Kyle Moffett | 64b94dd | 2011-10-18 11:05:29 +0000 | [diff] [blame] | 1 | #include "e1000.h" |
Anatolij Gustschin | 6711ee5 | 2011-12-20 02:29:03 +0000 | [diff] [blame] | 2 | #include <linux/compiler.h> |
Kyle Moffett | 64b94dd | 2011-10-18 11:05:29 +0000 | [diff] [blame] | 3 | |
| 4 | /*----------------------------------------------------------------------- |
| 5 | * SPI transfer |
| 6 | * |
| 7 | * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks |
| 8 | * "bitlen" bits in the SPI MISO port. That's just the way SPI works. |
| 9 | * |
| 10 | * The source of the outgoing bits is the "dout" parameter and the |
| 11 | * destination of the input bits is the "din" parameter. Note that "dout" |
| 12 | * and "din" can point to the same memory location, in which case the |
| 13 | * input data overwrites the output data (since both are buffered by |
| 14 | * temporary variables, this is OK). |
| 15 | * |
| 16 | * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will |
| 17 | * never return an error. |
| 18 | */ |
| 19 | static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen, |
| 20 | const void *dout_mem, void *din_mem, boolean_t intr) |
| 21 | { |
| 22 | const uint8_t *dout = dout_mem; |
| 23 | uint8_t *din = din_mem; |
| 24 | |
| 25 | uint8_t mask = 0; |
| 26 | uint32_t eecd; |
| 27 | unsigned long i; |
| 28 | |
| 29 | /* Pre-read the control register */ |
| 30 | eecd = E1000_READ_REG(hw, EECD); |
| 31 | |
| 32 | /* Iterate over each bit */ |
| 33 | for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) { |
| 34 | /* Check for interrupt */ |
| 35 | if (intr && ctrlc()) |
| 36 | return -1; |
| 37 | |
| 38 | /* Determine the output bit */ |
| 39 | if (dout && dout[i >> 3] & mask) |
| 40 | eecd |= E1000_EECD_DI; |
| 41 | else |
| 42 | eecd &= ~E1000_EECD_DI; |
| 43 | |
| 44 | /* Write the output bit and wait 50us */ |
| 45 | E1000_WRITE_REG(hw, EECD, eecd); |
| 46 | E1000_WRITE_FLUSH(hw); |
| 47 | udelay(50); |
| 48 | |
| 49 | /* Poke the clock (waits 50us) */ |
| 50 | e1000_raise_ee_clk(hw, &eecd); |
| 51 | |
| 52 | /* Now read the input bit */ |
| 53 | eecd = E1000_READ_REG(hw, EECD); |
| 54 | if (din) { |
| 55 | if (eecd & E1000_EECD_DO) |
| 56 | din[i >> 3] |= mask; |
| 57 | else |
| 58 | din[i >> 3] &= ~mask; |
| 59 | } |
| 60 | |
| 61 | /* Poke the clock again (waits 50us) */ |
| 62 | e1000_lower_ee_clk(hw, &eecd); |
| 63 | } |
| 64 | |
| 65 | /* Now clear any remaining bits of the input */ |
| 66 | if (din && (i & 7)) |
| 67 | din[i >> 3] &= ~((mask << 1) - 1); |
| 68 | |
| 69 | return 0; |
| 70 | } |
| 71 | |
| 72 | #ifdef CONFIG_E1000_SPI_GENERIC |
| 73 | static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi) |
| 74 | { |
| 75 | return container_of(spi, struct e1000_hw, spi); |
| 76 | } |
| 77 | |
| 78 | /* Not sure why all of these are necessary */ |
| 79 | void spi_init_r(void) { /* Nothing to do */ } |
| 80 | void spi_init_f(void) { /* Nothing to do */ } |
| 81 | void spi_init(void) { /* Nothing to do */ } |
| 82 | |
| 83 | struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, |
| 84 | unsigned int max_hz, unsigned int mode) |
| 85 | { |
| 86 | /* Find the right PCI device */ |
| 87 | struct e1000_hw *hw = e1000_find_card(bus); |
| 88 | if (!hw) { |
| 89 | printf("ERROR: No such e1000 device: e1000#%u\n", bus); |
| 90 | return NULL; |
| 91 | } |
| 92 | |
| 93 | /* Make sure it has an SPI chip */ |
| 94 | if (hw->eeprom.type != e1000_eeprom_spi) { |
| 95 | E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n"); |
| 96 | return NULL; |
| 97 | } |
| 98 | |
| 99 | /* Argument sanity checks */ |
| 100 | if (cs != 0) { |
| 101 | E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs); |
| 102 | return NULL; |
| 103 | } |
| 104 | if (mode != SPI_MODE_0) { |
| 105 | E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n"); |
| 106 | return NULL; |
| 107 | } |
| 108 | |
| 109 | /* TODO: Use max_hz somehow */ |
| 110 | E1000_DBG(hw->nic, "EEPROM SPI access requested\n"); |
| 111 | return &hw->spi; |
| 112 | } |
| 113 | |
| 114 | void spi_free_slave(struct spi_slave *spi) |
| 115 | { |
Anatolij Gustschin | 6711ee5 | 2011-12-20 02:29:03 +0000 | [diff] [blame] | 116 | __maybe_unused struct e1000_hw *hw = e1000_hw_from_spi(spi); |
Kyle Moffett | 64b94dd | 2011-10-18 11:05:29 +0000 | [diff] [blame] | 117 | E1000_DBG(hw->nic, "EEPROM SPI access released\n"); |
| 118 | } |
| 119 | |
| 120 | int spi_claim_bus(struct spi_slave *spi) |
| 121 | { |
| 122 | struct e1000_hw *hw = e1000_hw_from_spi(spi); |
| 123 | |
| 124 | if (e1000_acquire_eeprom(hw)) { |
| 125 | E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); |
| 126 | return -1; |
| 127 | } |
| 128 | |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | void spi_release_bus(struct spi_slave *spi) |
| 133 | { |
| 134 | struct e1000_hw *hw = e1000_hw_from_spi(spi); |
| 135 | e1000_release_eeprom(hw); |
| 136 | } |
| 137 | |
| 138 | /* Skinny wrapper around e1000_spi_xfer */ |
| 139 | int spi_xfer(struct spi_slave *spi, unsigned int bitlen, |
| 140 | const void *dout_mem, void *din_mem, unsigned long flags) |
| 141 | { |
| 142 | struct e1000_hw *hw = e1000_hw_from_spi(spi); |
| 143 | int ret; |
| 144 | |
| 145 | if (flags & SPI_XFER_BEGIN) |
| 146 | e1000_standby_eeprom(hw); |
| 147 | |
| 148 | ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, TRUE); |
| 149 | |
| 150 | if (flags & SPI_XFER_END) |
| 151 | e1000_standby_eeprom(hw); |
| 152 | |
| 153 | return ret; |
| 154 | } |
| 155 | |
| 156 | #endif /* not CONFIG_E1000_SPI_GENERIC */ |
| 157 | |
| 158 | #ifdef CONFIG_CMD_E1000 |
| 159 | |
| 160 | /* The EEPROM opcodes */ |
| 161 | #define SPI_EEPROM_ENABLE_WR 0x06 |
| 162 | #define SPI_EEPROM_DISABLE_WR 0x04 |
| 163 | #define SPI_EEPROM_WRITE_STATUS 0x01 |
| 164 | #define SPI_EEPROM_READ_STATUS 0x05 |
| 165 | #define SPI_EEPROM_WRITE_PAGE 0x02 |
| 166 | #define SPI_EEPROM_READ_PAGE 0x03 |
| 167 | |
| 168 | /* The EEPROM status bits */ |
| 169 | #define SPI_EEPROM_STATUS_BUSY 0x01 |
| 170 | #define SPI_EEPROM_STATUS_WREN 0x02 |
| 171 | |
| 172 | static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, boolean_t intr) |
| 173 | { |
| 174 | u8 op[] = { SPI_EEPROM_ENABLE_WR }; |
| 175 | e1000_standby_eeprom(hw); |
| 176 | return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * These have been tested to perform correctly, but they are not used by any |
| 181 | * of the EEPROM commands at this time. |
| 182 | */ |
| 183 | #if 0 |
| 184 | static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, boolean_t intr) |
| 185 | { |
| 186 | u8 op[] = { SPI_EEPROM_DISABLE_WR }; |
| 187 | e1000_standby_eeprom(hw); |
| 188 | return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); |
| 189 | } |
| 190 | |
| 191 | static int e1000_spi_eeprom_write_status(struct e1000_hw *hw, |
| 192 | u8 status, boolean_t intr) |
| 193 | { |
| 194 | u8 op[] = { SPI_EEPROM_WRITE_STATUS, status }; |
| 195 | e1000_standby_eeprom(hw); |
| 196 | return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); |
| 197 | } |
| 198 | #endif |
| 199 | |
| 200 | static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, boolean_t intr) |
| 201 | { |
| 202 | u8 op[] = { SPI_EEPROM_READ_STATUS, 0 }; |
| 203 | e1000_standby_eeprom(hw); |
| 204 | if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr)) |
| 205 | return -1; |
| 206 | return op[1]; |
| 207 | } |
| 208 | |
| 209 | static int e1000_spi_eeprom_write_page(struct e1000_hw *hw, |
| 210 | const void *data, u16 off, u16 len, boolean_t intr) |
| 211 | { |
| 212 | u8 op[] = { |
| 213 | SPI_EEPROM_WRITE_PAGE, |
| 214 | (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff |
| 215 | }; |
| 216 | |
| 217 | e1000_standby_eeprom(hw); |
| 218 | |
| 219 | if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) |
| 220 | return -1; |
| 221 | if (e1000_spi_xfer(hw, len << 3, data, NULL, intr)) |
| 222 | return -1; |
| 223 | |
| 224 | return 0; |
| 225 | } |
| 226 | |
| 227 | static int e1000_spi_eeprom_read_page(struct e1000_hw *hw, |
| 228 | void *data, u16 off, u16 len, boolean_t intr) |
| 229 | { |
| 230 | u8 op[] = { |
| 231 | SPI_EEPROM_READ_PAGE, |
| 232 | (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff |
| 233 | }; |
| 234 | |
| 235 | e1000_standby_eeprom(hw); |
| 236 | |
| 237 | if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) |
| 238 | return -1; |
| 239 | if (e1000_spi_xfer(hw, len << 3, NULL, data, intr)) |
| 240 | return -1; |
| 241 | |
| 242 | return 0; |
| 243 | } |
| 244 | |
| 245 | static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, boolean_t intr) |
| 246 | { |
| 247 | int status; |
| 248 | while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) { |
| 249 | if (!(status & SPI_EEPROM_STATUS_BUSY)) |
| 250 | return 0; |
| 251 | } |
| 252 | return -1; |
| 253 | } |
| 254 | |
| 255 | static int e1000_spi_eeprom_dump(struct e1000_hw *hw, |
| 256 | void *data, u16 off, unsigned int len, boolean_t intr) |
| 257 | { |
| 258 | /* Interruptibly wait for the EEPROM to be ready */ |
| 259 | if (e1000_spi_eeprom_poll_ready(hw, intr)) |
| 260 | return -1; |
| 261 | |
| 262 | /* Dump each page in sequence */ |
| 263 | while (len) { |
| 264 | /* Calculate the data bytes on this page */ |
| 265 | u16 pg_off = off & (hw->eeprom.page_size - 1); |
| 266 | u16 pg_len = hw->eeprom.page_size - pg_off; |
| 267 | if (pg_len > len) |
| 268 | pg_len = len; |
| 269 | |
| 270 | /* Now dump the page */ |
| 271 | if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr)) |
| 272 | return -1; |
| 273 | |
| 274 | /* Otherwise go on to the next page */ |
| 275 | len -= pg_len; |
| 276 | off += pg_len; |
| 277 | data += pg_len; |
| 278 | } |
| 279 | |
| 280 | /* We're done! */ |
| 281 | return 0; |
| 282 | } |
| 283 | |
| 284 | static int e1000_spi_eeprom_program(struct e1000_hw *hw, |
| 285 | const void *data, u16 off, u16 len, boolean_t intr) |
| 286 | { |
| 287 | /* Program each page in sequence */ |
| 288 | while (len) { |
| 289 | /* Calculate the data bytes on this page */ |
| 290 | u16 pg_off = off & (hw->eeprom.page_size - 1); |
| 291 | u16 pg_len = hw->eeprom.page_size - pg_off; |
| 292 | if (pg_len > len) |
| 293 | pg_len = len; |
| 294 | |
| 295 | /* Interruptibly wait for the EEPROM to be ready */ |
| 296 | if (e1000_spi_eeprom_poll_ready(hw, intr)) |
| 297 | return -1; |
| 298 | |
| 299 | /* Enable write access */ |
| 300 | if (e1000_spi_eeprom_enable_wr(hw, intr)) |
| 301 | return -1; |
| 302 | |
| 303 | /* Now program the page */ |
| 304 | if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr)) |
| 305 | return -1; |
| 306 | |
| 307 | /* Otherwise go on to the next page */ |
| 308 | len -= pg_len; |
| 309 | off += pg_len; |
| 310 | data += pg_len; |
| 311 | } |
| 312 | |
| 313 | /* Wait for the last write to complete */ |
| 314 | if (e1000_spi_eeprom_poll_ready(hw, intr)) |
| 315 | return -1; |
| 316 | |
| 317 | /* We're done! */ |
| 318 | return 0; |
| 319 | } |
| 320 | |
| 321 | static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw, |
| 322 | int argc, char * const argv[]) |
| 323 | { |
| 324 | unsigned int length = 0; |
| 325 | u16 i, offset = 0; |
| 326 | u8 *buffer; |
| 327 | int err; |
| 328 | |
| 329 | if (argc > 2) { |
| 330 | cmd_usage(cmdtp); |
| 331 | return 1; |
| 332 | } |
| 333 | |
| 334 | /* Parse the offset and length */ |
| 335 | if (argc >= 1) |
| 336 | offset = simple_strtoul(argv[0], NULL, 0); |
| 337 | if (argc == 2) |
| 338 | length = simple_strtoul(argv[1], NULL, 0); |
| 339 | else if (offset < (hw->eeprom.word_size << 1)) |
| 340 | length = (hw->eeprom.word_size << 1) - offset; |
| 341 | |
| 342 | /* Extra sanity checks */ |
| 343 | if (!length) { |
| 344 | E1000_ERR(hw->nic, "Requested zero-sized dump!\n"); |
| 345 | return 1; |
| 346 | } |
| 347 | if ((0x10000 < length) || (0x10000 - length < offset)) { |
| 348 | E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n"); |
| 349 | return 1; |
| 350 | } |
| 351 | |
| 352 | /* Allocate a buffer to hold stuff */ |
| 353 | buffer = malloc(length); |
| 354 | if (!buffer) { |
| 355 | E1000_ERR(hw->nic, "Out of Memory!\n"); |
| 356 | return 1; |
| 357 | } |
| 358 | |
| 359 | /* Acquire the EEPROM and perform the dump */ |
| 360 | if (e1000_acquire_eeprom(hw)) { |
| 361 | E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); |
| 362 | free(buffer); |
| 363 | return 1; |
| 364 | } |
| 365 | err = e1000_spi_eeprom_dump(hw, buffer, offset, length, TRUE); |
| 366 | e1000_release_eeprom(hw); |
| 367 | if (err) { |
| 368 | E1000_ERR(hw->nic, "Interrupted!\n"); |
| 369 | free(buffer); |
| 370 | return 1; |
| 371 | } |
| 372 | |
| 373 | /* Now hexdump the result */ |
| 374 | printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====", |
| 375 | hw->nic->name, offset, offset + length - 1); |
| 376 | for (i = 0; i < length; i++) { |
| 377 | if ((i & 0xF) == 0) |
| 378 | printf("\n%s: %04hX: ", hw->nic->name, offset + i); |
| 379 | else if ((i & 0xF) == 0x8) |
| 380 | printf(" "); |
| 381 | printf(" %02hx", buffer[i]); |
| 382 | } |
| 383 | printf("\n"); |
| 384 | |
| 385 | /* Success! */ |
| 386 | free(buffer); |
| 387 | return 0; |
| 388 | } |
| 389 | |
| 390 | static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw, |
| 391 | int argc, char * const argv[]) |
| 392 | { |
| 393 | unsigned int length; |
| 394 | u16 offset; |
| 395 | void *dest; |
| 396 | |
| 397 | if (argc != 3) { |
| 398 | cmd_usage(cmdtp); |
| 399 | return 1; |
| 400 | } |
| 401 | |
| 402 | /* Parse the arguments */ |
| 403 | dest = (void *)simple_strtoul(argv[0], NULL, 16); |
| 404 | offset = simple_strtoul(argv[1], NULL, 0); |
| 405 | length = simple_strtoul(argv[2], NULL, 0); |
| 406 | |
| 407 | /* Extra sanity checks */ |
| 408 | if (!length) { |
| 409 | E1000_ERR(hw->nic, "Requested zero-sized dump!\n"); |
| 410 | return 1; |
| 411 | } |
| 412 | if ((0x10000 < length) || (0x10000 - length < offset)) { |
| 413 | E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n"); |
| 414 | return 1; |
| 415 | } |
| 416 | |
| 417 | /* Acquire the EEPROM */ |
| 418 | if (e1000_acquire_eeprom(hw)) { |
| 419 | E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); |
| 420 | return 1; |
| 421 | } |
| 422 | |
| 423 | /* Perform the programming operation */ |
| 424 | if (e1000_spi_eeprom_dump(hw, dest, offset, length, TRUE) < 0) { |
| 425 | E1000_ERR(hw->nic, "Interrupted!\n"); |
| 426 | e1000_release_eeprom(hw); |
| 427 | return 1; |
| 428 | } |
| 429 | |
| 430 | e1000_release_eeprom(hw); |
| 431 | printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name); |
| 432 | return 0; |
| 433 | } |
| 434 | |
| 435 | static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw, |
| 436 | int argc, char * const argv[]) |
| 437 | { |
| 438 | unsigned int length; |
| 439 | const void *source; |
| 440 | u16 offset; |
| 441 | |
| 442 | if (argc != 3) { |
| 443 | cmd_usage(cmdtp); |
| 444 | return 1; |
| 445 | } |
| 446 | |
| 447 | /* Parse the arguments */ |
| 448 | source = (const void *)simple_strtoul(argv[0], NULL, 16); |
| 449 | offset = simple_strtoul(argv[1], NULL, 0); |
| 450 | length = simple_strtoul(argv[2], NULL, 0); |
| 451 | |
| 452 | /* Acquire the EEPROM */ |
| 453 | if (e1000_acquire_eeprom(hw)) { |
| 454 | E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); |
| 455 | return 1; |
| 456 | } |
| 457 | |
| 458 | /* Perform the programming operation */ |
| 459 | if (e1000_spi_eeprom_program(hw, source, offset, length, TRUE) < 0) { |
| 460 | E1000_ERR(hw->nic, "Interrupted!\n"); |
| 461 | e1000_release_eeprom(hw); |
| 462 | return 1; |
| 463 | } |
| 464 | |
| 465 | e1000_release_eeprom(hw); |
| 466 | printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name); |
| 467 | return 0; |
| 468 | } |
| 469 | |
| 470 | static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw, |
| 471 | int argc, char * const argv[]) |
| 472 | { |
Anatolij Gustschin | 6711ee5 | 2011-12-20 02:29:03 +0000 | [diff] [blame] | 473 | uint16_t i, length, checksum = 0, checksum_reg; |
Kyle Moffett | 64b94dd | 2011-10-18 11:05:29 +0000 | [diff] [blame] | 474 | uint16_t *buffer; |
| 475 | boolean_t upd; |
| 476 | |
| 477 | if (argc == 0) |
| 478 | upd = 0; |
| 479 | else if ((argc == 1) && !strcmp(argv[0], "update")) |
| 480 | upd = 1; |
| 481 | else { |
| 482 | cmd_usage(cmdtp); |
| 483 | return 1; |
| 484 | } |
| 485 | |
| 486 | /* Allocate a temporary buffer */ |
| 487 | length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1); |
| 488 | buffer = malloc(length); |
| 489 | if (!buffer) { |
| 490 | E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n"); |
| 491 | return 1; |
| 492 | } |
| 493 | |
| 494 | /* Acquire the EEPROM */ |
| 495 | if (e1000_acquire_eeprom(hw)) { |
| 496 | E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); |
| 497 | return 1; |
| 498 | } |
| 499 | |
| 500 | /* Read the EEPROM */ |
| 501 | if (e1000_spi_eeprom_dump(hw, buffer, 0, length, TRUE) < 0) { |
| 502 | E1000_ERR(hw->nic, "Interrupted!\n"); |
| 503 | e1000_release_eeprom(hw); |
| 504 | return 1; |
| 505 | } |
| 506 | |
| 507 | /* Compute the checksum and read the expected value */ |
| 508 | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) |
| 509 | checksum += le16_to_cpu(buffer[i]); |
| 510 | checksum = ((uint16_t)EEPROM_SUM) - checksum; |
| 511 | checksum_reg = le16_to_cpu(buffer[i]); |
| 512 | |
| 513 | /* Verify it! */ |
| 514 | if (checksum_reg == checksum) { |
| 515 | printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n", |
| 516 | hw->nic->name, checksum); |
| 517 | e1000_release_eeprom(hw); |
| 518 | return 0; |
| 519 | } |
| 520 | |
| 521 | /* Hrm, verification failed, print an error */ |
| 522 | E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n"); |
| 523 | E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n", |
| 524 | checksum_reg, checksum); |
| 525 | |
| 526 | /* If they didn't ask us to update it, just return an error */ |
| 527 | if (!upd) { |
| 528 | e1000_release_eeprom(hw); |
| 529 | return 1; |
| 530 | } |
| 531 | |
| 532 | /* Ok, correct it! */ |
| 533 | printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name); |
| 534 | buffer[i] = cpu_to_le16(checksum); |
| 535 | if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t), |
| 536 | sizeof(uint16_t), TRUE)) { |
| 537 | E1000_ERR(hw->nic, "Interrupted!\n"); |
| 538 | e1000_release_eeprom(hw); |
| 539 | return 1; |
| 540 | } |
| 541 | |
| 542 | e1000_release_eeprom(hw); |
| 543 | return 0; |
| 544 | } |
| 545 | |
| 546 | int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw, |
| 547 | int argc, char * const argv[]) |
| 548 | { |
| 549 | if (argc < 1) { |
| 550 | cmd_usage(cmdtp); |
| 551 | return 1; |
| 552 | } |
| 553 | |
| 554 | /* Make sure it has an SPI chip */ |
| 555 | if (hw->eeprom.type != e1000_eeprom_spi) { |
| 556 | E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n"); |
| 557 | return 1; |
| 558 | } |
| 559 | |
| 560 | /* Check the eeprom sub-sub-command arguments */ |
| 561 | if (!strcmp(argv[0], "show")) |
| 562 | return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1); |
| 563 | |
| 564 | if (!strcmp(argv[0], "dump")) |
| 565 | return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1); |
| 566 | |
| 567 | if (!strcmp(argv[0], "program")) |
| 568 | return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1); |
| 569 | |
| 570 | if (!strcmp(argv[0], "checksum")) |
| 571 | return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1); |
| 572 | |
| 573 | cmd_usage(cmdtp); |
| 574 | return 1; |
| 575 | } |
| 576 | |
| 577 | #endif /* not CONFIG_CMD_E1000 */ |