e1000: Allow direct access to the E1000 SPI EEPROM device
As a part of the manufacturing process for some of our custom hardware,
we are programming the EEPROMs attached to our Intel 82571EB controllers
from software using U-Boot and Linux.
This code provides several conditionally-compiled features to assist in
our manufacturing process:
CONFIG_CMD_E1000:
This is a basic "e1000" command which allows querying the controller
and (if other config options are set) performing EEPROM programming.
In particular, with CONFIG_E1000_SPI this allows you to display a
hex-dump of the EEPROM, copy to/from main memory, and verify/update
the software checksum.
CONFIG_E1000_SPI_GENERIC:
Build a generic SPI driver providing the standard U-Boot SPI driver
interface. This allows commands such as "sspi" to access the bus
attached to the E1000 controller. Additionally, some E1000 chipsets
can support user data in a reserved space in the E1000 EEPROM which
could be used for U-Boot environment storage.
CONFIG_E1000_SPI:
The core SPI access code used by the above interfaces.
For example, the following commands allow you to program the EEPROM from
a USB device (assumes CONFIG_E1000_SPI and CONFIG_CMD_E1000 are enabled):
usb start
fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin
e1000 0 spi program $loadaddr 0 1024
e1000 0 spi checksum update
Please keep in mind that the Intel-provided .eep files are organized as
16-bit words. When converting them to binary form for programming you
must byteswap each 16-bit word so that it is in little-endian form.
This means that when reading and writing words to the SPI EEPROM, the
bit ordering for each word looks like this on the wire:
Time >>>
------------------------------------------------------------------
... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ...
------------------------------------------------------------------
(MSB is 15, LSB is 0).
Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com>
Cc: Ben Warren <biggerbadderben@gmail.com>
diff --git a/drivers/net/e1000_spi.c b/drivers/net/e1000_spi.c
new file mode 100644
index 0000000..5491780
--- /dev/null
+++ b/drivers/net/e1000_spi.c
@@ -0,0 +1,576 @@
+#include "e1000.h"
+
+/*-----------------------------------------------------------------------
+ * SPI transfer
+ *
+ * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
+ * "bitlen" bits in the SPI MISO port. That's just the way SPI works.
+ *
+ * The source of the outgoing bits is the "dout" parameter and the
+ * destination of the input bits is the "din" parameter. Note that "dout"
+ * and "din" can point to the same memory location, in which case the
+ * input data overwrites the output data (since both are buffered by
+ * temporary variables, this is OK).
+ *
+ * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will
+ * never return an error.
+ */
+static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen,
+ const void *dout_mem, void *din_mem, boolean_t intr)
+{
+ const uint8_t *dout = dout_mem;
+ uint8_t *din = din_mem;
+
+ uint8_t mask = 0;
+ uint32_t eecd;
+ unsigned long i;
+
+ /* Pre-read the control register */
+ eecd = E1000_READ_REG(hw, EECD);
+
+ /* Iterate over each bit */
+ for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) {
+ /* Check for interrupt */
+ if (intr && ctrlc())
+ return -1;
+
+ /* Determine the output bit */
+ if (dout && dout[i >> 3] & mask)
+ eecd |= E1000_EECD_DI;
+ else
+ eecd &= ~E1000_EECD_DI;
+
+ /* Write the output bit and wait 50us */
+ E1000_WRITE_REG(hw, EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ udelay(50);
+
+ /* Poke the clock (waits 50us) */
+ e1000_raise_ee_clk(hw, &eecd);
+
+ /* Now read the input bit */
+ eecd = E1000_READ_REG(hw, EECD);
+ if (din) {
+ if (eecd & E1000_EECD_DO)
+ din[i >> 3] |= mask;
+ else
+ din[i >> 3] &= ~mask;
+ }
+
+ /* Poke the clock again (waits 50us) */
+ e1000_lower_ee_clk(hw, &eecd);
+ }
+
+ /* Now clear any remaining bits of the input */
+ if (din && (i & 7))
+ din[i >> 3] &= ~((mask << 1) - 1);
+
+ return 0;
+}
+
+#ifdef CONFIG_E1000_SPI_GENERIC
+static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi)
+{
+ return container_of(spi, struct e1000_hw, spi);
+}
+
+/* Not sure why all of these are necessary */
+void spi_init_r(void) { /* Nothing to do */ }
+void spi_init_f(void) { /* Nothing to do */ }
+void spi_init(void) { /* Nothing to do */ }
+
+struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
+ unsigned int max_hz, unsigned int mode)
+{
+ /* Find the right PCI device */
+ struct e1000_hw *hw = e1000_find_card(bus);
+ if (!hw) {
+ printf("ERROR: No such e1000 device: e1000#%u\n", bus);
+ return NULL;
+ }
+
+ /* Make sure it has an SPI chip */
+ if (hw->eeprom.type != e1000_eeprom_spi) {
+ E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
+ return NULL;
+ }
+
+ /* Argument sanity checks */
+ if (cs != 0) {
+ E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs);
+ return NULL;
+ }
+ if (mode != SPI_MODE_0) {
+ E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n");
+ return NULL;
+ }
+
+ /* TODO: Use max_hz somehow */
+ E1000_DBG(hw->nic, "EEPROM SPI access requested\n");
+ return &hw->spi;
+}
+
+void spi_free_slave(struct spi_slave *spi)
+{
+ struct e1000_hw *hw = e1000_hw_from_spi(spi);
+ E1000_DBG(hw->nic, "EEPROM SPI access released\n");
+}
+
+int spi_claim_bus(struct spi_slave *spi)
+{
+ struct e1000_hw *hw = e1000_hw_from_spi(spi);
+
+ if (e1000_acquire_eeprom(hw)) {
+ E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+void spi_release_bus(struct spi_slave *spi)
+{
+ struct e1000_hw *hw = e1000_hw_from_spi(spi);
+ e1000_release_eeprom(hw);
+}
+
+/* Skinny wrapper around e1000_spi_xfer */
+int spi_xfer(struct spi_slave *spi, unsigned int bitlen,
+ const void *dout_mem, void *din_mem, unsigned long flags)
+{
+ struct e1000_hw *hw = e1000_hw_from_spi(spi);
+ int ret;
+
+ if (flags & SPI_XFER_BEGIN)
+ e1000_standby_eeprom(hw);
+
+ ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, TRUE);
+
+ if (flags & SPI_XFER_END)
+ e1000_standby_eeprom(hw);
+
+ return ret;
+}
+
+#endif /* not CONFIG_E1000_SPI_GENERIC */
+
+#ifdef CONFIG_CMD_E1000
+
+/* The EEPROM opcodes */
+#define SPI_EEPROM_ENABLE_WR 0x06
+#define SPI_EEPROM_DISABLE_WR 0x04
+#define SPI_EEPROM_WRITE_STATUS 0x01
+#define SPI_EEPROM_READ_STATUS 0x05
+#define SPI_EEPROM_WRITE_PAGE 0x02
+#define SPI_EEPROM_READ_PAGE 0x03
+
+/* The EEPROM status bits */
+#define SPI_EEPROM_STATUS_BUSY 0x01
+#define SPI_EEPROM_STATUS_WREN 0x02
+
+static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, boolean_t intr)
+{
+ u8 op[] = { SPI_EEPROM_ENABLE_WR };
+ e1000_standby_eeprom(hw);
+ return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
+}
+
+/*
+ * These have been tested to perform correctly, but they are not used by any
+ * of the EEPROM commands at this time.
+ */
+#if 0
+static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, boolean_t intr)
+{
+ u8 op[] = { SPI_EEPROM_DISABLE_WR };
+ e1000_standby_eeprom(hw);
+ return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
+}
+
+static int e1000_spi_eeprom_write_status(struct e1000_hw *hw,
+ u8 status, boolean_t intr)
+{
+ u8 op[] = { SPI_EEPROM_WRITE_STATUS, status };
+ e1000_standby_eeprom(hw);
+ return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr);
+}
+#endif
+
+static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, boolean_t intr)
+{
+ u8 op[] = { SPI_EEPROM_READ_STATUS, 0 };
+ e1000_standby_eeprom(hw);
+ if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr))
+ return -1;
+ return op[1];
+}
+
+static int e1000_spi_eeprom_write_page(struct e1000_hw *hw,
+ const void *data, u16 off, u16 len, boolean_t intr)
+{
+ u8 op[] = {
+ SPI_EEPROM_WRITE_PAGE,
+ (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
+ };
+
+ e1000_standby_eeprom(hw);
+
+ if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
+ return -1;
+ if (e1000_spi_xfer(hw, len << 3, data, NULL, intr))
+ return -1;
+
+ return 0;
+}
+
+static int e1000_spi_eeprom_read_page(struct e1000_hw *hw,
+ void *data, u16 off, u16 len, boolean_t intr)
+{
+ u8 op[] = {
+ SPI_EEPROM_READ_PAGE,
+ (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff
+ };
+
+ e1000_standby_eeprom(hw);
+
+ if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr))
+ return -1;
+ if (e1000_spi_xfer(hw, len << 3, NULL, data, intr))
+ return -1;
+
+ return 0;
+}
+
+static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, boolean_t intr)
+{
+ int status;
+ while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) {
+ if (!(status & SPI_EEPROM_STATUS_BUSY))
+ return 0;
+ }
+ return -1;
+}
+
+static int e1000_spi_eeprom_dump(struct e1000_hw *hw,
+ void *data, u16 off, unsigned int len, boolean_t intr)
+{
+ /* Interruptibly wait for the EEPROM to be ready */
+ if (e1000_spi_eeprom_poll_ready(hw, intr))
+ return -1;
+
+ /* Dump each page in sequence */
+ while (len) {
+ /* Calculate the data bytes on this page */
+ u16 pg_off = off & (hw->eeprom.page_size - 1);
+ u16 pg_len = hw->eeprom.page_size - pg_off;
+ if (pg_len > len)
+ pg_len = len;
+
+ /* Now dump the page */
+ if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr))
+ return -1;
+
+ /* Otherwise go on to the next page */
+ len -= pg_len;
+ off += pg_len;
+ data += pg_len;
+ }
+
+ /* We're done! */
+ return 0;
+}
+
+static int e1000_spi_eeprom_program(struct e1000_hw *hw,
+ const void *data, u16 off, u16 len, boolean_t intr)
+{
+ /* Program each page in sequence */
+ while (len) {
+ /* Calculate the data bytes on this page */
+ u16 pg_off = off & (hw->eeprom.page_size - 1);
+ u16 pg_len = hw->eeprom.page_size - pg_off;
+ if (pg_len > len)
+ pg_len = len;
+
+ /* Interruptibly wait for the EEPROM to be ready */
+ if (e1000_spi_eeprom_poll_ready(hw, intr))
+ return -1;
+
+ /* Enable write access */
+ if (e1000_spi_eeprom_enable_wr(hw, intr))
+ return -1;
+
+ /* Now program the page */
+ if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr))
+ return -1;
+
+ /* Otherwise go on to the next page */
+ len -= pg_len;
+ off += pg_len;
+ data += pg_len;
+ }
+
+ /* Wait for the last write to complete */
+ if (e1000_spi_eeprom_poll_ready(hw, intr))
+ return -1;
+
+ /* We're done! */
+ return 0;
+}
+
+static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+ int argc, char * const argv[])
+{
+ unsigned int length = 0;
+ u16 i, offset = 0;
+ u8 *buffer;
+ int err;
+
+ if (argc > 2) {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Parse the offset and length */
+ if (argc >= 1)
+ offset = simple_strtoul(argv[0], NULL, 0);
+ if (argc == 2)
+ length = simple_strtoul(argv[1], NULL, 0);
+ else if (offset < (hw->eeprom.word_size << 1))
+ length = (hw->eeprom.word_size << 1) - offset;
+
+ /* Extra sanity checks */
+ if (!length) {
+ E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
+ return 1;
+ }
+ if ((0x10000 < length) || (0x10000 - length < offset)) {
+ E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
+ return 1;
+ }
+
+ /* Allocate a buffer to hold stuff */
+ buffer = malloc(length);
+ if (!buffer) {
+ E1000_ERR(hw->nic, "Out of Memory!\n");
+ return 1;
+ }
+
+ /* Acquire the EEPROM and perform the dump */
+ if (e1000_acquire_eeprom(hw)) {
+ E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
+ free(buffer);
+ return 1;
+ }
+ err = e1000_spi_eeprom_dump(hw, buffer, offset, length, TRUE);
+ e1000_release_eeprom(hw);
+ if (err) {
+ E1000_ERR(hw->nic, "Interrupted!\n");
+ free(buffer);
+ return 1;
+ }
+
+ /* Now hexdump the result */
+ printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====",
+ hw->nic->name, offset, offset + length - 1);
+ for (i = 0; i < length; i++) {
+ if ((i & 0xF) == 0)
+ printf("\n%s: %04hX: ", hw->nic->name, offset + i);
+ else if ((i & 0xF) == 0x8)
+ printf(" ");
+ printf(" %02hx", buffer[i]);
+ }
+ printf("\n");
+
+ /* Success! */
+ free(buffer);
+ return 0;
+}
+
+static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+ int argc, char * const argv[])
+{
+ unsigned int length;
+ u16 offset;
+ void *dest;
+
+ if (argc != 3) {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Parse the arguments */
+ dest = (void *)simple_strtoul(argv[0], NULL, 16);
+ offset = simple_strtoul(argv[1], NULL, 0);
+ length = simple_strtoul(argv[2], NULL, 0);
+
+ /* Extra sanity checks */
+ if (!length) {
+ E1000_ERR(hw->nic, "Requested zero-sized dump!\n");
+ return 1;
+ }
+ if ((0x10000 < length) || (0x10000 - length < offset)) {
+ E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n");
+ return 1;
+ }
+
+ /* Acquire the EEPROM */
+ if (e1000_acquire_eeprom(hw)) {
+ E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
+ return 1;
+ }
+
+ /* Perform the programming operation */
+ if (e1000_spi_eeprom_dump(hw, dest, offset, length, TRUE) < 0) {
+ E1000_ERR(hw->nic, "Interrupted!\n");
+ e1000_release_eeprom(hw);
+ return 1;
+ }
+
+ e1000_release_eeprom(hw);
+ printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name);
+ return 0;
+}
+
+static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+ int argc, char * const argv[])
+{
+ unsigned int length;
+ const void *source;
+ u16 offset;
+
+ if (argc != 3) {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Parse the arguments */
+ source = (const void *)simple_strtoul(argv[0], NULL, 16);
+ offset = simple_strtoul(argv[1], NULL, 0);
+ length = simple_strtoul(argv[2], NULL, 0);
+
+ /* Acquire the EEPROM */
+ if (e1000_acquire_eeprom(hw)) {
+ E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
+ return 1;
+ }
+
+ /* Perform the programming operation */
+ if (e1000_spi_eeprom_program(hw, source, offset, length, TRUE) < 0) {
+ E1000_ERR(hw->nic, "Interrupted!\n");
+ e1000_release_eeprom(hw);
+ return 1;
+ }
+
+ e1000_release_eeprom(hw);
+ printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name);
+ return 0;
+}
+
+static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+ int argc, char * const argv[])
+{
+ uint16_t i, length, checksum, checksum_reg;
+ uint16_t *buffer;
+ boolean_t upd;
+
+ if (argc == 0)
+ upd = 0;
+ else if ((argc == 1) && !strcmp(argv[0], "update"))
+ upd = 1;
+ else {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Allocate a temporary buffer */
+ length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1);
+ buffer = malloc(length);
+ if (!buffer) {
+ E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n");
+ return 1;
+ }
+
+ /* Acquire the EEPROM */
+ if (e1000_acquire_eeprom(hw)) {
+ E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n");
+ return 1;
+ }
+
+ /* Read the EEPROM */
+ if (e1000_spi_eeprom_dump(hw, buffer, 0, length, TRUE) < 0) {
+ E1000_ERR(hw->nic, "Interrupted!\n");
+ e1000_release_eeprom(hw);
+ return 1;
+ }
+
+ /* Compute the checksum and read the expected value */
+ for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
+ checksum += le16_to_cpu(buffer[i]);
+ checksum = ((uint16_t)EEPROM_SUM) - checksum;
+ checksum_reg = le16_to_cpu(buffer[i]);
+
+ /* Verify it! */
+ if (checksum_reg == checksum) {
+ printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n",
+ hw->nic->name, checksum);
+ e1000_release_eeprom(hw);
+ return 0;
+ }
+
+ /* Hrm, verification failed, print an error */
+ E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n");
+ E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n",
+ checksum_reg, checksum);
+
+ /* If they didn't ask us to update it, just return an error */
+ if (!upd) {
+ e1000_release_eeprom(hw);
+ return 1;
+ }
+
+ /* Ok, correct it! */
+ printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name);
+ buffer[i] = cpu_to_le16(checksum);
+ if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t),
+ sizeof(uint16_t), TRUE)) {
+ E1000_ERR(hw->nic, "Interrupted!\n");
+ e1000_release_eeprom(hw);
+ return 1;
+ }
+
+ e1000_release_eeprom(hw);
+ return 0;
+}
+
+int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw,
+ int argc, char * const argv[])
+{
+ if (argc < 1) {
+ cmd_usage(cmdtp);
+ return 1;
+ }
+
+ /* Make sure it has an SPI chip */
+ if (hw->eeprom.type != e1000_eeprom_spi) {
+ E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n");
+ return 1;
+ }
+
+ /* Check the eeprom sub-sub-command arguments */
+ if (!strcmp(argv[0], "show"))
+ return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1);
+
+ if (!strcmp(argv[0], "dump"))
+ return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1);
+
+ if (!strcmp(argv[0], "program"))
+ return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1);
+
+ if (!strcmp(argv[0], "checksum"))
+ return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1);
+
+ cmd_usage(cmdtp);
+ return 1;
+}
+
+#endif /* not CONFIG_CMD_E1000 */