
4721 case E1000_DEV_ID_82571EB_SERDES:
4722 case E1000_DEV_ID_82571EB_SERDES_DUAL:
4723 case E1000_DEV_ID_82571EB_SERDES_QUAD:
4724 case E1000_DEV_ID_82572EI_SERDES:
4725 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4726 hw->media_type = e1000_media_type_internal_serdes;
4727 break;
4728 default:
4729 switch (hw->mac_type) {
4730 case e1000_82542_rev2_0:
4731 case e1000_82542_rev2_1:
4732 hw->media_type = e1000_media_type_fiber;
4733 break;
4734 case e1000_ich8lan:
4735 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08004736 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08004737 /* The STATUS_TBIMODE bit is reserved or reused
4738 * for the this device.
4739 */
4740 hw->media_type = e1000_media_type_copper;
4741 break;
4742 default:
4743 status = E1000_READ_REG(hw, STATUS);
4744 if (status & E1000_STATUS_TBIMODE) {
4745 hw->media_type = e1000_media_type_fiber;
4746 /* tbi_compatibility not valid on fiber */
4747 hw->tbi_compatibility_en = FALSE;
4748 } else {
4749 hw->media_type = e1000_media_type_copper;
4750 }
4751 break;
4752 }
4753 }
4754}
4755
wdenk4e112c12003-06-03 23:54:09 +00004756/**
4757 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4758 *
4759 * e1000_sw_init initializes the Adapter private data structure.
4760 * Fields are initialized based on PCI device information and
4761 * OS network device settings (MTU size).
4762 **/
4763
4764static int
Kyle Moffett7b698d52011-10-18 11:05:26 +00004765e1000_sw_init(struct eth_device *nic)
wdenk4e112c12003-06-03 23:54:09 +00004766{
4767 struct e1000_hw *hw = (typeof(hw)) nic->priv;
4768 int result;
4769
4770 /* PCI config space info */
4771 pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4772 pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4773 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4774 &hw->subsystem_vendor_id);
4775 pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4776
4777 pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4778 pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4779
4780 /* identify the MAC */
4781 result = e1000_set_mac_type(hw);
4782 if (result) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00004783 E1000_ERR(hw->nic, "Unknown MAC Type\n");
wdenk4e112c12003-06-03 23:54:09 +00004784 return result;
4785 }
4786
Roy Zang28f7a052009-07-31 13:34:02 +08004787 switch (hw->mac_type) {
4788 default:
4789 break;
4790 case e1000_82541:
4791 case e1000_82547:
4792 case e1000_82541_rev_2:
4793 case e1000_82547_rev_2:
4794 hw->phy_init_script = 1;
4795 break;
4796 }
4797
wdenk4e112c12003-06-03 23:54:09 +00004798 /* flow control settings */
4799 hw->fc_high_water = E1000_FC_HIGH_THRESH;
4800 hw->fc_low_water = E1000_FC_LOW_THRESH;
4801 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4802 hw->fc_send_xon = 1;
4803
4804 /* Media type - copper or fiber */
Roy Zang28f7a052009-07-31 13:34:02 +08004805 e1000_set_media_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00004806
4807 if (hw->mac_type >= e1000_82543) {
4808 uint32_t status = E1000_READ_REG(hw, STATUS);
4809
4810 if (status & E1000_STATUS_TBIMODE) {
4811 DEBUGOUT("fiber interface\n");
4812 hw->media_type = e1000_media_type_fiber;
4813 } else {
4814 DEBUGOUT("copper interface\n");
4815 hw->media_type = e1000_media_type_copper;
4816 }
4817 } else {
4818 hw->media_type = e1000_media_type_fiber;
4819 }
4820
Roy Zang28f7a052009-07-31 13:34:02 +08004821 hw->tbi_compatibility_en = TRUE;
4822 hw->wait_autoneg_complete = TRUE;
wdenk4e112c12003-06-03 23:54:09 +00004823 if (hw->mac_type < e1000_82543)
4824 hw->report_tx_early = 0;
4825 else
4826 hw->report_tx_early = 1;
4827
wdenk4e112c12003-06-03 23:54:09 +00004828 return E1000_SUCCESS;
4829}
4830
4831void
4832fill_rx(struct e1000_hw *hw)
4833{
4834 struct e1000_rx_desc *rd;
4835
4836 rx_last = rx_tail;
4837 rd = rx_base + rx_tail;
4838 rx_tail = (rx_tail + 1) % 8;
4839 memset(rd, 0, 16);
4840 rd->buffer_addr = cpu_to_le64((u32) & packet);
4841 E1000_WRITE_REG(hw, RDT, rx_tail);
4842}
4843
4844/**
4845 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4846 * @adapter: board private structure
4847 *
4848 * Configure the Tx unit of the MAC after a reset.
4849 **/
4850
4851static void
4852e1000_configure_tx(struct e1000_hw *hw)
4853{
4854 unsigned long ptr;
4855 unsigned long tctl;
Roy Zang28f7a052009-07-31 13:34:02 +08004856 unsigned long tipg, tarc;
4857 uint32_t ipgr1, ipgr2;
wdenk4e112c12003-06-03 23:54:09 +00004858
4859 ptr = (u32) tx_pool;
4860 if (ptr & 0xf)
4861 ptr = (ptr + 0x10) & (~0xf);
4862
4863 tx_base = (typeof(tx_base)) ptr;
4864
4865 E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
4866 E1000_WRITE_REG(hw, TDBAH, 0);
4867
4868 E1000_WRITE_REG(hw, TDLEN, 128);
4869
4870 /* Setup the HW Tx Head and Tail descriptor pointers */
4871 E1000_WRITE_REG(hw, TDH, 0);
4872 E1000_WRITE_REG(hw, TDT, 0);
4873 tx_tail = 0;
4874
4875 /* Set the default values for the Tx Inter Packet Gap timer */
Roy Zang28f7a052009-07-31 13:34:02 +08004876 if (hw->mac_type <= e1000_82547_rev_2 &&
4877 (hw->media_type == e1000_media_type_fiber ||
4878 hw->media_type == e1000_media_type_internal_serdes))
4879 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4880 else
4881 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4882
4883 /* Set the default values for the Tx Inter Packet Gap timer */
wdenk4e112c12003-06-03 23:54:09 +00004884 switch (hw->mac_type) {
4885 case e1000_82542_rev2_0:
4886 case e1000_82542_rev2_1:
4887 tipg = DEFAULT_82542_TIPG_IPGT;
Roy Zang28f7a052009-07-31 13:34:02 +08004888 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4889 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4890 break;
4891 case e1000_80003es2lan:
4892 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4893 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
wdenk4e112c12003-06-03 23:54:09 +00004894 break;
4895 default:
Roy Zang28f7a052009-07-31 13:34:02 +08004896 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4897 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4898 break;
wdenk4e112c12003-06-03 23:54:09 +00004899 }
Roy Zang28f7a052009-07-31 13:34:02 +08004900 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4901 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
wdenk4e112c12003-06-03 23:54:09 +00004902 E1000_WRITE_REG(hw, TIPG, tipg);
wdenk4e112c12003-06-03 23:54:09 +00004903 /* Program the Transmit Control Register */
4904 tctl = E1000_READ_REG(hw, TCTL);
4905 tctl &= ~E1000_TCTL_CT;
4906 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
4907 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
Roy Zang28f7a052009-07-31 13:34:02 +08004908
4909 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
4910 tarc = E1000_READ_REG(hw, TARC0);
4911 /* set the speed mode bit, we'll clear it if we're not at
4912 * gigabit link later */
4913 /* git bit can be set to 1*/
4914 } else if (hw->mac_type == e1000_80003es2lan) {
4915 tarc = E1000_READ_REG(hw, TARC0);
4916 tarc |= 1;
4917 E1000_WRITE_REG(hw, TARC0, tarc);
4918 tarc = E1000_READ_REG(hw, TARC1);
4919 tarc |= 1;
4920 E1000_WRITE_REG(hw, TARC1, tarc);
4921 }
4922
wdenk4e112c12003-06-03 23:54:09 +00004923
4924 e1000_config_collision_dist(hw);
Roy Zang28f7a052009-07-31 13:34:02 +08004925 /* Setup Transmit Descriptor Settings for eop descriptor */
4926 hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
wdenk4e112c12003-06-03 23:54:09 +00004927
Roy Zang28f7a052009-07-31 13:34:02 +08004928 /* Need to set up RS bit */
4929 if (hw->mac_type < e1000_82543)
4930 hw->txd_cmd |= E1000_TXD_CMD_RPS;
wdenk4e112c12003-06-03 23:54:09 +00004931 else
Roy Zang28f7a052009-07-31 13:34:02 +08004932 hw->txd_cmd |= E1000_TXD_CMD_RS;
4933 E1000_WRITE_REG(hw, TCTL, tctl);
wdenk4e112c12003-06-03 23:54:09 +00004934}
4935
4936/**
4937 * e1000_setup_rctl - configure the receive control register
4938 * @adapter: Board private structure
4939 **/
4940static void
4941e1000_setup_rctl(struct e1000_hw *hw)
4942{
4943 uint32_t rctl;
4944
4945 rctl = E1000_READ_REG(hw, RCTL);
4946
4947 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4948
Roy Zang28f7a052009-07-31 13:34:02 +08004949 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
4950 | E1000_RCTL_RDMTS_HALF; /* |
4951 (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
wdenk4e112c12003-06-03 23:54:09 +00004952
4953 if (hw->tbi_compatibility_on == 1)
4954 rctl |= E1000_RCTL_SBP;
4955 else
4956 rctl &= ~E1000_RCTL_SBP;
4957
4958 rctl &= ~(E1000_RCTL_SZ_4096);
wdenk4e112c12003-06-03 23:54:09 +00004959 rctl |= E1000_RCTL_SZ_2048;
4960 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
wdenk4e112c12003-06-03 23:54:09 +00004961 E1000_WRITE_REG(hw, RCTL, rctl);
4962}
4963
4964/**
4965 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
4966 * @adapter: board private structure
4967 *
4968 * Configure the Rx unit of the MAC after a reset.
4969 **/
4970static void
4971e1000_configure_rx(struct e1000_hw *hw)
4972{
4973 unsigned long ptr;
Roy Zang28f7a052009-07-31 13:34:02 +08004974 unsigned long rctl, ctrl_ext;
wdenk4e112c12003-06-03 23:54:09 +00004975 rx_tail = 0;
4976 /* make sure receives are disabled while setting up the descriptors */
4977 rctl = E1000_READ_REG(hw, RCTL);
4978 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
wdenk4e112c12003-06-03 23:54:09 +00004979 if (hw->mac_type >= e1000_82540) {
wdenk4e112c12003-06-03 23:54:09 +00004980 /* Set the interrupt throttling rate. Value is calculated
4981 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
Wolfgang Denk35f734f2008-04-13 09:59:26 -07004982#define MAX_INTS_PER_SEC 8000
4983#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
wdenk4e112c12003-06-03 23:54:09 +00004984 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
4985 }
4986
Roy Zang28f7a052009-07-31 13:34:02 +08004987 if (hw->mac_type >= e1000_82571) {
4988 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4989 /* Reset delay timers after every interrupt */
4990 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
4991 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4992 E1000_WRITE_FLUSH(hw);
4993 }
wdenk4e112c12003-06-03 23:54:09 +00004994 /* Setup the Base and Length of the Rx Descriptor Ring */
4995 ptr = (u32) rx_pool;
4996 if (ptr & 0xf)
4997 ptr = (ptr + 0x10) & (~0xf);
4998 rx_base = (typeof(rx_base)) ptr;
4999 E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
5000 E1000_WRITE_REG(hw, RDBAH, 0);
5001
5002 E1000_WRITE_REG(hw, RDLEN, 128);
5003
5004 /* Setup the HW Rx Head and Tail Descriptor Pointers */
5005 E1000_WRITE_REG(hw, RDH, 0);
5006 E1000_WRITE_REG(hw, RDT, 0);
wdenk4e112c12003-06-03 23:54:09 +00005007 /* Enable Receives */
5008
5009 E1000_WRITE_REG(hw, RCTL, rctl);
5010 fill_rx(hw);
5011}
5012
5013/**************************************************************************
5014POLL - Wait for a frame
5015***************************************************************************/
5016static int
5017e1000_poll(struct eth_device *nic)
5018{
5019 struct e1000_hw *hw = nic->priv;
5020 struct e1000_rx_desc *rd;
5021 /* return true if there's an ethernet packet ready to read */
5022 rd = rx_base + rx_last;
5023 if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
5024 return 0;
5025 /*DEBUGOUT("recv: packet len=%d \n", rd->length); */
Wolfgang Denk7fb52662005-10-13 16:45:02 +02005026 NetReceive((uchar *)packet, le32_to_cpu(rd->length));
wdenk4e112c12003-06-03 23:54:09 +00005027 fill_rx(hw);
5028 return 1;
5029}
5030
5031/**************************************************************************
5032TRANSMIT - Transmit a frame
5033***************************************************************************/
5034static int
5035e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
5036{
Wolfgang Denkf83102e2010-11-22 09:48:45 +01005037 void * nv_packet = (void *)packet;
wdenk4e112c12003-06-03 23:54:09 +00005038 struct e1000_hw *hw = nic->priv;
5039 struct e1000_tx_desc *txp;
5040 int i = 0;
5041
5042 txp = tx_base + tx_tail;
5043 tx_tail = (tx_tail + 1) % 8;
5044
Wolfgang Denkf83102e2010-11-22 09:48:45 +01005045 txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
Roy Zang28f7a052009-07-31 13:34:02 +08005046 txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
wdenk4e112c12003-06-03 23:54:09 +00005047 txp->upper.data = 0;
5048 E1000_WRITE_REG(hw, TDT, tx_tail);
5049
Roy Zang28f7a052009-07-31 13:34:02 +08005050 E1000_WRITE_FLUSH(hw);
wdenk4e112c12003-06-03 23:54:09 +00005051 while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
5052 if (i++ > TOUT_LOOP) {
5053 DEBUGOUT("e1000: tx timeout\n");
5054 return 0;
5055 }
5056 udelay(10); /* give the nic a chance to write to the register */
5057 }
5058 return 1;
5059}
5060
5061/*reset function*/
5062static inline int
5063e1000_reset(struct eth_device *nic)
5064{
5065 struct e1000_hw *hw = nic->priv;
5066
5067 e1000_reset_hw(hw);
5068 if (hw->mac_type >= e1000_82544) {
5069 E1000_WRITE_REG(hw, WUC, 0);
5070 }
5071 return e1000_init_hw(nic);
5072}
5073
5074/**************************************************************************
5075DISABLE - Turn off ethernet interface
5076***************************************************************************/
5077static void
5078e1000_disable(struct eth_device *nic)
5079{
5080 struct e1000_hw *hw = nic->priv;
5081
5082 /* Turn off the ethernet interface */
5083 E1000_WRITE_REG(hw, RCTL, 0);
5084 E1000_WRITE_REG(hw, TCTL, 0);
5085
5086 /* Clear the transmit ring */
5087 E1000_WRITE_REG(hw, TDH, 0);
5088 E1000_WRITE_REG(hw, TDT, 0);
5089
5090 /* Clear the receive ring */
5091 E1000_WRITE_REG(hw, RDH, 0);
5092 E1000_WRITE_REG(hw, RDT, 0);
5093
5094 /* put the card in its initial state */
5095#if 0
5096 E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
5097#endif
5098 mdelay(10);
5099
5100}
5101
5102/**************************************************************************
5103INIT - set up ethernet interface(s)
5104***************************************************************************/
5105static int
5106e1000_init(struct eth_device *nic, bd_t * bis)
5107{
5108 struct e1000_hw *hw = nic->priv;
5109 int ret_val = 0;
5110
5111 ret_val = e1000_reset(nic);
5112 if (ret_val < 0) {
5113 if ((ret_val == -E1000_ERR_NOLINK) ||
5114 (ret_val == -E1000_ERR_TIMEOUT)) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005115 E1000_ERR(hw->nic, "Valid Link not detected\n");
wdenk4e112c12003-06-03 23:54:09 +00005116 } else {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005117 E1000_ERR(hw->nic, "Hardware Initialization Failed\n");
wdenk4e112c12003-06-03 23:54:09 +00005118 }
5119 return 0;
5120 }
5121 e1000_configure_tx(hw);
5122 e1000_setup_rctl(hw);
5123 e1000_configure_rx(hw);
5124 return 1;
5125}
5126
Roy Zang28f7a052009-07-31 13:34:02 +08005127/******************************************************************************
5128 * Gets the current PCI bus type of hardware
5129 *
5130 * hw - Struct containing variables accessed by shared code
5131 *****************************************************************************/
5132void e1000_get_bus_type(struct e1000_hw *hw)
5133{
5134 uint32_t status;
5135
5136 switch (hw->mac_type) {
5137 case e1000_82542_rev2_0:
5138 case e1000_82542_rev2_1:
5139 hw->bus_type = e1000_bus_type_pci;
5140 break;
5141 case e1000_82571:
5142 case e1000_82572:
5143 case e1000_82573:
Roy Zang181119b2011-01-21 11:29:38 +08005144 case e1000_82574:
Roy Zang28f7a052009-07-31 13:34:02 +08005145 case e1000_80003es2lan:
5146 hw->bus_type = e1000_bus_type_pci_express;
5147 break;
5148 case e1000_ich8lan:
5149 hw->bus_type = e1000_bus_type_pci_express;
5150 break;
5151 default:
5152 status = E1000_READ_REG(hw, STATUS);
5153 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5154 e1000_bus_type_pcix : e1000_bus_type_pci;
5155 break;
5156 }
5157}
5158
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005159/* A list of all registered e1000 devices */
5160static LIST_HEAD(e1000_hw_list);
5161
wdenk4e112c12003-06-03 23:54:09 +00005162/**************************************************************************
5163PROBE - Look for an adapter, this routine's visible to the outside
5164You should omit the last argument struct pci_device * for a non-PCI NIC
5165***************************************************************************/
5166int
5167e1000_initialize(bd_t * bis)
5168{
Kyle Moffett7b698d52011-10-18 11:05:26 +00005169 unsigned int i;
wdenk4e112c12003-06-03 23:54:09 +00005170 pci_dev_t devno;
wdenk4e112c12003-06-03 23:54:09 +00005171
Timur Tabiedc45b52009-08-17 15:55:38 -05005172 DEBUGFUNC();
5173
Kyle Moffett7b698d52011-10-18 11:05:26 +00005174 /* Find and probe all the matching PCI devices */
5175 for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5176 u32 val;
Kumar Gala76933572010-11-12 04:13:06 -06005177
Kyle Moffett7b698d52011-10-18 11:05:26 +00005178 /*
5179 * These will never get freed due to errors, this allows us to
5180 * perform SPI EEPROM programming from U-boot, for example.
5181 */
5182 struct eth_device *nic = malloc(sizeof(*nic));
5183 struct e1000_hw *hw = malloc(sizeof(*hw));
5184 if (!nic || !hw) {
5185 printf("e1000#%u: Out of Memory!\n", i);
Kumar Gala76933572010-11-12 04:13:06 -06005186 free(nic);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005187 free(hw);
5188 continue;
Kumar Gala76933572010-11-12 04:13:06 -06005189 }
5190
Kyle Moffett7b698d52011-10-18 11:05:26 +00005191 /* Make sure all of the fields are initially zeroed */
Matthew McClintock5761ce42010-11-15 18:02:53 -06005192 memset(nic, 0, sizeof(*nic));
Kumar Gala76933572010-11-12 04:13:06 -06005193 memset(hw, 0, sizeof(*hw));
5194
Kyle Moffett7b698d52011-10-18 11:05:26 +00005195 /* Assign the passed-in values */
5196 hw->cardnum = i;
wdenk4e112c12003-06-03 23:54:09 +00005197 hw->pdev = devno;
Kyle Moffett7b698d52011-10-18 11:05:26 +00005198 hw->nic = nic;
wdenk4e112c12003-06-03 23:54:09 +00005199 nic->priv = hw;
wdenk4e112c12003-06-03 23:54:09 +00005200
Kyle Moffett7b698d52011-10-18 11:05:26 +00005201 /* Generate a card name */
5202 sprintf(nic->name, "e1000#%u", hw->cardnum);
5203
5204 /* Print a debug message with the IO base address */
5205 pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5206 E1000_DBG(nic, "iobase 0x%08x\n", val & 0xfffffff0);
5207
5208 /* Try to enable I/O accesses and bus-mastering */
5209 val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5210 pci_write_config_dword(devno, PCI_COMMAND, val);
5211
5212 /* Make sure it worked */
5213 pci_read_config_dword(devno, PCI_COMMAND, &val);
5214 if (!(val & PCI_COMMAND_MEMORY)) {
5215 E1000_ERR(nic, "Can't enable I/O memory\n");
5216 continue;
5217 }
5218 if (!(val & PCI_COMMAND_MASTER)) {
5219 E1000_ERR(nic, "Can't enable bus-mastering\n");
5220 continue;
5221 }
wdenk4e112c12003-06-03 23:54:09 +00005222
5223 /* Are these variables needed? */
wdenk4e112c12003-06-03 23:54:09 +00005224 hw->fc = e1000_fc_default;
5225 hw->original_fc = e1000_fc_default;
wdenk4e112c12003-06-03 23:54:09 +00005226 hw->autoneg_failed = 0;
Roy Zang28f7a052009-07-31 13:34:02 +08005227 hw->autoneg = 1;
wdenk4e112c12003-06-03 23:54:09 +00005228 hw->get_link_status = TRUE;
Kyle Moffett7b698d52011-10-18 11:05:26 +00005229 hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
5230 PCI_REGION_MEM);
wdenk4e112c12003-06-03 23:54:09 +00005231 hw->mac_type = e1000_undefined;
5232
5233 /* MAC and Phy settings */
Kyle Moffett7b698d52011-10-18 11:05:26 +00005234 if (e1000_sw_init(nic) < 0) {
5235 E1000_ERR(nic, "Software init failed\n");
5236 continue;
wdenk4e112c12003-06-03 23:54:09 +00005237 }
Roy Zang28f7a052009-07-31 13:34:02 +08005238 if (e1000_check_phy_reset_block(hw))
Kyle Moffett7b698d52011-10-18 11:05:26 +00005239 E1000_ERR(nic, "PHY Reset is blocked!\n");
5240
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005241 /* Basic init was OK, reset the hardware and allow SPI access */
Roy Zang28f7a052009-07-31 13:34:02 +08005242 e1000_reset_hw(hw);
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005243 list_add_tail(&hw->list_node, &e1000_hw_list);
Kyle Moffett7b698d52011-10-18 11:05:26 +00005244
5245 /* Validate the EEPROM and get chipset information */
Andre Schwarz68c2a302008-03-06 16:45:44 +01005246#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
Roy Zang28f7a052009-07-31 13:34:02 +08005247 if (e1000_init_eeprom_params(hw)) {
Kyle Moffett7b698d52011-10-18 11:05:26 +00005248 E1000_ERR(nic, "EEPROM is invalid!\n");
5249 continue;
Roy Zang28f7a052009-07-31 13:34:02 +08005250 }
Kyle Moffett70946bc2011-10-18 11:05:27 +00005251 if (e1000_validate_eeprom_checksum(hw))
Kyle Moffett7b698d52011-10-18 11:05:26 +00005252 continue;
Wolfgang Denk56811f62005-10-09 01:04:33 +02005253#endif
wdenk4e112c12003-06-03 23:54:09 +00005254 e1000_read_mac_addr(nic);
Roy Zang28f7a052009-07-31 13:34:02 +08005255 e1000_get_bus_type(hw);
wdenk4e112c12003-06-03 23:54:09 +00005256
Kyle Moffett7b698d52011-10-18 11:05:26 +00005257 printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
wdenk4e112c12003-06-03 23:54:09 +00005258 nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
5259 nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
5260
Kyle Moffett7b698d52011-10-18 11:05:26 +00005261 /* Set up the function pointers and register the device */
wdenk4e112c12003-06-03 23:54:09 +00005262 nic->init = e1000_init;
5263 nic->recv = e1000_poll;
5264 nic->send = e1000_transmit;
5265 nic->halt = e1000_disable;
wdenk4e112c12003-06-03 23:54:09 +00005266 eth_register(nic);
wdenk4e112c12003-06-03 23:54:09 +00005267 }
Kyle Moffett7b698d52011-10-18 11:05:26 +00005268
5269 return i;
wdenk4e112c12003-06-03 23:54:09 +00005270}
Kyle Moffett64b94dd2011-10-18 11:05:29 +00005271
5272struct e1000_hw *e1000_find_card(unsigned int cardnum)
5273{
5274 struct e1000_hw *hw;
5275
5276 list_for_each_entry(hw, &e1000_hw_list, list_node)
5277 if (hw->cardnum == cardnum)
5278 return hw;
5279
5280 return NULL;
5281}
5282
5283#ifdef CONFIG_CMD_E1000
5284static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5285 int argc, char * const argv[])
5286{
5287 struct e1000_hw *hw;
5288
5289 if (argc < 3) {
5290 cmd_usage(cmdtp);
5291 return 1;
5292 }
5293
5294 /* Make sure we can find the requested e1000 card */
5295 hw = e1000_find_card(simple_strtoul(argv[1], NULL, 10));
5296 if (!hw) {
5297 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5298 return 1;
5299 }
5300
5301 if (!strcmp(argv[2], "print-mac-address")) {
5302 unsigned char *mac = hw->nic->enetaddr;
5303 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5304 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5305 return 0;
5306 }
5307
5308#ifdef CONFIG_E1000_SPI
5309 /* Handle the "SPI" subcommand */
5310 if (!strcmp(argv[2], "spi"))
5311 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5312#endif
5313
5314 cmd_usage(cmdtp);
5315 return 1;
5316}
5317
5318U_BOOT_CMD(
5319 e1000, 7, 0, do_e1000,
5320 "Intel e1000 controller management",
5321 /* */"<card#> print-mac-address\n"
5322#ifdef CONFIG_E1000_SPI
5323 "e1000 <card#> spi show [<offset> [<length>]]\n"
5324 "e1000 <card#> spi dump <addr> <offset> <length>\n"
5325 "e1000 <card#> spi program <addr> <offset> <length>\n"
5326 "e1000 <card#> spi checksum [update]\n"
5327#endif
5328 " - Manage the Intel E1000 PCI device"
5329);
5330#endif /* not CONFIG_CMD_E1000 */